Finite-Time Performance Bounds and Adaptive
Learning Rate Selection for Two Time-Scale
Reinforcement Learning

Harsh Gupta R. Srikant
ECE and CSL ECE and CSL
University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign
hguptalO@illinois.edu rsrikant@illinois.edu
Lei Ying
EECS

University of Michigan, Ann Arbor
leiying@umich.edu

Abstract

We study two time-scale linear stochastic approximation algorithms, which can
be used to model well-known reinforcement learning algorithms such as GTD,
GTD2, and TDC. We present finite-time performance bounds for the case where the
learning rate is fixed. The key idea in obtaining these bounds is to use a Lyapunov
function motivated by singular perturbation theory for linear differential equations.
We use the bound to design an adaptive learning rate scheme which significantly
improves the convergence rate over the known optimal polynomial decay rule in
our experiments, and can be used to potentially improve the performance of any
other schedule where the learning rate is changed at pre-determined time instants.

1 Introduction

A key component of reinforcement learning algorithms is to learn or approximate value functions
under a given policy [Sutton, 1988], [Bertsekas and Tsitsiklis, 1996], [Szepesvari, 2010], [Bertsekas,
2011], [Bhatnagar et al., 2012], [Sutton and Barto, 2018]. Many existing algorithms for learning
value functions are variants of the temporal-difference (TD) learning algorithms [Sutton, 1988],
[Tsitsiklis and Van Roy, 1997], and can be viewed as stochastic approximation algorithms for
minimizing the Bellman error (or objectives related to the Bellman error). Characterizing the
convergence of these algorithms, such as TD(0), TD(\), GTD , nonlinear GTD has been an important
objective of reinforcement learning [Szepesvari, 2010], [Bhatnagar et al., 2009], and [Sutton et al.,
2016]. The asymptotic convergence of these algorithms with diminishing steps has been established
using stochastic approximation theory in many prior works (comprehensive surveys on stochastic
approximations can be found in [Benveniste et al., 2012], [Kushner and Yin, 2003], and [Borkar,
2009]).

The conditions required for theoretically establishing asymptotic convergence in an algorithm with
diminishing step sizes imply that the learning rate becomes very small very quickly. As a result,
the algorithm will require a very large number of samples to converge. Reinforcement learning
algorithms used in practice follow a pre-determined learning rate (step-size) schedule which, in
most cases, uses decaying step sizes first and then a fixed step size. This gap between theory and
practice has prompted a sequence of works on finite-time performance of temporal difference learning
algorithms with either time-varying step sizes or constant step sizes [Dalal et al., 2017a,b, Liu et al.,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

2018, Lakshminarayanan and Szepesvari, 2018, Bhandari et al., 2018, Srikant and Ying, 2019]. Most
of these results are for single time-scale TD algorithms, except [Dalal et al., 2017b] which considers
two time-scale algorithms with decaying step sizes. Two time-scale TD algorithms are an important
class of reinforcement learning algorithms because they can improve the convergence rate of TD
learning or remedy the instability of single time-scale TD in some cases. This paper focuses on two
time-scale linear stochastic approximation algorithms with constant step sizes. The model includes
TDC, GTD and GTD?2 as special cases (see [Sutton et al., 2008], [Sutton et al., 2009] and [Szepesvari,
2010] for more details). We note that, in contemporaneous work, [Xu et al., 2019] have carried out a
two-time-scale analysis of linear stochastic approximation with diminishing step sizes.

Besides the theoretical analysis of finite-time performance of two time-scale reinforcement learning
algorithms, another important aspect of reinforcement learning algorithms, which is imperative in
practice but has been largely overlooked, is the design of learning rate schedule, i.e., how to choose
proper step-sizes to improve the learning accuracy and reduce the learning time. This paper addresses
this important question by developing principled heuristics based on the finite-time performance
bounds.

The main contributions of this paper are summarized below.

o Finite Time Performance Bounds: We study two time-scale linear stochastic approximation
algorithms, driven by Markovian samples. We establish finite time bounds on the mean-square
error with respect to the fixed point of the corresponding ordinary differential equations (ODEs).
The performance bound consists of two parts: a steady-state error and a transient error, where the
steady-state error is determined by the step sizes but independent of the number of samples (or
number of iterations), and the transient error depends on both step sizes and the number of samples.
The transient error decays geometrically as the number of samples increases. The key differences
between this paper and [Dalal et al., 2017b] include (i) we do not require a sparse projection step
in the algorithm; and (ii) we assume constant step-sizes which allows us to develop the adaptive
step-size selection heuristic mentioned next.

e Adaptive Learning Rate Selection: Based on the finite-time performance bounds, in particular,
the steady-state error and the transient error terms in the bounds, we propose an adaptive learning
rate selection scheme. The intuition is to use a constant learning rate until the transient error is
dominated by the steady-state error; after that, running the algorithm further with the same learning
rate is not very useful and therefore, we reduce the learning rate at this time. To apply adaptive
learning rate selection in a model-free fashion, we develop data-driven heuristics to determine the
time at which the transient error is close to the steady-state error. A useful property of our adaptive
rate selection scheme is that it can be used with any learning rate schedule which already exists in
many machine learning software platforms: one can start with the initial learning rate suggested by
such schedules and get improved performance by using our adaptive scheme. Our experiments on
Mountain Car and Inverted Pendulum show that our adaptive learning rate selection significantly
improves the convergence rates as compared to optimal polynomial decay learning rate strategies
(see [Dalal et al., 2017b] and [Konda et al., 2004] for more details on polynomial decay step-size
rules).

2 Model, Notation and Assumptions

We consider the following two time-scale linear stochastic approximation algorithm:

Urp1 = Up + € (Auu(Xi)Up + Awo (X)) Vi + bu(Xg))

(h

Vier1r = Vie + €7 (Auu(X3)Us + Apo(X5) Vi + o (X))
where { X} } are the samples from a Markov process. We assume 3 < « so that, over e P iterations,
the change in V' is O(1) while the change in U is O (¢*~#) . Therefore, V is updated at a faster time
scale than U.

In the context of reinforcement learning, when combined with linear function approximation of
the value function, GTD, GTD2, and and TDC can be viewed as two time-scale linear stochastic
approximation algorithms, and can be described in the same form as (1). For example, GTD2 with

linear function approximation is as follows:

U1 =Ug + € ((Xi) = ((Xp41)) 0T (Xi)Vi

Vip1 =Vi + €° (61 — ¢ (Xk) Vi) (Xp),
where ¢ is the discount factor, ¢(z) is the feature vector of state x, Uy is the weight vec-
tor such that ¢ (z)Uy is the approximation of value function of state x at iteration k, &, =

c(Xg) + €T (Xpy1)U — ¢ (Xy)Uy is the TD error, and V, is the weight vector that estimates
E[p(Xr)d(Xi)"] E[6rp(X))

We now summarize the notation we use throughout the paper and the assumptions we make.

e Assumption 1: {X}} is a Markov chain with state space S. We assume that the following two
limits exist:

Note that without the loss of generality, we assume b = 0 which allows for the fixed point of the
associated ODE:s to be 0. This can be guaranteed by appropriate centering. We define

B(Xk) :Auu(Xk) - Auv(Xk)A;}Avu B(Xk) :Avu(Xk) - Avv(Xk)A;}Avu

B :Auu - Auvle;ulA'uu B :A'uu - Ava;vlgvu-
e Assumption 2: We assume that max{||b, ()|, [|[b,(@)]|} < bmax < oo for any z € S. We

also assume that max{||B(@)|, | B(2)|, | Auu(@)]|; [Avu(@)ll, | Auo (@)1, [| Avo (2)][} < 1 for
any x € S. Note that these assumptions imply that the steady-state limits of the random matri-
ces/vectors will also satisfy the same inequalities.

o Assumption 3: We assume A,,, and B are Hurwitz and A,,, is invertible. Let P, and P, be the
solutions to the following Lyapunov equations:

-I=B"P,+P,B
—I=A},P,+P,A,,.
Since both A,,, and B are Hurwitz, P, and P, are real positive definite matrices.
e Assumption 4: Define 7o > 1 to be the mixing time of the Markov chain { X} }. We assume

IE[bk| X0 = 1]|| < A,Vi,Vk > 7a
|B — E[B(Xx)|Xo = i]l| < A, Vi, Vk > ma
1B — E[B(X4)|Xo = i]|| < A,Vi,Vk > 7a
| A — E[Auo (X3)| X0 =]| < A, Vi, Vk > 7a
| Auy — E[Aue(X3)| X0 = i]|| < A, Vi, VEk > 7a.

e Assumption 5: As in [Srikant and Ying, 2019], we assume that there exists X > 1 such that
7a < Klog(%). For convenience, we choose

A =2 (1+ ||A) Ayl + €77%)
and drop the subscript from 74, i.e., TA = 7. Also, for convenience, we assume that € is small

enough such that é7 < 1, where ¢ = A = 2¢® (14 ||A;} Ayl + €#7%) .

We further define the following notation:

3 P, 0
P = <£71,+8v & p) , (2)
Eutéo ™ Y

where &, = 2||P, Ay, | and &, = 2||P, A} A, B
o Let Ymax and i,y denote the largest and smallest eigenvalues of P, and P, respectively. SO Yimax
and iy are also upper and lower bounds on the eigenvalues of P.

e Define matrix

3 Finite-Time Performance Bounds

To establish the finite-time performance guarantees of the two time-scale linear stochastic approxima-
tion algorithm (1), we define

Zp =V + A;vlf_lquk and O, = (g:) .

Then we consider the following Lyapunov function:
W(Oy) = ©, POy, 3)

where P is a symmetric positive definite matrix defined in (2) (P is positive definite because both
P, and P, are positive definite matrices). The reason to introduce Z; will become clear when we
introduce the key idea of our analysis based on singular perturbation theory.

The following lemma bounds the expected change in the Lyapunov function in one time step.

Lemma 1. Forany k > 7 and €, a, and (3 such that i éT + 25—27max < 7, the following inequality
holds:

€

E[W(Ort1) = W(O4)] < —

(% - H26a76> E[W (Or)] + €77,

Ymax

where € = 2¢€% (1 + | As A + eﬁ’a) ,and 11, N2 K1, and Ko are constants independent of e.

The proof of Lemma 1 is somewhat involved, and is provided in the supplementary material. The
definitions of 71, 12, k1 and k2 can be found in the supplementary material as well. Here, we
provide some intuition behind the result by studying a related ordinary differential equation (ODE).
In particular, consider the expected change in the stochastic system divided by the slow time-scale
step size €*:
ElUk+1 — Uk|Uk—r = 0, Vier = v, Xjo—r =]
Ea
=E [(Auu(Xi)Uk + Auo (X)) Vi +0)| Ug—r =0, Vier = v, Xjor =
Ea_gE[VkH —VilUp—r = u, Vi r =0, X}, = 7]
EO(
=E [(Avu(Xk)Uk + Avv (Xk)vk + b'u (Xk))| Uk—T =u, Vk—T =", Xk:—T = J}] 5
where the expectation is conditioned sufficiently in the past in terms of the underlying Markov chain

(i.e. conditioned on the state at time k — 7 instead of k) so the expectation is approximately in
steady-state.

“4)

Approximating the left-hand side by derivatives and the right-hand side using steady-state expecta-
tions, we get the following ODE:s:

U :Auuu + Auuv (5)
B =Auu+ Ayyv. (6)

Note that, in the limit as e — 0, the second of the above two ODEs becomes an algebraic equation,
instead of a differential equation. In the control theory literature, such systems are called singularly-
perturbed differential equations, see for example [Kokotovic et al., 1999]. In [Khalil, 2002, Chapter
11], the following Lyapunov equation has been suggested to study the stability of such singularly
perturbed ODEs:

W(u,v) =du’ Pyu+ (1 —d) (v+ A;vlf_lwu)T P, (v+ A, Ayyu), (7)

for d € [0, 1]. The function W mentioned earlier in (3) is the same as above for a carefully chosen d.
The rationale behind the use of the Lyapunov function (7) is presented in the appendix.

The intuition behind the result in Lemma 1 can be understood by studying the dynamics of the above
Lyapunov function in the ODE setting. To simplify the notation, we define z = v + A} A, u, so
the Lyapunov function can also be written as

W(u,2) =du' Pyu+ (1—d)z" Pz, (8)

and adapting the manipulations for nonlinear ODEs in [Khalil, 2002, Chapter 11] to our linear model,
we get

W =2du” P,ii+2(1 —d)z" P,z 9)
<= 1% (J1). (10)

where

\I}:

d _dFTmax - (1 - d)’?’maxf—rmin)) (11)

(_d"}'max - (]- - d)"}(maxf—rmin (2:7_&5 - (]- - d)"}(maxo'min)
Note that W is positive definite when
1—-d
d (QGQ—_JG - (]- - d)"}(maxo—min) > (d'}'max + (1 - d)’)’maxf—rmin)z f (12)

i.e., when
a—B < d(1—d)
N Qd(l - d)"}(maxo—min + (d'}(max + (1 - d)’}'maxf—rmin)
Let A, denote the smallest eigenvalue of ¥. We have

- (13)

. ~ j"imin
W < A (el +[12?) < -2

max

W. 14

In particular, recall that we obtained the ODEs by dividing by the step-size €. Therefore, for the
discrete equations, we would expect
N
E[W(Ok+1) — W(Op)] < —e* =KW (O4)] (15)
max

which resembles the transient term of the upper bound in Lemma 1. The exact expression in the
discrete, stochastic case is of course different and additionally includes a steady-state term, which is
not captured by the ODE analysis above.

Now, we are ready to the state the main theorem.

Theorem 1. For any k > 7, €, a and 3 such that 1€t + 2§—zfymax < -, we have

ol k—1
Eflon?) <22 (1o (5 pe#)) (1500l +0.5bmm)’

‘min “Ymax
a Ymax 27

28—
Te “min (% - 5260_’8) ‘

Proof. Applying Lemma 1 recursively, we obtain

1— k—1
E[W(6y)] < u* "E[W(O,)] + U% < uFTTE[W(6y)] + v . (16)
—u —u
where u =1 — ,Yf;x (5 — Kkoe®F) and v = mp7eP. Also, we have that
1 1
E[||6k]*] < —E[W (6x)] < —u""E[W(6r)] + v——. a7
Ymin “Ymin ’Ymin(l - u)
Furthermore,
E[W(0:)] < ymaxE[[|07 1] < ymaxE[([|©7 — Gol| + [€0])?] (18)
< Ymax (14 267)|80|| + 2&7bmax)* .
The theorem then holds using the fact that &r < %. H

Theorem 1 essentially states that the expected error for a two-time scale linear stochastic approx-
imation algorithm comprises two terms: a transient error term which decays geometrically with
time and a steady-state error term which is directly proportional to €2°~® and the mixing time. This
characterization of the finite-time error is useful in understanding the impact of different algorithmic
and problem parameters on the rate of convergence, allowing the design of efficient techniques such
as the adaptive learning rate rule which we will present in the next section.

4 Adaptive Selection of Learning Rates

Equipped with the theoretical results from the previous section, one interesting question that arises
is the following: given a time-scale ratio \ = %, can we use the finite-time performance bound to
design a rule for adapting the learning rate to optimize performance?

In order to simplify the discussion, let €’ = y and €* = p*. Therefore, Theorem 1 can be simplified
and written as

k
K K K
Bflnl) <k (1-4 (2 - L0 0)) 4 a9
2Vmax Ymax (7 — kgl)
where K; and K> are problem-dependent positive constants. Since we want the system to be stable,
we will assume that 4 is small enough such that -*— — *2_;,A=1 — > (. Plugging this condition

. 2’Ymsx: ’Ymax:
in (19), we get

2-2
L K2
YmaxC
In order to optimize performance for a given number of samples, we would like to choose the learning
rate p as a function of the time step. In principle, one can assume time-varying learning rates, derive
more general mean-squared error expressions (similar to Theorem 1), and then try to optimize over
the learning rates to minimize the error for a given number of samples. However, this optimization
problem is computationally intractable. We note that even if we assume that we are only going to
change the learning rate a finite number of times, the resulting optimization problem of finding the
times at which such changes are performed and finding the learning rate at these change points is an
equally intractable optimization problem. Therefore, we have to devise simpler adaptive learning rate
rules.

E[|0k]|2] <K (1 —cu?)” (20)

To motivate our learning rate rule, we first con-
sider a time T such that errors due to the tran-
sient and steady-state parts in (20) are equal, i.e.,

K](]_—C,U,A)T — Kz”‘z A (2]) ||ek_90||
max
From this time onwards, running the two time-
scale stochastic approximation algorithm any
further with p as the learning rate is not going
to significantly improve the mean-squared error.
In particular, the mean-squared error beyond
this time is upper bounded by twice the steady-

2 A . . .
state error ﬁ“—c Thus, at time T, it makes Figure 1: The evolution of ||©x — o[-

max

sense to reset u as p + p/€, where £ > 1 is

a hyperparameter. Roughly speaking, T is the

time at which one is close to steady-state for a given learning rate, and therefore, it is the time to
reduce the learning rate to get to a new "steady-state” with a smaller error.

Kk

The key difficulty in implementing the above idea is that it is difficult to determine 7". For ease of
exposition, we considered a system centered around 0 in our analysis (i.e., ©* = 0). More generally,
the results presented in Theorem 1 and (19) - (20) will have ©, replaced by ©; — ©*. In any practical
application, ©* will be unknown. Thus, we cannot determine ||©; — ©*|| as a function of k and
hence, it is difficult to use this approach.

Our idea to overcome this difficulty is to estimate whether the algorithm is close to its steady-state by
observing ||©; — ©y|| where Oy is our initial guess for the unknown parameter vector and is thus
known to us. Note that ||©) — Og|| is zero at k = 0 and will increase (with some fluctuations due
to randomness) to ||©* — || in steady-state (see Figure 1 for an illustration). Roughly speaking,
we approximate the curve in this figure by a sequence of straight lines, i.e., perform a piecewise
linear approximation, and conclude that the system has reached steady-state when the lines become
approximately horizontal. We provide the details next.

To derive a test to estimate whether ||©;, — ©g|| has reached steady-state, we first note the following
inequality for k > T (i.e., after the steady-state time defined in (21)):

E[[|©0 — 6%[|] - E[|8x — 6%[l] <E[||©r — ©0l[] < E[||©) — 6| + E[|80 — ©7[]

O o2~ VKo u2—A (22)
> d— [<E[llo, - 0ll] < d+ 1| 22—
YmaxC YmaxC

where the first pair of inequalities follow from the triangle inequality and the second pair of inequalities
follow from (20) - (21), Jensen’s inequality and letting d = E[||©¢ — ©*||]. Now, for k > T, consider
the following N points: {X; =4,Y; = ||©i — ©o||}Y,. Since these points are all obtained after
“steady-state" is reached, if we draw the best-fit line through these points, its slope should be small.
More precisely, let 1 denote the slope of the best-fit line passing through these N points. Using
(22) along with formulas for the slope in linear regression, and after some algebraic manipulations
(see Appendix ?? for detailed calculations), one can show that:

1—2A

[Efgnl] = 0 (‘“ NZ) . vartn) =0 (57) 23)

A
Therefore, if N > X, then the slope of the best-fit line connecting {X;,Y;} will be O l"lTT
uwz

with high probability (for a sufficiently large constant y > 0). On the other hand, when the algorithm

is in the transient state, the difference between ||©, — Op|| and ||©y — Og|| will be O(mpu) since

Oy changes by O(u) from one time slot to the next (see Lemma 3 in Appendix ?? for more details).

Using this fact, the slope of the best-fit line through N consecutive points in the transient state can

be shown to be O (1), similar to (23). Since we choose N > X, the slope of the best-fit line in
nz

A
steady state, i.e., O f“lTE) will be lower than the slope of the best-fit line in the transient phase,

i.e., O () (for a sufficiently large x). We use this fact as a diagnostic test to determine whether or
not the algorithm has entered steady-state. If the diagnostic test returns true, we update the learning
rate (see Algorithm 1).

We note that our adaptive learning
rate rule will also work for single
time-scale reinforcement learning al-
gorithms such as TD()) since our ex-

Algorithm 1 Adaptive Learning Rate Rule

Hyperparameters: p,o,£, N pressions for the mean-square error,
Initialize pp = p, ¥y = 20“1_%, By, Oui = Oy. when specialized to the case of a sin-
fori=1,2,...do gle time-scale, will recover the re-
Do two time-scale algorithm update. sult in [Srikant and Ying, 2019] (see
Compute 1y = Slope ({k, 1©i_x — (_)ini"}kN:—Dl)_ [Gupta et al., _20]9] f_or more (_]etails).

1 A Therefore, an interesting question that

ifyy < ZF N = then arises from (19) is whether one can op-
p="% timize the rate of convergence with re-

O = 0,. spect to the time-scale ratio A? Since

end if the RHS in (19) depends on a variety
end for of problem-dependent parameters, it

is difficult to optimize it over A. An in-
teresting direction of further research
is to investigate if practical adaptive strategies for A can be developed in order to improve the rate of
convergence further.

5 Experiments

We implemented our adaptive learning rate schedule on two popular classic control problems in
reinforcement learning - Mountain Car and Inverted Pendulum, and compared its performance with
the optimal polynomial decay learning rate rule suggested in [Dalal et al., 2017b] (described in the
next subsection). See Appendix ?? for more details on the Mountain Car and Inverted Pendulum
problems. We evaluated the following policies using the two time-scale TDC algorithm (see [Sutton
et al., 2009] for more details regarding TDC):

0.10 7

1 Polynomial Decay
[Adaptive Rule 6 L\H\f‘\%[——l‘{__[_{
0.08
5

0.06

H Polynomial Decay
[Adaptive Rule

NEU
NEU

0.04

b W’l\i—ﬂ 1 \R'M

0.00 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10

Number of Episodes (in Thousands) Number of Episodes (in Thousands)

(a) Mountain Car (b) Inverted Pendulum

Figure 2: Performance of different learning rate rules in classic control problems.

e Mountain Car - At each time step, choose a random action € {0, 2}, i.e., accelerate randomly to
the left or right.

e Inverted Pendulum - At each time step, choose a random action in the entire action space, i.e.,
apply a random torque € [—2.0, 2.0] at the pivot point.

Since the true value of ©* is not known in both the problems we consider, to quantify the performance
of the TDC algorithm, we used the error metric known as the norm of the expected TD update (NEU,
see [Sutton et al., 2009] for more details). For both problems, we used a O(3) Fourier basis (see
[Konidaris et al., 2011] for more details) to approximate the value function and used 0.95 as the
discount factor.

5.1 Learning Rate Rules and Tuning

1. The optimal polynomial decay rule suggested in [Dalal et al., 2017b] is the following: at time

step k, choose € = 1 L, where & — 1 and 8 — 2. For our experiments,

(k+1) (k+1)P°

we chose a = 0.99 and 8 = 0.66. This implies A = % = 1.5. Since the problems we considered

and ef =

require smaller initial step-sizes for convergence, we let €} = (kii(i)a and €, = (kii‘)l)g and did a
grid search to determine the best py, i.e., the best initial learning rate. The following values for pg

were found to be the best: Mountain Car - py = 0.2, Inverted Pendulum - pg = 0.2.

2. For our proposed adaptive learning rate rule, we fixed £ = 1.2, N = 200 in both problems since
we did not want the decay in the learning rate to be too aggressive and the resource consumption
for slope computation to be high. We also set A = 1.5 as in the polynomial decay case to have a
fair comparison. We then fixed p and conducted a grid search to find the best ¢. Subsequently,
we conducted a grid search over p. Interestingly, the adaptive learning rate rule was reasonably
robust to the value of p. We used p = 0.05 in Inverted Pendulum and p = 0.1 in Mountain Car.
Effectively, the only hyperparameter that affected the rule’s performance significantly was o. The
following values for o were found to be the best: Mountain Car - o = 0.001, Inverted Pendulum -
o =0.01.

5.2 Results

For each experiment, one run involved the following: 10, 000 episodes with the number of iterations
in each episode being 50 and 200 for Inverted Pendulum and Mountain Car respectively. After every
1, 000 episodes, training/learning was paused and the NEU was computed by averaging over 1,000
test episodes. We initialized ©g = 0. For Mountain Car, 50 such runs were conducted and the results
were computed by averaging over these runs. For Inverted Pendulum, 100 runs were conducted and
the results were computed by averaging over these runs. Note that the learning rate for each adaptive
strategy was adapted at the episodic level due to the episodic nature of the problems. The results are
reported in Figures 2a and 2b. As is clear from the figures, our proposed adaptive learning rate rule
significantly outperforms the optimal polynomial decay rule.

6 Conclusion

We have presented finite-time bounds quantifying the performance of two time-scale linear stochastic
approximation algorithms. The bounds give insight into how the different time-scale and learning rate
parameters affect the rate of convergence. We utilized these insights and designed an adaptive learning
rate selection rule. We implemented our rule on popular classical control problems in reinforcement
learning and showed that the proposed rule significantly outperforms the optimal polynomial decay
strategy suggested in literature.

Acknowledgements

Research supported by ONR Grant N00014-19-1-2566, NSF Grants CPS ECCS 1739189, NeTS
1718203, CMMI 1562276, ECCS 16-09370, and NSF/USDA Grant AG 2018-67007-28379. Lei
Ying’s work supported by NSF grants CNS 1618768, ECCS 1609202, IIS 1715385, ECCS 1739344,
CNS 1824393 and CNS 1813392.

References

A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic approximations,
volume 22. Springer Science & Business Media, 2012.

D. P. Bertsekas. Dynamic programming and optimal control 3rd edition, volume II. Belmont, MA:
Athena Scientific, 2011.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena, 1996.

J. Bhandari, D. Russo, and R. Singal. A finite time analysis of temporal difference learning with
linear function approximation. arXiv preprint arXiv:1806.02450, 2018.

S. Bhatnagar, H. L. Prasad, and L. A. Prashanth. Stochastic recursive algorithms for optimization:
simultaneous perturbation methods, volume 434. Springer, 2012.

Shalabh Bhatnagar, Doina Precup, David Silver, Richard S Sutton, Hamid R Maei, and Csaba
Szepesvari. Convergent temporal-difference learning with arbitrary smooth function approximation.
In Advances in Neural Information Processing Systems, pages 1204—1212, 2009.

V. S. Borkar. Stochastic approximation: a dynamical systems viewpoint. Springer, 2009.

G. Dalal, B. Sz6rényi, G. Thoppe, and S. Mannor. Finite sample analyses for TD(0) with function
approximation. arXiv preprint arXiv:1704.01161,2017a. Also appeared in AAAI 2018.

G. Dalal, B. Szorenyi, G. Thoppe, and S. Mannor. Finite sample analysis of two-timescale stochastic
approximation with applications to reinforcement learning. arXiv preprint arXiv:1703.05376,
2017b. Also appeared in COLT 2018.

Harsh Gupta, R Srikant, and Lei Ying. Adaptive learning rate selection for temporal difference
learning. Real-world Sequential Decision Making Workshop, ICML, 2019.

H. K. Khalil. Nonlinear Systems, volume 3. Prentice hall Upper Saddle River, NJ, 2002.

P. Kokotovic, H. K. Khalil, and J. O’Reilly. Singular perturbation methods in control: analysis and
design, volume 25. STAM, 1999.

Vijay R Konda, John N Tsitsiklis, et al. Convergence rate of linear two-time-scale stochastic
approximation. The Annals of Applied Probability, 14(2):796-819, 2004.

G. Konidaris, S. Osentoski, and P. Thomas. Value function approximation in reinforcement learning
using the fourier basis. In Tiwventy-fifth AAAI conference on artificial intelligence, 2011.

H. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and applications,
volume 35. Springer Science & Business Media, 2003.

C. Lakshminarayanan and C. Szepesvari. Linear stochastic approximation: How far does constant
step-size and iterate averaging go? In International Conference on Artificial Intelligence and
Statistics, pages 1347-1355, 2018.

Bo Liu, Ian Gemp, Mohammad Ghavamzadeh, Ji Liu, Sridhar Mahadevan, and Marek Petrik.
Proximal gradient temporal difference learning: Stable reinforcement learning with polynomial
sample complexity. Journal of Artificial Intelligence Research, 63:461-494, 2018.

R. Srikant and L. Ying. Finite-time error bounds for linear stochastic approximation and TD learning.
Conference on Learning Theorey (COLT), 2019. ArXiv preprint arXiv:1902.00923.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3(1):
9-44, 1988.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvari, and E. Wiewiora. Fast
gradient-descent methods for temporal-difference learning with linear function approximation. In
Proceedings of the 26th Annual International Conference on Machine Learning, pages 993—1000.
ACM, 20009.

Richard S Sutton, Csaba Szepesvari, and Hamid Reza Maei. A convergent O(n) algorithm for
off-policy temporal-difference learning with linear function approximation. Advances in neural
information processing systems, 21(21):1609-1616, 2008.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem
of off-policy temporal-difference learning. The Journal of Machine Learning Research, 17(1):
2603-2631, 2016.

C. Szepesvari. Algorithms for reinforcement learning. Synthesis lectures on Artificial Intelligence
and Machine Learning, 4(1):1-103, 2010.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control, 42(5), 1997.

Tengyu Xu, Shaofeng Zou, and Yingbin Liang. Two time-scale off-policy td learning: Non-asymptotic
analysis over markovian samples. In Advances in Neural Information Processing Systems, pages
10633-10643, 2019.

10

