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Abstract

We present a method for weakly-supervised action local-
ization based on graph convolutions. In order to find and
classify video time segments that correspond to relevant ac-
tion classes, a system must be able to both identify discrim-
inative time segments in each video, and identify the full
extent of each action. Achieving this with weak video level
labels requires the system to use similarity and dissimilar-
ity between moments across videos in the training data to
understand both how an action appears, as well as the sub-
actions that comprise the action’s full extent. However, cur-
rent methods do not make explicit use of similarity between
video moments to inform the localization and classification
predictions. We present a novel method that uses graph con-
volutions to explicitly model similarity between video mo-
ments. Our method utilizes similarity graphs that encode
appearance and motion, and pushes the state of the art on
THUMOS'’14, ActivityNet 1.2, and Charades for weakly-
supervised action localization.

1. Introduction

Temporal activity localization is the problem of identi-
fying the start and end times of every action’s occurrence
[2, 12]. In a fully supervised setting, every training video
is annotated with the start and end time of each action’s oc-
currence. However, acquiring manual temporal annotations
is an onerous task and severely limits both the number and
diversity of actions that a system can be trained to iden-
tify. In contrast, systems that can successfully classify and
temporally localize actions with weak video-level labels—
that only state whether an activity is present in the video or
not—provide a more scalable solution.

Without frame-level annotations, weakly-supervised
systems must rely on similarity cues between video time
segments. Specifically, they must (1) use the dissimilarity
between foreground segments of different action classes to
classify videos correctly; (2) use the similarity/relationship
between foreground segments of the same action to deter-

What is a Baseball Pitch?

A single action?

Or a distinct cluster of actions?

Figure 1. Key Idea: A baseball pitch is not defined by a single
action — rather it is defined by a series of smaller actions that are
distinct from other actions in a video. Despite this, prior methods
classify every time segment individually before collating predic-
tions for localization (left). We instead explicitly model what each
segment is similar to — blue edges — and different from — red edges
— for weakly-supervised temporal action localization (right).

mine its full extent; and (3) infer that the similarity between
segments of different actions’ videos are indicative of back-
ground segments.

Although great progress has been made on this challeng-
ing problem, existing approaches [37, 20, 19, 31] do not
explicitly model the relationships between time segments
to inform their final predictions. Instead, most approaches
first split the video into multiple time segments, and classify
each segment separately. These segment-level predictions
are then pooled to perform the final video-level classifica-
tion using multiple instance learning [42]. The relationships
between time segments are either only implicitly used dur-
ing training to learn attention [ 9], perform the final video-
level classification [31], or to create good features [37, 20],
but are not used during test time. In contrast, Xu et al. [35]
use a recurrent neural network to model relationships be-
tween time segments. However, similarity between time
segments that are temporally distant, or belong to differ-



ent videos cannot be modeled in their framework. In other
words, the model lacks the ability to ensure that all time
segments regardless of temporal location that are related to
the same action are treated similarly.

Main idea. Our main idea is to explicitly model the sim-
ilarity relationships between time segments of videos in or-
der to classify and localize actions in videos. We use graph
convolution networks (GCNs) [30] for this purpose.

Similar to regular convolution networks, GCNSs also per-
form nonlinear transformations on the input features. How-
ever, in addition, GCNs treat input features as nodes in a
graph with weighted edges. By setting the edge weights
to be proportional to the level of similarity between nodes,
GCNs allow feature similarity and dissimilarity to be in-
corporated into the weight learning process as gradients are
propagated across weighted edges, as well as during test
time as inference is performed over an entire graph.

By using GCNs, our method explicitly ensures that re-
lationships between time segments are considered during
both training and testing. We represent each segment in a
video as a node in a graph, and edges between nodes are
weighted by their similarity. Each segment’s feature repre-
sentation is transformed to a weighted average of all seg-
ments it is connected to, with weights based on learned
edge strength. These weighted average features are then
used to learn a multiple instance learning based video clas-
sifier. We use appearance and motion similarity between
segments to determine edge weights: two nodes that have
similar RGB and optical flow features have a stronger edge
between them than two nodes that have dissimilar RGB and
optical flow features. In this way, the learned weights oper-
ate on groups of features together, rather than on individual
time segments. This helps prevent the network from focus-
ing on just a few discriminative parts of the video.

Contributions. (1) A novel graph convolution approach
for weakly-supervised action localization. Our method is
based on an appearance and motion similarity graph and is
the first to use graph convolutions in the weakly-supervised
action localization setting. (2) We analyze each compo-
nent of our model, explore other graph based alternatives,
and quantitatively and qualitatively compare against other
non-graph based approaches. (3) We push the state-of-the-
art on widely-used action detection datasets in the weakly-
supervised setting - THUMOS 14 [15] and ActivityNet 1.2
[7], and are the first to present results on Charades [27].

2. Related work

Weakly supervised action localization has many differ-
ent variants in literature. [20] encourages time segments
with similar classification predictions to have similar inter-
mediate deep features using a Co-Activity Similarity Loss.
Like us, it uses feature similarity between segments to im-

prove localization. However, unlike our approach, it ex-
clusively uses feature similarity to provide training super-
vision, and does not model feature relationships to make
predictions. Others discourage the network from focusing
only on the most discriminative time segments via random
hiding [28], or their iterative removal during training [38].
While [26] uses a contrastive loss for temporally fuller lo-
calizations, [39] additionally uses a coherence loss for vi-
sually consistent action identification. More recent works
learn to attend and pool per time segment predictions dur-
ing training [19, 37], while UntrimmedNets [3 1] simultane-
ously learns to classify and select the most salient segments
in a video. However, these methods do not consider the rela-
tionships between time segments during testing. In contrast,
by inferring over a video-level graph, our method can use
information from the entire video during training as well as
testing to achieve better localization. Recent work [35] uses
recurrent neural networks to model relationships between
time segments. However, relationships between time seg-
ments that are temporally distant, or that belong to different
videos cannot be modeled. In contrast, our model is not
restricted by temporal proximity when modeling similarity
and dissimilarity relationships between time segments.

Some work use additional cues such as person de-
tection [29, 34], scripts/subtitles [18, 10, 4], or external
text [24]. Others use activity ordering information to assist
in discriminative clustering [5, 6], temporal alignment [ 13,

, 23], and segmenting temporal proposals [, 25].

A growing body of work explore neural network based
graphs [30, 3]. In computer vision, graph convolutions have
gained popularity for capturing relationships between ob-
jects spatially and temporally for video object understand-
ing, as well as capturing spatio-temporal dynamics for ac-
tion understanding [36, 32, 33, 11, 9, 40, 14]. In particular,
[36] develops an LSTM based graph for video object detec-
tion that uses strong action localization annotation as super-
vision. Unlike our method they do not use graph convolu-
tions, and operate in a different ‘slightly supervised’ setting
for video object detection, where human action labels are
used to generate object detection labels. [33] uses both an
appearance similarity graph alongside a temporal similarity
graph to understand relations between video regions for ac-
tion classification. However, unlike our method, it operates
in a fully-supervised setting.

3. Approach

Our goal is to train a temporal action localization system
that predicts the start and end times of each action’s occur-
rence in a video. During training, we are only provided with
weak action labels: we know what actions occur in a video
but we do not know when or how many times they occur.
We use these weak action label—video pairs to train our sys-
tem. During testing, input videos have no labels.
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Figure 2. Method Overview: We use a pre-trained I3D network to extract input features for each time segment in a video. Each time seg-
ment is represented as a graph node, and edges between nodes are weighted by their level of learned similarity. Segment-level classification
predictions are made by inference over this graph. During test time, we threshold the segment-level predictions to get activity localization
predictions. We use a Multiple-Instance Learning (MIL) loss to supervise the classification, an L1 loss on edge weights to keep the edges
in the graph sparse, and a modified Co-Activity Similarity Loss (M-CASL) to encourage edges between foreground segments to be higher

than edges between foreground and background segments.

3.1. Architecture

Our network architecture is shown in Fig. 2. The input
to our network is an | X d;,, volume of features, where [
is the number of input time segments in the video, and d;,
is feature dimension. We refer to each time segment’s input
feature as x and the entire input volume as X. The input fea-
tures are then transformed using a graph convolution layer.
We use RGB and optical flow based similarity to weight
edges in the graph, where the similarity metric is learned by
a separate linear layer ¢. For each input time segment, the
network outputs a prediction confidence for all classes. We
refer to the final prediction [ X ¢ volume as Y, where c is
the number of action classes.

3.2. Feature extraction

We extract features from a Kinetics pre-trained I3D [&] to
represent each video segment, as in [20]. Specifically, each
video is represented by two [ x 1024 volumes (where [ is the
number of input time segments), one extracted from a RGB
based stream and one extracted from an optical flow based
stream. These volumes are concatenated to give a final [ X
2048 representation. Each time segment corresponds to 16
frames extracted at 25 FPS, or 0.64 seconds.

3.3. Graph convolution layer

Each input time segment is treated as a node in a graph
over which inference is performed. The node edges are
weighted by their similarity. In this way, related time seg-

ments can be pushed together and unrelated time segments
can be pushed apart in feature space, while informing one
another during both training and testing phases. Through
this process, the graph convolutions can encourage better
localization as the network is forced to inspect and predict
each time segment class in the context of other time seg-
ments that it is similar to as well as different from.

The graph layer performs the following transformation
on input X: R

Z = GXW

where Z is an [ X d 4 output of the graph convolution, W is
a 204A8 X doyut Weight matrix learned via backpropagation,
and G is the row normalized affinity matrix G. G is an
[ x [ affinity matrix where G;; is the edge weight between
x; and x;.

To compute G, we first learn a simple affine function ¢
on input feature x:

p(x)=wx+Db

where w and b are weight and bias terms. ¢ is used to
weight graph edges such that nodes with more similar ¢
have higher edge weights between them. G;; (edge weight
between x; and x;) is computed as:

Gij = f(o(xi), 9(x5))

where f(-) is cosine similarity.

G essentially transforms each row of X to a weighted
combination of other rows of X. Note that this formula-
tion subsumes other common layer operations. An identity



G corresponds a regular fully connected layer with no bias
term. A G with zero off-diagonal values, and non uniform
diagonal entries works similarly to an attention mechanism.
By setting rows of G to one or zero, average and max pool-
ing operations can be performed. Multiple graph layers can
be stacked together as the Z of the layer below becomes the
X of the layer above. However, due to the small size of our
datasets we use only a single graph layer. The output of our
graph layer is passed to a linear classification layer to obtain
the final [ X ¢ volume Y.

3.4. Loss functions

Our method uses three separate losses. We use a multi-
instance cross entropy loss that trains the network to cor-
rectly classify each video via segment level classification.
We also impose an L1 sparsity loss on our graph so that
graph edges are sparse and discriminative time segments
can be clustered together. Last, we impose a co-activity
similarity loss on the learned similarity function ¢, so that
salient parts for each video class are encouraged to have
high edge weights between them.

3.4.1 Multiple instance learning loss

Similar to prior work [31, 20], we treat the problem of weak
action localization as a multiple instance learning (MIL)
problem. Each video is treated as a bag of instances, some
of which are positive instances. We only have video-level
labels, and must use them to correctly classify instances
within each video. To do this, we classify all instances,
and then average the classification predictions for the top k
per class to get a ¢ dimension video-level prediction vector.
The vector is normalized using softmax so that each dimen-
sion, p; represents the probability for class . At the same
time, the binary indicator ground truth vector y (a video can
contain multiple action classes) for a video is normalized so
that it sums to 1. It is then used alongside the video pre-
diction vector to calculate the multi-class cross entropy loss
averaged across a batch of n videos, indexed by j:

1 n C . )
Ly = -~ ZZ —y; logp;.

j=1i=1

We set k to max(1, | 4]) where [ is the total number of
input features for a video, and d is a hyper parameter. We
further analyze the effect of d in Section 4.2.3. This part of
our framework is similar to the multiple instance learning
loss branch in [20] and the hard selection module of [31].
Unlike binary cross entropy loss, this loss formulation gives
equal weight to each training video rather than each label
occurrence. Hence, instances of each class that occur in
videos with fewer labels get more weight than instances that
co-occur with many other classes, which we found leads to
better performance than the binary cross entropy loss.

3.4.2 Graph sparsity loss

To recap, G transforms rows of X to a weighted average of
rows of X. In other words, G can cluster together similar
x’s, and push apart dissimilar x’s. However, a G with edge
weights that are close to uniform will make it hard for the
network to train, as discriminative signals in X will be aver-
aged out. In order to prevent this, we enforce edge weights
in G to be sparse by imposing an L1 loss on the absolute
sum of G:

L=

iy Y |Gl
Z2

The loss works to encourage sparsity in G, and hence trains
¢ to create tighter clusters from X.

We find that it is helpful to additionally ignore edges that
have a low absolute value. We therefore drop edges in each
graph that are in the lower half of its range of edge weights.

3.4.3 Modified co-activity similarity loss

Our last loss is a modification of the Co-Activity Similar-
ity Loss (CASL) [20]. It supervises the intermediate feature
representation corresponding to video segments by both in-
creasing the distance between foreground and background
features, and decreasing the distance between foreground
features of the same class.

The foreground and background representations are the
sum of time segments’ intermediate feature representa-
tions weighed by their predicted classification confidence.
Specifically, for a given video, let F; represent the interme-
diate feature representation of time segment ¢, let p; ; repre-
sent the classification confidence of time segment ¢ belong-
ing to class 4, and let p; ; represent p; ; after softmax nor-
malization across all classes to segment ¢. The foreground
feature representation f;, and background feature represen-
tation b;, are then calculated as:

l

l
f;=> pisFe, b= (1—pi)Fy
t=1

t=1

where [ is the total number of time segments in the video.

For a video j and its ground truth action class ¢, the
foreground f! and background b7 feature representations
are obtained. For any two videos j and k belonging to the
same class i, their foreground and background representa-
tions can then be used to calculate the Co-Activity Similar-
ity Loss:

LENL =max(0, (£, £F) — f(b],£F) +0.5)

+max(0, f(£,£f) — f(b¥,£]) +0.5)

where f(a,b) is cosine distance and 0.5 is the margin.



Figure 3. Qualitative Comparison: The ground truth is in blue, our detections are in green, and a baseline without a graph (‘FC-CASL”)
results are in red. The video frames are sampled uniformly across the video length. By using similarity across time segments to make our
predictions, our method is able to localize larger extents of actions (yellow) and is able to develop a more general model of action classes

that allows it to localize to more instances of an action (magenta).

CASL was originally designed to supervise the interme-
diate feature representation that is used to make the final
class wise predictions; i.e., an unmodified use of CASL
would be on the output of our graph convolution layer.
Here, we instead apply the loss on the output of ¢. That is,
we use CASL to encourage the edge weight between two
foreground segments a and b of the same class to be high
(and the edge weight of a foreground and background seg-
ment to be low). This affects how rows of X are averaged.
It does not directly supervise the learned weight matrix W;
‘W is still free to transform rows a and b of GX differently.
In this sense, our modified CASL (MCASL), i.e. applying
CASL on ¢, is a less rigid imposition of the loss, one that
would not be possible in a regular fully connected layer. In
Section 4.2.2, we show that this choice is more effective in
reducing overfitting than directly supervising the intermedi-
ate feature representation.

3.4.4 Finalloss
The final loss used to supervise the training is:

Lrotar = M Layrr + XLy + AsLoasr-

We set \; = Ao = A3 = 1. These hyperparameters are set
so that no one loss dominates training.

3.5. Action classification and localization

During test time, we input a single video, and obtain an
[ X ¢ volume output Y. We average the top k segments per
class to obtain a video-level classification prediction.

In order to obtain hard localization predictions (video
segment classifications), we threshold the confidence val-
ues to ignore the lowest 5% range of predictions. We merge
temporally consecutive time segments that are classified as
the same action into a single detection, and assign it the
maximum confidence of its merged segments. We use these
detections for the final evaluation.

4. Experiments

We evaluate our approach against state-of-the-art
weakly-supervised temporal action localization methods.
We also analyze the effects of edge sparsity and our dif-
ferent losses. Lastly, we present qualitative and quantitative
results that highlight the advantage of our graph-based ap-
proach over traditional methods that do not explicitly model
the relationship between time segments.

Datasets We present results on three datasets, of which
THUMOS’14 and ActivityNet 1.2 have been previously
used to evaluate weakly supervised action localization.

THUMOS’14 [15] has temporal annotations for 20
classes, with 200/211 untrimmed validation/test videos.
Each video contains one or more of the 20 classes, with
an average of 1.12 classes per video. We use the validation
dataset for training, and the testing data for testing.

ActivityNet 1.2 [7] comprises 4819 training videos, 2383
validation videos, and 2480 test videos with withheld la-
bels. There are a 100 action classes with an average of 1.5
temporal activity segments per video. We use the training
videos as training data, and validation videos as test data.



Method mAP@IoU Method mAP
0.5 0.7 0.9 Sigurdsson et al. [27]12.8
UntrimmedNets [31] 7.4 3.9 1.2 SSN [41] 16.4

Auto-Loc [26] 273 175 6.8 Super Events [22] 19.4
W-TALC [20] 37.0 14.6 - TGM [21] 22.3
Ours 294 175 175 Ours 15.8

Figure 4. (Left) Localization performance on ActivityNet 1.2 val
set. (Right) Localization performance on Charades. All methods
except ‘Ours’ are strongly supervised

Charades [27] is composed of 9848 videos, with 7985 as
training videos, and 1863 as validation videos. The videos
have an average length of just 30 seconds, and feature fine
grained actions such as ‘Putting Clothes Somewhere’ and
‘Throwing Clothes Somewhere’ performed in visually sim-
ilar indoor settings. Videos have an average of 6.75 actions.
We use features extracted from i3D network finetuned on
Charades [8].

Implementation details The output of ¢ as well as our
graph layer is 1024. The output of the graph layer is passed
through a ReL'U non-linearity and then L2 normalized be-
fore being passed to the linear classification layer. We use
Dropout at 0.5 between the graph and linear layer. The out-
put of the classification layer is passed through a Tanh layer
to obtain the final class confidence values. The final Tanh
non-linearity limits the range of class confidence scores so
that a standard threshold of —0.9 can be applied across all
datasets. Using a standard threshold ensures that we do not
trivially inflate performance for datasets with longer actions
by predicting the full duration of each video.

Though not encountered in our experiments, the graph
layer’s matrix multiplication GX can run into GPU mem-
ory limitations for large graphs. During train time, the num-
ber of time segments per graph can be limited, and during
test time G and GX can be calculated offline on CPU, or
in smaller row wise chunks on GPU as a solution.

We train for 250 epochs with Adam [16] at a learning
rate of 0.001. During both training and testing we build G
from time segments from a single video at a time.

For THUMOS’ 14, we use a batch size of 32 videos and
calculate the CAS loss for every pair of videos with the
same ground truth class label. For the larger ActivityNet 1.2
and Charades, we use a batch size of 256. Since calculating
the CAS loss for every pair of videos for this larger batch
size increases the required training time exponentially, we
fix half of each batch with video pairs that have a randomly
picked class in common. The CAS loss is then only calcu-
lated for the paired videos.

4.1. Comparison to state-of-the-art

Table 1 and Figure 4 (left) show weakly-supervised tem-
poral action localization results on THUMOS’ 14 and Ac-

mAP@IoU

Method 0.1 0.2 0.3 04 05 CIs
HAS [28] 36.4 278 19.5 127 6.8 -
UntrimmedNets [31]  44.4 37.7 28.2 21.1 137 742

STPN (UNTF) [19] 453 388 31.1 235 162 -
STPN (I3DF) [19]  52.0 447 355 258 169 -

AutoLoc [26] - - 35.8 29.0 212 -

W-TALC (UNTF) [20] 49.0 428 32.0 26.0 18.8 -
W-TALC (I3DF) [20]  55.2 49.6 40.1 31.1 228 856
MAAN [37] 59.8 50.8 41.1 306 203 94.1
Ours 63.7 56.9 47.3 36.4 26.1 94.2

STAR* [35] 68.8 60.0 48.7 347 23.0 -
Ours 63.7 56.9 473 364 261 94.2

Table 1. Localization performance on Thumos’14 test set. The
last column shows video classification performance. Asterisk in-
dicates the method uses additional annotation.

tivity 1.2, respectively. We use mean average precision
(mAP) to calculate localization accuracy at different overlap
thresholds. Overlap threshold is used to determine the min-
imum required overlap between a ground truth occurrence
and a prediction for it to count as a true positive.

For THUMOS’ 14, our method outperforms all previous
methods at the challenging overlap threshold of 0.5, with
a margin of more than 3 mAP points. This gap in perfor-
mance is retained even when comparing against STAR [35]
which uses additional annotation in the form of the number
of times an action occurs in a video during training. Sim-
ilarly, we outperform previous methods on ActivityNet 1.2
at higher overlap thresholds. To demonstrate localization
ability independent of classification, we also calculate mAP
for ground truth action classes. This results in 19.7% and
8.2% mAP at 0.7 and 0.9 ToU for ActivityNet, and a slight
increase at 0.5 IoU to 63.9% for THUMOS’ 14.

Figure 4 (right) shows additional results of our method
on Charades. While our method is 6.5 points below
the state-of-the-art in a fully supervised setting, it is 3
points higher than its original fully supervised baseline and
presents a challenging weakly supervised baseline for fu-
ture methods to compare with. Like previous methods, we
report mAP for 25 equally spaced time points in each video.

4.2. Ablation studies

We next study the effect of our three losses. In particular,
we study the effect of CASL by showing that it is more
effective with a graph-based method than an approach that
does not explicitly cluster time segments together. We show
that the modified CASL is able to do better by guarding
against over-fitting. Last, we inspect how £ should be set
for the top k multi instance learning loss.

4.2.1 Graph supervision

We first analyze the importance of each constraint on the ap-
pearance similarity graph. The appearance similarity graph
uses an L1 loss to encourage non-uniform edge weights, and



mAP@IoU

Method 0.1 0.2 0.3 0.4 0.5
Baseline 26.1 194 13.1 8.9 5.8
MCASL 26.7 20.8 147 99 6.2
L1 553 46.9 39.0 285 19.6
LI+MCASL  63.7 56.9 473 364 26.1

Table 2. Ablation study of different constraints on our appearance
similarity graph on Thumos ‘14 test set.

mAP@IoU
Method 0.1 0.2 0.3 0.4 0.5
FC-CASL 1024 55.1 479 38.4 294 183
FC-CASL 2048 554 483 40.0 30.3  19.8
CASL-Graph 57.7  50.9 42.0 32.1 225
MCASL (Ours) 63.7 56.9 47.3 364 26.1

Table 3. Using a graph with CASL (last two rows) is more effective
than using regular linear layers (FC-CASL rows) since it explicitly
utilizes relationships between temporal segments.

a co-activity similarity loss (CASL) on ¢ to supervise edge
clustering. Table 2 shows the results of our ablation study.
L1 loss is most crucial for performance, as it more than
triple the performance at 0.5 overlap. MCASL provides the
next significant improvement: a 8.4 mAP improvement at
0.1 IoU threshold. While MCASL improves performance
of the baseline model, it is most useful when working with
an L1 loss. This indicates MCASL is more useful when
working with a sparse graph.

4.2.2 Modified co-activity similarity loss

We next analyze the effect of the co-activity similarity loss.

We develop a baseline model that uses the CASL loss
without a graph convolution layer to contrast it with our
graph-based approach. Specifically, the model uses a fully-
connected layer instead of a graph layer, but is otherwise
identical. The resulting model ‘FC-CASL 1024’ has a 1024
dimension intermediate output like our graph model. We
also train a higher-capacity model ‘FC-CASL 2048’ that
has a larger intermediate layer with a 2048 dimension out-
put, which is roughly the same number of learnable param-
eters as ours. These baseline models are very similar to the
model in [20], except they have the same non-linearities as
our network. These are also equivalent to our network with-
out a learned similarity metric ¢, but a fixed identity adja-
cency matrix G. We additionally develop a baseline model
that uses the original CAS loss ‘CASL-Graph’: instead of
applying CASL on the output of ¢ as done in our model, we
apply it to the output of our graph layer. Thus, the only dif-
ference between this baseline and the ‘FC-CASL’ baselines
is the graph layer.

Table 3 shows the results. Applying the CASL loss
on the output of the graph layer ‘CASL-Graph’, leads to
a ~3 mAP improvement over the ‘FC-CASL’ baselines.
This points to the superiority of using a graph based ap-
proach for weakly-supervised action localization versus re-

THUMOS ActivityNet Charades
d Video mAP Test Datag mAP Test Datag mAP Test Data
% @05IoU % |@05IoU % [Per Frame %
1 50-100%| 18.5 2.8 294 572 14.9 76.9
2 25-50% | 44.9 38 55 19.0 154 82.0
4 12.5-25% 58.4 14.1 1.7 14.4 15.2 75.5
8 0-12.5%| 63.7 93.9 1.4 18.8 13.8 15.4
Random 39.0 - 14.3 - 15.8 -

Table 4. Setting hyperparameter d to correspond with expected ac-
tion duration results in the best performance across datasets.

lying on conventional linear layers. In addition, the better
performance of our full model compared to ‘CASL-Graph’
shows that our modified CASL which supervises input fea-
ture clustering, rather than intermediate network features
is a better method for providing supervision. By track-
ing testing performance throughout training, we find that
‘CASL-Graph’ begins to overfit midway through training
after reaching peak performance at 59 mAP at 0.1 IoU. On
the other hand, ‘Ours-MCASL’ reaches higher peak per-
formance and then maintains it through the end of training
since it is not modifying the actual intermediate feature rep-
resentation of the network, but only modifies how the input
I3D features are clustered for further inference.

4.2.3 MIL Loss Parameter

As explained in Section 3.4.1, the multi instance learning
loss is calculated over the average of the top & predictions
of each class. k is chosen to be 1/8 of the length of a video
by setting parameter d. While d = 8 works well for THU-
MOS’ 14, it is not optimal for ActivityNet and Charades.
Generally speaking a smaller d (or larger k) results in
longer detections as the MIL loss is backpropagated to more
time segments at every iteration. Table 4 shows the perfor-
mance of our system for different values of d against the
percent of test videos that feature activities with correspond-
ing duration. The d that results in the best performance
mimics the activity duration bias for each dataset; 57% of
ActivityNet test videos feature actions that last more than
half the video length, so setting d = 1 during training results
in the best performance. With very short action durations,
THUMOS’ 14 performs best with a large d or shorter pre-
dictions. Without prior knowledge of typical activity dura-
tion, or a temporally labeled validation set that can be used
to set d, one useful strategy is to randomly choose a value
for d for each training iteration. The last row shows results
where d is randomly selected from the set {1, 2, 4, 8} every
training iteration. With a balanced activity duration, ‘Ran-
dom’ is the best strategy for Charades, and for both Ac-
tivityNet and THUMOS’ 14 results in performance that is
significantly better than the worst d setting, but about half
of the optimal level. Estimating d without any temporal an-
notation is an interesting direction for future research.
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Figure 5. Visualizing graphs: Strongly connected graph cliques are shown in blue. In red we show segments that are considered very
dissimilar to the foreground segments. The corresponding adjacency matrix for each example is shown on the right.

4.3. Qualitative results

Figure 3 shows some qualitative results. Ground truth,
our results, and the ‘FC-CASL’ baseline results are shown
in blue, green and red, respectively, for videos from differ-
ent classes. Using a graph allows our network to localize
actions with more overlap (in yellow). This is most appar-
ent in the second row, where our detections are not split up
and wider than the baseline’s. Our model is also able to
localize more occurrences of different actions; in magenta
we show instances that are not detected by ‘FC-CASL’ but
are detected by our method. We include more qualitative
examples and failure cases in the supplementary materials.

4.4. Visualizing Graphs

In Figure 5 we show the adjacency matrix of two graphs,
and the nodes that form high edge cliques in these graphs.
All images are not temporally neighboring, and taken from
different points in the video. Graph cliques are surrounded
in a blue box. Segments that are considered dissimilar to
the foreground segments are surrounded in a red box.

In the cricket bowling video, the graph forms cliques
from parts of cricket bowling so that the start of the ball
throw forms one cluster, the arm swing forms another, and
so on. The segments considered least similar to bowling
segments are shown in red and show batting, and a zoomed
out view of the stadium; segments with very little relevance
to the bowling action.

The second example shows a video with three distinct
cliques. The video features a man explaining how to score
a soccer penalty, and then demonstrating it repeatedly. The
largest clique lumps together nodes where the man is fac-
ing the camera and talking. Another clique comprises the

action right before the soccer penalty — placing the ball and
taking the starting position. The last clique lumps together
the actual soccer penalty.

These examples show some interesting ways the graph
can cluster nodes — it can cluster together subactions of an
action class, and structured activities that may be relevant
to, but distinct from, the action class.

5. Conclusion

We presented a novel approach for weakly supervised
temporal action localization. Without frame level anno-
tation during training, an action localization system must
necessarily infer action categories from the similarity and
difference between time segments of videos. Despite this,
current methods do not make explicit use of appearance and
motion similarity between time segments to inform predic-
tions. In contrast, our method makes explicit use of simi-
larity relationships between time segments by using graph
convolutions. As a result, it is able to harness similarity
relationships to develop a better model of each action cate-
gory, and is consequently able to localize actions to a fuller
extent. We pushed the state of the art on Thumos’14 and
ActivityNet 1.2 for weakly supervised action localization,
and presented the first results on Charades. We demon-
strated quantitatively and qualitatively that a baseline ap-
proach that does not use graph similarity achieves inferior
performance. Last, we demonstrated through ablation stud-
ies the importance of each component of our system, and
presented analysis of the weaknesses of our approach.
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