


ent videos cannot be modeled in their framework. In other

words, the model lacks the ability to ensure that all time

segments regardless of temporal location that are related to

the same action are treated similarly.

Main idea. Our main idea is to explicitly model the sim-

ilarity relationships between time segments of videos in or-

der to classify and localize actions in videos. We use graph

convolution networks (GCNs) [30] for this purpose.

Similar to regular convolution networks, GCNs also per-

form nonlinear transformations on the input features. How-

ever, in addition, GCNs treat input features as nodes in a

graph with weighted edges. By setting the edge weights

to be proportional to the level of similarity between nodes,

GCNs allow feature similarity and dissimilarity to be in-

corporated into the weight learning process as gradients are

propagated across weighted edges, as well as during test

time as inference is performed over an entire graph.

By using GCNs, our method explicitly ensures that re-

lationships between time segments are considered during

both training and testing. We represent each segment in a

video as a node in a graph, and edges between nodes are

weighted by their similarity. Each segment’s feature repre-

sentation is transformed to a weighted average of all seg-

ments it is connected to, with weights based on learned

edge strength. These weighted average features are then

used to learn a multiple instance learning based video clas-

sifier. We use appearance and motion similarity between

segments to determine edge weights: two nodes that have

similar RGB and optical flow features have a stronger edge

between them than two nodes that have dissimilar RGB and

optical flow features. In this way, the learned weights oper-

ate on groups of features together, rather than on individual

time segments. This helps prevent the network from focus-

ing on just a few discriminative parts of the video.

Contributions. (1) A novel graph convolution approach

for weakly-supervised action localization. Our method is

based on an appearance and motion similarity graph and is

the first to use graph convolutions in the weakly-supervised

action localization setting. (2) We analyze each compo-

nent of our model, explore other graph based alternatives,

and quantitatively and qualitatively compare against other

non-graph based approaches. (3) We push the state-of-the-

art on widely-used action detection datasets in the weakly-

supervised setting - THUMOS’14 [15] and ActivityNet 1.2

[7], and are the first to present results on Charades [27].

2. Related work

Weakly supervised action localization has many differ-

ent variants in literature. [20] encourages time segments

with similar classification predictions to have similar inter-

mediate deep features using a Co-Activity Similarity Loss.

Like us, it uses feature similarity between segments to im-

prove localization. However, unlike our approach, it ex-

clusively uses feature similarity to provide training super-

vision, and does not model feature relationships to make

predictions. Others discourage the network from focusing

only on the most discriminative time segments via random

hiding [28], or their iterative removal during training [38].

While [26] uses a contrastive loss for temporally fuller lo-

calizations, [39] additionally uses a coherence loss for vi-

sually consistent action identification. More recent works

learn to attend and pool per time segment predictions dur-

ing training [19, 37], while UntrimmedNets [31] simultane-

ously learns to classify and select the most salient segments

in a video. However, these methods do not consider the rela-

tionships between time segments during testing. In contrast,

by inferring over a video-level graph, our method can use

information from the entire video during training as well as

testing to achieve better localization. Recent work [35] uses

recurrent neural networks to model relationships between

time segments. However, relationships between time seg-

ments that are temporally distant, or that belong to different

videos cannot be modeled. In contrast, our model is not

restricted by temporal proximity when modeling similarity

and dissimilarity relationships between time segments.

Some work use additional cues such as person de-

tection [29, 34], scripts/subtitles [18, 10, 4], or external

text [24]. Others use activity ordering information to assist

in discriminative clustering [5, 6], temporal alignment [13,

17, 23], and segmenting temporal proposals [1, 25].

A growing body of work explore neural network based

graphs [30, 3]. In computer vision, graph convolutions have

gained popularity for capturing relationships between ob-

jects spatially and temporally for video object understand-

ing, as well as capturing spatio-temporal dynamics for ac-

tion understanding [36, 32, 33, 11, 9, 40, 14]. In particular,

[36] develops an LSTM based graph for video object detec-

tion that uses strong action localization annotation as super-

vision. Unlike our method they do not use graph convolu-

tions, and operate in a different ‘slightly supervised’ setting

for video object detection, where human action labels are

used to generate object detection labels. [33] uses both an

appearance similarity graph alongside a temporal similarity

graph to understand relations between video regions for ac-

tion classification. However, unlike our method, it operates

in a fully-supervised setting.

3. Approach

Our goal is to train a temporal action localization system

that predicts the start and end times of each action’s occur-

rence in a video. During training, we are only provided with

weak action labels: we know what actions occur in a video

but we do not know when or how many times they occur.

We use these weak action label–video pairs to train our sys-

tem. During testing, input videos have no labels.





G corresponds a regular fully connected layer with no bias

term. A G with zero off-diagonal values, and non uniform

diagonal entries works similarly to an attention mechanism.

By setting rows of G to one or zero, average and max pool-

ing operations can be performed. Multiple graph layers can

be stacked together as the Z of the layer below becomes the

X of the layer above. However, due to the small size of our

datasets we use only a single graph layer. The output of our

graph layer is passed to a linear classification layer to obtain

the final l × c volume Y.

3.4. Loss functions

Our method uses three separate losses. We use a multi-

instance cross entropy loss that trains the network to cor-

rectly classify each video via segment level classification.

We also impose an L1 sparsity loss on our graph so that

graph edges are sparse and discriminative time segments

can be clustered together. Last, we impose a co-activity

similarity loss on the learned similarity function φ, so that

salient parts for each video class are encouraged to have

high edge weights between them.

3.4.1 Multiple instance learning loss

Similar to prior work [31, 20], we treat the problem of weak

action localization as a multiple instance learning (MIL)

problem. Each video is treated as a bag of instances, some

of which are positive instances. We only have video-level

labels, and must use them to correctly classify instances

within each video. To do this, we classify all instances,

and then average the classification predictions for the top k
per class to get a c dimension video-level prediction vector.

The vector is normalized using softmax so that each dimen-

sion, pi represents the probability for class i. At the same

time, the binary indicator ground truth vector y (a video can

contain multiple action classes) for a video is normalized so

that it sums to 1. It is then used alongside the video pre-

diction vector to calculate the multi-class cross entropy loss

averaged across a batch of n videos, indexed by j:

LMIL =
1

n

n∑

j=1

C∑

i=1

−yji log p
j
i .

We set k to max(1, ⌊ l
d
⌋) where l is the total number of

input features for a video, and d is a hyper parameter. We

further analyze the effect of d in Section 4.2.3. This part of

our framework is similar to the multiple instance learning

loss branch in [20] and the hard selection module of [31].

Unlike binary cross entropy loss, this loss formulation gives

equal weight to each training video rather than each label

occurrence. Hence, instances of each class that occur in

videos with fewer labels get more weight than instances that

co-occur with many other classes, which we found leads to

better performance than the binary cross entropy loss.

3.4.2 Graph sparsity loss

To recap, G transforms rows of X to a weighted average of

rows of X. In other words, G can cluster together similar

x’s, and push apart dissimilar x’s. However, a G with edge

weights that are close to uniform will make it hard for the

network to train, as discriminative signals in X will be aver-

aged out. In order to prevent this, we enforce edge weights

in G to be sparse by imposing an L1 loss on the absolute

sum of G:

LL1 =

∑l

i=1

∑l

j=1
|Gij |

l2

The loss works to encourage sparsity in G, and hence trains

φ to create tighter clusters from X.

We find that it is helpful to additionally ignore edges that

have a low absolute value. We therefore drop edges in each

graph that are in the lower half of its range of edge weights.

3.4.3 Modified co-activity similarity loss

Our last loss is a modification of the Co-Activity Similar-

ity Loss (CASL) [20]. It supervises the intermediate feature

representation corresponding to video segments by both in-

creasing the distance between foreground and background

features, and decreasing the distance between foreground

features of the same class.

The foreground and background representations are the

sum of time segments’ intermediate feature representa-

tions weighed by their predicted classification confidence.

Specifically, for a given video, let Ft represent the interme-

diate feature representation of time segment t, let pi,t repre-

sent the classification confidence of time segment t belong-

ing to class i, and let p̂i,t represent pi,t after softmax nor-

malization across all classes to segment t. The foreground

feature representation fi, and background feature represen-

tation bi, are then calculated as:

fi =

l∑

t=1

p̂i,t Ft, bi =

l∑

t=1

(1− p̂i,t)Ft

where l is the total number of time segments in the video.

For a video j and its ground truth action class i, the

foreground f
j
i and background b

j
i feature representations

are obtained. For any two videos j and k belonging to the

same class i, their foreground and background representa-

tions can then be used to calculate the Co-Activity Similar-

ity Loss:

Lj,k,i
CASL =max(0, f̄(f ji , f

k
i )− f̄(bj

i , f
k
i ) + 0.5)

+max(0, f̄(f ji , f
k
i )− f̄(bk

i , f
j
i ) + 0.5)

where f̄(a, b) is cosine distance and 0.5 is the margin.





Method
mAP@IoU

0.5 0.7 0.9

UntrimmedNets [31] 7.4 3.9 1.2

Auto-Loc [26] 27.3 17.5 6.8

W-TALC [20] 37.0 14.6 -

Ours 29.4 17.5 7.5

Method mAP

Sigurdsson et al. [27] 12.8

SSN [41] 16.4

Super Events [22] 19.4

TGM [21] 22.3

Ours 15.8

Figure 4. (Left) Localization performance on ActivityNet 1.2 val

set. (Right) Localization performance on Charades. All methods

except ‘Ours’ are strongly supervised

Charades [27] is composed of 9848 videos, with 7985 as

training videos, and 1863 as validation videos. The videos

have an average length of just 30 seconds, and feature fine

grained actions such as ‘Putting Clothes Somewhere’ and

‘Throwing Clothes Somewhere’ performed in visually sim-

ilar indoor settings. Videos have an average of 6.75 actions.

We use features extracted from i3D network finetuned on

Charades [8].

Implementation details The output of φ as well as our

graph layer is 1024. The output of the graph layer is passed

through a ReLU non-linearity and then L2 normalized be-

fore being passed to the linear classification layer. We use

Dropout at 0.5 between the graph and linear layer. The out-

put of the classification layer is passed through a Tanh layer

to obtain the final class confidence values. The final Tanh
non-linearity limits the range of class confidence scores so

that a standard threshold of −0.9 can be applied across all

datasets. Using a standard threshold ensures that we do not

trivially inflate performance for datasets with longer actions

by predicting the full duration of each video.

Though not encountered in our experiments, the graph

layer’s matrix multiplication GX can run into GPU mem-

ory limitations for large graphs. During train time, the num-

ber of time segments per graph can be limited, and during

test time G and GX can be calculated offline on CPU, or

in smaller row wise chunks on GPU as a solution.

We train for 250 epochs with Adam [16] at a learning

rate of 0.001. During both training and testing we build G

from time segments from a single video at a time.

For THUMOS’14, we use a batch size of 32 videos and

calculate the CAS loss for every pair of videos with the

same ground truth class label. For the larger ActivityNet 1.2

and Charades, we use a batch size of 256. Since calculating

the CAS loss for every pair of videos for this larger batch

size increases the required training time exponentially, we

fix half of each batch with video pairs that have a randomly

picked class in common. The CAS loss is then only calcu-

lated for the paired videos.

4.1. Comparison to state­of­the­art

Table 1 and Figure 4 (left) show weakly-supervised tem-

poral action localization results on THUMOS’14 and Ac-

mAP@IoU

Method 0.1 0.2 0.3 0.4 0.5 Cls

HAS [28] 36.4 27.8 19.5 12.7 6.8 -

UntrimmedNets [31] 44.4 37.7 28.2 21.1 13.7 74.2

STPN (UNTF) [19] 45.3 38.8 31.1 23.5 16.2 -

STPN (I3DF) [19] 52.0 44.7 35.5 25.8 16.9 -

AutoLoc [26] - - 35.8 29.0 21.2 -

W-TALC (UNTF) [20] 49.0 42.8 32.0 26.0 18.8 -

W-TALC (I3DF) [20] 55.2 49.6 40.1 31.1 22.8 85.6

MAAN [37] 59.8 50.8 41.1 30.6 20.3 94.1

Ours 63.7 56.9 47.3 36.4 26.1 94.2

STAR* [35] 68.8 60.0 48.7 34.7 23.0 -

Ours 63.7 56.9 47.3 36.4 26.1 94.2

Table 1. Localization performance on Thumos’14 test set. The

last column shows video classification performance. Asterisk in-

dicates the method uses additional annotation.

tivity 1.2, respectively. We use mean average precision

(mAP) to calculate localization accuracy at different overlap

thresholds. Overlap threshold is used to determine the min-

imum required overlap between a ground truth occurrence

and a prediction for it to count as a true positive.

For THUMOS’14, our method outperforms all previous

methods at the challenging overlap threshold of 0.5, with

a margin of more than 3 mAP points. This gap in perfor-

mance is retained even when comparing against STAR [35]

which uses additional annotation in the form of the number

of times an action occurs in a video during training. Sim-

ilarly, we outperform previous methods on ActivityNet 1.2

at higher overlap thresholds. To demonstrate localization

ability independent of classification, we also calculate mAP

for ground truth action classes. This results in 19.7% and

8.2% mAP at 0.7 and 0.9 IoU for ActivityNet, and a slight

increase at 0.5 IoU to 63.9% for THUMOS’14.

Figure 4 (right) shows additional results of our method

on Charades. While our method is 6.5 points below

the state-of-the-art in a fully supervised setting, it is 3

points higher than its original fully supervised baseline and

presents a challenging weakly supervised baseline for fu-

ture methods to compare with. Like previous methods, we

report mAP for 25 equally spaced time points in each video.

4.2. Ablation studies

We next study the effect of our three losses. In particular,

we study the effect of CASL by showing that it is more

effective with a graph-based method than an approach that

does not explicitly cluster time segments together. We show

that the modified CASL is able to do better by guarding

against over-fitting. Last, we inspect how k should be set

for the top k multi instance learning loss.

4.2.1 Graph supervision

We first analyze the importance of each constraint on the ap-

pearance similarity graph. The appearance similarity graph

uses an L1 loss to encourage non-uniform edge weights, and



mAP@IoU

Method 0.1 0.2 0.3 0.4 0.5

Baseline 26.1 19.4 13.1 8.9 5.8

MCASL 26.7 20.8 14.7 9.9 6.2

L1 55.3 46.9 39.0 28.5 19.6

L1+MCASL 63.7 56.9 47.3 36.4 26.1

Table 2. Ablation study of different constraints on our appearance

similarity graph on Thumos ‘14 test set.

mAP@IoU

Method 0.1 0.2 0.3 0.4 0.5

FC-CASL 1024 55.1 47.9 38.4 29.4 18.3

FC-CASL 2048 55.4 48.3 40.0 30.3 19.8

CASL-Graph 57.7 50.9 42.0 32.1 22.5

MCASL (Ours) 63.7 56.9 47.3 36.4 26.1

Table 3. Using a graph with CASL (last two rows) is more effective

than using regular linear layers (FC-CASL rows) since it explicitly

utilizes relationships between temporal segments.

a co-activity similarity loss (CASL) on φ to supervise edge

clustering. Table 2 shows the results of our ablation study.

L1 loss is most crucial for performance, as it more than

triple the performance at 0.5 overlap. MCASL provides the

next significant improvement: a 8.4 mAP improvement at

0.1 IoU threshold. While MCASL improves performance

of the baseline model, it is most useful when working with

an L1 loss. This indicates MCASL is more useful when

working with a sparse graph.

4.2.2 Modified co-activity similarity loss

We next analyze the effect of the co-activity similarity loss.

We develop a baseline model that uses the CASL loss

without a graph convolution layer to contrast it with our

graph-based approach. Specifically, the model uses a fully-

connected layer instead of a graph layer, but is otherwise

identical. The resulting model ‘FC-CASL 1024’ has a 1024

dimension intermediate output like our graph model. We

also train a higher-capacity model ‘FC-CASL 2048’ that

has a larger intermediate layer with a 2048 dimension out-

put, which is roughly the same number of learnable param-

eters as ours. These baseline models are very similar to the

model in [20], except they have the same non-linearities as

our network. These are also equivalent to our network with-

out a learned similarity metric φ, but a fixed identity adja-

cency matrix G. We additionally develop a baseline model

that uses the original CAS loss ‘CASL-Graph’: instead of

applying CASL on the output of φ as done in our model, we

apply it to the output of our graph layer. Thus, the only dif-

ference between this baseline and the ‘FC-CASL’ baselines

is the graph layer.

Table 3 shows the results. Applying the CASL loss

on the output of the graph layer ‘CASL-Graph’, leads to

a ∼3 mAP improvement over the ‘FC-CASL’ baselines.

This points to the superiority of using a graph based ap-

proach for weakly-supervised action localization versus re-

d
THUMOS ActivityNet Charades

Video mAP Test Data mAP Test Data mAP Test Data

% @ 0.5 IoU % @ 0.5 IoU % Per Frame %

1 50-100% 18.5 2.8 29.4 57.2 14.9 76.9

2 25-50% 44.9 3.8 5.5 19.0 15.4 82.0

4 12.5-25% 58.4 14.1 1.7 14.4 15.2 75.5

8 0-12.5% 63.7 93.9 1.4 18.8 13.8 15.4

Random 39.0 - 14.3 - 15.8 -

Table 4. Setting hyperparameter d to correspond with expected ac-

tion duration results in the best performance across datasets.

lying on conventional linear layers. In addition, the better

performance of our full model compared to ‘CASL-Graph’

shows that our modified CASL which supervises input fea-

ture clustering, rather than intermediate network features

is a better method for providing supervision. By track-

ing testing performance throughout training, we find that

‘CASL-Graph’ begins to overfit midway through training

after reaching peak performance at 59 mAP at 0.1 IoU. On

the other hand, ‘Ours-MCASL’ reaches higher peak per-

formance and then maintains it through the end of training

since it is not modifying the actual intermediate feature rep-

resentation of the network, but only modifies how the input

I3D features are clustered for further inference.

4.2.3 MIL Loss Parameter

As explained in Section 3.4.1, the multi instance learning

loss is calculated over the average of the top k predictions

of each class. k is chosen to be 1/8 of the length of a video

by setting parameter d. While d = 8 works well for THU-

MOS’14, it is not optimal for ActivityNet and Charades.

Generally speaking a smaller d (or larger k) results in

longer detections as the MIL loss is backpropagated to more

time segments at every iteration. Table 4 shows the perfor-

mance of our system for different values of d against the

percent of test videos that feature activities with correspond-

ing duration. The d that results in the best performance

mimics the activity duration bias for each dataset; 57% of

ActivityNet test videos feature actions that last more than

half the video length, so setting d = 1 during training results

in the best performance. With very short action durations,

THUMOS’14 performs best with a large d or shorter pre-

dictions. Without prior knowledge of typical activity dura-

tion, or a temporally labeled validation set that can be used

to set d, one useful strategy is to randomly choose a value

for d for each training iteration. The last row shows results

where d is randomly selected from the set {1, 2, 4, 8} every

training iteration. With a balanced activity duration, ‘Ran-

dom’ is the best strategy for Charades, and for both Ac-

tivityNet and THUMOS’14 results in performance that is

significantly better than the worst d setting, but about half

of the optimal level. Estimating d without any temporal an-

notation is an interesting direction for future research.
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