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Abstract

We study two time-scale linear stochastic approximation algorithms, which can
be used to model well-known reinforcement learning algorithms such as GTD,
GTD2, and TDC. We present finite-time performance bounds for the case where the
learning rate is fixed. The key idea in obtaining these bounds is to use a Lyapunov
function motivated by singular perturbation theory for linear differential equations.
We use the bound to design an adaptive learning rate scheme which significantly
improves the convergence rate over the known optimal polynomial decay rule in
our experiments, and can be used to potentially improve the performance of any
other schedule where the learning rate is changed at pre-determined time instants.

1 Introduction

A key component of reinforcement learning algorithms is to learn or approximate value functions
under a given policy [Sutton, 1988], [Bertsekas and Tsitsiklis, 1996], [Szepesvári, 2010], [Bertsekas,
2011], [Bhatnagar et al., 2012], [Sutton and Barto, 2018]. Many existing algorithms for learning
value functions are variants of the temporal-difference (TD) learning algorithms [Sutton, 1988],
[Tsitsiklis and Van Roy, 1997], and can be viewed as stochastic approximation algorithms for
minimizing the Bellman error (or objectives related to the Bellman error). Characterizing the
convergence of these algorithms, such as TD(0), TD(λ), GTD , nonlinear GTD has been an important
objective of reinforcement learning [Szepesvári, 2010], [Bhatnagar et al., 2009], and [Sutton et al.,
2016]. The asymptotic convergence of these algorithms with diminishing steps has been established
using stochastic approximation theory in many prior works (comprehensive surveys on stochastic
approximations can be found in [Benveniste et al., 2012], [Kushner and Yin, 2003], and [Borkar,
2009]).

The conditions required for theoretically establishing asymptotic convergence in an algorithm with
diminishing step sizes imply that the learning rate becomes very small very quickly. As a result,
the algorithm will require a very large number of samples to converge. Reinforcement learning
algorithms used in practice follow a pre-determined learning rate (step-size) schedule which, in
most cases, uses decaying step sizes first and then a fixed step size. This gap between theory and
practice has prompted a sequence of works on finite-time performance of temporal difference learning
algorithms with either time-varying step sizes or constant step sizes [Dalal et al., 2017a,b, Liu et al.,
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2018, Lakshminarayanan and Szepesvari, 2018, Bhandari et al., 2018, Srikant and Ying, 2019]. Most
of these results are for single time-scale TD algorithms, except [Dalal et al., 2017b] which considers
two time-scale algorithms with decaying step sizes. Two time-scale TD algorithms are an important
class of reinforcement learning algorithms because they can improve the convergence rate of TD
learning or remedy the instability of single time-scale TD in some cases. This paper focuses on two
time-scale linear stochastic approximation algorithms with constant step sizes. The model includes
TDC, GTD and GTD2 as special cases (see [Sutton et al., 2008], [Sutton et al., 2009] and [Szepesvári,
2010] for more details). We note that, in contemporaneous work, [Xu et al., 2019] have carried out a
two-time-scale analysis of linear stochastic approximation with diminishing step sizes.

Besides the theoretical analysis of finite-time performance of two time-scale reinforcement learning
algorithms, another important aspect of reinforcement learning algorithms, which is imperative in
practice but has been largely overlooked, is the design of learning rate schedule, i.e., how to choose
proper step-sizes to improve the learning accuracy and reduce the learning time. This paper addresses
this important question by developing principled heuristics based on the finite-time performance
bounds.

The main contributions of this paper are summarized below.

• Finite Time Performance Bounds: We study two time-scale linear stochastic approximation
algorithms, driven by Markovian samples. We establish finite time bounds on the mean-square
error with respect to the fixed point of the corresponding ordinary differential equations (ODEs).
The performance bound consists of two parts: a steady-state error and a transient error, where the
steady-state error is determined by the step sizes but independent of the number of samples (or
number of iterations), and the transient error depends on both step sizes and the number of samples.
The transient error decays geometrically as the number of samples increases. The key differences
between this paper and [Dalal et al., 2017b] include (i) we do not require a sparse projection step
in the algorithm; and (ii) we assume constant step-sizes which allows us to develop the adaptive
step-size selection heuristic mentioned next.

• Adaptive Learning Rate Selection: Based on the finite-time performance bounds, in particular,
the steady-state error and the transient error terms in the bounds, we propose an adaptive learning
rate selection scheme. The intuition is to use a constant learning rate until the transient error is
dominated by the steady-state error; after that, running the algorithm further with the same learning
rate is not very useful and therefore, we reduce the learning rate at this time. To apply adaptive
learning rate selection in a model-free fashion, we develop data-driven heuristics to determine the
time at which the transient error is close to the steady-state error. A useful property of our adaptive
rate selection scheme is that it can be used with any learning rate schedule which already exists in
many machine learning software platforms: one can start with the initial learning rate suggested by
such schedules and get improved performance by using our adaptive scheme. Our experiments on
Mountain Car and Inverted Pendulum show that our adaptive learning rate selection significantly
improves the convergence rates as compared to optimal polynomial decay learning rate strategies
(see [Dalal et al., 2017b] and [Konda et al., 2004] for more details on polynomial decay step-size
rules).

2 Model, Notation and Assumptions

We consider the following two time-scale linear stochastic approximation algorithm:

Uk+1 = Uk + εα (Auu(Xk)Uk +Auv(Xk)Vk + bu(Xk))

Vk+1 = Vk + εβ (Avu(Xk)Uk +Avv(Xk)Vk + bv(Xk)) ,
(1)

where {Xk} are the samples from a Markov process. We assume β < α so that, over ε−β iterations,
the change in V is O(1) while the change in U is O

(
εα−β

)
. Therefore, V is updated at a faster time

scale than U.

In the context of reinforcement learning, when combined with linear function approximation of
the value function, GTD, GTD2, and and TDC can be viewed as two time-scale linear stochastic
approximation algorithms, and can be described in the same form as (1). For example, GTD2 with
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linear function approximation is as follows:

Uk+1 =Uk + εα (φ(Xk)− ζφ(Xk+1))φ>(Xk)Vk

Vk+1 =Vk + εβ
(
δk − φ>(Xk)Vk

)
φ(Xk),

where ζ is the discount factor, φ(x) is the feature vector of state x, Uk is the weight vec-
tor such that φ>(x)Uk is the approximation of value function of state x at iteration k, δk =
c(Xk) + ζφ>(Xk+1)Uk − φ>(Xk)Uk is the TD error, and Vk is the weight vector that estimates
E[φ(Xk)φ(Xk)T ]−1E[δkφ(Xk)].

We now summarize the notation we use throughout the paper and the assumptions we make.

• Assumption 1: {Xk} is a Markov chain with state space S. We assume that the following two
limits exist: (

Āuu Āuv
Āvu Āvv

)
= lim
k−→∞

(
E [Auu(Xk)] E [Auv(Xk)]
E [Avu(Xk)] E [Avv(Xk)]

)
(
b̄u b̄v

)
= lim
k−→∞ (E[bu(Xk)] E[bv(Xk)]) = 0.

Note that without the loss of generality, we assume b̄ = 0 which allows for the fixed point of the
associated ODEs to be 0. This can be guaranteed by appropriate centering. We define

B(Xk) =Auu(Xk)−Auv(Xk)Ā−1
vv Āvu B̃(Xk) =Avu(Xk)−Avv(Xk)Ā−1

vv Āvu

B̄ =Āuu − ĀuvĀ−1
vv Avu

¯̃B =Āvu − ĀvvĀ−1
vv Āvu.

• Assumption 2: We assume that max{‖bu(x)‖, ‖bv(x)‖} ≤ bmax < ∞ for any x ∈ S. We
also assume that max{‖B(x)‖, ‖B̃(x)‖, ‖Auu(x)‖, ‖Avu(x)‖, ‖Auv(x)‖, ‖Avv(x)‖} ≤ 1 for
any x ∈ S. Note that these assumptions imply that the steady-state limits of the random matri-
ces/vectors will also satisfy the same inequalities.

• Assumption 3: We assume Āvv and B̄ are Hurwitz and Āvv is invertible. Let Pu and Pv be the
solutions to the following Lyapunov equations:

−I = B̄>Pu + PuB̄

−I = Ā>vvPv + PvĀvv.

Since both Āvv and B̄ are Hurwitz, Pu and Pv are real positive definite matrices.
• Assumption 4: Define τ∆ ≥ 1 to be the mixing time of the Markov chain {Xk}. We assume

‖E[bk|X0 = i]‖ ≤ ∆,∀i,∀k ≥ τ∆
‖B̄ − E[B(Xk)|X0 = i]‖ ≤ ∆,∀i,∀k ≥ τ∆
‖ ¯̃B − E[B̃(Xk)|X0 = i]‖ ≤ ∆,∀i,∀k ≥ τ∆

‖Āuv − E[Auv(Xk)|X0 = i]‖ ≤ ∆,∀i,∀k ≥ τ∆
‖Āvv − E[Avv(Xk)|X0 = i]‖ ≤ ∆,∀i, ∀k ≥ τ∆.

• Assumption 5: As in [Srikant and Ying, 2019], we assume that there exists K ≥ 1 such that
τ∆ ≤ K log( 1

∆ ). For convenience, we choose

∆ = 2εα
(
1 + ‖Ā−1

vv Āvu‖+ εβ−α
)

and drop the subscript from τ∆, i.e., τ∆ = τ . Also, for convenience, we assume that ε is small
enough such that ε̃τ ≤ 1

4 , where ε̃ = ∆ = 2εα
(
1 + ‖Ā−1

vv Āvu‖+ εβ−α
)
.

We further define the following notation:

• Define matrix

P =

(
ξv

ξu+ξv
Pu 0

0 ξu
ξu+ξv

Pv

)
, (2)

where ξu = 2‖PuĀuv‖ and ξv = 2
∥∥PvĀ−1

vv ĀvuB̄
∥∥ .

• Let γmax and γmin denote the largest and smallest eigenvalues of Pu and Pv, respectively. So γmax

and γmin are also upper and lower bounds on the eigenvalues of P.
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3 Finite-Time Performance Bounds

To establish the finite-time performance guarantees of the two time-scale linear stochastic approxima-
tion algorithm (1), we define

Zk = Vk + Ā−1
vv ĀvuUk and Θk =

(
Uk
Zk

)
.

Then we consider the following Lyapunov function:

W (Θk) = Θ>k PΘk, (3)

where P is a symmetric positive definite matrix defined in (2) (P is positive definite because both
Pu and Pv are positive definite matrices). The reason to introduce Zk will become clear when we
introduce the key idea of our analysis based on singular perturbation theory.

The following lemma bounds the expected change in the Lyapunov function in one time step.

Lemma 1. For any k ≥ τ and ε, α, and β such that η1ε̃τ + 2 ε̃
2

εα γmax ≤ κ1

2 , the following inequality
holds:

E[W (Θk+1)−W (Θk)] ≤ − εα

γmax

(κ1

2
− κ2ε

α−β
)
E[W (Θk)] + ε2βτη2,

where ε̃ = 2εα
(
1 + ‖Ā−1

vv Āvu‖+ εβ−α
)
, and η1, η2 κ1, and κ2 are constants independent of ε.

The proof of Lemma 1 is somewhat involved, and is provided in the supplementary material. The
definitions of η1, η2, κ1 and κ2 can be found in the supplementary material as well. Here, we
provide some intuition behind the result by studying a related ordinary differential equation (ODE).
In particular, consider the expected change in the stochastic system divided by the slow time-scale
step size εα:

E[Uk+1 − Uk|Uk−τ = u, Vk−τ = v,Xk−τ = x]

εα

=E [ (Auu(Xk)Uk +Auv(Xk)Vk + bu)|Uk−τ = u, Vk−τ = v,Xk−τ = x]

εα−β
E[Vk+1 − Vk|Uk−τ = u, Vk−τ = v,Xk−τ = x]

εα

=E [ (Avu(Xk)Uk +Avv(Xk)Vk + bv(Xk))|Uk−τ = u, Vk−τ = v,Xk−τ = x] ,

(4)

where the expectation is conditioned sufficiently in the past in terms of the underlying Markov chain
(i.e. conditioned on the state at time k − τ instead of k) so the expectation is approximately in
steady-state.

Approximating the left-hand side by derivatives and the right-hand side using steady-state expecta-
tions, we get the following ODEs:

u̇ =Āuuu+ Āuvv (5)

εα−β v̇ =Āvuu+ Āvvv. (6)

Note that, in the limit as ε→ 0, the second of the above two ODEs becomes an algebraic equation,
instead of a differential equation. In the control theory literature, such systems are called singularly-
perturbed differential equations, see for example [Kokotovic et al., 1999]. In [Khalil, 2002, Chapter
11], the following Lyapunov equation has been suggested to study the stability of such singularly
perturbed ODEs:

W (u, v) = du>Puu+ (1− d)
(
v + Ā−1

vv Āvuu
)>
Pv
(
v + Ā−1

vv Āvuu
)
, (7)

for d ∈ [0, 1]. The function W mentioned earlier in (3) is the same as above for a carefully chosen d.
The rationale behind the use of the Lyapunov function (7) is presented in the appendix.

The intuition behind the result in Lemma 1 can be understood by studying the dynamics of the above
Lyapunov function in the ODE setting. To simplify the notation, we define z = v + Ā−1

vv Āvuu, so
the Lyapunov function can also be written as

W (u, z) = du>Puu+ (1− d)z>Pvz, (8)
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andadaptingthemanipulationsfornonlinearODEsin[Khalil,2002,Chapter11]toourlinearmodel,
weget

Ẇ =2duTPuu̇+2(1−d)z Pvż (9)

≤−(u z)̃Ψ
u
z

, (10)

where

Ψ̃=
d −dγmax −(1−d)γmaxσmin

−dγmax −(1−d)γmaxσmin
1−d

2α β −(1−d)γmaxσmin
. (11)

NotethatΨ̃ispositivedefinitewhen

d
1−d

2α−β
−(1−d)γmaxσmin ≥(dγmax +(1−d)γmaxσmin)

2
, (12)

i.e.,when

α−β≤
d(1−d)

2d(1−d)γmaxσmin +(dγmax +(1−d)γmaxσmin)
2. (13)

Letλ̃min denotethesmallesteigenvalueofΨ̃.Wehave

Ẇ ≤−̃λmin u2+ z2 ≤−
λ̃min

γmax
W. (14)

Inparticular,recallthatweobtainedtheODEsbydividingbythestep-sizeα.Therefore,forthe
discreteequations,wewouldexpect

E[W(Θk+1)−W(Θk)]≈≤− αλ̃min

γmax
E[W(Θk)], (15)

whichresemblesthetransienttermoftheupperboundinLemma1.Theexactexpressioninthe
discrete,stochasticcaseisofcoursedifferentandadditionallyincludesasteady-stateterm,whichis
notcapturedbytheODEanalysisabove.

Now,wearereadytothestatethemaintheorem.

Theorem1. Foranyk≥τ,,αandβsuchthatη1̃ τ+2˜2

α γmax ≤ κ1

2,wehave

E[Θk
2]≤

γmax

γmin
1−

α

γmax

κ1

2
−κ2

α−β
k−τ

(1.5Θ0 +0.5bmax)
2

+ 2β−αγmax

γmin

η2τ
κ1

2 −κ2
α−β

.

Proof.ApplyingLemma1recursively,weobtain

E[W(Θk)]≤uk−τE[W(Θτ)]+v
1−uk−τ

1−u
≤uk−τE[W(Θk)]+v

1

1−u
(16)

whereu=1−
α

γmax

κ1

2 −κ2
α−β andv=η2τ2β.Also,wehavethat

E[Θk
2]≤

1

γmin
E[W(Θk)]≤

1

γmin
uk−τE[W(Θτ)]+v

1

γmin(1−u)
. (17)

Furthermore,

E[W(Θτ)]≤γmaxE[Θτ
2]≤γmaxE[(Θτ−Θ0 + Θ0 )2]

≤γmax ((1+2̃τ)Θ0 +2̃ τbmax)
2

.
(18)

Thetheoremthenholdsusingthefactthat τ̃≤ 1
4.

Theorem1essentiallystatesthattheexpectederrorforatwo-timescalelinearstochasticapprox-
imationalgorithmcomprisestwoterms:atransienterrortermwhichdecaysgeometricallywith
timeandasteady-stateerrortermwhichisdirectlyproportionalto2β−αandthemixingtime.This
characterizationofthefinite-timeerrorisusefulinunderstandingtheimpactofdifferentalgorithmic
andproblemparametersontherateofconvergence,allowingthedesignofefficienttechniquessuch
astheadaptivelearningraterulewhichwewillpresentinthenextsection.
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4 AdaptiveSelectionofLearningRates

Equippedwiththetheoreticalresultsfromtheprevioussection,oneinterestingquestionthatarises
isthefollowing:givenatime-scaleratioλ= α

β,canweusethefinite-timeperformanceboundto

designaruleforadaptingthelearningratetooptimizeperformance?

Inordertosimplifythediscussion,letβ=µandα =µλ.Therefore,Theorem1canbesimplified
andwrittenas

E[Θk
2]≤K1 1−µλ κ1

2γmax
−

κ2

γmax
µλ−1

k

+µ2−λ K2
κ1

2 −κ2µλ−1
(19)

whereK1andK2areproblem-dependentpositiveconstants.Sincewewantthesystemtobestable,
wewillassumethatµissmallenoughsuchthat κ1

2γmax
− κ2

γmax
µλ−1=c>0.Pluggingthiscondition

in(19),weget

E[Θk
2]≤K1 1−cµλ k

+
K2µ2−λ

γmaxc
(20)

Inordertooptimizeperformanceforagivennumberofsamples,wewouldliketochoosethelearning
rateµasafunctionofthetimestep.Inprinciple,onecanassumetime-varyinglearningrates,derive
moregeneralmean-squarederrorexpressions(similartoTheorem1),andthentrytooptimizeover
thelearningratestominimizetheerrorforagivennumberofsamples.However,thisoptimization
problemiscomputationallyintractable. Wenotethatevenifweassumethatweareonlygoingto
changethelearningrateafinitenumberoftimes,theresultingoptimizationproblemoffindingthe
timesatwhichsuchchangesareperformedandfindingthelearningrateatthesechangepointsisan
equallyintractableoptimizationproblem.Therefore,wehavetodevisesimpleradaptivelearningrate
rules.

Figure1:Theevolutionof Θk−Θ0 .

Tomotivateourlearningraterule,wefirstcon-
sideratimeTsuchthaterrorsduetothetran-
sientandsteady-statepartsin(20)areequal,i.e.,

K1(1−cµλ)T =
K2µ2−λ

γmaxc
(21)

Fromthistimeonwards,runningthetwotime-
scalestochasticapproximationalgorithmany
furtherwithµasthelearningrateisnotgoing
tosignificantlyimprovethemean-squarederror.
Inparticular,the mean-squarederrorbeyond
thistimeisupperboundedbytwicethesteady-

stateerrorK2µ2 λ

γmax c .Thus,attimeT,itmakes

sensetoresetµasµ← µ/ξ,whereξ >1is
ahyperparameter.Roughlyspeaking,Tisthe
timeatwhichoneisclosetosteady-stateforagivenlearningrate,andtherefore,itisthetimeto
reducethelearningratetogettoanew"steady-state"withasmallererror.

ThekeydifficultyinimplementingtheaboveideaisthatitisdifficulttodetermineT.Foreaseof
exposition,weconsideredasystemcenteredaround0inouranalysis(i.e.,Θ∗=0). Moregenerally,
theresultspresentedinTheorem1and(19)-(20)willhaveΘkreplacedbyΘk−Θ∗.Inanypractical
application,Θ∗willbeunknown.Thus,wecannotdetermine Θk−Θ∗ asafunctionofkand
hence,itisdifficulttousethisapproach.

Ourideatoovercomethisdifficultyistoestimatewhetherthealgorithmisclosetoitssteady-stateby
observing Θk−Θ0 whereΘ0isourinitialguessfortheunknownparametervectorandisthus
knowntous.Notethat Θk−Θ0 iszeroatk=0andwillincrease(withsomefluctuationsdue
torandomness)toΘ∗−Θ0 insteady-state(seeFigure1foranillustration).Roughlyspeaking,
weapproximatethecurveinthisfigurebyasequenceofstraightlines,i.e.,performapiecewise
linearapproximation,andconcludethatthesystemhasreachedsteady-statewhenthelinesbecome
approximatelyhorizontal. Weprovidethedetailsnext.

Toderiveatesttoestimatewhether Θk−Θ0 hasreachedsteady-state,wefirstnotethefollowing
inequalityfork≥T(i.e.,afterthesteady-statetimedefinedin(21)):
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E[Θ0−Θ∗ ]−E[Θk−Θ∗ ]≤E[Θk−Θ0 ]≤E[Θk−Θ∗ ]+E[Θ0−Θ∗ ]

⇒ d−
2K2µ2−λ

γmaxc
≤E[Θk−Θ0 ]≤d+

2K2µ2−λ

γmaxc

(22)

wherethefirstpairofinequalitiesfollowfromthetriangleinequalityandthesecondpairofinequalities
followfrom(20)-(21),Jensen’sinequalityandlettingd=E[Θ0−Θ∗ ].Now,fork≥T,consider
thefollowingN points:{Xi=i,Yi= Θk+i−Θ0 }N

i=1.Sincethesepointsareallobtainedafter
“steady-state"isreached,ifwedrawthebest-fitlinethroughthesepoints,itsslopeshouldbesmall.
Moreprecisely,letψN denotetheslopeofthebest-fitlinepassingthroughtheseN points.Using
(22)alongwithformulasfortheslopeinlinearregression,andaftersomealgebraicmanipulations
(seeAppendix??fordetailedcalculations),onecanshowthat:

|E[ψN]|=O
µ1−λ

2

N
, Var(ψN)=O

1

N2
(23)

Therefore,ifN ≥ χ

µ
λ
2

,thentheslopeofthebest-fitlineconnecting{Xi,Yi}willbeO µ1 λ
2

N

withhighprobability(forasufficientlylargeconstantχ>0).Ontheotherhand,whenthealgorithm
isinthetransientstate,thedifferencebetweenΘk+m −Θ0 and Θk−Θ0 willbeO(mµ)since
ΘkchangesbyO(µ)fromonetimeslottothenext(seeLemma3inAppendix??formoredetails).
Usingthisfact,theslopeofthebest-fitlinethroughN consecutivepointsinthetransientstatecan
beshowntobeO(µ),similarto(23).SincewechooseN ≥ χ

µ
λ
2

,theslopeofthebest-fitlinein

steadystate,i.e.,O µ1 λ
2

N willbelowerthantheslopeofthebest-fitlineinthetransientphase,

i.e.,O(µ)(forasufficientlylargeχ). Weusethisfactasadiagnostictesttodeterminewhetheror
notthealgorithmhasenteredsteady-state.Ifthediagnostictestreturnstrue,weupdatethelearning
rate(seeAlgorithm1).

Algorithm1AdaptiveLearningRateRule

Hyperparameters:ρ,σ,ξ,N

Initializeµ=ρ,ψN =2σµ1−λ
2,Θ0,Θini=Θ0.

fori=1,2,...do
Dotwotime-scalealgorithmupdate.
ComputeψN =Slope {k, Θi−k−Θini}N−1

k=0 .

ifψN < σµ1 λ
2

N then
µ= µ

ξ.

Θini=Θi.
endif

endfor

Wenotethatouradaptivelearning
raterule willalso workforsingle
time-scalereinforcementlearningal-
gorithmssuchasTD(λ)sinceourex-
pressionsforthemean-squareerror,
whenspecializedtothecaseofasin-
gletime-scale, willrecoverthere-
sultin[SrikantandYing,2019](see
[Guptaetal.,2019]formoredetails).
Therefore,aninterestingquestionthat
arisesfrom(19)iswhetheronecanop-
timizetherateofconvergencewithre-
specttothetime-scaleratioλ?Since
theRHSin(19)dependsonavariety
ofproblem-dependentparameters,it
isdifficulttooptimizeitoverλ.Anin-
terestingdirectionoffurtherresearch

istoinvestigateifpracticaladaptivestrategiesforλcanbedevelopedinordertoimprovetherateof
convergencefurther.

5 Experiments

Weimplementedouradaptivelearningratescheduleontwopopularclassiccontrolproblemsin
reinforcementlearning-MountainCarandInvertedPendulum,andcompareditsperformancewith
theoptimalpolynomialdecaylearningraterulesuggestedin[Dalaletal.,2017b](describedinthe
nextsubsection).SeeAppendix??formoredetailsonthe MountainCarandInvertedPendulum
problems. Weevaluatedthefollowingpoliciesusingthetwotime-scaleTDCalgorithm(see[Sutton
etal.,2009]formoredetailsregardingTDC):
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(a) Mountain Car
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(b) Inverted Pendulum

Figure 2: Performance of different learning rate rules in classic control problems.

• Mountain Car - At each time step, choose a random action ∈ {0, 2}, i.e., accelerate randomly to
the left or right.

• Inverted Pendulum - At each time step, choose a random action in the entire action space, i.e.,
apply a random torque ∈ [−2.0, 2.0] at the pivot point.

Since the true value of Θ∗ is not known in both the problems we consider, to quantify the performance
of the TDC algorithm, we used the error metric known as the norm of the expected TD update (NEU,
see [Sutton et al., 2009] for more details). For both problems, we used a O(3) Fourier basis (see
[Konidaris et al., 2011] for more details) to approximate the value function and used 0.95 as the
discount factor.

5.1 Learning Rate Rules and Tuning

1. The optimal polynomial decay rule suggested in [Dalal et al., 2017b] is the following: at time
step k, choose εαk = 1

(k+1)α and εβk = 1
(k+1)β

, where α → 1 and β → 2
3 . For our experiments,

we chose α = 0.99 and β = 0.66. This implies λ = α
β = 1.5. Since the problems we considered

require smaller initial step-sizes for convergence, we let εαk = ρ0
(k+1)α and εβk = ρ0

(k+1)β
and did a

grid search to determine the best ρ0, i.e., the best initial learning rate. The following values for ρ0

were found to be the best: Mountain Car - ρ0 = 0.2, Inverted Pendulum - ρ0 = 0.2.

2. For our proposed adaptive learning rate rule, we fixed ξ = 1.2, N = 200 in both problems since
we did not want the decay in the learning rate to be too aggressive and the resource consumption
for slope computation to be high. We also set λ = 1.5 as in the polynomial decay case to have a
fair comparison. We then fixed ρ and conducted a grid search to find the best σ. Subsequently,
we conducted a grid search over ρ. Interestingly, the adaptive learning rate rule was reasonably
robust to the value of ρ. We used ρ = 0.05 in Inverted Pendulum and ρ = 0.1 in Mountain Car.
Effectively, the only hyperparameter that affected the rule’s performance significantly was σ. The
following values for σ were found to be the best: Mountain Car - σ = 0.001, Inverted Pendulum -
σ = 0.01.

5.2 Results

For each experiment, one run involved the following: 10, 000 episodes with the number of iterations
in each episode being 50 and 200 for Inverted Pendulum and Mountain Car respectively. After every
1, 000 episodes, training/learning was paused and the NEU was computed by averaging over 1, 000
test episodes. We initialized Θ0 = 0. For Mountain Car, 50 such runs were conducted and the results
were computed by averaging over these runs. For Inverted Pendulum, 100 runs were conducted and
the results were computed by averaging over these runs. Note that the learning rate for each adaptive
strategy was adapted at the episodic level due to the episodic nature of the problems. The results are
reported in Figures 2a and 2b. As is clear from the figures, our proposed adaptive learning rate rule
significantly outperforms the optimal polynomial decay rule.
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6 Conclusion

We have presented finite-time bounds quantifying the performance of two time-scale linear stochastic
approximation algorithms. The bounds give insight into how the different time-scale and learning rate
parameters affect the rate of convergence. We utilized these insights and designed an adaptive learning
rate selection rule. We implemented our rule on popular classical control problems in reinforcement
learning and showed that the proposed rule significantly outperforms the optimal polynomial decay
strategy suggested in literature.
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