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DivideandSlide:Layer-WiseRefinementfor
OutputRangeAnalysisofDeepNeuralNetworks

ChaoHuang,JiamengFan,XinChen,WenchaoLi,QiZhu

Abstract—Inthispaper,wepresentalayer-wiserefinement
methodforneuralnetworkoutputrangeanalysis. Whileap-
proachessuchasnonlinearprogramming(NLP)candirectly
modelthehighnonlinearitybroughtbyneuralnetworksin
outputrangeanalysis,theyareknowntobedifficulttosolve
ingeneral. Weproposetouseaconvexpolygonalrelaxation
(over-approximation)oftheactivationfunctionstocopewith
thenonlinearity.Thisallowsustoencodetherelaxedproblem
intoa mixedintegerlinearprogram(MILP),andcontrolthe
tightnessoftherelaxationbyadjustingthenumberofseg-
mentsinthepolygon.Startingwithasegmentnumberof1
foreachneuron,whichcoincideswithalinearprogramming
(LP)relaxation,ourapproachselectsneuronslayerbylayer
toiterativelyrefinethisrelaxation.Totackletheincreaseof
thenumberofintegervariables withtighterrefinement, we
bridgethepropagation-based methodandtheprogramming-
basedmethodbydividingandslidingthelayer-wiseconstraints.
Specifically,givenaslidingnumbers,fortheneuronsinlayerl,
weonlyencodetheconstraintsofthelayersbetweenl sand
l. Weshowthatouroverallframeworkissoundandprovidesa
validover-approximation.Experimentsondeepneuralnetworks
demonstratesignificantimprovementonoutputrangeanalysis
precisionusingourapproachcomparedtothestate-of-the-art.

IndexTerms—Neuralnetworks,outputrangeanalysis,refine-
ment,linearprogramming,mixedintegerlinearprogramming.

I.INTRODUCTION

Neuralnetworkshaveshownpromisingapplicationsinava-
rietyofdomains,includingsafety-criticalsystemssuchasself-
drivingcarsandmedicaldevices.However,toensuresystem
safetyandsecurity,moreformalanalysisofneuralnetworks
isneededbeforetheycanbewidelyappliedinpractice.As
observedin[1],someofthekeycorrectnessproblemsof
neuralnetworks,suchasadversarialrobustness[2],[3],[4]and
reachabilityanalysisofneural-networkcontrolledsystems[5],
[6],[7],canbeconvertedtotheanalysisoftheiroutputrange.
Thus,addressingtheoutputrangeanalysisproblemisvital
toprovideguaranteesforthesafetyandsecurityofneural
networks.
Informally,outputrangeanalysissolvesthefollowingprob-

lem:givenaneuralnetworkfandtheinputrangeX,compute
theoutputrangeoff(X).Sinceaneuralnetworkishighly
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nonlinearduetothelargenumberofparametersandnonlinear
activationfunctions,itisgenerallydifficulttocomputethe
exactrange.Inmostcases,weuseanoverapproximationY
suchthatf(X)⊆Y.Suchoverapproximationcanprovide
anexplicitboundfordeterminingwhethertheneuralnetwork
outputfallsintoanunwantedregion.Earlyworkshowsthat
basicintervalboundpropagation(IBP)canbeusedtotackle
thisproblem,butoftenleadstoanoverlylooseestimationdue
tothelossofdependenciesacrosslayers[8].

State-of-the-artmethodsforoutputrangeanalysismainly
fallintotwocategories:symbolicintervalpropagation(SIP)
[9],[10]andconstraintprogramming(CP)[11],[12],where
theoverapproximationiscomputedindifferentmanners.The
maindrawbackwithSIPisthatitcanhardlypropagatethe
dependenciesfornonlinearoperationsacrosslayers,andthe
performanceofthesepropagation-basedmethodsdeclineswith
deepernetworks.Ontheotherhand,CP-basedmethodsneed
tosolvealargenonlinearprogrammingproblemencodingthe
entirenetworkandsufferfromthecurseofdimension.

Inthispaper,weproposealayer-wiserefinementmethod
thatbridgespropagation-based methodswith mixed-integer
linearprogramming(MILP)byusingslidingwindows.Specif-
ically,wefirstcomputetheintervalrelaxationforeachopera-
tionwithapropagation-basedmethodastheinitializationstep.
Basedontheinitialrange,weusealinearprogramming(LP)
relaxationapproachtobetterapproximatethevariablerange.
Then,therelaxationcanbefurthertightenedbythe MILP
encoding.Ourapproachiterativelyimprovestheapproxima-
tionprecisionbyincreasingthenumberofintegervariables.
Inaddition,werefinethevariablerangesuchthatfewer
integervariablesareneededtoachieveasimilarapproximation
precision.Furthermore,toalleviatethecomplexityof MILP
broughtfromthelargenumberofintegervariables,weencode
theconstraintsinapropagationmanner,whichdividesand
slidestheneuralnetworkbylayersandhandlestheencoding
withineachslidingwindows.Intuitively,givenalengthof
slidingwindows,fortheneuroninlayerl,weonlyencode
theconstraintsofthelayersbetweenl−sandl. Withthese
methods,wecaneffectivelymanagethesizeof MILPand
handledeepnetworks.

Insummary,ourpapermakesthefollowingcontributions:

•Weproposeaniterativeframeworkforoutputrangeanalysis
ofneuralnetworks,usingacombinationofinterval,LP,and
MILPrelaxation;

•Wedevelopaconvexpolygonalrelaxation methodfor
nonlinearoperations withtheabilitytotunetheover-
approximationtightnessbasedonthenumberofinteger
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variables, and we prove soundness and convergence of the
overapproximation;
• We leverage a sliding window method to encode partial

constraints to further reduce MILP complexity, while main-
taining the soundness of our approach;
• We show that on multiple benchmarks, our approach can

provide significantly tighter output range overapproxima-
tion than the current state-of-the-art method [13]. Our
approach also applies to neural networks with different
architectures and activation functions.

The rest of the paper is structured as follows. Section II
introduces the state-of-the-arts on the output range analysis via
different techniques. Section III introduces the neural network
model and formulates the output range analysis problem. Sec-
tion IV and Section V present our approach, where Section IV
shows the interval, LP, and MILP relaxation as well as the
guarantees on soundness and convergence. Section V proposes
the sliding-window based propagation method. Section VI
presents the experimental results and Section VIII concludes
the paper.

II. RELATED WORK

A main idea on output range analysis of neural networks is
interval bound propagation (IBP) [8], [14], [15]. It leverages
the monotonicity of the operations. Thus the range of each
layer, which is represented by an interval, can be easily
propagated by interval arithmetic. Benefiting from that only
simple algebraic operations are involved, IBP works efficiently
and thus is also used in training procedure to evaluate the
robustness [15]. However, due to the loss of layer dependen-
cies, IBP can only provide loose estimation in most cases.
Two types of methods are then proposed to conquer this
problem: symbolic interval propagation (SIP) and constraint
programming (CP).

Different from IBP, SIP methods denote the range of a
neuron as a symbolic interval, where a symbol represents a
variable in the previous layers [9], [10], [16]. For instance,
ERAN uses symbolic zonotopes [10], while NNV adopts sym-
bolic image-star representation [16], [17]. Such representation
can keep the dependencies of previous layers and improve
the estimation precision. However, when handling nonlinear
operations, symbolic intervals have to be concretized to range
intervals and lose the dependencies between dimensions. Even
though the refinement procedure can improve the estimation
accuracy [9], [18], state-of-the art methods can only be applied
to ReLU activations.

CP methods encode the neural network as a constraint
system and compute the output range with constraint program-
ming techniques. The work in [11] and [19] extends the sim-
plex algorithm to handle ReLU constraints with satisfiability
modulo theories (SMT). MILP is also widely used to model
ReLu networks equivalently and thus can obtain precise output
range [20], [21], [22], [23]. For instance, the work in [12] and
[23] presents an equivalent MILP transformation for ReLU
activation functions and computes the exact output range.
Besides the lack of support for general nonlinear activation

functions, such encoding may also lead to large MILP formu-
lations and suffer from low efficiency. A number of approaches
have then been proposed to compute the over-approximation
with various relaxation techniques. For instance, linear pro-
gramming (LP) relaxation is used in [24] and solved with
duality principle, e.g., via basic dual problem [25], Lagrangian
relaxation [26], and Lagrangian decomposition [27]. In [28],
[29], semi-definite programming (SDP) relaxation is used,
although the proposed approaches cannot be easily applied
to large networks due to the complexity of current SDP
solvers. The work in [30] presents the interval neural network
(INN), which is a simpler neural network with fewer neurons
in each layer to abstract the original network. Then, the
problem of overapproximating the output range of the original
neural network can be reduced to solving a mixed integer
programming problem on INN. Our work is similar to this
work in spirit, where abstraction is used to reduce the problem
complexity. However, our technique abstracts neural networks
in a layer-wise manner and also provides a mechanism to
refine the abstraction iteratively.

It is worthy noting that there are other approaches that try to
leverage the Lipschitz continuity of neural networks [1], [5],
[31], [32]. The work in [1] shows that a large number of neural
networks are Lipschitz continuous and the Lipschitz constant
can help in estimating the output range, which requires solv-
ing a global optimization problem. Based on the Lipschitz
continuity, the work in [5] leverages Bernstein polynomials
with a bounded interval to over-approximate a neural network,
which is further improved by parallel computing in [31] and
used for distilling a more verification-friendly controller [32].
However, these approaches rely on a large number of sampling
for estimation and thus are time consuming.

III. PROBLEM FORMULATION

Notation. Throughout the paper, we use R to denote the
set of real numbers, and Rn to denote the n-dimensional
Euclidean space. Intervals are represented by their endpoints.
For instance, the set {x ∈ R | a ≤ x ≤ b} is denoted by [a, b].
An array can be multidimensional. Given an n-dimensional (n-
D) real-valued array ~M , we use sum( ~M) to denote the sum
of all elements in ~M , max( ~M) for the maximum element in
~M , and ~M [i1] · · · [in] to denote the element in the position

of the indices i1, . . . , in in the n dimensions, respectively.
We also represent a section of the elements in a dimension
from the index i to j (i ≤ j) with i : j. Given two n-D
arrays ~M1 and ~M2 that are of the same size, we use ~M1� ~M2

to denote their element-wise product. We denote ~M1 ∼ ~M2

for ∼∈ {<,>,≤,≥,=} if ~M1, ~M2 are of the same size and
m1 ∼ m2 for every elements m1,m2 in the same position in
~M1, ~M2, respectively. We use · for scalar multiplication.

CNN Operations. In this work, we consider Convolutional
Neural Networks (CNNs) [33], which have been widely used
in applications such as image analysis and natural language
processing. For instance, a CNN may take a three-dimensional
image with width W , height H and depth D, and produce
an output to classify the input. The high-level structure of
such CNNs is shown in Fig. 1. The layers in this CNN can
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be categorized to three groups: the input layer that takes an
input image, the hidden layers that process the image, and the
output layer that outputs the result. Within the hidden layers,
a convolution layer performs two sequential operations. It first
convolves the input, and then processes each element in the
result with an activation function. The function is usually of
ReLU type, but in this work we also consider sigmoid or
hyperbolic tangent functions. The details of the two operations
are discussed below.

Convolution operation: A convolution operation transforms an
input image to a feature map according to a finite group of
filters, biases and strides. To simplify the notations, we provide
a formal description in below for the operation that has only
a single filter, bias and stride number. The cases of multiple
numbers are straightforward extensions.

A filter (or kernel) is defined by a 2-D real-valued array
WF of the size IF ×JF . It defines the processing window for
the convolution operation. A bias bF ∈ R is a constant value
that is added onto the result of every step in convolution. A
stride can be viewed as a stepsize measured by the number
of elements and is used to determine how much distance the
processing window should be moved in the width or height
dimension after every step. In this paper, we allow to use
independent strides in the dimensions of width and height,
so that the composite stride is denoted by a pair of positive
integers SW × SH .

Given an input image ~X ∈ RW×H×D with the parameters
WF , bF and Sx × Sy , the convolution result is a 2-D array
~Y ∈ R((W−IF )/SW +1)×((H−JF )/SH+1), which is obtained as

~Y [i][j] = sum( ~X[(i− 1)SW : (i− 1)SH + IF ]

[(j − 1)SW : (j − 1)SH + JF ]

[1 : D]�WF ) + bF .

We may also use constraints over the arrays of variables ~x, ~y
to describe the above relation: ~y = Conv(~x). For any real-
valued arrays ~X, ~Y , satisfying the constraints ~Y = Conv( ~X)
implies that ~Y is the result of ~X under convolution.

When there are multiple filters, biases and strides, the output
array for all filters-stride settings are stacked in the third
dimension and ~Y becomes a 3-D array.

Activation operation: An activation operation produces an
output array ~Y that is of the same size as the input array ~X ,
such that every element in ~Y is the image of the corresponding
element in ~X under the mapping of the activation function.
We consider the following activation function types:

ReLU: σReLU(x) = max(0, x),
Sigmoid: σsigmoid(x) = 1

1+e−x ,

Hyperbolic Tangent: σtanh(x) = ex−e−x

ex+e−x ,

where x is the input and has a real value.
Similar to the convolution operation, we may also use

constraints over the array variables ~x, ~y to describe the input-
output relation: ~y = σ(~x).

Pooling layer: A pooling layer is often used to extract the
dominant features of the input image. It performs a max
pooling or average pooling operation. Given that the input

is represented by a 3-D real-valued array ~X and we use a
processing window of the size IF ×JF and a stride SW ×SH ,
the output image ~Y after max pooling is obtained by

~Y [i][j][k] = max( ~X[(i− 1)SW : (i− 1)SW + IF ]

[(j − 1)SH : (j − 1)SH + JF ][k])

The operation of average pooling can be defined similarly:

~Y [i][j][k] =
1

IF JF
sum{ ~X[(i− 1)SW : (i− 1)SW + IF ]

[(j − 1)SH : (j − 1)SH + JF ][k]}

Both pooling operations can also be represented by con-
straints: ~y = MaxP(~x), ~y = AvgP(~x).

Flatten layer: Given an input image represented by a 3-D
array ~X ∈ RW×H×D, a flatten layer performs the flattening
operation to transform ~X to a 1-D array ~Y such that

~Y [(k − 1) ·W ·H + (j − 1) · I + i] = ~X[i][j][k]

for all 1 ≤ i ≤ W, 1 ≤ j ≤ H, 1 ≤ k ≤ D. Again, we may
denote its constraint description by ~y = Flat(~x).

Fully-Connected (FC) layer: An FC layer first performs an
affine mapping ~Y = WA

~X + bA for every input 1-D array
~X to generate a 1-D output array ~Y , where WA is a constant
matrix and bA is a constant vector of the appropriate sizes,
and then performs an activation operation on ~Y . Similar to
the other operations, we may use ~y = WA~x+ bA to represent
the affine mapping relation.

Network output: Given an input 3-D array ~X for a CNN, the
network output 1-D array ~Y is the result of consecutively
applying a series of above operations. For instance, if there
are n ordered operations in the network: OP1, . . . , OPn, then
Y is obtained as

~Y = OPn(OPn−1(· · ·OP1( ~X) · · · )).

An example is shown in Figure 2, in which the output array
~Y for an input array X is evaluated by

~Y = σ(WA Flat( MaxP(σ(Conv( ~X)))) + bA)

where σ is a ReLu activation.

Output Range of a CNN. Given a CNN with n operations
and an interval range X of the input ~X (i.e., every element of
X is an interval), its output range is defined by the set Y =
{OPn(OPn−1(· · ·OP1( ~X) · · · )) | ∀ ~X.(X ≤ ~X ≤ X )}, where
X is the array that has the lower bounds for the corresponding
elements in X , X is the array that has the upper bounds for
the corresponding elements in X , X ≤ ~X ≤ X means that
~X is contained in the interval array X . Hence, the problem
of output range analysis tries to compute Y for a given input
range X .

However, even finding the upper and lower bounds in each
dimension of Y is very difficult since it requires to solve a
complex nonlinear programming problem on the constraint
representations for all of the involved operations. For the
CNN in Figure 2, finding the upper bound of the first output
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Conv Activation Input Pooling Affine OutputFlatten Activation ⋯ ⋯

Convolution layer Fully‐connected layer

Fig. 1: CNN structure: A typical CNN example is shown. A three-dimensional input image is first processed by multiple
convolution operations, each of which is followed by an activation function operation. Then, after flattened to a one-dimensional
array, the intermediate result passes though multiple linear transformation layers and activation layers, and yields the output.
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Fig. 2: A CNN example: This figure shows a concrete example of CNNs in Fig. 1. This CNN consists of four layers: a
convolution layer, a pooling layer, a flatten layer and a fully-connected layer. The convolution layer contains a convolution
operation and a ReLU activation, while the fully-connected layer contains an affine mapping and a ReLu activation. Steps 1-6
illustrate how these operations works on the example.

dimension over the input set X requires to solve the following
optimization problem:

max(~y[1]) s.t.
~y = σ(WA~x4 + bA) ∧ ~x4 = Flat(~x3) ∧ ~x3 = MaxP(~x2)

∧ ~x2 = σ(~x1) ∧ ~x1 = Conv(~x0) ∧ ~x0 ∈ X

where ~y has 2×1 variables, ~x0 has 5×5×1 variables, ~x1, ~x2

both have 4 × 4 × 1 variables, ~x3 has 2 × 2 variables, and
~x4 has 4× 1 variables. Note that although the number of the
variables is linear with respect to the input size and the number
of operations in a CNN, the input image size or the CNN size
is often very large in practice. Also, the activation function and
the max pooling operation further make the problem nonlinear
and intractable.

In this work, we seek to efficiently compute an upper or
lower bound for each output dimension of a CNN, by solving
an MILP relaxation of the original nonlinear problem.

IV. RELAXATION AND LAYER-WISE REFINEMENT

In this section, we introduce our layer-wise refinement
approach for computing the output range of a CNN. Our main
idea is as follows. Instead of solving the nonlinear problem

max(~y[1]) s.t. ~y = ~xn ∧ γn(~xn−1, ~xn) ∧
· · · ∧ γ1(~x0, ~x1) ∧ ~x0 ∈ X

(1)

Interval 
relaxation

Output 
range

Yes

No

Ω ← 0

MILP 
relaxationUpdate Ω

LP 
relaxation

If reach 
iteration 
boundUpdate 

interval 

Hyper parameters 
setting

Layer‐wise 
refinement

Update 
interval 

Fig. 3: Workflow of our approach.

for obtaining the upper bound of the first output dimension,
we seek to solve a relaxation of it, that is

max(~y[1]) s.t. ~y = ~xn ∧ γ̂n(~xn−1, ~xn) ∧
· · · ∧ γ̂1(~x0, ~x1) ∧ ~x0 ∈ X ,

(2)

such that γi is the constraint representation for the i-th operator
in the CNN, and γ̂i is a relaxation of it. Intuitively, solving
the problem (2) gives us a larger value than problem (1) on
the same CNN and the input set X . The upper bounds for the
other dimensions and the lower bounds are handled similarly.

The relaxed expressions γ̂1, . . . , γ̂n are updated iteratively
in our framework, as shown in Figure 3, to repeatedly refine
the obtained output range overapproximation.

Initially, all γ̂1, . . . , γ̂n are just interval relaxations. For all
1 ≤ i ≤ n, γ̂i(~xi−1, ~xi) is represented as ~xi ∈ Bi ∧ ~xi−1 ∈
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Fig. 4: Different relaxations for the input-output relation for
the ReLu function. In interval relaxation, ReLU is simply
relaxed as a rectangle and all the relation between x and y are
dropped. In LP relaxation, a much tighter triangle is used for
approximation and relatively main the input-output relation.
MILP relaxation performs the equivalent transformation and
thus the tightest among all the three relaxations.

Bi−1, where Bi and Bi−1 are two intervals that contain
the ranges of ~xi and ~xi−1, respectively. If the output range
estimation is too conservative, we will refine the relations to be
linear. That is, γ̂i(~xi−1, ~xi) is represented as ~xi ≤ A~xi−1 + b,
which is a set of linear constraints and referred to as linear
programming (LP) relaxation. As γi(~xi−1, ~xi) ⇒ ~xi ≤
A~xi−1 + b, the overapproximation property holds. If the
obtained output range is still too conservative, we may further
refine the constraints by introducing new integer variables
to more accurately describe the operation relations, which
is referred to as mixed integer linear programming (MILP)
relaxation. That is, given a binary array ~Ωi that shares the
same dimension with ~yi and represents the number of inte-
ger variables for an element-wise operation, γ̂i(~xi−1, ~xi) is
represented as ~xi ≤ A~xi−1 + C ~zi−1 + b, where ~zi is the
binary array and its dimension is determined by Ωi. And it
satisfies γi(~xi−1, ~xi) ⇒ ~xi ≤ A~xi−1 + C ~zi−1 + b. We
repeat this process until we obtain a reasonably accurate output
estimation.

An example of the interval relaxation, LP relaxation and
MILP relaxation for the ReLU relation y = max(0, x) is
shown in Figure 4. And we find that the tightness is improved
from interval relaxation to MILP relaxation.

A. Interval Relaxation

The initial interval relaxation can be obtained using the
technique of interval-bound propagation (IBP) [15]. That is,
starting from the interval range X for ~x0, we evaluate an
interval range for ~x1 based on the operation mapping ~x0

to ~x1 using optimization techniques. We repeat this for all
the operations. The procedure is shown in Algorithm 1.
The obtained ranges build an valid interval relaxation of the
original optimization problem.

Proposition 1. Let Θi be the exact range of ~xi. The interval
range I in the i-th iteration is at least an overapproximation
of the exact range of ~xi: Θi ⊆ I .

It is worthy noting that a good initial solution will aid
the convergence of iterative methods. Existing constraint pro-
gramming (CP) based approaches do not scale well to large
networks. For instance, for a ReLU FC with 10000 neurons,
an MILP-encoding would contain 20000 integer variables and
is thus beyond the capability of current solvers. In addition,

Algorithm 1: Construction of interval relaxation
Data: Relations for the operations γ1, . . . , γn, X
Result: Interval relaxation I

1 I ← (X ≤ ~x0 ≤ X );
2 B ← X ;
3 for i← 1 to n do
4 Compute an interval range Ii for ~xi based on

~xi = γi(~xi−1) and ~xi−1 ∈ B:
Ii = min~xi−1∈B,~xi=γi(~xi−1) ~xi,
Ii = max~xi−1∈B,~xi=γi(~xi−1) ~xi;

5 I ← I ∧ (Ii ≤ ~xi ≤ Ii);
6 B ← Ii;
7 end
8 return I;

to obtain the ranges of the neurons in the intermediate layers,
CP based approaches need to solve a constrained optimiza-
tion problem for each neuron, which further exacerbates the
computational cost. On the other hand, the symbolic interval
propagation (SIP) based approaches in general can more
efficiently compute the ranges for every neurons in the neural
network with a single forward propagation. Among all the
SIP based approaches, ERAN [10] has good performance and
efficiency and has been used quite extensively [34], [35],
[36]. Thus, in addition to using IBP, we also use ERAN for
initialization. Specifically, we use the intersection of the ranges
computed by IBP and ERAN for each neuron as the initial
solution. Since both IBP and ERAN compute the relaxation
of the exact range ~x, their intersection is also a valid relaxation.

B. LP Relaxation

If the interval relaxation could not give us a reasonably tight
overapproximation for the output range, we may tighten the
constraints to linear forms, such that the optimization problem
for finding an upper or lower bound in an output dimension
becomes an LP problem. The LP relaxation will carry the
dependencies from the previous layers and refine the output
range from the interval relaxation. The refined range after each
operation can be updated and generates tighter range for the
output.

From the operation relations shown in Section III, only the
max pooling and the activation functions are nonlinear. We
show their linear relaxations below.

Max Pooling. Assume that the interval relaxation for a max
pooling operation is given by Bx ≤ ~x ≤ Bx ∧By ≤ ~y ≤ By ,
where ~x represents the input and y represents the output, the
linear relaxation of the max pooling relation can be obtained
as ΦLP

MaxP(~x, ~y) =
∧
i,j,k(h(~x, ~y)[i][j][k] ≤ 0), where

h(~x, ~y)[i][j][k] ≤ 0 : (Bx ≤ ~x ≤ Bx) ∧ (By ≤ ~y ≤ By)∧∧
1≤i′≤IF
1≤j′≤JF

(~y[i][j][k] ≥ ~x[(i− 1)SW+i′, (j − 1)SH+j′, k]).

(3)
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Fig. 5: LP relaxation for ReLU: Figure 5a shows the LP
relaxation (red area, as well as Figure 5b and Figure 5c)
when b ≤ 0. Figure 5b shows the LP relaxation when
a<0<b ∧ σ′[a,b]>σ

′
+(a) ∧ σ′[a,b]≤σ

′
−(b). Figure 5c shows the

relaxation when a ≥ 0.

Lemma 1 (Validity of LP Relaxation for MaxP). Assume that
the interval relaxation for a max pooling operation is given
by Bx ≤ ~x ≤ Bx ∧ By ≤ ~y ≤ By , where ~x represents the
input and y represents the output. Let Θ be the exact range
of ~x and h(~x, ~y)[i][j][k] be defined as Equation (3). We have:

{(~x, ~y) | ~y = MaxP(~x) ∧ ~x ∈ Θ} ⊆ {(~x, ~y) |ΦLP
MaxP(~x, ~y)}.

Activation Function. We consider three types of activation
functions: ReLu, sigmoid, and tanh, which are all nonlinear.

First, given an interval [a, b], the LP relaxation of the
activation function differs with respect to the value of a and
b. Let σ′[a,b] = (σ(b)−σ(a))/(b−a) be the slope between the
points (a, σ(a)) and (b, σ(b)).

If b ≤ 0, notice that ReLU, sigmoid and tanh are all convex
over the interval [a, b]. Thus, we can leverage the left/right
derivative to derive the LP relaxation:
g[a,b](x, y) ≤ 0 : (−y + σ′+(a)(x− a) + σ(a) ≤ 0)∧

(−y + σ′−(b)(x− b) + σ(b) ≤ 0)∧
(y − σ′[a,b](x− a)− σ(a) ≤ 0).

(4)

If a ≥ 0, notice that ReLU, sigmoid and tanh are all concave
over the interval [a, b]. Similar to the case b ≤ 0, we have:

g[a,b](x, y) ≤ 0 : (y − σ′+(a)(x− a)− σ(a) ≤ 0)∧
(y − σ′−(b)(x− b)− σ(b) ≤ 0)∧
(−y + σ′[a,b](x− a) + σ(a) ≤ 0).

(5)

If a < 0 < b, let Ca = (0, ya) be the intersection between
the y-axis and the tangent line of σ at a, where ya = σ(a)−
aσ′+(a). Let Cb = (0, yb) be the intersection between the y-
axis and the tangent line of σ at b, where yb = σ(b)−bσ′−(b).
To make sure the relaxation is convex, our LP relaxation differs
with respect to the value of σ′[a,b] as follows.

g[a,b](x, y) ≤ 0 :


−y + σ′[a,b](x− a) + σ(a) ≤ 0 σ′[a,b] ≤ σ

′
+(a){

−y + σ′+(a)(x− a) + σ(a) ≤ 0,

−y + σ(b)−ya
a x+ σ(a) + ya ≤ 0,

σ′[a,b] > σ′+(a)
−y + σ′[a,b](x− a) + σ(a) ≥ 0 σ′[a,b] ≤ σ

′
−(b){

−y + σ′−(b)(x− b) + σ(b) ≥ 0,

−y + σ(a)−yb
b x+ σ(a) + yb ≥ 0,

σ′[a,b] > σ′−(b)

(6)

a 0b

0

(a)
a 0 b

0

LP Relaxation for Tanh: 
 a < 0 < b and tanh ′[a, b] tanh ′(a) and tanh ′[a, b] tanh ′(c)

(b)
a0 b

0

(c)

Fig. 6: LP relaxation for tanh: Figure 6a shows the LP
relaxation (red area, as well as Figure 6b and Figure 6c)
when b ≤ 0. Figure 6b shows the LP relaxation when
a<0<b ∧ σ′[a,b] > σ′+(a) ∧ σ′[a,b] > σ′−(b). Figure 6c shows
the relaxation when a ≥ 0.

Lemma 2 (Validity of LP Relaxation for Activation Function).
Assume that the interval relaxation for an activation function σ
is given by a ≤ x ≤ b∧σ(a) ≤ σ(b) ≤ uy , where x represents
the input, y represents the output, and σ can be ReLu, sigmoid
or tanh. Let g[a,b](x, y) ≤ 0 be the LP relaxation and Θ be
the exact range of x. We have:

{(x, y) | y = σ(x) ∧ x ∈ Θ} ⊆ {(x, y) | g[a,b](x, y) ≤ 0}.

C. MILP Relaxation
Due to the high nonlinearity of the deep neural networks,

only using LP relaxation may be hard to capture the true
mapping and provide tight enough output range for safety
verification. Thus, based on the construction of the LP relax-
ation, we further tighten the relaxation by introducing integer
variables to capture the nonlinear mappings in deep neural
networks like activation and pooling. We form this relaxation
as an MILP problem. With more integer variables added,
the relaxation approaches the exact mapping gradually. We
utilize this property to refine the range after every operation
by adding integer variables and update the range to tighten the
relaxation. We show the convergence result at the end of this
section. Following are the detailed MILP encoding methods
for nonlinear operations in deep neural networks.

Max Pooling. Assume that the interval relaxation for a max
pooling operation is given by Bx ≤ ~x ≤ Bx ∧By ≤ ~y ≤ By ,
where ~x represents the input and ~y represents the output. We
can use the classical Big-M method [37] to construct the MILP
transformation, which can be also found in [23]. Specifically,
given the number of integer variables ω ≥ IF · JF , the MILP
relaxation of the max pooling relation can be obtained as
ΦMILP

MaxP(~x, ~y, ω) =
∧
i,j,k(hω(~x, ~y)[i][j][k] ≤ 0), where

hω(~x, ~y)[i][j][k] ≤ 0 :

Bx ≤ ~x ≤ Bx, By ≤ ~y ≤ By,
~y[i][j][k] ≥ ~x[(i− 1)SW+i′, (j − 1)SH+j′, k],

1 ≤ i′ ≤ IF , 1 ≤ j′≤JF ,
~y[i][j][k] ≤M(1− z[i′][j′][k])+

~x[(i− 1)SW+i′, (j − 1)SH+j′, k],

1≤i′≤IF , 1≤j′≤JF ,∑
1≤i≤IF ,1≤j≤JF z[i, j, r] = 1,

z is a binary matrix.

(7)
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a (a0) b (a1)

0

(a) ω = 1 (LP)
a (a0) a1 b (a2)

0

(b) ω = 2

a (a0) a1 a2 b (a3)

0

(c) ω = 3

Fig. 7: MILP relaxation for tanh over [a, b] by Equation (8):
Figure 7a shows the MILP relaxation (red area, as well as
Figure 7b and Figure 7c) with one integer variable (i.e., LP
relaxation). Figure 7b and Figure 7c show the cases for two
and three integer variables, respectively.

Lemma 3 (Equivalence of MILP Relaxation for MaxP). As-
sume that the interval relaxation for a max pooling operation
is given by Bx ≤ ~x ≤ Bx∧By ≤ y ≤ By , where ~x represents
the input and ~y represents the output. Let Θ be the exact range
of ~x and h(~x, ~y)[i][j][k] be defined as Equation (3). We have:

{(~x, ~y) | y = MaxP(~x) ∧ ~x ∈ Θ} = {(~x, ~y) |ΦMILP
MaxP(~x, ~y, ω)}.

Activation Function. Let the number of binary variables of
the activation function be ω ≥ 1, we can use the following
MILP relaxation.

g[a,b](x, y, ω) ≤ 0 :
∧

1≤i≤ω

(g[ai,ai+1](x, y) ≤M(1−z[i]))∧

(ai=a+i
b− a
ω

) ∧
ω∑
i=0

z[i] = 1.

(8)
In particular, for ReLU activation function, we can change

the setting of ai by letting a certain ai = 0. Then, Equation (8)
is a equivalent conversion. Note that similar MILP formulation
for ReLU is also found in [12] and can be considered as a
special case of our relaxation.

Lemma 4 (Validity of MILP Relaxation for Activation Func-
tion). Assume that the interval relaxation for an activation
function σ is given by a ≤ x ≤ b ∧ σ(a) ≤ σ(b) ≤ uy , where
x represents the input, y represents the output, and σ can be
ReLu, sigmoid or tanh. Let Θ be the exact range of x, and
g[a,b](x, y, ω) ≤ 0 be the MILP relaxation. We have:

{(x, y) | y = δ(x) ∧ x ∈ Θ} ⊆ {(x, y) | g[a,b](x, y, ω) ≤ 0}.

When the number of slack integer variables increases, finer
polygons are used for approximation. As a result, the area of
the polygon becomes smaller and in the limit will converge
to the actual nonlinear activation function. An example of
MILP relaxation for tanh over [a, b] with different number of
integer variables can be found in Figure 7. Intuitively, given
any point x0 ∈ [a, b] and ω ≥ 1, we know that x0 ∈ [ai, ai+1],
where i = b (x0−a)ω

b−a c. Let Pi be the polygon determined
by g[ai,ai+1](x, y) ≤ 0. Then we know the relaxation error
ε = max(x0,y)∈Pi

|y− δ(x0)| is smaller than δ(ai+1)− δ(ai).
Thus when ω →∞, δ(ai+1)−δ(ai)→ 0, the relaxation error
converges to zero.

Lemma 5 (Convergence of MILP Relaxation for Activation
Function). Assume that the interval relaxation for an activa-
tion function σ is given by a ≤ x ≤ b ∧ σ(a) ≤ σ(b) ≤ uy ,
where x represents the input, y represents the output, and σ
can be ReLu, sigmoid or tanh. Let Θ be the exact range of x,
and g[a,b](x, y, ω) ≤ 0 be the MILP relaxation. We have:

{(x, y) | y = δ(x) ∧ x ∈ Θ} → {(x, y) | g[a,b](x, y, ω) ≤ 0},

when ω →∞.

Now given the number of slack binary variables for all the
variables ω, we can define the corresponding MILP problem
as follows.

max(~y[1]) s.t. ~y = ~xn ∧ γ̂n(~xn−1, ~xn) ∧
· · · ∧ γ̂1(~x0, ~x1) ∧ ~x0 ∈ X ,

(9)

where γ̂i is defined as

γ̂i =


ΦMILP

MaxP(~xi−1, ~xi,Ωi), Max pooling,
g(~xi−1, ~xi,Ωi) ≤ 0, Activation function,
γi, Otherwise.

Combined with Lemma 3 and Lemma 4, we can derive the
relation between yMILP(Ω) and yNLP.

Theorem 1 (Soundness). Given a neural network with the
input domain X , let yNLP and yMILP (Ω) be the two optimal
values for the optimization problems in (1) and (9), respec-
tively, we have:

yMILP(Ω) ≥ yNLP. (10)

Benefiting from Lemma 3 and Lemma 5, the convergence
of the optimal value can be guaranteed.

Theorem 2 (Convergence). Given a neural network with
the input domain X , let yNLP and yMILP (Ω) be the two
optimal values for the optimization problems in (1) and (9),
respectively, we have:

lim
Ω→∞

yMILP(Ω) = yNLP (11)

V. PROPAGATION BY SLIDING WINDOW

While the aforementioned MILP relaxation shows theo-
retical guarantees on convergence, solving the optimization
problem in (9) could still be challenging due to two issues.
The first is the number of integer variables. Note that the
range computed based on IBP in the initialization phase can
be rather loose and a large number of integer variables may be
needed to obtain a good approximation for the MILP in (9),
which greatly increases the complexity. The second issue is the
overall scale of the programming problem. Even if we reduce
Ω to 1, which means the MILP in (9) degenerates to a LP, the
polynomial complexity of LP is still a challenging issue for
large neural networks.

Thus, instead of the “global” coding scheme in (9), we adopt
a “local” MILP formulation in this section to alleviate the
computation burden brought by the two challenges above. To
control the number of integer variables, we refine the variable
range in the hidden layers before computing the range of the
output layers. With a smaller range, fewer integer variable are
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Algorithm 2: Propagation by sliding window
Data: Relations for the operations γ1, . . . , γn, input

space X , interval relaxation I , iterations J ,
refinement percentage p, sliding window s

Result: Upper bound of the output y[1]
// Initialize the number of integer variables

1 Ω← 1
// Propagate intervals by sliding window

2 for j ← 1 to J do
3 for i← 1 to n do
4 refineList ← Strategy(I,Ωi, p);
5 for v ∈ refineList do
6 Ωi[v]← Ωi[v] + 1;
7 Ii[v] ← UpdateRange(γi : γi−s,

Ωi : Ωi−s,I , v);
8 end
9 end

10 end
11 return IN [1];

needed to achieve the similar approximation precision for a
variable. To control the scale of the programming problem
for refining a variable, we only encode the constraints in
the previous limited operations rather than all the previous
operations. In addition, we only refine part of the variables
in each operation to further reduce the number of the integer
variables considered in each programming problem.

Our overall algorithm is shown in Algorithm 2. We first
initialize the number of binary slack variables for all the
variables (line 1). Then we iteratively refine selected variables
operation-by-operation for J iterations (lines 2-10). Specifi-
cally, a heuristic approach is proposed to rank the importance
of the variables in each operation, and select the top ranking
variables with the number determined by the given percentage
parameter p (line 4). For each selected variable that needs
to be refined, we first increase the binary slack variables by
1 (line 6), and then use a sliding window based approach to
only encode partial constraints of the network (line 7). Finally,
we obtain the upper bound of y[1] (line 16). The key issues
are how to refine the variable range by sliding window and
how to choose the most important variables to be refined.

We first show how to refine the variable range. Specifically,
consider the variable ~xi[v], following Equation 1, we can use
the following NLP to compute its exact upper bound:

max(~xi[v]) s.t. γi(~xi−1, ~xi) ∧ · · · ∧ γ1(~x0, ~x1) ∧ ~x0∈X .
(12)

Let γ̂i be defined as

γ̂i =


ΦMILP

MaxP(~xi−1, ~xi,Ωi), Max pooling,
g(~xi−1, ~xi,Ωi) ≤ 0, Activation function,
γi, Otherwise.

Given the length of the sliding window of layers that consist
of s operations, the number of slack binary variables Ω, and
the interval relaxation I , we know that

(γ̂i−s(~xi−s−1, ~xi−s) ∧ · · · ∧ γ̂1(~x0, ~x1) ∧ ~x0 ∈ X ) ⊆ Ii−s.

Following Equation (9), we can use the following MILP to
compute an upper bound of ~xi[v].

max(~xi[v]) s.t. γ̂n(~xi−1, ~xi) ∧ · · · ∧ γ̂n(~xi−s+1, ~xi−s) ∧ Ii−s.
(13)

Proposition 2. Given a neural network with the input domain
X , let xNLP and xSMILP(Ω) be the two optimal values for the
optimization problems in (12) and (13), respectively, we have:

xSMILP(Ω) ≥ xNLP. (14)

Now we introduce how to choose variables by heuristics for
refinement. In this paper we only perform refinement for ac-
tivation functions, as no relaxation is needed for linear opera-
tions and max pooling (which can be equivalently transformed
into linear constraints). Note that our heuristic approach to
choose neurons to be refined for activation functions could
be extended to max pooling operation, but requires a more
sophisticated manner. We will leave it as future work.

Specifically, we define the “importance” of a variable xi[v]
by the following heuristic ranking function:

rank(xi[v])=

{
(bi[v]−ai[v])/Ωi[v] Conv. layer
(bi[v]−ai[v])/Ωi[v]·Wi+1[v] FC layer,

(15)
where ai[v] and bi[v] denote the two ends of the range, Ωi[v]
denotes the number of slack integer variables for the variable,
Wi+1[v] denotes the weight in the next linear transformation.
Intuitively, (bi[v] − ai[v])/Ωi[v] describes the granularity of
the partition and Wi+1[v] describes the impact of the variable
on the following operations. Given a hyper-parameter p, we
always pick the top p% variables in each operation with respect
to the value of the ranking function to perform the refinement.

Remark 1. Note that for each variable, the length of its
range is finite and is not larger than the one given by the
initial interval relaxation. Thus each variable has the chance
to be refined for enough iterations. For instance, consider an
activation function in a convolution layer with m variables
and their ranges are defined as [a1, b1], · · · , [am, bm], let
[a′, b′] be the smallest range. Then we can see that after
J ≥

∑m
i=1d(bi − ai)/(b′ − a′)e, every variable is refined for

at least once.

Remark 2. If the length of the sliding window s is large
enough, that is, MILP in (13) encodes all the constraints
in the previous operations for each variable, convergence
is still guaranteed since each variable will be refined when
the iteration J is big enough (as explained in Remark 1).
However, convergence is no longer maintained when s < n.
It is due to the loss of dependencies of the operations that
the constraints are not encoded. In the experiments, we can
find such treatment will not greatly influence the output range
precision in practice.

VI. EXPERIMENTS

We implement our approach in a tool called LayR (stands for
Layerwise Refinement). We evaluate the output range improve-
ment of LayR over the range provided in initial estimation
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TABLE I: Neural network setting and experimental results: We do the experiments on data set: MNIST and CIFAR. For each
neural network #, Type denotes the neural network type, Neurons denotes the total number of neurons of the deep neural
networks, Layers denotes the number of Fully-connected layers (FC) and convolutional layers (Conv), Activation denotes
the type of activation functions used in the network. We pick the first four test images in each dataset and for each image,
we construct an input set as a box with the center on each image. The length of the edge is defined as 2× perturbation:
For MNIST, the perturbation is ε = 0.01, and for CIFAR-10, the perturbation is ε = 0.001. The initialization Time shows
the computation time for the picked initialization method. Under our approach, p is the percentage of the refined neurons
out of total number of neurons in each layer. We also denote the number of refined neurons beneath the percentage number.
s is the traceback layer number. J is the number of iterations chosen. We show the result as the range improvement after
refinement after first iteration, it-1 Range Improvement, and the final refined range, Final Range Improvement. The runtime of
the refinement process is shown under the columns of it-1 Time and Total iteration Time in seconds.

Data set
Neural network

Input set
Our approach

# Type Neurons Layers Activation
Initialization [13]

Time (s)
p % s J

it-1
Improvement

it-1
Time (s)

Iteration
Improvement

Iteration
Time (s)

MNIST

I FNN 500 FC: 5 sigmoid

MNIST-1 67
FC: 20

(200 neurons)

3

2

43.12% 380 54.53% 1001
MNIST-2 16 37.91% 350 37.92% 909
MNIST-3 43 17.37% 383 25.54% 933
MNIST-4 23 33.92% 411 37.67% 1034

II FNN 700 FC: 7 sigmoid

MNIST-1 223
FC: 20

(280 neurons)

43.83% 452 57.27% 977
MNIST-2 30 19.44% 577 22.07% 1626
MNIST-3 135 5.60% 488 10.48% 1139
MNIST-4 18 37.02% 585 37.02% 2645

III ConvSmall 14966
Conv: 2
FC: 3

ReLU +
sigmoid

MNIST-1 62
Conv: 0.05

FC: 20
(264 neurons)

4

29.92% 684 29.92/% 3016
MNIST-2 62 28.23% 699 28.23% 3062
MNIST-3 64 31.39% 696 31.39% 3049
MNIST-4 64 31.84% 693 31.84% 3049

IV ConvMed 20962
Conv: 4
FC: 3

ReLU +
sigmoid

MNIST-1 2090
Conv: 0.05

FC: 20
(276 neurons)

36.58% 1835 60.17% 12459
MNIST-2 1854 31.61% 2238 52.95% 10717
MNIST-3 956 33.99% 1854 55.53% 12877
MNIST-4 1021 37.21% 1861 59.55% 12913

V ConvBig 21262
Conv: 4
FC: 6

ReLU +
sigmoid

MNIST-1 280
Conv: 0.05

FC: 20
(516 neurons

37.49% 1606 56.95% 15443
MNIST-2 742 45.80% 1594 64.52% 15363
MNIST-3 917 52.31% 1635 79.54% 14984
MNIST-4 521 48.98% 1668 69.04% 18573

CIFAR

VI ConvMed 32082
Conv: 4
FC: 3

ReLU +
sigmoid

CIFAR-1 442
Conv: 0.05

FC: 20
(296 neurons)

3 4

20.85% 3145 29.87% 12864
CIFAR-2 511 19.73% 4347 29.18% 15101
CIFAR-3 510 19.73% 4322 29.18% 14793
CIFAR-4 563 20.72% 4187 31.66% 14636

VII ConvSuper 87394
Conv: 4
FC: 6

ReLU +
sigmoid

CIFAR-1 1647
Conv: 0.05

FC: 20
(644 neurons)

2 4

1.34% 2702 4.12% 9490
CIFAR-2 1675 1.17% 2948 2.29% 10545
CIFAR-3 1817 1.17% 3007 2.29% 9990
CIFAR-4 5218 1.36% 2854 2.44% 6830

and compare the width of output range with NNV [16], [17].
Most of the output range analysis tools for neural network
is compatible with our approach and can provide initial
estimation for our approach. Here, we choose ERAN [13],
[10], [18] as the initialization method due to its generality on
supporting different activation functions and its efficiency.
Evaluation datasets. We use the popular image datasets
MNIST and CIFAR-10 in our experiment. MNIST contains
gray-scale images of size 28× 28 pixels, whereas CIFAR-10
contains RGB images of 32× 32 with 3 channels.
Neural networks. TABLE I shows 7 different MNIST and
CIFAR-10 feedforward networks (FNNs) and convolutional
networks (CNNs) with heterogeneous activations in our exper-
iment. We train all networks with cross-entropy loss, which is
often used in classification tasks [2]. The largest networks in
our experiments contains > 87K neurons whereas the deepest
network contains 10 layers.
Machine configuration. All experiments were ran on a 3.6Hz

12 core Intel(R) Core(TM) i7-6850K CPU with 128 GB of
main memory. MILP problems are solved using Gurobi [38].

A. Effectiveness of Layer-wise Refinement

We focus on the range of the dimension of ground-truth logit
(dimension corresponding to the true class) since it contains
the most important information in classification tasks. Experi-
ment results are shown in Table I. After the first iteration, LayR
can already achieve a significant improvement over the initial
estimation, and in most cases, such improvement of range
volume continuously grows after four iterations. We show that
bridging the propagation-based methods with programming-
based method in a dividing and sliding manner is efficient
and can bring tighter range than the pure propagation-based
method. An interesting phenomenon is that the first iteration
provides more significant improvement than the following
iterations. One reason is that the most important neurons are
selected and refined in the first iteration. It is also worthy not-
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TABLE II: Comparison with NNV [16]. We compare NNV
and our method by showing the width of the estimated range
on the ground-truth logit obtained from both methods. The
computation time is shown in seconds for both methods.

#1 Input set
NNV LayR

Range Time (s) Range Time (s)

I

MNIST-1 12.44 6 2.85 1068
MNIST-2 12.78 7 1.52 925
MNIST-3 30.36 7 22.10 976
MNIST-4 12.64 7 2.41 1057

II

MNIST-1 10.50 11 2.24 1200
MNIST-2 12.43 11 4.96 1656
MNIST-3 28.44 12 25.44 1274
MNIST-4 14.13 11 0.75 2663

III

MNIST-1 7.74 3456 2.29 3078
MNIST-2 6.72 1782 3.07 3124
MNIST-3 6.26 5954 2.05 3113
MNIST-4 4.61 1404 2.38 3113

1 On the remaining settings including MNIST IV-V and CIFAR VI-VII,
NNV exceeded a timeout limit of 24 hours while the longest running
time of our tool among these benchmarks was around 5 hours on the
same machine. Thus we do not have the range comparison for those
cases here.

ing that for the largest CNN considered here, i.e., ConvSuper
for CIFAR data set, the improvement is relatively minor. The
reason is that in order to control scale of the programming
for the large network, we only select two traceback layers to
refine (fewer than the other networks). The impact of the hyper
parameters, including the iterations and refinement percentage,
as well as the length of sliding window will be elaborated later.

We can also observe that LayR costs more time than the
symbolic-propagation based approach ERAN (used as initial-
ization) in some cases. The large number of neurons that are
refined in each iteration brings this computation overhead.
Especially when processing the final iteration, refining a
neuron may need to solve an MILP with hundreds of integer
variables. Even though the number of integer variables is much
smaller than directly encoding the whole neural network as
Equation (9), it still needs some time for computation with
the current optimization techniques.

B. Comparison with NNV

We also compare LayR with the neural network verification
tool NNV [16] on the same set of benchmarks. Note that most
of other tools are limited to neural networks with a specific
type of activation functions (e.g., [23] can only handle ReLU
networks) and/or do not provide capability for dealing with
convolutional layers. The comparison results with NNV are
shown in Table II. We only include the results for MNIST I,
II and III, since NNV did not terminate for the other networks
(MNIST IV-V and CIFAR VI-VII) with a timeout of 24 hours,
while the longest running time of our method is around 5 hours
on the same machine.

Experimental results across the benchmarks show 10.55%
(Network II, NNIST-3) to 94.69% (Network II, NNIST-4)
improvement on output range estimation by our approach
against NNV. In [16], NNV considers a special kind of pixel
brightening attacks, where the brightness of a small number

of pixels can be independently varied. In our experiments, we
consider L∞-norm-bounded perturbations, which is a preva-
lent model in adversarial attack literature [15], [10]. We refer
to the variables that are used to express the input interval range
X under this perturbation model as perturbation variables.
Under L∞-norm-bounded perturbations, we need the same
number of perturbation variables as the number of image pixels
to describe X , which is significantly more than the number
of perturbation variables considered in the brightening attack
in [16]. We speculate that the image-star representation used
in [16] may result in a more conservative estimate when the
number of such variables is large, which explains the observed
difference in output range estimation as shown in Table II.

In addition, when the neural networks become larger, the
efficiency of NNV degrades quickly – NNV finished network
# I and # II in seconds, # III in around an hour, but did
not terminate for any of the other larger networks within 24
hours. In our case, the proposed “divide and slide” mechanism
allows us to limit the size of each optimization problem and
effectively cope with larger networks.

VII. DISCUSSION

A. Effectiveness of LP Refinement

As aforementioned, the MILP-based layer-wise refinement
(we use MILP refinement for short in this section) solves the
optimization with a large number of integer variables when
refining a neuron range, which is the efficiency bottleneck
for our approach. It thus motivates the question of how
effective an LP refinement would be, i.e., applying Algorithm
2 without line 6. Below, we compare LP refinement with MILP
refinement while keeping the rest of our algorithm intact.

The experimental results on the MNIST dataset are shown in
Figure 8. Without introducing integer variable, the complexity
of LP refinement is significantly lower than MILP refinement.
On the other hand, while LP refinement works well on shallow
networks (ConvSmall), its performance degrades (compared to
MILP refinement) when the neural networks become deeper
(ConvMed and ConvBig). This is because LP relaxation cap-
tures less inter-layer dependencies than the MILP relaxation.

B. Impact of Hyper-parameters

In LayR, there are three hyper-parameters that need to be
determined in advance: the percentage of neurons to be refined
in each layer p, the length of the sliding window / trace-
back number s, and the iteration number J . In theory, each
parameter would improve the performance when increasing.
However, increasing the value of these parameters also makes
our approach more time consuming. In this section, we demon-
strate the trade-off between the precision and computation time
empirically. In each set of experiments, we tune one parameter
and fix the other two. The results under different settings of
hyper-parameters on output range analysis of CNNs trained
on MNIST dataset can be found in Figure 9.

Figure 9a, Figure 9b, and Figure 9c show the trade-off with
respect to the iteration number, the length of sliding window,
and neuron selection percentage of each layer, respectively.
In terms of the output range precision, the output range is
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Fig. 8: Output volume and runtime comparison between LP
refinement and MILP refinement on MNIST.

getting tighter with a larger hyper-parameter in most cases.
We can also observe that the computation time grows largely
with larger values of each hyper-parameter. Such phenomenon
conforms to our expectations, since the number of integer
variables grows linearly with each hyper-parameter increasing.
It is worthy noting that for ConvSmall on MNSIT, each
iteration costs similar time (Figure 9a). We speculate that this
is due to that most integer variables are removed by the pre-
solve mechanism of the MILP solver in Gurobi, which implies
that our heuristic neuron selection algorithm does not pick the
most important neurons.

Although the large values of these hyper-parameters lead
to tighter relaxation and better refinement, we can also ob-
serve that if we only use the programming-based method,
the computation overhead will be extremely large and hard
to solve. However, accompanying the propagation-based idea
using the sliding window and iteratively solving the problem
significantly reduce the size of the programming. The results
also show that our approach generate much tighter range than
the pure propagation-based approach. Even when the conver-
gence guarantee is missing here, empirically the propagation
by sliding window and iterative refinement gain great benefits
in terms of computation and precision.

C. Limitations

Observing the experimental results shown in the above
sections, we can see that the main weakness of our approach
is the efficiency. Though more iterations, larger refinement
percentage and length of sliding window can help improve
the performance, the aforementioned results show that we
can hardly enlarge those hyper-parameters too much. The
fundamental problem behind is that it would introduce too
many integer variables, which is an important factor on the
complexity of MILP. A potential improvement is to come
up with finer variable selection strategy. One direction is to
group and characterize the variables based on their impact on
the output. Better the variables’ range can be refined, fewer

ConvSmall ConvMed ConvBig
0

5

10

15

Vo
lu

m
e

ConvSmall ConvMed ConvBig
0

5

10

15

Vo
lu

m
e

initial range it-1 it-2 it-3 it-4 runtime

ConvSmall ConvMed ConvBig
0.0

2.5

5.0

7.5

10.0

12.5

15.0

Vo
lu

m
e

ConvSmall ConvMed ConvBig
0

5

10

15

Vo
lu

m
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(s

)

×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(s

)

×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(s

)

×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(s

)

×104

(a) Output volume comparison for different iterations: The blue bar
denotes the volume of the initial range. The orange/green/red/purple
bar denotes the refined range after the first/second/third/fourth iteration,
respectively.
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the volume of the initial range. The orange/green/red bar denotes the
refined range with the traceback layers equaling the one/two/three,
respectively.
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Fig. 9: Impact of each hyper-parameter on the precision and
computation time for CNNs trained on MNIST dataset.
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integer variables are needed. We will explore this direction in
our future work.

VIII. CONCLUSION

In this paper, we propose an iterative method for the output
range analysis of deep neural networks. The approach is based
on the proposed convex polygonal relaxation for nonlinearity
in networks, which enables MILP with the capability to tune
the tightness of the relaxation by introducing more integer
variables. In the initialization phase, we compute the primary
range by IBP. In each iteration, our approach iteratively
identifies neurons to refine the relaxation. To better manage
the growth of the number of integer variables as the refinement
progresses, when refining a variable, we encode only partial
constraints by tracebacking a few previous layers, rather than
all the layers. We show the overall framework is sound and
provides a valid over-approximation. Our future work includes
exploring other tools for initialization and better heuristics to
identify the important neurons for refinement.

ACKNOWLEDGMENT

We would like to thank Hoang-Dung Tran and Taylor T.
Johnson (Vanderbilt University, Tennessee) for their help with
running NNV on our benchmarks for comparison. We would
also like to thank Gagandeep Singh (ETH Zurich, Switzerland)
for sharing and explaining their code in ERAN, which helps
us integrate ERAN in our tool for initialization.

We gratefully acknowledge the support from NSF grants
1834701, 1834324, 1839511, 1724341, ONR grant N00014-
19-1-2496, and the US Air Force Research Laboratory (AFRL)
under contract number FA8650-16-C-2642. This work is also
funded in part by the DARPA BRASS program under agree-
ment number FA8750-16-C-0043 and NSF grant 1646497.

REFERENCES

[1] W. Ruan, X. Huang, and M. Kwiatkowska, “Reachability analysis of
deep neural networks with provable guarantees.” International Joint
Conferences on Artificial Intelligence, 2018.

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[3] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[4] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi, “Measuring neural net robustness with constraints,” in
Advances in neural information processing systems, 2016, Conference
Proceedings, pp. 2613–2621.

[5] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “Reachnn: Reachability
analysis of neural-network controlled systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[6] S. Dutta, X. Chen, and S. Sankaranarayanan, “Reachability analysis for
neural feedback systems using regressive polynomial rule inference,” in
Hybrid Systems: Computation and Control (HSCC). ACM Press, 2019,
pp. 157–168.

[7] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
verifying safety properties of hybrid systems with neural network
controllers,” in Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, 2019, pp. 169–178.

[8] W. Xiang and T. T. Johnson, “Reachability analysis and safety
verification for neural network control systems,” arXiv preprint
arXiv:1805.09944, 2018.

[9] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security
analysis of neural networks using symbolic intervals,” in USENIX
Security Symposium, 2018, pp. 1599–1614.

[10] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast and
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