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Abstract

Persistent cycles, especially the minimal ones, are useful geometric features functioning as
augmentations for the intervals in a purely topological persistence diagram (also termed as
barcode). In our earlier work, we showed that computing minimal 1-dimensional persistent
cycles (persistent 1-cycles) for finite intervals is NP-hard while the same for infinite intervals
is polynomially tractable. In this paper, we address this problem for general dimensions with
Z2 coefficients. In addition to proving that it is NP-hard to compute minimal persistent d-
cycles (d > 1) for both types of intervals given arbitrary simplicial complexes, we identify two
interesting cases which are polynomially tractable. These two cases assume the complex to be a
certain generalization of manifolds which we term as weak pseudomanifolds. For finite intervals
from the dth persistence diagram of a weak (d + 1)-pseudomanifold, we utilize the fact that
persistent cycles of such intervals are null-homologous and reduce the problem to a minimal cut
problem. Since the same problem for infinite intervals is NP-hard, we further assume the weak
(d+ 1)-pseudomanifold to be embedded in Rd+1 so that the complex has a natural dual graph
structure and the problem reduces to a minimal cut problem. Experiments with both algorithms
on scientific data indicate that the minimal persistent cycles capture various significant features
of the data.
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1 Introduction

Persistent homology [15], which captures essential topological features of data, has proven to be a
useful stable descriptor since Edelsbrunner et al. [16] first proposed the algorithm for its computation.
The understanding of topological persistence was later expanded by several works [5, 9, 11, 31]
in terms of both theory and computation. To make use of persistent homology, one typically
computes a persistence diagram (also called barcode) which is a set of intervals with birth and
death points. Besides just utilizing the set of intervals, some applications [13, 30] need persistence
diagrams augmented with representative cycles for the intervals for gaining more insight into the data.
These representative cycles, termed as persistent cycles [13], have been studied by Wu et al. [30],
Obayashi [24], and Dey et al. [13] recently from the view-point of optimality.

Although the original persistence algorithm of Edelsbrunner et al. [16] implicitly computes
persistent cycles, it does not necessarily provide minimal ones. In an earlier work [13], we showed
that it is NP-hard to compute minimal persistent 1-cycles (cycles for 1-dimensional homology
groups) when the given interval is finite. Interestingly, the same for infinite intervals turned out to
be computable in polynomial time [13]. This naturally leads to the following questions: Are there
other interesting cases beyond 1-dimension for which minimal persistent cycles can be computed in
polynomial time? Also, what are the cases that are NP-hard? In this paper, we settle the complexity
question for computing minimal persistent cycles with Z2 coefficients in general dimensions. We first
show that when d ≥ 2, computing minimal persistent d-cycles for both finite and infinite intervals is
NP-hard in general. We then identify a special but important class of simplicial complexes, which
we term as weak (d+ 1)-pseudomanifolds, whose minimal persistent d-cycles can be computed in
polynomial time. A weak (d+ 1)-pseudomanifold∗ is a generalization of a (d+ 1)-manifold and is
defined as follows:

Definition 1.1. A simplicial complex K is a weak (d+ 1)-pseudomanifold if each d-simplex is a
face of no more than two (d+ 1)-simplices in K.

Specifically, we find that if the given complex is a weak (d+ 1)-pseudomanifold, the problem of
computing minimal persistent d-cycles for finite intervals can be cast into a minimal cut problem
(see Section 3) due to the fact that persistent cycles of such kind are null-homologous in the complex.
However, when d ≥ 2 and intervals are infinite, the computation of the same becomes NP-hard (see
Section 5). Nonetheless, for infinite intervals, if we assume that the weak (d+ 1)-pseudomanifold is
embedded in Rd+1, the minimal persistent cycle problem reduces to a minimal cut problem (see
Section 4) and hence belongs to P. Note that a simplicial complex embedded in Rd+1 is automatically
a weak (d+ 1)-pseudomanifold. Also note that while there is an algorithm [8] in the non-persistence
setting which computes minimal d-cycles by minimal cuts, the non-persistence algorithm assumes
the (d+ 1)-complex to be embedded in Rd+1. Our algorithm for finite intervals, to the contrary,
does not need the embedding assumption.

In order to make our statements about the hardness results precise, we let PCYC-FINd denote
the problem of computing minimal persistent d-cycles for finite intervals when the given simplicial
complex is arbitrary, and let PCYC-INFd denote the same problem for infinite intervals (see
definitions of Problem 2.1 and 2.2). We also let WPCYC-FINd denote a subproblem† of PCYC-
FINd and let WPCYC-INFd, WEPCYC-INFd denote two subproblems of PCYC-INFd, with the
subproblems requiring additional constraints on the given simplicial complex. Table 1 lists the

∗The naming of weak pseudomanifold is adapted from the commonly accepted name pseudomanifold (see Defini-
tion A.1).

†For two problems P1 and P2, P2 is a subproblem of P1 if any instance of P2 is an instance of P1 and P2 asks for
computing the same solutions as P1.
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hardness results for all problems of interest, where the column “Restriction on K” specifies the
additional constraints subproblems require on the given simplicial complex K. Note that WPCYC-
INFd being NP-hard trivially implies that PCYC-INFd is NP-hard.

Table 1: Hardness results for minimal persistent cycle problems with bold results denoting new
findings.

Problem Restriction on K d Hardness
PCYC-FINd − ≥ 1 NP-hard
WPCYC-FINd K a weak (d+ 1)-pseudomanifold ≥ 1 Polynomial
PCYC-INFd − = 1 Polynomial
WPCYC-INFd K a weak (d+ 1)-pseudomanifold ≥ 2 NP-hard
WEPCYC-INFd K a weak (d+ 1)-pseudomanifold in Rd+1 ≥ 2 Polynomial

Main contributions. We summarize our contributions as follows:

• We prove the NP-hardness of PCYC-FINd and WPCYC-INFd for all d ≥ 2.

• We present two polynomial time algorithms for WPCYC-FINd and WEPCYC-INFd when
d ≥ 1, based on the duality of minimal persistent cycles and minimal cuts. Other than the
minimal cut computation, steps in both algorithms run in linear or almost linear time.

1.1 Related works

In the context of computing optimal cycles, most works have been done in the non-persistence
setting. These works compute minimal cycles for homology groups of a given simplicial complex.
Only very few works address the problem while taking into account the persistence. We review
some of the relevant works below.

Minimal cycles for homology groups. In terms of computing minimal cycles for homology
groups, two problems are of most interest: the localization problem and the minimal basis problem.
The localization problem asks for computing a minimal cycle in a homology class and the minimal
basis problem asks for computing a set of generating cycles for a homology group whose sum of
weights is minimal. With Z2 coefficients, these two problems are in general hard. Specifically,
Chambers et al. [4] proved that the localization problem over dimension one is NP-hard when
the given simplicial complex is a 2-manifold. Chen and Freedman [8] proved that the localization
problem is NP-hard to approximate with fixed ratio over arbitrary dimension. They also showed
that the minimal basis problem is NP-hard to approximate with fixed ratio over dimension greater
than one. For one-dimensional homology, Dey et al. [14] proposed a polynomial time algorithm for
the minimal basis problem. Several other works [3, 7, 12, 18] address variants of the two problems
while considering special input classes, alternative cycle measures, or coefficients for homology other
than Z2.

In this work, we use graph cuts and their duality extensively. The duality of cuts on a planar graph
and separating cycles on the dual graph has long been utilized to efficiently compute maximal flows
and minimal cuts on planar graphs, a topic for which Chambers et al. [4] provide a comprehensive
review. In their paper [4], Chambers et al. discover the duality between minimal cuts of a surface-
embedded graph and minimal homologous cycles in a dual complex, and then devise O(n log n)
algorithms for both problems assuming the genus of the surface to be fixed. Chen and Freedman [8]
proposed an algorithm which computes a minimal non-bounding d-cycle given a (d+ 1)-complex
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embedded in Rd+1, utilizing a natural duality of d-cycles in the complex and cuts in the dual graph.
The minimal non-bounding cycle algorithm can be further extended to solve the localization problem
and the minimal basis problem over dimension d given a (d+ 1)-complex embedded in Rd+1.

Persistent cycle. As pointed out earlier, our main focus is the optimality of representative cycles
in the persistence framework. Some early works [17, 19] address the representative cycle problem for
persistence by computing minimal cycles at the birth points of intervals without considering what
actually die at the death points. Wu et al. [30] proposed an algorithm computing minimal persistent
1-cycles for finite intervals using an annotation technique and heuristic search. However, the time
complexity of the algorithm is exponential in the worst-case. Obayashi [24] casts the minimal
persistent cycle problem for finite intervals into an integer program, but the rounded result of the
relaxed linear program is not guaranteed to be optimal. Dey et al. [13] formalizes the definition
of persistent cycles for both finite and infinite intervals. They also proved the NP-hardness of
computing minimal persistent 1-cycles for finite intervals and proposed a polynomial time algorithm
for computing non-optimal ones which are still good in practice.

2 Preliminaries

In this section we present some concepts necessary for presenting the results in this paper.

Simplicial complex. A simplicial complex K is a collection of simplices which are abstractly
defined as subsets of a ground set called the vertex set of K. If a simplex σ is in K, then all its
subsets called its faces are also in K. The simplex σ is also referred to as a q-simplex if the cardinality
of the vertex set of σ is q + 1. A q-face of σ is a q-simplex being a face of σ and a q-coface of σ is a
q-simplex having σ as a face. We call a q-simplex of K a boundary q-simplex if it has less than two
(q + 1)-cofaces in K. A simplicial set is a set of simplices and the closure of a simplicial set Σ is the
simplicial complex consisting of all the faces of the simplices in Σ. A simplicial complex is finite if it
contains finitely many simplices. In this paper, we only consider finite simplicial complexes.

If each vertex of a simplicial complex K is a point in a Euclidean space, then each simplex of
K can be interpreted as the convex hull of its vertices. The simplicial complex K is said to be
embedded in the Euclidean space if the interiors of all its simplices are disjoint. The underlying
space of K, denoted by |K|, is the point-wise union of all the simplices of K.

Definition 2.1 (Oriented simplex [23]). A q-simplex with an ordering of its vertices is an oriented
q-simplex. For each q-simplex σ (q > 0), there are exactly two equivalent classes of vertex orderings,
resulting in two oriented q-simplices of σ. We refer to them as the oppositely oriented q-simplices.

Remark 2.1. Any simplex by default is unoriented. We denote an unoriented q-simplex σ spanned
by vertices v0, . . . , vq as σ = {v0, . . . , vq} and an oriented q-simplex ~σ as ~σ = [v0, . . . , vq], where
v0, . . . , vq specify the ordering of the spanning vertices.

Filtration. A filtration F of a simplicial complex K is a filtered sequence of subcomplexes of K,
F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, such that Ki and Ki−1 differ by one simplex denoted by σFi .
We let i be the index of σFi in F and denote it as ind(σFi ) = i. A subcomplex Ki in the filtered
sequence of F is also referred to as a partial complex.
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Simplicial homology. We provide a brief overview of simplicial homology used in this paper.
See any standard book on the topic, e.g. [23]. Let q ≥ 0, K be a simplicial complex, and G be an
abelian group. The qth chain group Cq(K;G) is defined to be the abelian group containing all finite
sums of the form

∑
i ni~σi, where ni ∈ G and ~σi is an oriented q-simplex of K. Each element in

Cq(K;G) is called a q-chain of K. Note that for two oppositely oriented q-simplices ~σ and ~σ′, we
have that n~σ = (−n)~σ′ for any n ∈ G. Therefore, Cq(K;G) can be interpreted as a direct sum of
Nq copies of G where Nq is the number of q-simplices of K and each copy of G corresponds to a
q-simplex of K. The qth boundary operator ∂q : Cq(K;G)→ Cq−1(K;G) is a group homomorphism
such that for any oriented q-simplex [v0, . . . , vq]

∂q
(
[v0, . . . , vq]

)
=

q∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vq]

where the notation [v0, . . . , v̂i, . . . , vq] means that v̂i is deleted from the simplex. For brevity, we
often omit the subscript of the boundary operator ∂q and denote it as ∂ when this does not cause
any confusion. The kernel of ∂q is called the qth cycle group of K and is denoted as Zq(K;G). The
image of ∂q+1 is called the qth boundary group of K and is denoted as Bq(K;G). A q-chain in
Zq(K;G) is called a q-cycle and a q-chain in Bq(K;G) is called a q-boundary. For a q-chain A, the
(q − 1)-chain ∂(A) is also called the boundary of A.

A fundamental fact in homology theory is that ∂q∂q+1 = 0 for any q. This implies that
Bq(K;G) ⊆ Zq(K;G). The qth homology group of K denoted by Hq(K;G) is defined as the quotient
Zq(K;G)/Bq(K;G). Each coset in Hq(K;G) is called a homology class and a cycle is said to be
homologous to another cycle if they belong to the same homology class. As any boundary cycle
represents the homology class 0 in Hq(K;G), a boundary is also said to be null-homologous.

The abelian group G in the above definitions is called the coefficient group for the homology
groups. Sometimes, when the coefficient group G is clear, we simply drop it and denote a chain
group as Cq(K). This applies to other groups defined in simplicial homology. In this paper, two
coefficient groups Z2 and Z are used for simplicial homology. When not explicitly stated, the
coefficients are assumed to be in Z2. With Z2 coefficients, the orientations of simplices no longer
matter and a q-chain can be interpreted as a set of q-simplices with summation of two q-chains
being the symmetric difference. A q-cycle is then a set of q-simplices where every (q − 1)-face of
these simplices adjoins an even number of q-simplices. Also note that because Z2 is a field, all
groups defined in simplicial homology with Z2 coefficients become vector spaces and homomorphisms
between these groups (such as ∂) become linear maps.

Definition 2.2 (q-weighted). A simplicial complex K is q-weighted if each q-simplex σ ofK has a non-
negative finite weight w(σ). The weight of a q-chain A of K is then defined as w(A) =

∑
σ∈Aw(σ).

Definition 2.3 (q-connected). Let K be a simplicial complex, for q ≥ 1, two q-simplices σ and σ′

of K are q-connected in K if there is a sequence of q-simplices of K, (σ0, . . . , σl), such that σ0 = σ,
σl = σ′, and for all 0 ≤ i < l, σi and σi+1 share a (q − 1)-face. The property of q-connectedness
defines an equivalence relation on q-simplices of K. Each set in the partition induced by the
equivalence relation constitutes a q-connected component of K. We say K is q-connected if any two
q-simplices of K are q-connected in K.

Remark 2.2. See Figure 2a for an example of 1-connected components and 2-connected components.

Definition 2.4 (q-connected cycle). A q-cycle ζ (with Z2 coefficients) is q-connected if the complex
derived by taking the closure of the simplicial set ζ is q-connected.
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Persistent homology. We will provide a brief description of persistent homology. We recommend
the book by Edelsbrunner and Harer [15] for a detailed explanation of this topic and the book by
Chazal et al. [6] for its underlying Mathematical structure, persistence module. Note that persistent
homology in this paper is always assumed to be with Z2 coefficients. The persistence algorithm
starts with a filtration F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K of a simplicial complex K, and for each
simplex σFi , inspects whether ∂(σFi ) is a boundary in Ki−1. If ∂(σFi ) is a boundary in Ki−1, σ

F
i

is called positive; otherwise, it is called negative. The d-chains (or d-cycles) in Ki that are not in
Ki−1 are said to be born in Ki or created by σFi . A positive d-simplex creates some d-cycles and a
negative d-simplex makes some (d− 1)-cycles become boundaries. In the latter case, we also say
that the negative d-simplex kills or destroys those (d− 1)-cycles. What is central to the persistence
algorithm is a notion called pairing: A positive simplex is initially unpaired when introduced; when
a negative d-simplex σFi comes, the algorithm finds a (d− 1)-cycle created by an unpaired positive
(d− 1)-simplex σFj which is homologous to ∂(σFi ) and pair σFj with σFi . Alongside the pairing, a
finite interval [j, i) is added to the (d − 1)th persistence diagram, which is denoted by Dd−1(F).
After all simplices are processed, some positive simplices may still be unpaired. For each σFi of these
unpaired simplices, an infinite interval [i,+∞) is added to Dd(F), where d is the dimension of σFi .

Note that the pairing in the persistence algorithm for a given filtration is unique. Also note that
in this paper, we assume a filtration of a complex is given and the persistence intervals start and end
with indices of the paired simplices. However, in real-life applications, one is often given a function
on a simplicial complex. To produce the persistence intervals, a filtration needs to be derived and
the endpoints of the intervals are taken as function values on the paired simplices. In such cases, we
can associate a given interval to its simplex pair, take the indices of the paired simplices, and get an
interval which can serve as an input to our algorithms.

The persistent cycle problems. We can now formally define the minimal persistent cycle
problems:

Problem 2.1 (PCYC-FINd). Given a finite d-weighted simplicial complex K, a filtration F : ∅ =
K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, and a finite interval [β, δ) ∈ Dd(F), this problem asks for computing a
d-cycle with the minimal weight which is born in Kβ and becomes a boundary in Kδ.

Problem 2.2 (PCYC-INFd). Given a finite d-weighted simplicial complex K, a filtration F :
∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, and an infinite interval [β,+∞) ∈ Dd(F), this problem asks for
computing a d-cycle with the minimal weight which is born in Kβ .

Remark 2.3. The definitions of the above two problems are derived directly from the definition of
persistent d-cycles [13].

Undirected flow network. An undirected flow network (G, s1, s2) consists of an undirected
graph G with vertex set V (G) and edge set E(G), a capacity function c : E(G)→ [0,+∞], and two
non-empty disjoint subsets s1 and s2 of V (G). Vertices in s1 are referred to as sources and vertices
in s2 are referred to as sinks. A cut (S, T ) of (G, s1, s2) consists of two disjoint subsets S and T of
V (G) such that S ∪T = V (G), s1 ⊆ S, and s2 ⊆ T . The set of edges that connect a vertex in S and
a vertex in T are referred as the edges across the cut (S, T ) and is denoted as ξ(S, T ). The capacity
of a cut (S, T ) is defined as c(S, T ) =

∑
e∈ξ(S,T ) c(e). A minimal cut of (G, s1, s2) is a cut with the

minimal capacity. Note that we allow parallel edges in G (see Figure 2a) to ease the presentation.
These parallel edges can be merged into one edge during computation.
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(a)

σβ

(b)

σδ

(c) (d)

Figure 1: An example of the constructions in our algorithm showing the duality between persistent
cycles and cuts having finite capacity for d = 1. (a) The input weak 2-pseudomanifold K with its
dual flow network drawn in blue, where the central hollow vertex denotes the dummy vertex, the red
vertex denotes the source, and all the orange vertices (including the dummy one) denote the sinks.
All “dangled” graph edges dual to the outer boundary 1-simplices actually connect to the dummy
vertex and these connections are not drawn. (b) The partial complex Kβ in the input filtration F ,
where the bold green 1-simplex denotes σFβ which creates the green 1-cycle. (c) The partial complex

Kδ in F , where the 2-simplex σFδ creates the pink 2-chain killing the green 1-cycle. (d) The green
persistent 1-cycle of the interval [β, δ) is dual to a cut (S, T ) having finite capacity, where S contains
all the vertices inside the pink 2-chain and T contains all the other vertices. The red graph edges
denote those edges across (S, T ) and their dual 1-chain is the green persistent 1-cycle.

3 Minimal persistent d-cycles of finite intervals for weak (d+ 1)-
pseudomanifolds

In this section, we present an algorithm which computes minimal persistent d-cycles for finite
intervals given a filtration of a weak (d+ 1)-pseudomanifold when d ≥ 1. The general process is
as follows: Suppose that the input weak (d+ 1)-pseudomanifold is K associated with a filtration
F : K0 ⊆ K1 ⊆ . . . ⊆ Kn and the task is to compute the minimal persistent cycle of a finite interval
[β, δ) ∈ Dd(F). We first construct an undirected dual graph G for K where vertices of G are dual
to (d+ 1)-simplices of K and edges of G are dual to d-simplices of K. One dummy vertex termed
as infinite vertex which does not correspond to any (d+ 1)-simplices is added to G for graph edges
dual to those boundary d-simplices. We then build an undirected flow network on top of G where
the source is the vertex dual to σFδ and the sink is the infinite vertex along with the set of vertices
dual to those (d+ 1)-simplices which are added to F after σFδ . If a d-simplex is σFβ or added to F
before σFβ , we let the capacity of its dual graph edge be its weight; otherwise, we let the capacity of
its dual graph edge be +∞. Finally, we calculate a minimal cut of this flow network and return the
d-chain dual to the edges across the minimal cut as a minimal persistent cycle of the interval.

The intuition of the above algorithm is best explained by an example in Figure 1, where d = 1.
The key to the algorithm is the duality between persistent cycles of the input interval and cuts of
the dual flow network having finite capacity. To see this duality, first consider a persistent d-cycle ζ
of the input interval [β, δ). There exists a (d+ 1)-chain A in Kδ created by σFδ whose boundary
equals ζ, making ζ killed. We can let S be the set of graph vertices dual to the simplices in A and
let T be the set of the remaining graph vertices, then (S, T ) is a cut. Furthermore, (S, T ) must have
finite capacity as the edges across it are exactly dual to the d-simplices in ζ and the d-simplices in ζ
have indices in F less than or equal to β. On the other hand, let (S, T ) be a cut with finite capacity,
then the (d+ 1)-chain whose simplices are dual to the vertices in S is created by σFδ . Taking the

6



boundary of this (d+ 1)-chain, we get a d-cycle ζ. Because d-simplices of ζ are exactly dual to
the edges across (S, T ) and each edge across (S, T ) has finite capacity, ζ must reside in Kβ. We
only need to ensure that ζ contains σFβ in order to show that ζ is a persistent cycle of [β, δ). In

Section 3.2, we argue that ζ actually contains σFβ , so ζ is indeed a persistent cycle. Note that while
the above explanation introduces the general idea, the rigorous statement and proof of the duality
are articulated by Proposition 3.2 and 3.3.

Algorithm 3.1 Computing minimal persistent d-cycles of finite intervals for weak (d+ 1)-
pseudomanifolds

Input:
K: finite d-weighted weak (d+ 1)-pseudomanifold
d: integer ≥ 1
F : filtration K0 ⊆ K1 ⊆ . . . ⊆ Kn of K
[β, δ): finite interval of Dd(F)

Output:
minimal persistent d-cycle of [β, δ)

1: procedure MinPersCycFin(K, d,F , [β, δ))
. set up the complex K̃ being worked on

2: Cd+1 ← (d+ 1)-connected component of K containing σFδ
3: K̃ ← closure of the simplicial set Cd+1

. construct dual graph

4: (G, θ)← DualGraphFin(K̃, d)

. assign capacity to G

5: for each e ∈ E(G) do

6: if ind(θ−1(e)) ≤ β then

7: c(e)← w(θ−1(e))

8: else

9: c(e)← +∞
. set the source

10: s1 ← {θ(σFδ )}
. set the sink

11: s2 ← {v ∈ V (G) | v 6= φ, ind(θ−1(v)) > δ}
12: if φ ∈ V (G) then

13: s2 ← s2 ∪ {φ}
14: (S∗, T ∗)← min-cut of (G, s1, s2)

15: return θ−1(ξ(S∗, T ∗))

We list the pseudo-code in Algorithm 3.1 and it works as follows: Line 2 and 3 set up a complex
K̃ that the algorithm mainly works on, where K̃ is taken as the closure of the (d+ 1)-connected
component of K containing σFδ . The reason for working on K̃ instead of the entire complex is

explained later in this section. Line 4 constructs the dual graph G from K̃ and line 5−13 builds
the flow network on top of G. Note that we denote the infinite vertex by φ. Line 14 computes
a minimal cut for the flow network and line 15 returns the d-chain dual to the edges across the
minimal cut. In the pseudo-codes of this paper, to ease the exposition, we treat a Mathematical
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function as a computer program object. For example, the function θ returned by DualGraphFin
in Algorithm 3.1 denotes the bijection between the simplices of K̃ and their dual vertices or edges
(see Section 3.1 for details). In practice, these constructs can be easily implemented in any computer
programming language.

To see the reason why we work on K̃, we first note that the dual graph constructed directly
from K may be disconnected‡. While cuts are still well-defined for a disconnected flow network, one
may prefer a connected one as the minimal cut computation only concerns the graph component
containing the source. By constructing the dual graph from K̃, it can be ensured that the graph is
connected. In order for Algorithm 3.1 to work, one has to further show that the sink is non-empty
so that the computed persistent cycle is non-empty. This is verified in Proposition 3.1. An intuitive
reason why the computation from K̃ is still correct is as follows: Each persistent d-cycle ζ of the
given interval corresponds to a (d+ 1)-chain A which kills ζ, i.e., ∂(A) = ζ. Suppose that A is not
entirely contained in K̃. Notice that A ∩ K̃ 6= ∅ and contains at least the killer simplex σFδ . Then

∂(A∩ K̃) must be a persistent cycle of the interval residing in K̃ which has a smaller weight. Hence,
a minimal persistent cycle must reside in K̃. In Section 3.2, we formally verify the construction.

Complexity. The time complexity of Algorithm 3.1 depends on the encoding scheme of the input
and the data structure used for representing a simplicial complex. For encodings of the input, we
assume K and F to be represented by a sequence of all the simplices of K ordered by their indices
in F , where each simplex is denoted by its set of vertices. We also assume a simple yet reasonable
simplicial complex data structure as follows: In each dimension, simplices are mapped to integral
identifiers ranging from 0 to the number of simplices in that dimension minus 1; each q-simplex has
an array (or linked list) storing all the id’s of its (q + 1)-cofaces; a hash map for each dimension is
maintained for the query of the integral id of each simplex in that dimension based on the spanning
vertices of the simplex. We further assume d to be constant. By the above assumptions, let n be
the size (number of bits) of the encoded input, then there are no more than n elementary O(1)
operations in line 2 and 3. So, the time complexity of line 2 and 3 is O(n). It is not hard to verify
that the flow network construction also takes O(n) time so the time complexity of Algorithm 3.1 is
determined by the minimal cut algorithm. Using the max-flow algorithm by Orlin [25], the time
complexity of Algorithm 3.1 becomes O(n2).

In the rest of this section, we first explain the bijection θ returned by DualGraphFin, then
prove the correctness of the algorithm.

3.1 The bijection θ

The vertex set V (G) of G contains vertices which correspond to the (d+ 1)-simplices of K̃. The
set V (G) may also contain an infinite vertex φ if K̃ contains any boundary d-simplex. We define a
bijection

θ : {(d+ 1)-simplices of K̃} → V (G) r {φ}

such that for any (d+ 1)-simplex σd+1 of K̃, θ(σd+1) is the vertex that σd+1 is dual to. Similarly,
we define another bijection

θ : {d-simplices of K̃} → E(G)

using the same notation θ.

‡For an example in d = 1, take K as two disconnected triangulated 2-spheres. Its dual graph consists of two
connected components.
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Note that we can take the image of a subset of the domain under a function. Therefore, if (S, T )
is a cut for a flow network built on G, then θ−1(ξ(S, T )) denotes the set of d-simplices dual to the
edges across the cut. Also note that since simplicial chains with Z2 coefficients can be interpreted
as sets, θ−1(ξ(S, T )) is also a d-chain.

3.2 Algorithm correctness

In this subsection, we prove the correctness of Algorithm 3.1. Some of the symbols we use refer to
Algorithm 3.1.

Proposition 3.1. In Algorithm 3.1, the sink s2 is not an empty set.

Proof. For contradiction, suppose that s2 is an empty set. Then, φ 6∈ V (G) and σFδ is the (d+ 1)-

simplex of K̃ with the greatest index in F . Because φ 6∈ V (G), any d-simplex of K̃ must be a face
of two (d+ 1)-simplices of K̃, so the set of (d+ 1)-simplices of K̃ forms a (d+ 1)-cycle created by
σFδ . Then σFδ must be a positive simplex in F , which is a contradiction.

The following two propositions specify the duality mentioned at the beginning of this section:

Proposition 3.2. For any cut (S, T ) of (G, s1, s2) with finite capacity, the d-chain ζ = θ−1(ξ(S, T ))
is a persistent d-cycle of [β, δ) and w(ζ) = c(S, T ).

Proof. Let A = θ−1(S), we first want to prove ζ = ∂(A), so that ζ is a cycle. Let σd be any d-simplex
of ζ, then θ(σd) connects a vertex u ∈ S and a vertex v ∈ T . If v = φ, then σd cannot be a face of
another (d+ 1)-simplex in K other than θ−1(u). So, σd is a face of exactly one (d+ 1)-simplex of
A. If v 6= φ, then σd is also a face of exactly one (d+ 1)-simplex of A. Therefore, σd ∈ ∂(A). On
the other hand, let σd be any d-simplex of ∂(A), then σd is a face of exactly one (d+ 1)-simplex
σd+1
0 of A. If σd is a face of another (d+ 1)-simplex σd+1

1 in K, then σd+1
1 ∈ K̃ and σd+1

1 6∈ A. So,
θ(σd) connects the vertex θ(σd+1

0 ) ∈ S and the vertex θ(σd+1
1 ) ∈ T in the graph G. If σd is a face

of exactly one (d+ 1)-simplex in K, θ(σd) must connect θ(σd+1
0 ) ∈ S and φ ∈ T in G. So we have

θ(σd) ∈ ξ(S, T ), i.e., σd ∈ θ−1(ξ(S, T )).
We then show that ζ is created by σFβ . By Proposition 3.1, ζ cannot be empty. Therefore, for

contradiction, we can suppose that ζ is created by a d-simplex σd 6= σFβ . Because c(S, T ) has finite

capacity, we have that ind(σd) < β. We can let ζ ′ be a persistent cycle of [β, δ) and ζ ′ = ∂(A′)
where A′ is a (d+ 1)-chain of Kδ. Then we have ζ + ζ ′ = ∂(A + A′). Since A and A′ are both
created by σFδ , then A+A′ is created by a (d+ 1)-simplex with an index less than δ in F . So ζ + ζ ′

is a d-cycle created by σFβ which becomes a boundary before σFδ is added. This means that σFβ is

already paired when σFδ is added, contradicting the fact that σFβ is paired with σFδ . Similarly, we

can prove that ζ is not a boundary until σFδ is added, so ζ is a persistent cycle of [β, δ). Since (S, T )
has finite capacity, we must have

c(S, T ) =
∑
e∈θ(ζ)

c(e) =
∑

θ−1(e)∈ζ

w(θ−1(e)) = w(ζ)

Proposition 3.3. For any persistent d-cycle ζ of [β, δ), there exists a cut (S, T ) of (G, s1, s2) such
that c(S, T ) ≤ w(ζ).

Proof. Let A be a (d+ 1)-chain in Kδ such that ζ = ∂(A). Note that A is created by σFδ and ζ

is the set of d-simplices which are face of exactly one (d+ 1)-simplex of A. Let ζ ′ = ζ ∩ K̃ and
A′ = A ∩ K̃, we claim that ζ ′ = ∂(A′). To prove this, first let σd be any d-simplex of ζ ′, then σd
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is a face of exactly one (d+ 1)-simplex σd+1 of A. Since σd ∈ K̃, it is also true that σd+1 ∈ K̃, so
σd+1 ∈ A′. Then σd is a face of exactly one (d+ 1)-simplex of A′, so σd ∈ ∂(A′). On the other
hand, let σd be any d-simplex of ∂(A′), then σd is a face of exactly one (d+ 1)-simplex σd+1

0 of
A′. Note that σd+1

0 ∈ A and we then want to prove that σd is a face of exactly one (d+ 1)-simplex

σd+1
0 of A. Suppose that σd is a face of another (d+ 1)-simplex σd+1

1 of A, then σd+1
1 ∈ K̃ because

σd+1
0 ∈ K̃. So we have σd+1

1 ∈ A ∩ K̃ = A′, contradicting the fact that σd is a face of exactly one

(d+ 1)-simplex of A′. Then we have σd ∈ ∂(A). Since σd+1
0 ∈ K̃, we have σd ∈ K̃, which means

that σd ∈ ζ ′.
Let S = θ(A′) and T = V (G) r S, then it is true that (S, T ) is a cut of (G, s1, s2) because A′ is

created by σFδ . We claim that θ−1(ξ(S, T )) = ∂(A′). The proof of the equality is similar to the one
in the proof of Proposition 3.2. It follows that ξ(S, T ) = θ(ζ ′). We then have that

c(S, T ) =
∑

e∈θ(ζ′)

c(e) =
∑

θ−1(e)∈ζ′
w(θ−1(e)) = w(ζ ′)

because each d-simplex of ζ ′ has an index less than or equal to β in F .
Finally, because ζ ′ is a subchain of ζ, we must have c(S, T ) = w(ζ ′) ≤ w(ζ).

Combining the above facts, we can conclude:

Theorem 3.1. Algorithm 3.1 computes a minimal persistent d-cycle for the given interval [β, δ).

Proof. First, the flow network (G, s1, s2) constructed by Algorithm 3.1 must be valid by Proposi-
tion 3.1. Next, because the interval [β, δ) must have a persistent cycle, by Proposition 3.3, the
flow network (G, s1, s2) has a cut with finite capacity. This means that c(S∗, T ∗) is finite. By
Proposition 3.2, the chain ζ∗ = θ−1(ξ(S∗, T ∗)) is a persistent cycle of [β, δ). Assume that ζ∗ is
not a minimal persistent cycle of [β, δ) and instead let ζ ′ be a minimal persistent cycle of [β, δ).
Then there exists a cut (S′, T ′) such that c(S′, T ′) ≤ w(ζ ′) < w(ζ∗) = c(S∗, T ∗) by Proposition 3.2
and 3.3, contradicting the fact that (S∗, T ∗) is a minimal cut.

4 Minimal persistent d-cycles of infinite intervals for weak (d+ 1)-
pseudomanifolds embedded in Rd+1

We already mentioned that computing minimal persistent d-cycles (d ≥ 2) for infinite intervals is
NP-hard even if we restrict to weak (d+ 1)-pseudomanifolds (see Section 5.3 for a proof). However,
when the complex is embedded in Rd+1, the problem becomes polynomially tractable. In this section,
we present an algorithm for this problem in d ≥ 1§. The algorithm uses a similar duality described
in Section 3. However, a direct use of the approach in Section 3 does not work. For example, in
Figure 2a, 1-simplices that do not have any 2-cofaces cannot reside in any 2-connected component
of the given complex. Hence, no cut in the flow network may correspond to a persistent cycle of the
infinite interval created by such a 1-simplex. Furthermore, unlike the finite interval case, we do not
have a negative simplex whose dual can act as a source in the flow network.

Let (K,F , [β,+∞)) be an input to the problem where K is a weak (d+ 1)-pseudomanifold
embedded in Rd+1, F : K0 ⊆ K1 ⊆ . . . ⊆ Kn is a filtration of K, and [β,+∞) is an infinite interval
of Dd(F). By the definition of the problem, the task boils down to computing a minimal d-cycle
containing σFβ in Kβ . Note that Kβ is also a weak (d+ 1)-pseudomanifold embedded in Rd+1.

§As mentioned earlier, when d = 1, this problem is polynomially tractable for arbitrary complexes.
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(a)

a b

cd

(b)

Figure 2: (a) A weak 2-pseudomanifold K̃ embedded in R2 with three voids. Its dual graph is drawn
in blue. The complex has one 1-connected component and four 2-connected components with the
2-simplices in different 2-connected components colored differently. (b) An example illustrating
the pairing of boundary d-simplices in the neighborhood of a (d− 1)-simplex for d = 1. The four
boundary 1-simplices produce six oriented boundary 1-simplices and the paired oriented 1-simplices
are colored the same.

Generically, assume K̃ is an arbitrary weak (d+ 1)-pseudomanifold embedded in Rd+1 and we
want to compute a minimal d-cycle containing a d-simplex σ̃ for K̃. By the embedding assumption,
the connected components of Rd+1 r |K̃| are well defined and we call them the voids of Rd+1 r |K̃|.
The complex K̃ has a natural (undirected) dual graph structure as exemplified by Figure 2a for
d = 1, where the graph vertices are dual to the (d+ 1)-simplices as well as the voids and the graph
edges are dual to the d-simplices. The duality between cycles and cuts is as follows: Since the
ambient space Rd+1 is contractible (homotopy equivalent to a point), every d-cycle in K̃ is the
boundary of a (d+ 1)-dimensional region obtained by point-wise union of certain (d+ 1)-simplices
and/or voids. We can derive a cut¶ of the dual graph by putting all vertices contained in the
(d+ 1)-dimensional region into one vertex set and putting the rest into the other vertex set. On the
other hand, for every cut of the graph, we can take the point-wise union of all the (d+ 1)-simplices
and voids dual to the graph vertices in one set of the cut and derive a (d+ 1)-dimensional region.
The boundary of the derived (d+ 1)-dimensional region is then a d-cycle in K̃. We observe that by
making the source and sink dual to the two (d+ 1)-simplices or voids that σ̃ adjoins, we can build
a flow network where a minimal cut produces a minimal d-cycle in K̃ containing σ̃.

The efficiency of the above algorithm is in part determined by the efficiency of the dual graph
construction. This step requires identifying the voids that the boundary d-simplices are incident
on. A straightforward approach would be to first group the boundary d-simplices into d-cycles
by local geometry, and then build the nesting structure of these d-cycles to correctly reconstruct
the boundaries of the voids. This approach has a quadratic worst-case complexity. To make the
void boundary reconstruction faster, we assume that the simplicial complex being worked on is
d-connected so that building the nesting structure is not needed. Our reconstruction then runs in
almost linear time. To satisfy the d-connected assumption, we begin our algorithm by taking K̃
as a d-connected subcomplex of Kβ containing σFβ and continue only with this K̃. The computed

output is still correct because the minimal cycle in K̃ is again a minimal cycle in Kβ as shown in
Section 4.2.

We list the pseudo-code in Algorithm 4.1 and it works as follows: Line 2−5 set up the complex

¶The cut here is defined on a graph without sources and sinks, so the cut is simply a partition of the vertex set
into two sets.
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Algorithm 4.1 Computing minimal persistent d-cycles of infinite intervals for weak (d+ 1)-
pseudomanifolds embedded in Rd+1

Input:
K: finite d-weighted weak (d+ 1)-pseudomanifold embedded in Rd+1

d: integer ≥ 1
F : filtration K0 ⊆ K1 ⊆ . . . ⊆ Kn of K
[β,+∞): infinite interval of Dd(F)

Output:
minimal persistent d-cycle of [β,+∞)

1: procedure MinPersCycInf(K, d,F , [β,+∞))

. set up the complex K̃ being worked on

2: K ′β ← Prune(Kβ , d)

3: Cβ ← d-connected component of K ′β containing σFβ
4: Σd+1 ← {σ ∈ K ′β |σ is a (d+ 1)-simplex and all d-faces of σ are in Cβ}
5: K̃ ← (closure of the simplicial set Cβ) ∪ Σd+1

. construct dual graph

6: (~ζ1, . . . , ~ζk)← VoidBoundary(K̃, d)

7: (G, θ)← DualGraphInf(K̃, d, ~ζ1, . . . , ~ζk)

. assign capacity to G

8: for each e ∈ E(G) do

9: c(e)← w(θ−1(e))

10: (v1, v2)← end vertices of edge θ(σFβ ) in G

. set the source

11: s1 ← {v1}
. set the sink

12: s2 ← {v2}
13: (S∗, T ∗)← min-cut of (G, s1, s2)

14: return θ−1(ξ(S∗, T ∗))

K̃ that the algorithm works on. Line 2 prunes Kβ to produce a complex K ′β. Given (Kβ , d), the

Prune subroutine iteratively deletes a d-simplex σd of Kβ such that there is a (d− 1)-face of σd

having σd as the only d-coface (i.e., σd is a dangled d-simplex), until no such d-simplex can be
found. It is not hard to verify that Prune only deletes d-simplices not residing in any d-cycles, so a
minimal d-cycle containing σFβ is never deleted. We perform the pruning because it can reduce the
graph size for the minimal cut computation which is more time consuming. In line 3−5, we take
the d-connected component Cβ of K ′β containing σFβ and add a set Σd+1 of (d+ 1)-simplices to the

closure of Cβ to form K̃. The set Σd+1 contains all (d+ 1)-simplices of K ′β whose d-faces reside

in Cβ . The reason of adding the set Σd+1 is to reduce the number of voids for the complex K̃ and
in turn reduce the running time of the subsequent void boundary reconstruction. For example, in
Figure 3b, we could treat the entire complex as K ′β, all 1-simplices as Cβ, and all 2-simplices as

Σd+1. If we do not add Σd+1 to the closure of Cβ , there will be seven more voids corresponding to

the seven 2-simplices. Line 6 reconstructs the void boundaries for K̃. Each returned ~ζj denotes
a set of d-simplices forming the boundary of a void. As indicated in Section 4.1, the d-simplices
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(a) (b)

Figure 3: Examples showing how the void boundaries are reconstructed for d = 1. (a) Oriented
boundary 1-simplices (drawn as dashed edges) of a simplicial complex are grouped into six 1-cycles
and these six 1-cycles are further grouped into four void boundaries with each void boundary
identically colored. (b) With the complex being 1-connected, the four grouped 1-cycles are exactly
the boundaries of the four voids.

in a void boundary are oriented. Line 7 constructs the dual graph G based on the reconstructed
void boundaries. Similar to Algorithm 3.1, the function θ returned by DualGraphInf denotes
the bijection from d-simplices of K̃ to E(G). Line 8−12 build the flow network on top of G. The
capacity of each edge is equal to the weight of its dual d-simplex and the source and sink are selected
as previously described. Line 13 computes a minimal cut for the flow network and line 14 returns
the d-chain dual to the edges across the minimal cut.

Complexity. We make the same assumptions as in the complexity analysis for Algorithm 3.1.
Since the void boundary reconstruction needs to sort the d-cofaces of certain (d− 1)-simplices,
its worst-case time complexity is O(n log n). Then, all operations other than the minimal cut
computation take O(n log n) time. Therefore, similar to Algorithm 3.1, Algorithm 4.1 achieves a
complexity of O(n2) by using Orlin’s max-flow algorithm [25].

In the rest of this section, we first describe the subroutine VoidBoundary invoked by Algo-
rithm 4.1 and then prove the correctness of the algorithm.

4.1 Void boundary reconstruction

As previously stated, the object of the reconstruction is to identify which voids a boundary d-simplex
of K̃ is incident on. The task becomes complicated because a void may have disconnected boundaries
and a d-simplex may bound more than one void. This is exemplified in Figure 3a. To address
this issue, we orient the boundary d-simplices and determine the orientations consistently from
the voids they bound. This is possible because an orientation of a d-simplex in Rd+1 associates
exactly one of its two sides to the d-simplex. To reconstruct the boundaries, we first inspect the
neighborhood of each (d− 1)-simplex being a face of a boundary d-simplex and pair the oriented
boundary d-simplices in the neighborhood which locally bound the same void. Figure 2b gives an
example of the oriented boundary d-simplices pairing for d = 1. In Figure 2b, there are three local
voids each colored differently. The oriented 1-simplices with the same color bound the same void
and are paired.

After pairing the oriented boundary d-simplices, we group them by putting paired ones into the
same group. Each group then forms a d-cycle (with Z coefficients). This is exemplified by Figure 3
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for d = 1. Note that in general, the above grouping does not fully reconstruct the void boundaries.
This can be seen from Figure 3a where the complex has four voids but the grouping produces six
1-cycles. In order to fully reconstruct the boundaries, one has to retrieve the nesting structure of
these d-cycles, which may take Ω(n2) time in the worst-case. However, as we work on a complex K̃
that is d-connected, we cannot have voids with disconnected boundaries. Therefore, the grouping of
oriented d-simplices can fully recover the void boundaries. Figure 3b gives an example for this when
d = 1, where we add two 1-simplices to make the complex 1-connected. The four 1-cycles produced
by the grouping are exactly the boundaries of the four voids.

In the rest of this subsection, we formalize the above ideas for reconstructing void boundaries
and provide a proof for the correctness. Throughout this subsection, K̃ and d are as defined in
Algorithm 4.1. We first introduce the definition of the natural orientation of a q-simplex in Rq. We
use its induced orientation to canonically orient the boundary simplices.

Definition 4.1 (Natural orientation [22]). Let q > 1 and σ = {v0, . . . , vq} be a q-simplex in Rq, an
oriented simplex ~σ = [v′0, . . . , v

′
q] of σ is naturally oriented if det(v′1 − v′0, . . . , v′q − v′0) > 0. For each

face σ′ of σ, the natural orientation of σ induces an orientation of σ′ which we term as the induced
orientation.

We now formally define the boundary of a void as follows:

Definition 4.2 (Boundary of void). Let K be a simplicial complex embedded in Rq where q ≥ 2,
an oriented (q − 1)-simplex ~σq−1 = [v0, . . . , vq−1] of K is said to bound a void V of Rq r |K| if the
following conditions are satisfied:

• The simplex σq−1 = {v0, . . . , vq−1} is contained in the closure of V.

• Let u be an interior point of σq−1 = {v0, . . . , vq−1}, v be a point in V such that the line segment
uv is contained in V and uv is orthogonal to the hyperplane spanned by σq−1. Furthermore,
let ~σq be the naturally oriented simplex of {v, v0, . . . , vq−1}. Then, ~σq−1 has the induced
orientation from ~σq.

The boundary of a void V is then defined as the set of oriented (q − 1)-simplices of K bounding V.

Remark 4.1. We can also interpret the boundary of a void as a sum of oriented (q − 1)-simplices,
then the boundary defines a (q − 1)-cycle (with Z coefficients).

We now describe the pairing algorithm of the oriented boundary d-simplices for K̃. From now
on, we denote the set of boundary d-simplices of K̃ as bd(K̃). Let σd−1 be a (d− 1)-simplex which
is a face of a d-simplex in bd(K̃), we first take a 2D plane ∆ which contains an interior point of
σd−1 and is orthogonal to the hyperplane spanned by σd−1. We then take the intersection of the
plane ∆ with each boundary d-simplex in the neighborhood of σd−1 to get a set of line segments
that we order circularly starting from an arbitrary one. For each two consecutive line segments in
this order which enclose a void, we pick a point p on the plane ∆ which resides in the void. Suppose
that one of the two line segments is derived from a boundary d-simplex σd0 = {v0, . . . , vd}. We take
the (d+ 1)-simplex σd+1 = {p, v0, . . . , vd} and the induced oriented simplex ~σd0 of σd0 derived from
the naturally oriented simplex of σd+1. For the other line segment, we similarly derive an induced
oriented simplex ~σd1 and pair the two oriented d-simplices ~σd0 and ~σd1 . Figure 2b can be reused to
exemplify the pairing. The union of the shaded regions in the figure is the plane ∆ and a, b, c, and
d are the line segments derived from intersecting the plane with four boundary d-simplices. Taking
the circular order a, b, c, d, we see that the consecutive ones which enclose a void are (a, b), (c, d),
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and (d, a). For (a, b), we can pick p as an interior point in the blue region and the two oriented
d-simplices corresponding to a and b can be induced and paired.

In summary, the steps of the VoidBoundary subroutine are the following:

1. For each (d− 1)-simplex σd−1 being a face of a d-simplex in bd(K̃), pair all oriented boundary
d-simplices in the neighborhood.

2. After gathering all the pairing, group the oriented boundary d-simplices by putting all paired
ones into a group.

3. Return (~ζ1, . . . , ~ζk), each of which is a group of the oriented boundary d-simplices.

The following theorem concludes the correctness of the reconstruction:

Theorem 4.1. Any ~ζj returned by VoidBoundary is the boundary of a void of Rd+1 r |K̃|.

Proof. See Appendix A.

4.2 Algorithm correctness

To prove the correctness of Algorithm 4.1, we need two conclusions about cycles with Z2 coefficients.
Specifically, Proposition 4.1 says that an embedded (q−1)-cycle in Rq separates the space and hence
the two oriented simplices of a (q − 1)-simplex in the cycle bound different voids. Proposition 4.2
says that a q-simplex in a q-cycle belongs to a q-connected sub-cycle of the q-cycle.

Proposition 4.1. Let q ≥ 2, ζ be a (q − 1)-cycle (with Z2 coefficients) of a simplicial complex
embedded in Rq, and Z be the closure of the simplicial set ζ. Then for any (q − 1)-simplex σ of ζ,
the two oriented simplices of σ must bound different voids of Rq r |Z|.

Proof. Consider a closed topological q-ball B such that σ ⊆ B and B ∩ |Z r σ| equals the boundary
of σ. Let B1 and B2 be the two open half balls of B separated by σ. Then it is true that the two
oriented simplices of σ bound different voids of Rq r |Z| if and only if B1 and B2 are not connected
in Rq r |Z|. So we only need to show that B1 and B2 are not connected in Rq r |Z|. Consider a
filtration of Z where σ is the last simplex added. Because σ is a positive simplex in the filtration,
by adding σ, the dimension of Hq−1 must increase by 1. By Alexander duality, the dimension of H0

of the complement space also increases by 1. Then B1 and B2 cannot be connected in Rq r |Z|.

Proposition 4.2. Let ζ be a q-cycle (with Z2 coefficients) of a simplicial complex where q > 0,
then for any q-simplex σ of ζ, there must be a q-cycle ζ ′ (with Z2 coefficients) containing σ such
that ζ ′ ⊆ ζ and ζ ′ is q-connected.

Proof. We can construct an undirected graph L for ζ, with vertices of L corresponding to the
q-simplices in ζ. For each (q − 1)-simplex σq−1 which is a face of a q-simplex of ζ, let N be the
set of q-simplices in ζ having σq−1 as a face, then |N | must be even. We can pair q-simplices of N
arbitrarily, and make each pair of q-simplices form an edge in L. Let C be the connected component
of L containing the corresponding vertex of σ and ζ ′ be the q-chain corresponding to C, then ζ ′

must be a cycle. This is because we can pair the (q − 1)-faces of all q-simplices in ζ ′ according to
the edges in L, so ∂(ζ ′) = 0. Furthermore, ζ ′ contains σ, ζ ′ ⊆ ζ, and ζ ′ is q-connected.

Throughout the rest of this subsection, some of the symbols we use refer to Algorithm 4.1. We
endow the ambient space Rd+1 with a “cellular complex” structure by treating voids of Rd+1 r |K̃|
as (d+ 1)-dimensional “cells”. This cellular complex of Rd+1 is denoted as Rd+1 and Rd+1 =
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K̃ ∪ {voids of Rd+1 r |K̃|}. For Rd+1, most terminologies from algebraic topology for simplicial
complexes are inherited with the exception that (d+ 1)-dimensional elements of Rd+1 are called
(d+ 1)-cells. Then, we can also let θ denote the bijection from (d+ 1)-cells of Rd+1 to V (G).
To derive ∂(V) for a void V of Rd+1 r |K̃|, we map oriented d-simplices in the boundary of V
(Definition 4.2) to their corresponding unoriented d-simplices. Then ∂(V) is defined as the sum
(with Z2 coefficients) of these unoriented d-simplices. It is not hard to see that ∂(V) is a d-cycle
(with Z2 coefficients) because each void boundary is a d-cycle (with Z coefficients).

Proposition 4.3. For any cut (S, T ) of (G, s1, s2), the d-chain ζ = θ−1(ξ(S, T )) is a persistent
d-cycle of [β,+∞) and w(ζ) = c(S, T ).

Proof. We have three things to show: (i) ζ contains σFβ ; (ii) w(ζ) = c(S, T ); (iii) ζ is a cycle. Claim (i)
and (ii) are not hard to verify and we prove claim (iii) by showing that ζ =

∑
α∈θ−1(S) ∂(α), so that

as a sum of cycles, ζ is a cycle. The detail for the equality of the two chains is omitted as it is
similar to the one in the proof of Proposition 3.2.

Proposition 4.4. For any persistent d-cycle ζ of [β,+∞), there exists a cut (S, T ) of (G, s1, s2)
such that c(S, T ) ≤ w(ζ).

Proof. Because of the nature of the pruning, ζ must reside in K ′β . By Proposition 4.2, there must

be a d-cycle ζ ′ ⊆ ζ such that ζ ′ is d-connected and contains σFβ . Hence, ζ ′ resides in K̃. Let Z ′
be the closure of the simplicial set ζ ′, we can run the void boundary reconstruction algorithm of
Section 4.1 on Z ′ and take a void boundary ~ζ containing an oriented simplex ~σFβ of σFβ . We can

map each oriented simplex of ~ζ to its unoriented simplex and let ζ0 be the sum of these unoriented
simplices, then ζ0 is a d-cycle (with Z2 coefficients) and ζ0 ⊆ ζ ′. By Proposition 4.1, the oppositely
oriented simplex of ~σFβ must not be in ~ζ, so ζ0 contains σFβ . Let ~ζ bound a void V of Rd+1r |Z ′|, we

can let A be the (d+ 1)-chain of Rd+1 consisting of all the (d+ 1)-cells residing in V and let B be
the (d+ 1)-chain consisting of all the other (d+ 1)-cells, then ∂(A) = ∂(B) = ζ0. Let v1, v2 be the
two end vertices of θ(σFβ ). Because the oppositely oriented simplex of ~σFβ does not bound V in Z ′, it
must be true that one of v1, v2 is in θ(A) and the other is in θ(B). We can let (S, T ) = (θ(A), θ(B))
or (θ(B), θ(A)) based on which set contains the source of the flow network, then (S, T ) is a cut
of the flow network constructed in Algorithm 4.1. Furthermore, we have ζ0 = θ−1(ξ(S, T )) and
c(S, T ) = w(ζ0) ≤ w(ζ).

The following theorem concludes the correctness of Algorithm 4.1:

Theorem 4.2. Algorithm 4.1 computes a minimal persistent d-cycle for the given interval [β,+∞).

Proof. First, the flow network (G, s1, s2) constructed by Algorithm 4.1 is valid. The reason is that,
by Proposition 4.1, it cannot happen that the two oriented simplices of σFβ bound the same void

of Rd+1 r |K̃|. So σFβ must correspond to an edge of G. Then by Proposition 4.3 and 4.4, we can
reach the conclusion.

5 Hardness for general complexes

Similar to the work [8], the NP-hardness proofs in this section accomplish the reduction with the
help of a suspension operator. While Hatcher [21] defines this operator for general topological spaces,
we need a definition of the operator for simplicial complexes and observe some of its properties that
are useful for the proofs.

16



5.1 Suspension operator

Definition 5.1 (Suspension [20]). The suspension SK of a simplicial complex K is defined as a
simplicial complex

SK =
{
{ω1}, {ω2}

}
∪K ∪

(⋃
σ∈K

{
σ ∪ {ω1}, σ ∪ {ω2}

})
where ω1, ω2 are two extra vertices.

Remark 5.1. In the above definition, we denote a simplex by its set of vertices.

In the rest of this subsection, we let K be an arbitrary simplicial complex. Any simplex of the
form σ ∪ {ωi} in SK is called a suspended simplex. The symbol S is also used to denote a linear
map S : Cq(K)→ Cq+1(SK), where Sσ = σ ∪ {ω1}+ σ ∪ {ω2} for any q-simplex σ of K. Note that
since S is injective, the map S defines an isomorphism from Cq(K) to the image S(Cq(K)). For
any chain A ∈ S(Cq(K)), we abuse the notation slightly by letting S−1A denote the chain in Cq(K)
mapped to A under S.

Proposition 5.1. For any q ≥ 1, the following diagram commutes:

Cq(K)

S ≈
��

∂ // Cq−1(K)

S≈
��

S(Cq(K))
∂ // S(Cq−1(K))

Proof. For any q-simplex σ = {v0, . . . , vq} of K, we have

∂(Sσ) = ∂
(
{v0, . . . , vq, ω1}+ {v0, . . . , vq, ω2}

)
=

q∑
i=0

{v0, . . . , v̂i, . . . , vq, ω1}+ {v0, . . . , vq}+

q∑
i=0

{v0, . . . , v̂i, . . . , vq, ω2}+ {v0, . . . , vq}

=

q∑
i=0

(
{v0, . . . , v̂i, . . . , vq, ω1}+ {v0, . . . , v̂i, . . . , vq, ω2}

)
=

q∑
i=0

S
(
{v0, . . . , v̂i, . . . , vq}

)
= S

(
q∑
i=0

{v0, . . . , v̂i, . . . , vq}

)
= S∂(σ)

In the above equations, the notation v̂i means that vi is deleted from the simplex.

Proposition 5.2. For q ≥ 1 and any q-cycle ζ of SK containing only suspended simplices, one
has ζ ∈ S(Cq−1(K)).

Proof. For any suspended q-simplex σ ∪ {ωi} of ζ, if ωi = ω1, then σ ∪ {ω2} must also belong to
ζ because no other suspended q-simplices of SK have σ in the boundary. If ωi = ω2, the same
argument follows.

Proposition 5.3. If q is the top dimension of K and q ≥ 1, then for any A ∈ Cq+1(SK) such that
∂(A) contains only suspended simplices, one has A ∈ S(Cq(K)).

Proof. Because q is the top dimension of K, A contains only suspended simplices. For any
σ ∪ {ωi} ∈ A, we have σ ∈ ∂

(
σ ∪ {ωi}

)
. If ωi = ω1, to make σ cancelled in ∂(A), σ ∪ {ω2} must

also belong to A because no other (q + 1)-simplices in SK have σ in the boundary. If ωi = ω2, the
same argument follows.
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5.2 Hardness for finite intervals

The following proposition helps to prove our conclusion of the hardness:

Proposition 5.4. PCYC-FINd−1 reduces to PCYC-FINd for d ≥ 2.

Proof. Given an instance (K,F , [β, δ)) of PCYC-FINd−1, where the ith complex of F is denoted as Ki,
we can assume the top dimension of K to be d. The reason is that if it were not, we can restrict F to
the d-skeleton of K without affecting Dd−1(F) and the persistent (d−1)-cycles. Then, we let SK be
the simplicial complex for the instance of PCYC-FINd we are going to construct. For any suspended
d-simplex σ∪{ωi} of SK, let the weight of σ∪{ωi} be half of the weight of σ in K. Furthermore, let
the weight of any non-suspended d-simplex of SK be the sum of all the weights of (d− 1)-simplices
in K plus 1. We endow SK with a filtration SF : ∅ = K̂0 ⊆ K̂1 ⊆ . . . ⊆ K̂3n+2 = SK, where n
is the number of simplices of K. Denoting the ith simplex added in F as σi and the ith simplex
added in SF as σ̂i, we let σ̂1 = {ω1}, σ̂2 = {ω2}, and for any 1 ≤ i ≤ n, σ̂3i = σi, σ̂3i+1 = σi ∪ {ω1},
σ̂3i+2 = σi ∪ {ω2}.

We observe the following facts:

(i) For any i, σ̂3i is positive and pairs with σ̂3i+1 in SF .

(ii) For any i and j, if there is a (d− 1)-cycle created by σi which is a boundary in Kj , then there

is a d-cycle created by σ̂3i+2 which is a boundary in K̂3j+2.

(iii) For any i and j, if there is a d-cycle created by σ̂3i+2 which is a boundary in K̂3j+2, then
there is a (d− 1)-cycle created by σi which is a boundary in Kj .

The correctness of (i) is not hard to verify. To verify (ii), we can suspend the (d − 1)-cycle and
use Proposition 5.1 to reach the claim. The argument for (iii) is as follows: Consider a d-cycle
ζ̂0 created by σ̂3i+2 which is a boundary in K̂3j+2. For any non-suspended d-simplex σ of ζ̂0, we

add ∂
(
σ ∪ {ω1}

)
to the cycle ζ̂0 so that σ is canceled and only suspended simplices are added.

Note that the adding process only adds d-simplices in K̂3i+2 and never cancels σ̂3i+2. After all
non-suspended simplices of ζ̂0 are canceled, we derive a d-cycle ζ̂ which is created by σ̂3i+2 and
contains only suspended simplices. By Proposition 5.2, S−1ζ̂ is well defined. Since ζ̂ is homologous
to ζ̂0 in K̂3i+2, ζ̂ is also a boundary in K̂3j+2. Let ζ̂ be the boundary of a (d+ 1)-chain Â in K̂3j+2.

Because SKj = K̂3j+2, by Proposition 5.3, Â ∈ S(Cd(Kj)). Furthermore, by Proposition 5.1, we

have S−1ζ̂ = S−1∂(Â) = ∂(S−1Â). So S−1ζ̂ is a (d− 1)-cycle created by σi which is a boundary in
Kj .

From the above facts, it is immediate that σ̂3β+2 is a positive simplex in SF and pairs with
σ̂3δ+2 so that [3β + 2, 3δ + 2) is an interval in Dd(SF). It is also true that there is a bijection
from the persistent (d− 1)-cycles of [β, δ) to the persistent d-cycles of [3β + 2, 3δ + 2) containing
only suspended simplices. Furthermore, the bijection preserves the weights of the cycles. From
the weight assigning policy, the minimal persistent d-cycle of [3β + 2, 3δ + 2) must contain only
suspended simplices, so this minimal persistent d-cycle of [3β+2, 3δ+2) induces a minimal persistent
(d − 1)-cycle of [β, δ). Now we have reduced PCYC-FINd−1 to PCYC-FINd. Furthermore, the
reduction is in polynomial time and the size of (SK,SF , [3β + 2, 3δ + 2)) is a polynomial function
of the size of (K,F , [β, δ)).

We have the following result from [13]:

Proposition 5.5. PCYC-FIN1 is NP-hard.

Combining Proposition 5.4 and 5.5, we obtain the following theorem:

Theorem 5.1. PCYC-FINd is NP-hard for d ≥ 1.
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5.3 Hardness for infinite intervals

In this subsection, we prove that it is NP-hard to approximate WPCYC-INFd with any fixed ratio.
Let PROB be a minimization problem with solutions having positive costs. Given an instance I of
PROB, let C∗ be the cost of the minimal solution of I. For r ≥ 1, a solution of I with cost C is said
to have an approximation ratio r if C/C∗ ≤ r [10]. We let PROB[r] denote the problem that asks
for an approximate solution with ratio r given an instance of PROB. Moreover, in order to make
approximation ratios well-defined for WPCYC-INFd, we let WPCYC-INF+

d denote a subproblem of
WPCYC-INFd where all d-simplices are positively weighted.

Before proving the hardness result, we first recall the definition of the nearest codeword problem,
which is NP-hard to approximate with any fixed ratio [8]:

Problem 5.1 (NR-CODE). Given an l × k full-rank matrix A over Z2 for k < l and a vector
y0 ∈ (Z2)

l r Img (A), find a vector in y0 + Img (A) with the minimal Hamming weight.

Remark 5.2. The Hamming weight of a vector y, denoted as ‖y‖H , is the number of non-zero
components in y.

Theorem 5.2. WPCYC-INF+
2 is NP-hard to approximate with any fixed ratio.

Similar to the NP-hardness proof of homology localization in [8], our proof of Theorem 5.2
conducts the reduction from the NR-CODE problem. One may think that a direct reduction from
homology localization may be more straightforward. However, such a reduction is not immediately
evident. The two problems appear to be of different nature: While the homology localization
problem asks for a minimal cycle in a given homology class, WPCYC-INF+

2 asks for a minimal cycle
in a complex containing a given simplex without referring to any particular homology class.

Proof. For any r > 1, we reduce the NP-hard problem NR-CODE[2r] to WPCYC-INF+
2 [r]. Given

an instance (A, y0) of NR-CODE[2r], we first compute the (l − k)× l parity check matrix A⊥ [8],
which is a matrix such that Ker (A⊥) = Img (A). Similar to the proof of Lemma 4.3.1 in [8], we
then build a “tube complex” T1 with (l − k) 1-cells each of which is a 1-sphere and l 2-cells each of
which is a 2-sphere with holes. The 2-cells of T1 are attached to the 1-cells along the holes such
that the boundary matrix ∂2 of this tube complex equals A⊥. The “q-chains” and “q-cycles” for
a tube complex are analogously defined as for a simplicial complex. We also assign a weight of 1
to each 2-cell of T1. By this construction, there is a straightforward bijection φ : (Z2)

l → C2(T1),
such that the Hamming weight of a vector equals the weight of the corresponding 2-chain. Note
that Z2(T1) = Ker (∂2) = φ(Ker (A⊥)) = φ(Img (A)). Let ỹ0 = φ(y0), we then add a 2-cell t̂ whose
boundary equals ∂2(ỹ0) to T1 and get a new tube complex T2. We call the 2-cycles in T2 which
are not in T1 as the new 2-cycles in T2. Then t̂ + ỹ0 is a new 2-cycle in T2 and the set of new
2-cycles in T2 is t̂ + ỹ0 + Z2(T1). We let the weight of t̂ also be 1. Note that there is a bijection
ψ : y0 + Img (A)→ t̂+ ỹ0 + Z2(T1), where ψ(y0 + z) = t̂+ ỹ0 + φ(z) for any z ∈ Img (A), such that
w(ψ(y0 + z)) = ‖y0 + z‖H + w(t̂).

We then construct an instance of WPCYC-INF+
2 [r] by first triangulating T2 to get a simplicial

complex K. We make K 2-weighted such that the sum of the weights of all triangles in any 2-cell
of T2 equals the weight of the 2-cell. It is not hard to make the size of K a polynomial function
of the number of cells of T2. Let σ be a 2-simplex in the triangulation of the 2-cell t̂. We build
a filtration F of K with σ being the last simplex added. Let the index of σ in F be β. Then,
[β,+∞) is an infinite interval of D2(F). Note that there is a bijection between the new 2-cycles in
T2 and the persistent 2-cycles of [β,+∞), where the weights of the cycles are preserved. Therefore,
from the solution of WPCYC-INF+

2 [r] with the input (K,F , [β,+∞)), we can derive a new 2-cycle

19



t̂+ ỹ0 + ζ of T2, where ζ ∈ Z2(T1) and t̂+ ỹ0 + ζ is an r-approximation of the minimal new 2-cycle.
Let t̂+ ỹ0 + ζ∗ be a minimal new 2-cycle of T2, we have

w(t̂+ ỹ0 + ζ)

w(t̂+ ỹ0 + ζ∗)
≤ r =⇒ w(t̂) + w(ỹ0 + ζ)

w(t̂) + w(ỹ0 + ζ∗)
≤ r =⇒ w(ỹ0 + ζ) ≤ r − 1 + rw(ỹ0 + ζ∗)

We also have
1 ≤ r

r − 1
w(ỹ0 + ζ∗) =⇒ r − 1 ≤ rw(ỹ0 + ζ∗)

Therefore
w(ỹ0 + ζ) ≤ 2rw(ỹ0 + ζ∗) =⇒ ‖y0 + φ−1(ζ)‖H ≤ 2r‖y0 + φ−1(ζ∗)‖H

Since y0 + φ−1(ζ∗) is a minimal solution of (A, y0), then y0 + φ−1(ζ) is a 2r-approximation of
the minimal solution of (A, y0). Hence, we have reduced NR-CODE[2r] to WPCYC-INF+

2 [r].
Furthermore, the reduction is in polynomial time and the sizes of the instances are related by a
polynomial function, so WPCYC-INF+

2 [r] is NP-hard.

Theorem 5.3. WPCYC-INF+
d is NP-hard to approximate with any fixed ratio for d ≥ 2.

Proof. For any d ≥ 3 and r ≥ 1, we reduce WPCYC-INF+
d−1[r] to WPCYC-INF+

d [r]. Given an

instance (K,F , [β,+∞)) of WPCYC-INF+
d−1[r], where the ith complex of F is denoted as Ki, let

K ′ = SKd−1
β where Kd−1

β is the (d − 1)-skeleton of Kβ. We make K ′ d-weighted such that any
d-simplex σ∪{ωi} of K ′ has half of the weight of σ in K. The complex K ′ is endowed with a filtration
F ′ such that σFβ ∪{ω2} is the last simplex added to F ′. Let β′ be the index of σFβ ∪{ω2} in F ′, then
[β′,+∞) ∈ Dd(F ′). It is true that S restricts to a bijection from Zd−1(Kβ) to Zd(K

′) preserving
the weights of the cycles. Furthermore, for any ζ ∈ Zd−1(Kβ), ζ is a persistent (d − 1)-cycle of
[β,+∞) ∈ Dd−1(F) if and only if Sζ is a persistent d-cycle of [β′,+∞) ∈ Dd(F ′). Suppose that ζ ′

is a solution for the instance (K ′,F ′, [β′,+∞)) of WPCYC-INF+
d [r], i.e., ζ ′ is an r-approximation

of the minimal solution. Then, S−1ζ ′ is an r-approximation for the instance (K,F , [β,+∞)) of
WPCYC-INF+

d−1[r]. Therefore, the reduction is done.

6 Experimental results

We experiment with our algorithms for WPCYC-FIN2 and WEPCYC-INF2 on several volume
datasets. Since volume data have a natural cubical complex structure, we adapt our implementation
slightly in order to work on cubical complexes. The cubical complex for volume data consists of cells
in dimensions from 0 to 3 with the underlying space homeomorphic to a 3-dimensional ball. Note
that a filtration built from a volume dataset does not produce any infinite intervals. Hence, in order
to test our algorithm for WEPCYC-INF2, we take a finite interval and compute the minimal 2-cycle
born at the birth time, which is exactly what WEPCYC-INF2 computes. We use the Gudhi [29]
library to build the filtrations and compute the persistence intervals. From the experiments, we can
see that the minimal persistent 2-cycles computed by our algorithms capture various features of
the data which originate from different fields. Note that the combustion, hurricane, and medical
datasets are time-varying and we chose a single time frame to compute the persistent intervals and
cycles.

Cosmology. The simulation data shown in Figure 4a from computational cosmology [2] consist of
dark matter represented as particles. The thread-like structures in deep purple shown in Figure 4a
correspond to sites of large scale structure formation. Galaxy clusters/superclusters are contained
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(a) (b) (c) (d)

Figure 4: (a,b) Cosmology dataset and the minimal persistent 2-cycles of the top five longest
intervals. (c,d) Turbulent combustion dataset and its corresponding minimal persistent 2-cycles.

(a) (b) (c)

Figure 5: (a,b) Minimal persistent 2-cycles for the hurricane model. (c) Minimal persistent 2-cycles
of the larger intervals for the human skull. i: Right and left cheek muscles with the right one rotated
for better visibility. ii: Right and left eyes. iii: Jawbone. iv: Nose cartilage. v: Nerves in the parietal
lobe.

in such large scale structures. Figure 4b shows the minimal persistent 2-cycles of the top five
longest intervals computed by our algorithms and these cycles precisely represent the top five galaxy
clusters/superclusters in volume.

Combustion. The data shown in Figure 4c correspond to the physical variable‖ χ from a model
of a turbulent combustion process. The variable χ represents scalar dissipation rate and provides a
measure of the maximum possible chemical reaction rate. The minimal persistent 2-cycles shown in
Figure 4d represent areas with high value of χ.

Hurricane. This dataset∗∗ with 11 physical variables corresponds to the devastating hurricane
named Isabel. We down-sampled the data into a resolution of 250 × 250 × 50 and worked with

‖A physical variable defines a scalar value of a certain kind on each point.
∗∗The Hurricane Isabel data is produced by the Weather Research and Forecast (WRF) model, courtesy of NCAR,

and the U.S. National Science Foundation (NSF).
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(a) (b) (c) (d)

Figure 6: (a) Cubic lattice structure of BaTiO3 (courtesy Springer Materials [27]) with diffused
structure in backdrop. (b) Minimal persistent 2-cycles computed on the original function. (c) Minimal
persistent 2-cycles computed on the negated function. (d) Minimal persistent 2-cycles computed on
the negated function of a tetragonal lattice structure of BaTiO3. The inlaid picture [27] illustrates
the bonds of the structure.

two physical variables. The minimal persistent 2-cycle colored blue in Figure 5a is computed on
the cloud-volume variable and extracts the eye of the hurricane. The minimal persistent 2-cycle
colored green in Figure 5b is computed on the pressure variable and captures the jagged shape of
the pressure variation around the hurricane.

Medical imaging. This dataset from the ADNI [26] project contains the MRI scan of a healthy
human skull. The minimal persistent 2-cycles corresponding to the larger intervals as shown in
Figure 5c are computed from two time frames. They extract significant features such as eyes,
cartilages, nerves, and muscles.

Material science. We consider the atomic configuration of BaTiO3, which is a ferroelectric
material used for making capacitors, transducers, and microphones. Figure 6a shows the atomic
configuration of the molecule, where the red, grey, and green balls denote the Oxygen, Titanium,
and Barium atoms separately and the radii of the balls equal the radii of the corresponding atoms.
Volume data are built by uniformly sampling a 3 × 3× 3 lattice structure similar to the one shown
in Figure 6a, with the step width equal to one angstrom (note that Figure 6a only shows a 2× 2× 2
lattice structure). Scalar value on a point of the volume is determined as follows: For each atom, let
the distance from the point to the atom’s center be d, then the scalar value of the point contributed
by the atom is max{w(r − d)/r, 0}, where r is the radius of the atom and w is the atomic weight.
The scalar value on the point is then equal to the sum of the above values contributed by all atoms.
For the purpose of this experiment, we computed minimal persistent 2-cycles on both the original
scalar function and its negated one. Figure 6b shows a portion of the minimal persistent 2-cycles
computed on the original function, where the purple, red, and green cycles correspond to atoms
of Barium, Titanium, and Oxygen respectively. In our experiment, every atom corresponds to
such a minimal persistent 2-cycle of a long interval. Figure 6c shows a portion of the minimal
persistent 2-cycles computed on the negated function, where the cycles complement the Barium
atoms. Figure 6d shows the output on the negated function from a tetragonal lattice structure [27],
where the atomic bonds are not straight (see Figure 6d inlay). The stretch on the lattice structure
leads to minimal persistent 2-cycles with non-trivial genus.
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7 Conclusions

In this paper, we inspect the computational complexity for several problems concerning minimal
persistent cycles. We expand the hardness results found in [13] and discover the cases that are
NP-hard and others that are solvable in polynomial time. For general complexes, we conclude that
the computation is NP-hard over all dimensions for finite intervals and NP-hard over dimension
greater than one for infinite intervals. Besides, we find the problems to be tractable in dimension
d if the given complex is a weak (d+ 1)-pseudomanifold and, for infinite intervals, if the weak
(d+ 1)-pseudomanifold is embedded in Rd+1.

This research leads to some open questions concerning persistent cycles:
i. In our experiments, some persistent cycles correspond to important features of the data (see

Section 6). However, we also ran into some intervals whose persistent cycles do not have obvious
meanings. If there are ways to design filtrations for data such that persistent cycles are related to
the important features, then the prospect for the application of persistent cycles or persistence in
general would be more extensive.

ii. As found in [13], persistent cycles are not stable in general even when only the weights of the
cycles are considered. It will be helpful to figure out assumptions that are still relevant in practice,
but under which the persistent cycles remain stable.

iii. We have presented O(n2)-time algorithms for computing a minimal persistent cycle for a
given interval. A natural question is whether this time complexity can be improved. Furthermore,
can we devise a better algorithm to compute minimal persistent cycles for all intervals (i.e., the
minimal persistent basis [13]), improving upon the obvious O(n3)-time algorithm that runs our
algorithms on each interval?
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A Proof of Theorem 4.1

We first define some symbols used in this section. The interior of a set U is denoted by Int(U).
The boundary of a topological ball B is denoted by bd(B). The set of q-cofaces of a simplex σ in a
∆-complex [21] K is denoted by cof Kq (σ).

The proof of Theorem 4.1 is based on the extended Jordan–Brouwer separation theorem
(Theorem A.1) by Alexander [1]. The statement of the theorem depends on the following definition:

Definition A.1 (Pseudomanifold). A simplicial complex K is a q-pseudomanifold if K is a pure
q-complex and each (q − 1)-simplex is a face of exactly two q-simplices in K.

Remark A.1. Note that definitions for q-pseudomanifolds, such as in [28], typically assume the
complex to be q-connected.

Theorem A.1. Let q > 1 and M be a finite (q − 1)-connected (q − 1)-pseudomanifold embedded in
Rq, then Rq r |M| has exactly 2 connected components.

Now we can finish our proof:
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(a) (b)

Figure 7: (a) An example of the “de-contraction” of σd for d = 1, where a 1-simplex in the left
simplicial complex turns into two curved 1-simplices with identical boundary in the right ∆-complex.
The topological 2-ball B′ is the one bounded by the two curved 1-simplices. (b) Left to middle:
An example demonstrating the void boundary correspondence from K̃ to K̃ ′ for d = 1. After a
1-simplex is de-contracted, the shaded void for K̃ corresponds to the shaded void for K̃ ′ and their
boundaries (dashed line) can be identified. Middle to right: The “de-pinching” properly separates
apart incident edges (1-simplices) for the two vertices (0-simplices) having more than two 1-cofaces.
The complex Mh (on the right) then becomes a pseudomanifold. Te deform Mh back to M (in
this example M = K̃ ′), only points in B (unshaded region) are contracted.

Proof of Theorem 4.1. The general idea of the proof is as follows: Using a trick which we call
the “de-contracting”, we first create a ∆-complex K̃ ′ where each oriented simplex of ~ζj uniquely
corresponds to an unoriented simplex. Then, using a trick which we call the “de-pinching”, we show
that ~ζj is the boundary of a region A. Finally, from the above fact, we use proof by contradiction
to reach the conclusion. Figure 7b gives an example of the “de-contracting” and “de-pinching”.

First, let Σ′ be the set of d-simplices of K̃ whose both oriented simplices are in ~ζj . For a
d-simplex σd of Σ′, we can let B′ be a topological (d+ 1)-ball residing in Rd+1 such that bd(B′)
equals two d-simplices with boundaries glued together. We then homeomorphically map points
of Rd+1 r σd to Rd+1 r B′. By taking care of the mapping near the boundary of B′, we can get
a new ambient Rd+1 and a new ∆-complex where all simplices of K̃ are untouched except that
σd now corresponds to the two d-simplices bounding B′. We can also think of the above process
as “de-contracting” the topological d-ball σd into the topological (d+ 1)-ball B′ so that σd turns
into two separate d-simplices with identical (d − 1)-faces (see Figure 7a for an example). After
doing the “de-contraction” for all d-simplices in Σ′, we get a ∆-complex K̃ ′. It is true that an
oriented boundary d-simplex in K̃ can be naturally identified as an oriented boundary d-simplex in
K̃ ′. It is also true that the groups of oriented boundary d-simplices in K̃ are still groups of oriented
boundary d-simplices in K̃ ′ under the natural identification. So we can let ~ζj denote the same group

of oriented d-simplices in K̃ ′. The construction guarantees that if ~ζj is the boundary of a void of

Rd+1 r |K̃ ′|, then ~ζj is also the boundary of a void of Rd+1 r |K̃|. So we only need to show that ~ζj
is the boundary of a void of Rd+1 r |K̃ ′| (see Figure 7b for an example). From now on, we always
treat ~ζj as a set of oriented d-simplices as well as a d-cycle (with Z coefficients) in K̃ ′.

Since different oriented simplices of ~ζj correspond to different unoriented simplices in K̃ ′, we

define a bijection ψ : ~ζj → ζ. The bijection ψ maps each oriented simplex of ~ζj to its corresponding
unoriented simplex and ζ is the image of this mapping. We then let M be the closure of the
simplicial set ζ. Note that ζ is a d-cycle (with Z2 coefficients) of K̃ ′ and M is a subcomplex of K̃ ′.
Therefore, each (d− 1)-simplex is a face of an even number of d-simplices in M. We first pick a
(d− 1)-simplex σd−1 of M such that

∣∣cofMd (σd−1)
∣∣ > 2, then pick two d-simplices σd0 and σd1 from

cofMd (σd−1) such that ψ−1(σd0) and ψ−1(σd1) are paired in the void boundary reconstruction for K̃ ′.
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It is then true that σd0 ∪ σd1 forms a topological d-ball Bd1 containing σd−1. Forming the topological
d-balls for all such pairs of d-simplices in cofMd (σd−1), we get a set of d-balls {Bd1, . . . ,Bdκ} for
κ =

∣∣cofMd (σd−1)
∣∣/2. For each i, we slightly move Bdi r Int(σd−1) while keeping bd(Bdi ) untouched.

We then take the closure of each Bdi r Int(σd−1) to get a new ∆-complex M1 in which the Bdi ’s
have their interiors disjoint. Note that in M1, σd−1 now corresponds to κ different (d− 1)-simplices
sharing the boundary. We can repeat the above “de-pinching” process for each (d−1)-simplex having
more than two d-cofaces in M and then get a sequence of ∆-complexes (M0,M1, . . . ,Mh). In the
sequence, M0 =M and Mi is derived from Mi−1 by doing the “de-pinching” on a (d− 1)-simplex.
It is then true that Mh is a pure d-dimensional d-connected ∆-complex where each (d− 1)-simplex
is a face of exactly two d-simplices. Since we can subdivide Mh to make it a simplicial complex, by
Theorem A.1, |Mh| must separate Rd+1 into two connected components. Note that for each i, we
can treat Rd+1 r |Mi| as a subset of Rd+1 r |Mi+1| because to deform Mi+1 back to Mi, we only
need to contract some points in Rd+1r |Mi+1| to points in |Mi+1|. Then the connected components
of Rd+1 r |M| are still connected in Rd+1 r |Mh|. Since all oriented d-simplices of ~ζj bound the

same void of Rd+1 r |K̃ ′|, we can let this void be V. The void V is still connected in Rd+1 r |M|
because Rd+1 r |K̃ ′| ⊆ Rd+1 r |M|. Therefore, V is still connected in Rd+1 r |Mh|. We can let
A be the connected component of Rd+1 r |Mh| containing V and let B be the other connected
component. The d-simplices in M and Mh can be identified because going from each Mi to Mi+1

the interior of each d-simplex is never touched. Therefore, ζ is still a d-cycle (with Z2 coefficients)
in Mh. We then have that the two d-cycles (with Z coefficients) in Mh, which are derived from the
two consistent orientations of simplices of ζ, bound A and B. Then, as one of the two d-cycles (with
Z coefficients) derived from ζ, ~ζj must be the boundary of A or B in Mh. We have that ~ζj bounds
A because B does not contain points from V . A fact about our construction is that to deform each
Mi back into Mi−1, we only need to contract points in B. This implies that A is still a void of
Rd+1 r |M| with boundary ~ζj (see Figure 7b for an example).

To prove that ~ζj is the boundary of a void of Rd+1 r |K̃ ′|, we only need to show that there are

no oriented d-simplices which are in the boundary of V but do not belong to ~ζj . For contradiction,
suppose that there is such an oriented d-simplex ~σd. Then ~σd must not be oppositely oriented to
any oriented simplex of ~ζj because otherwise ~σd would bound another connected component of

Rd+1r |M| and thus bound another connected component of Rd+1r |K̃ ′|. Let σd be the unoriented
d-simplex of ~σd, then σd 6∈ M because otherwise ~σd would be oppositely oriented to an oriented
simplex of ~ζj . Since σd 6∈ M, the interior of σd must reside in Rd+1 r |M|. From now on, we always
treat A as a void of Rd+1 r |M|. Then among all voids of Rd+1 r |M|, the interior of σd resides in
A. This is because A is the void of Rd+1 r |M| containing V . If σd resides in a void other than A,
points to either side of σd cannot be from V . Since K̃ ′ is d-connected, there must be a sequence of
d-simplices (σd0 , . . . , σ

d
l ) of K̃ ′ such that σd0 = σd, σdl ∈M, and σdi , σdi+1 share a (d− 1)-face for each

i such that 0 ≤ i < l. Because the interior of σdl is not in A, we can let σdl′ be the first d-simplex in
the sequence whose interior is not in A, then l′ 6= 0 and the interior of σdl′−1 is in A. Let σd−1l′−1 be

the (d − 1)-face shared by σdl′−1 and σdl′ , we claim that σd−1l′−1 ∈ M. If σdl′ ∈ M, then it is obvious

that σd−1l′−1 ∈M. If σdl′ 6∈ M, then it is also true that σd−1l′−1 ∈M because otherwise the interiors of

σdl′−1 and σdl′ would be connected in Rd+1 r |M|. Around the neighborhood of σd−1l′−1 during the void

boundary reconstruction for K̃ ′, any two paired oriented simplices from ~ζj enclose a region residing
in A. Because of the nature of the pairing, σdl′−1 cannot be contained in any of the regions enclosed

by the paired oriented simplices from ~ζj . Since ~ζj is the boundary of the void A of Rd+1 r |M|, all
other regions in the neighborhood of σd−1l′−1 must not be in A. This implies that σdl′−1 is not in A,
which is a contradiction.
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