


age, and then combined together for mix-and-match image

generation; see Fig. 1. During training, MixNMatch only

requires a loose bounding box around the object to model

background, but requires no other supervision for modeling

the object’s pose, shape, and texture.

Main idea. Our goal of mix-and-match image generation

i.e., generating a single synthetic image that combines dif-

ferent factors from multiple real reference images, requires

a framework that can simultaneously learn (1) an encoder

that encodes latent factors from real images into a disentan-

gled latent code space, and (2) a generator that takes latent

factors from the disentangled code space for image gen-

eration. To learn the generator and the disentangled code

space, we build upon FineGAN [36], a generative model

that learns to hierarchically disentangle background, object

pose, shape, and texture with minimal supervision using in-

formation theory. However, FineGAN is conditioned only

on sampled latent codes, and cannot be directly conditioned

on real images for image generation. We therefore need a

way to extract latent codes that control background, object

pose, shape, and texture from real images, while preserving

FineGAN’s hierarchical disentanglement properties. As we

show in the experiments, a naive extension of FineGAN in

which an encoder is trained to map a fake image into the

codes that generated it is insufficient to achieve disentan-

glement in real images due to the domain gap between real

and fake images.

To simultaneously achieve the above dual goals, we in-

stead perform adversarial learning, whereby the joint distri-

bution of real images and their extracted latent codes from

the encoder, and the joint distribution of sampled latent

codes and corresponding generated images from the gener-

ator, are learned to be indistinguishable, similar to ALI [8]

and BiGAN [6]. By enforcing matching joint image-code

distributions, the encoder learns to produce latent codes that

match the distribution of sampled codes with the desired

disentanglement properties, while the generator learns to

produce realistic images. To further encode a reference im-

age’s shape and pose factors with high fidelity, we augment

MixNMatch with a feature mode in which higher dimen-

sional features of the image that preserve pixel-level struc-

ture (rather than low dimensional codes) are mapped to the

learned disentangled feature space.

Contributions. (1) We introduce MixNMatch, a condi-

tional generative model that learns to disentangle and en-

code background, object pose, shape, and texture factors

from real images with minimal human supervision. This

gives MixNMatch fine-grained control in image generation,

where each factor can be uniquely controlled. MixNMatch

can take as input either real reference images, sampled la-

tent codes, or a mix of both. (2) Through various qualitative

and quantitative evaluations, we demonstrate MixNMatch’s

ability to accurately disentangle, encode, and combine mul-

tiple factors for mix-and-match image generation. Further-

more, we show that MixNMatch’s learned disentangled rep-

resentation leads to state-of-the-art fine-grained object cate-

gory clustering results of real images. (3) We demonstrate a

number of interesting applications of MixNMatch including

sketch2color, cartoon2img, and img2gif.

2. Related work

Conditional image generation has various forms, in-

cluding models conditioned on a class label [29, 28, 3]

or text input [33, 48, 42, 47]. A lot of work focuses on

image-to-image translation, where an image from one do-

main is mapped onto another domain e.g., [17, 49, 30].

However, these methods typically lack the ability to explic-

itly disentangle the factors of variation in the data. Those

that do learn disentangled representations focus on specific

categories like faces/humans [37, 31, 2, 32, 1, 27] or re-

quire clearly defined domains (e.g., pose vs. identity or

style/attribute vs. content) [18, 16, 23, 11, 25, 40]. In con-

trast, MixNMatch is not specific to any object category, and

does not require clearly defined domains as it disentangles

multiple factors of variation within a single domain (e.g.,

natural images of birds). Moreover, unlike most unsuper-

vised methods which can disentangle only two factors like

shape and appearance [24, 35, 26], MixNMatch can disen-

tangle four (background, object shape, pose, and texture).

Disentangled representation learning aims to disentan-

gle the underlying factors that give rise to real world

data [4, 44, 41, 24, 35, 38, 15, 19, 26]. Most unsupervised

methods are limited to disentangling at most two factors

like shape and texture [24, 35]. Others require strong su-

pervision in the form of edge/keypoint/mask annotations or

detectors [31, 1, 27, 9], or rely on video to automatically

acquire identity labels [5, 18, 40]. Our most related work

is FineGAN [36], which leverages information theory [4]

to disentangle background, object pose, shape, and texture

with minimal supervision. However, it is conditioned only

on sampled latent codes, and thus cannot perform image

translation. We build upon this work to enable conditioning

on real images. Importantly, we show that a naive extension

is insufficient to achieve disentanglement in real images.

We also improve the quality of our model’s image gener-

ations to preserve instance specific details from the refer-

ence images. Since MixNMatch is directly conditioned on

images, its learned representation leads to better disentan-

glement and fine-grained clustering of real images.

3. Approach

Let I = {x1, . . . , xN} be an unlabeled image collection

of a single object category (e.g., birds). Our goal is to learn

a conditional generative model, MixNMatch, which simul-





in our experiments.

Thus, to encode disentangled representations from real

images for conditional mix-and-match image generation,

we need to extract the vector z (controlling object pose), b

(controlling background), p (controlling object shape), and

c (controlling object texture) codes from real images, while

preserving the hierarchical disentanglement properties of

FineGAN. For this, we propose to train four encoders, each

of which predict the z, b, p, c codes from real images. Since

FineGAN has the ability to disentangle factors and generate

images given latent codes, we naturally resort to using it as

our generator, by keeping all the losses (i.e., Lfinegan) to

help the encoders learn the desired disentanglement.

Specifically, for each real training image x, we use the

corresponding encoders to extract its z, b, p, c codes. How-

ever, we cannot simply input these codes to the generator to

reconstruct the image, as the model would take a shortcut

and degenerate into a simple autoencoder that does not pre-

serve FineGAN’s disentanglement properties (factorization

into background, pose, shape, texture), as we show in our

experiments. We therefore leverage ideas from ALI [8] and

BiGAN [6, 7] to help the encoders learn the inverse map-

ping; i.e., a projection from real images into the code space,

in a way that maintains the desired disentanglement proper-

ties.

The key idea is to perform adversarial learning [12, 6, 8],

so that the paired image-code distribution produced by the

encoder (x ∼ Pdata, ŷ ∼ E(x)) and the paired image-code

distribution produced by the generator (x̂ ∼ G(y), y ∼
Pcode) are matched. Here E is the encoder, G is the Fine-

GAN generator, and y is a placeholder for the latent codes

z, b, p, c. Pdata is the data (real image) distribution and

Pcode is the latent code distribution.1 Formally, the input

to the discriminator D is an image-code pair. When train-

ing D, we set the paired real image x and code ŷ extracted

from the encoder E to be real, and the paired sampled input

code y and generated image x̂ from the generator G to be

fake. Conversely, when training G and E, we try to fool D

so that the paired distributions P(data,E(x)) and P(G(y),code)

are indistinguishable, via a paired adversarial loss:

Lbi adv = min
G,E

max
D

Ex∼Pdata
Eŷ∼E(x)[logD(x, ŷ)]

+ Ey∼Pcode
Ex̂∼G(y)[log(1−D(x̂, y))]. (2)

This loss will simultaneously enforce the (1) generated im-

ages x̂ ∼ G(y) to look real, and (2) extracted real image

codes ŷ ∼ E(x) to capture the desired factors (i.e., pose,

background, shape, appearance). Fig. 2 (a-c) show our en-

coders, generator, and discriminators.

1Following FineGAN [36]: a continuous noise vector z ∼ N (0, 1); a

categorical background code b ∼ Cat(K = Nb, p = 1/Nb); a categorical

parent code p ∼ Cat(K = Np, p = 1/Np); and a categorical child

code c ∼ Cat(K = Nc, p = 1/Nc). Nb, Np, Nc are the number of

background, parent, and child categories and are set as hyperparameters.

3.3. Relaxing the latent code constraints

There is an important issue that we must address to en-

sure disentanglement in the extracted codes. FineGAN im-

poses strict code relationship constraints, which are key to

inducing the desired disentanglement in an unsupervised

way, but which can be difficult to realize in all real images.

Specifically, recall from Sec. 3.1 that these constraints

impose a group of child codes to share the same unique par-

ent code, and the background and child codes to always be

the same. However, for any arbitrary real image, these strict

relationships may not hold (e.g., a flying bird can have mul-

tiple different backgrounds in real images), and would thus

be difficult to enforce in its extracted codes. In this case,

the discriminator would easily be able to tell whether the

image-code pair is real or fake (based on the code relation-

ships), which will cause issues with learning. Moreover, it

would also confuse the background b and texture c encoders

since the background and child latent codes are always sam-

pled to be the same (b = c); i.e., the two encoders will es-

sentially become identical (as they are always being asked

to predict the same output as each other) and won’t be able

to distinguish between background and object texture.

We address this issue in two ways. First, we train four

separate discriminators, one for each code type. This pre-

vents any discriminator from seeing the other codes, and

thus cannot discriminate based on the relationships between

the codes. Second, when training the encoders, we also pro-

vide as input fake images that are generated with randomly

sampled codes with the code constraints removed. In these

images, any foreground texture can be coupled with any ar-

bitrary background (c 6= b) and any arbitrary shape (c not

tied to a particular p). Specifically, we train the encoders

E to predict back the sampled codes y that were used to

generate the corresponding fake image:

Lcode pred = CE(E(G(y)), y), (3)

where CE(·) denotes cross-entropy loss, and y is a place-

holder for the latent codes b, p, c. (For continuous z, we

use L1 loss.) This loss helps to guide each encoder, and in

particular the b and c encoders, to learn the corresponding

factor. Note that the above loss is used only to update the

encoders E (and not the generator G), as these fake images

can have feature combinations that generally do not exist in

the real data distribution (e.g., a duck on top of a tree).

3.4. Feature mode for exact shape and pose

Thus far, MixNMatch’s encoders can take in up to four

different real images and encode them into b, z, p, c codes

which model the background, object pose, shape, and tex-

ture, respectively. These codes can then be used by MixN-

Match’s generator to generate realistic images, which com-

bine the four factors from the respective reference images.
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