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W ith ever larger data sets and cloud-based storage systems, it 
becomes increasingly more attractive to move computation to 
data, a common principle in big data systems. Historically, data 

management systems have pushed computation nearest to the data in order  
to reduce data moving through query execution pipelines. Computational 
storage approaches address the problem of both data reduction nearest the 
source as well as offloading some processing to the storage layer.

As storage systems become more disaggregated from client applications, such as distributed 
object storage (e.g., S3, Swift, and Ceph), there is new interest in computational storage dis-
aggregated over networks [7]. There has also been a long line of efforts toward computational 
storage, including custom hardware and software for intelligent disks and active storage [5, 6, 
13, 15], commercial appliances, and middleware approaches in the cloud [1, 2].

Recent research on programmable storage systems [4, 9–12, 14, 16] takes the approach of 
exposing, augmenting, or combining existing functionality already present in the storage sys-
tem to increase storage capabilities, performance, or provide new storage APIs and services 
to clients. There are several benefits to this approach, including (1) building upon a trusted, 
production quality storage system rather than starting from scratch or building a one-off 
solution; (2) requiring no additional system or hardware (e.g., Zookeeper or specialized disks) 
to be installed to provide these new functions; and (3) avoiding the need for each client to 
reimplement available functionality on a per-use-case basis by simply accessing newly avail-
able storage services as they become available.

The Skyhook Data Management project (skyhookdm.com) [8, 9] utilizes programmable 
storage methods to extend Ceph with data processing and management capabilities. Our 
methods are applied directly to objects or across groups of objects by the storage system 
itself. These capabilities are implemented as extensions to Ceph’s through its existing cls 
mechanism. This mechanism allows users to install custom functions that can be applied to 
objects in addition to read() or write(). Our approach that includes custom extensions along 
with data partitioning and structured data storage enables storage servers to semantically 
interpret object data in order to execute functions such as SQL SELECT, PROJECT, and 
AGGREGATE. We also developed extensions for data management functions that perform 
physical design tasks such as indexing, data repartitioning, and formatting. Partitioning and 
formatting can be especially useful in the context of row versus column-oriented formats for 
workload processing.

The immediate benefits of this approach are I/O and CPU scalability (for certain functions) 
that grows or shrinks along with the number of storage servers. Since objects are semanti-
cally self-contained (i.e., a database partition) and are the entities that custom functions 
operate on, and since the storage system automatically rebalances objects across available 
servers—our approach, using I/O and compute elasticity, can directly benefit any storage 
 client application that is able to take advantage of these methods.
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The key insight of SkyhookDM is to simplify data management 
and minimize data movement by enabling the storage system to 
semantically interpret, manage, and process data. This can dra-
matically reduce the complexity of coordination and resources 
required higher up the software stack at the application layer. For 
example, applying a filter, building an index, or reformatting data 
can happen in parallel remotely on individual objects. This is 
because the necessary context for many common data processing 
and management tasks resides with the data, which makes data 
movement to establish computational contexts entirely unneces-
sary. In our work, this context includes the data semantics and 
the processing functions that are included in our formatted data 
within objects and our shared library extensions available within 
the storage servers, respectively.

For example, a single node database such as PostgreSQL can 
push query operations into the storage layer through its external 
table interface (foreign data wrapper), which can invoke these 
functions on objects and, hence, distribute computation across 
many storage nodes. For file interfaces, a similar mechanism 
is available in the scientific file format HDF5 with its  Virtual 
Object Layer (VOL) that enables HDF5 to be mapped to non-
POSIX storage back ends. Hence, similar to partitioning a 
database table, a large file can be “extended” by HDF5 functions 
into smaller objects across many storage nodes. SkyhookDM  
also provides a Python client using the Pandas DataFrame 
abstraction. In these ways, our methods can be used to scale out  
a database or another data-intensive application designed to  
run only on a single node.

Our approach to extend storage with data management tasks has 
several significant benefits:

 3 Increased query performance when pushing down computation 
directly to objects across many storage servers.
 3 Reduced network I/O and host interconnect  bandwidth for 
computations that result in data reduction (e.g., SELECT, 
PROJECT, AGGREGATE).
 3 Reduced CPU at clients due to offloading and reduced CPU both 
at clients and servers due to creating, sending, and receiving 
fewer packets for data reduction queries.
 3 Reduced application complexity and resources for data manage-
ment tasks such as indexing, re-partitioning data, or converting 
between formats (e.g., row to column).
 3 Support for operating on multiple data formats in storage, and 
the capability to extend support for other formats.
 3 Fewer application-level storage system assumptions of (pos-
sibly out-of-date) “storage-friendly” access patterns and more 
intelligent storage systems adapting to new devices.

Next we provide a short background, our architecture and meth-
odology, and a few experiments to evaluate performance, scal-
ability, and overhead of our approach to in-storage processing.

Background
Ceph is a widely used open source distributed object storage 
system created by Sage Weil at UC Santa Cruz and backed by Red 
Hat, IBM, and many other large corporations. It has no single 
point of failure, is self-healing, and scales to very large instal-
lations of 100’s petabytes of data. It provides file, block, and 
object interfaces. New object methods can be created using cls 
extensions that are registered as READ and/or WRITE methods 
and then compiled into shared libraries within the Ceph source 
tree or via an SDK. These new shared libraries are installed on 
 storage servers (also known as OSDs) in a directory well known 
to Ceph, /usr/lib64/rados-classes/.

Figure 1: Example Ceph custom object class method to compute MD5 sum



www.usenix.org  S U M M ER 2020  VO L .  45 ,  N O.  2 15

FILE SYSTEMS AND STORAGE
SkyhookDM: Data Processing in Ceph with Programmable Storage

Ceph object classes currently support C++ and Lua interfaces, 
and an example implementation of an object method would be 
to compute a checksum, or perhaps generate a thumbnail image 
as part of a custom read or write method as shown in Figure 1. 
Critically, partial reads and writes of objects are also possible in 
Ceph, which is useful to reduce disk I/O for certain queries such 
as PROJECT a subset of all columns.

Apache Arrow and Google FlatBuffers are fast, in-memory seri-
alization libraries. Arrow was developed for columnar processing 
and sharing data over the wire, and supports compression and 
interacts well with other formats, especially Parquet. FlatBuffers 
was developed for gaming, with a row-based abstraction; is very 
flexible, including a schema-free interface called FlexBuffers; 
and supports user-defined structs. They both offer a highest 
level abstraction of a table. We include these libraries within our 
shared library code to locally interpret and process object data.

SkyhookDM Architecture
Figure 2 shows our architecture, with a client application con-
nected to a standard Ceph cluster with SkyhookDM cls exten-
sions installed. The client application connects to Ceph using the 
standard librados library which makes the extensions available 
to the client. In this way databases such as PostgreSQL can 
invoke these extensions via their foreign data wrapper.

Figure 2 depicts a Ceph cluster of three Object Storage Devices 
(OSDs), each with its own CPU and memory resources that are 
utilized by our extensions for data processing. Each OSD stores a 
collection of objects and also has a local RocksDB instance that 
we exploit as an indexing mechanism.

SkyhookDM extensions are present as a shared library on each 
OSD, and these extensions can be applied to any local object for 
customized local processing. During processing, results can be 
returned to the client in a different format than the internal stor-
age format, e.g., Arrow table, or PostgreSQL binary format from 
an object with FlatBuffer data format. Since our shared  libraries 
are present on each OSD, they are immediately available to 
objects stored on newly added OSDs—for instance, when adding 
nodes to a Ceph cluster.

Methodology
Our work exploits Ceph’s cls extension interface by first  writing 
structured data to objects and then adding access methods 
implementing common SQL operations. We store structured 
data using popular and very efficient data serialization libraries 
such as Apache Arrow and Google FlatBuffers and use their APIs 
to  implement new cls access methods. For greater f lexibility 
to support multiple data formats, the structured data includes 
metadata about itself that expresses higher level information 
such as the data’s current layout, whether or not it is compressed, 
and the data’s length. Figure 3 shows this information, which 
is itself defined as a Flatbuffer wrapper. This helps to abstract 
away data layout information from the higher level client applica-
tions, creating f lexibility to store and process data in various 
formats as well as reduce the need for client applications to keep 
track of data formats or compression on a per-object basis.

Physical and Logical Data Alignment
Physical and logical data alignment can be crucial for good per-
formance, including with big data processing frameworks such 
as MapReduce [3]. In our work, physical and logical alignment is 
required such that when partitions are stored in objects of struc-
tures data, a given object contains a complete logical subset of the 
original data in order to interpret the data’s semantics and per-
form any meaningful processing. For example, a database table 
partition could be stored in an object, resulting in a collection 
of complete rows that can be operated upon. In contrast, byte-
aligned physical partitions (e.g., 64 MB) can result in incomplete 
rows, with part of a row stored across two different objects. Any 
processing for such rows would need to be performed at a higher 
layer and first perform a collect or gather operation across perhaps 
multiple storage servers. This would render object-local process-
ing useless and result in unnecessary network I/O.

Data Partitioning and Format
In our work, we consider row and column-based partitions. 
Partitions are formatted using fast, in-memory data serialization 
formats: Google FlatBuffers for row partitions or Apache Arrow 
for column partitions. Both of these formats allow us to encode 
the data schema within, which allows the structured data to be 
interpreted by our cls methods.

Figure 2: SkyhookDM architecture showing a three-node Ceph cluster 
with four objects

Figure 3: Per object metadata wrapper regarding the serialized data 
 partition (blob data) stored within
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For either row or column storage, data is partitioned, formatted, 
and named using conventions such as table_name.partition_num, 
resulting in a collection of objects per table where each object 
represents a logical data partition that is self-contained, with 
metadata indicating its semantics such as the table schema. Fig-
ure 4 depicts how data is partitioned and formatted for a database 
table. Data semantics are included within the format, which is 
then wrapped with our metadata wrapper, serialized as binary 
object data, and stored in Ceph. Data placement is handled by 
Ceph’s pseudo-random data distribution function (CRUSH).

Rather than looking up all object names of a table, our object-
naming convention includes content information, such as the 
table or column name. This results in constant-size metadata 
per table that includes only a name generator function and a few 
constants such as total number of objects. Further content-based 
information is possible to encode in the naming as well, such as 
row ranges for range-based row partitions (e.g., month). Such 
content-based object names and generator functions can then 
also be used for partition pruning during query plan generation.

This partitioning and formatting method achieves logical and 
physical alignment, embeds data semantics locally within each 
partition, and, along with the serialization format APIs and 
custom object classes, allows us to perform processing indepen-
dently on each partition. Creating many objects (i.e., partitions) 
and scaling out the number of storage servers can enable a high 
degree of parallelism for data processing.

Data Layout and Physical Design
Within an object, there are several options to consider for laying 
out the data, either as a set of byte stream extents in a chunk 
store, as a set of entries in a key/value store, or combinations of 
both. The key-value store is a local instance of RocksDB, used 
by Ceph for managing the local collection of objects on the OSD. 
Object methods can also access RocksDB via Ceph’s object_map 
or omap interface. SkyhookDM uses omap to store both  logical 
information (data content) and physical information (data offsets). 
For instance, the logical information includes the row number of 
a particular value within an objects formatted data (e.g., row i) 
to provide quick lookups for point or range queries. The physical 
information includes the offsets and lengths of the sequence of 

data structures within an object. Both indexing and data layout 
within an object is a consideration for physical design [4] man-
agement, such as potentially storing each column of a table as a 
separate data structure in order to minimize the amount of disk 
I/O required to retrieve a given column. This helps to improve 
the performance of PROJECT queries, for example.

Evaluation
We executed all experiments on Cloudlab, an NSF bare-metal-
as-a-service infrastructure. We used machine profile c220-g5 
for all nodes, 2x Intel Xeon Silver 2.2 GHz, 192 GB RAM, 1 TB 
HDD, and 10 GbE. Our data set was the LINEITEM table from 
the standard TPC-H database benchmark, with one billion rows. 
We partition this table, format, and store into 10,000 objects of 
an equal number of rows. The objects are distributed by Ceph 
across all storage nodes. Data is formatted as FlatBuffer or 
Arrow as indicated.

Figure 6: Query execution time for storage-side processing (offloading) 
versus processing on client machine with a four-node Ceph cluster

Figure 4: Data partitioning, formatting, and objects in SkyhookDM

Figure 5: Query execution time as the number of storage servers is scaled out
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Performance Improvement with Pushdown Query 
Processing
Figure 5 shows query latency is reduced as the number of storage 
servers increases. The no-processing bar is a standard read of all 
the data, representing I/O scale out. The other bars show offload-
ing of a select query for 1% and 10% of data rows. This represents 
I/O and CPU scale out. The offloading result tracks very closely 
to the I/O scale out, with little extra overhead for the storage 
servers to read and process versus only read. This highlights how 
the computation is distributed across all storage servers. While 
execution time is not reduced in this case, likely due to many 
cores and very fast network, the overhead to apply computa-
tion in Ceph is low, and CPU usage on the client is dramatically 
reduced, as we show next.

Overhead of Data Processing Libraries in Ceph
Figure 6 shows query execution time when processing data with 
all storage machines or on the single client machine. We first 
execute a standard read (no processing) as a baseline. Then we 
execute a query that selects 1%, 10%, or 100% of rows. In both 
cases there is little overhead to apply the data processing in 
storage except the case when selecting all data. This is due to 
the extra cost to both filter and then repackage and return each 
object when all rows pass the filter. This indicates the need for a 
statistics-based query optimizer to make wise decisions about 
what computations to offload.

CPU Usage with and without Offloading
Figure 7 shows that without offloading (no pushdown process-
ing), the client spends over 5% of CPU usage to receive packets 
and apply SELECT (top left). With offloading the client CPU, 
usage is near zero (bottom left). This is because the client 
receives only 1% of the original data packets and does not have 
to apply SELECT. The processing work is shifted to the storage 
servers (bottom right), showing a small corresponding increase 
in the stacked total CPU usage that is distributed across all 
storage servers (bottom right). However, now the work done by 
storage servers is actually useful for data processing, whereas 
the work done by storage servers in the without pushdown case 
(top right) is simply creating and sending packets containing 
99% unnecessary data.

Conclusion
SkyhookDM extends Ceph with object classes and fast serializa-
tion libraries to offload computation and data management tasks 
to storage. We have shown our approach has minimal overhead 
and scales with the number of storage servers. Our design is 
highly flexible, utilizing row or column-oriented data formats as 
well as the ability to dynamically convert between them directly 
in storage, eliminating the need to bring data into the client for 
processing or data management tasks. Extending our program-
mable storage approach to support custom data formats and 
more complex processing is another goal, and we are currently 
working on extensions for high energy physics data that uses the 
ROOT file format.

Figure 7: CPU usage during first 60 seconds for client machine (left) and eight storage servers (right, stacked) for 1% selectivity file query without pushdown 
processing (top) and with pushdown (bottom)



18   S U M M ER 2020  VO L .  45 ,  N O.  2  www.usenix.org

FILE SYSTEMS AND STORAGE
SkyhookDM: Data Processing in Ceph with Programmable Storage

References
[1] Amazon Redshift Spectrum documentation: https://docs.
aws.amazon.com/redshift/latest/dg/c-using-spectrum.html. 

[2] Swift storelet engine overview documentation: https://docs.
openstack.org/storlets/latest/storlet_engine_overview.html. 

[3] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Malt-
zahn, N. Polyzotis, and S. Brandt, “SciHadoop: Array-Based 
Query Processing in Hadoop,” in Proceedings of the 2011 Inter-
national Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC11), November 12–18, 2011, 
Seattle, WA.

[4] K. Dahlgren, J. LeFevre, A. Shirwadkar, K. Iizawa, A. Mon-
tana, P. Alvaro, and C. Maltzahn, “Towards Physical Design 
Management in Storage Systems,” in Proceedings of the 2019 
IEEE/ACM Fourth International Parallel Data Systems Work-
shop (PDSW), November 18, 2019, Denver, CO.

[5] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A Case for 
Intelligent Disks (IDISKs),” ACM SIGMOD Record, vol. 27, no. 3 
(September 1998), pp. 42–52.

[6] S. Kim, H. Oh, C. Park, S. Cho, S.-W. Lee, and B. Moon, “In- 
Storage Processing of Database Scans and Joins,” Information 
Sciences, vol. 327 (January 10, 2016), pp. 183–200.

[7] P. Kufeldt, C. Maltzahn, T. Feldman, C. Green, G. Mackey, 
and S. Tanaka, “Eusocial Storage Devices: Offloading Data 
Management to Storage Devices that Can Act Collectively,” 
;login:, vol. 43, no. 2 (Summer 2018), pp. 16–22.

[8] J. LeFevre and C. Maltzahn, “Scaling Databases and File 
APIs with Programmable Ceph Object Storage,” 2020 Linux 
Storage and Filesystems Conference (Vault ’20), February 
24–25, 2020, Santa Clara, CA.

[9] J. LeFevre and N. Watkins, “Skyhook: Programmable Stor-
age for Databases,” 2019 Linux Storage and Filesystems Con-
ference (Vault ’19),  February 25–26, 2019, Boston, MA.

[10] M. A. Sevilla, I. Jimenez, N. Watkins, J. LeFevre, P. Alvaro, 
S. Finkelstein, P. Donnelly, and C. Maltzahn, “Cudele: An API 
and Framework for Programmable Consistency and Durability 
in a Global Namespace,” in Proceedings of 32nd IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 
2018), May 21–25, 2018, Vancouver, BC, Canada.

[11] M. A. Sevilla, R. Nasirigerdeh, C. Maltzahn, J. LeFevre, 
N. Watkins, P. Alvaro, M. Lawson, J. Lofstead, and J. Pivarski, 
“Tintenfisch: File System Namespace Schemas and Generators,” 
10th USENIX Workshop on Hot Topics in Storage and File Sys-
tems (HotStorage ’18), July 9–10, 2018, Boston, MA.

[12] M. A. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkel-
stein, J. LeFevre, and C. Maltzahn, “Malacology: A Program-
mable Storage System,” in Proceedings of the 12th European 
Conference on Computer Systems (EuroSys ’17), April 23–26, 
2017, Belgrade, Serbia.

[13] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, 
and R. H. Arpaci-Dusseau, “Database-Aware Semantically-
Smart Storage,” in Proceedings of the 4th USENIX Conference 
on File and Storage Technologies (FAST ’05), December 13–16, 
2005, San Francisco, CA. 

[14] N. Watkins, M. A. Sevilla, I. Jimenez, K. Dahlgren, P. Alvaro, 
S. Finkelstein, and C. Maltzahn, “Declstore: Layering Is for the 
Faint of Heart,” 9th USENIX Workshop on Hot Topics in Stor-
age and File Systems (HotStorage ’17), July 10–11, 2017, Santa 
Clara, CA.

[15] L. Woods, Z. István, and G. Alonso, “Ibex: An Intelligent 
Storage Engine with Support for Advanced SQL Offloading,” in 
Proceedings of the VLDB Endowment, vol. 7, no. 11 (July 2014), 
pp. 963–974.

[16] M. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. Brandt, 
S. Weil, G.Farnum, and S. Fineberg, “Mantle: A Programmable 
Metadata Load Balancer for the Ceph File System,” in Proceed-
ings of the 2015 International Conference for High Performance 
Computing, Networking, Storage, and Analysis (SC15), Novem-
ber 15–20, 2015, Austin, TX.

Acknowledgments
Support provided by the Center for Research in Open Source 
Software at UC Santa Cruz (cross.ucsc.edu), NSF Grant OAC-
1836650, CNS-1764102, CNS-1705021. We would also like to 
thank everyone who has contributed to the open source Sky-
hookDM project.


