1905.10615v2 [cs.LG] 11 Feb 2020

arxiv

Published as a conference paper at ICLR 2020

ADVERSARIAL POLICIES: ATTACKING
DEEP REINFORCEMENT LEARNING

Adam Gleave! Michael Dennis Cody Wild Neel Kant Sergey Levine Stuart Russell
University of California, Berkeley

ABSTRACT

Deep reinforcement learning (RL) policies are known to be vulnerable to adversar-
ial perturbations to their observations, similar to adversarial examples for classifiers.
However, an attacker is not usually able to directly modify another agent’s observa-
tions. This might lead one to wonder: is it possible to attack an RL agent simply
by choosing an adversarial policy acting in a multi-agent environment so as to
create natural observations that are adversarial? We demonstrate the existence of
adversarial policies in zero-sum games between simulated humanoid robots with
proprioceptive observations, against state-of-the-art victims trained via self-play to
be robust to opponents. The adversarial policies reliably win against the victims but
generate seemingly random and uncoordinated behavior. We find that these policies
are more successful in high-dimensional environments, and induce substantially
different activations in the victim policy network than when the victim plays against
a normal opponent. Fine-tuning protects a victim against a specific adversary, but
the attack method can be successfully reapplied to find a new adversarial policy.
Videos are available at https://adversarialpolicies.github.io/.

1 INTRODUCTION

The discovery of adversarial examples for image classifiers prompted a new field of research into
adversarial attacks and defenses (Szegedy et al., 2014). Recent work has shown that deep RL policies
are also vulnerable to adversarial perturbations of image observations (Huang et al., 2017; Kos and
Song, 2017). However, real-world RL agents inhabit natural environments populated by other agents,
including humans, who can only modify another agent’s observations via their actions. We explore
whether it’s possible to attack a victim policy by building an adversarial policy that takes actions in a
shared environment, inducing natural observations which have adversarial effects on the victim.

RL has been applied in settings as varied as autonomous driving (Dosovitskiy et al., 2017), nego-
tiation (Lewis et al., 2017) and automated trading (Noonan, 2017). In domains such as these, an
attacker cannot usually directly modify the victim policy’s input. For example, in autonomous driving
pedestrians and other drivers can take actions in the world that affect the camera image, but only in a
physically realistic fashion. They cannot add noise to arbitrary pixels, or make a building disappear.
Similarly, in financial trading an attacker can send orders to an exchange which will appear in the
victim’s market data feed, but the attacker cannot modify observations of a third party’s orders.

As a proof of concept, we show the existence of adversarial policies in zero-sum simulated robotics
games with proprioceptive observations (Bansal et al., 2018a). The state-of-the-art victim policies
were trained via self-play to be robust to opponents. We train each adversarial policy using model-free
RL against a fixed black-box victim. We find the adversarial policies reliably beat their victim, despite
training for less than 3% of the timesteps initially used to train the victim policies.

Critically, we find the adversaries win by creating natural observations that are adversarial, and not
by becoming generally strong opponents. Qualitatively, the adversaries fall to the ground in contorted
positions, as illustrated in Figure 1, rather than learning to run, kick or block like normal opponents.
This strategy does not work when the victim is ‘masked’ and cannot see the adversary’s position,
suggesting that the adversary succeeds by manipulating a victim’s observations through its actions.

Having observed these results, we wanted to understand the sensitivity of the attack to the dimen-
sionality of the victim’s observations. We find that victim policies in higher-dimensional Humanoid
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Figure 1: [lustrative snapshots of a victim (in blue) against normal and adversarial opponents (in red).
The victim wins if it crosses the finish line; otherwise, the opponent wins. Despite never standing up,
the adversarial opponent wins 86% of episodes, far above the normal opponent’s 47% win rate.

Normal

Adversarial

environments are substantially more vulnerable to adversarial policies than in lower-dimensional Ant
environments. To gain insight into why adversarial policies succeed, we analyze the activations of
the victim’s policy network using a Gaussian Mixture Model and t-SNE (Maaten and Hinton, 2008).
We find adversarial policies induce significantly different activations than normal opponents, and
that the adversarial activations are typically more widely dispersed between timesteps than normal
activations.

A natural defense is to fine-tune the victim against the adversary. We find this protects against that
particular adversary, but that repeating the attack method finds a new adversary the fine-tuned victim
is vulnerable to. However, this new adversary differs qualitatively by physically interfering with the
victim. This suggests repeated fine-tuning might provide protection against a range of adversaries.

Our paper makes three contributions. First, we propose a novel, physically realistic threat model for
adversarial examples in RL. Second, we demonstrate the existence of adversarial policies in this threat
model for several simulated robotics games. Our adversarial policies reliably beat the victim, despite
training with less than 3% as many timesteps and generating seemingly random behavior. Third,
we conduct a detailed analysis of why the adversarial policies work. We show they create natural
observations that are adversarial to the victim and push the activations of the victim’s policy network
off-distribution. Additionally, we find policies are easier to attack in high-dimensional environments.

As deep RL is increasingly deployed in environments with potential adversaries, we believe it is
important that practitioners are aware of this previously unrecognized threat model. Moreover, even in
benign settings, we believe adversarial policies can be a useful tool for uncovering unexpected policy
failure modes. Finally, we are excited by the potential of adversarial training using adversarial policies,
which could improve robustness relative to conventional self-play by training against adversaries that
exploit weaknesses undiscovered by the distribution of similar opponents present during self-play.

2 RELATED WORK

Most study of adversarial examples has focused on small £, norm perturbations to images, which
Szegedy et al. (2014) discovered cause a variety of models to confidently misclassify the image, even
though the changes are visually imperceptible to a human. Gilmer et al. (2018a) argued that attackers
are not limited to small perturbations, and can instead construct new images or search for naturally
misclassified images. Similarly, Uesato et al. (2018) argue that the near-ubiquitous £,, model is merely
a convenient local approximation for the true worst-case risk. We follow Goodfellow et al. (2017) in
viewing adversarial examples more broadly, as “inputs to machine learning models that an attacker
has intentionally designed to cause the model to make a mistake.”

The little prior work studying adversarial examples in RL has assumed an £,-norm threat model.
Huang et al. (2017) and Kos and Song (2017) showed that deep RL policies are vulnerable to small
perturbations in image observations. Recent work by Lin et al. (2017) generates a sequence of
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perturbations guiding the victim to a target state. Our work differs from these previous approaches by
using a physically realistic threat model that disallows direct modification of the victim’s observations.

Lanctot et al. (2017) showed agents may become tightly coupled to the agents they were trained
with. Like adversarial policies, this results in seemingly strong polices failing against new opponents.
However, the victims we attack win against a range of opponents, and so are not coupled in this way.

Adpversarial training is a common defense to adversarial examples, achieving state-of-the-art robust-
ness in image classification (Xie et al., 2019). Prior work has also applied adversarial training to
improve the robustness of deep RL policies, where the adversary exerts a force vector on the victim
or varies dynamics parameters such as friction (Pinto et al., 2017; Mandlekar et al., 2017; Pattanaik
et al., 2018). Our defense of fine-tuning the victim against the adversary is inspired by this work.

This work follows a rich tradition of worst-case analysis in RL. In robust MDPs, the transition function
is chosen adversarially from an uncertainty set (Bagnell et al., 2001; Tamar et al., 2014). Doyle et al.
(1996) solve the converse problem: finding the set of transition functions for which a policy is optimal.
Methods also exist to verify controllers or find a counterexample to a specification. Bastani et al.
(2018) verify decision trees distilled from RL policies, while Ghosh et al. (2018) test black-box closed-
loop simulations. Ravanbakhsh et al (2016) can even synthesize controllers robust to adversarial
disturbances. Unfortunately, these techniques are only practical in simple environments with low-
dimensional adversarial disturbances. By contrast, while our method lacks formal guarantees, it can
test policies in complex multi-agent tasks and naturally scales with improvements in RL algorithms.

3 FRAMEWORK

We model the victim as playing against an opponent in a two-player Markov game (Shapley, 1953).
Our threat model assumes the attacker can control the opponent, in which case we call the opponent
an adversary. We denote the adversary and victim by subscript o and v respectively. The game
M = (5, (Aua, Av), T, (Ra, R,)) consists of state set S, action sets A, and A,, and a joint state
transition function T : S x A, x A, — A (S) where A (S) is a probability distribution on S. The
reward function R; : S x A, x A, x S — R for player i € {«, v} depends on the current state, next
state and both player’s actions. Each player wishes to maximize their (discounted) sum of rewards.

The adversary is allowed unlimited black-box access to actions sampled from 7, but is not given any
white-box information such as weights or activations. We further assume the victim agent follows a
fixed stochastic policy m,, corresponding to the common case of a pre-trained model deployed with
static weights. Note that in safety critical systems, where attacks like these would be most concerning,
it is standard practice to validate a model and then freeze it, so as to ensure that the deployed model
does not develop any new issues due to retraining. Therefore, a fixed victim is a realistic reflection of
what we might see with RL-trained policies in real-world settings, such as with autonomous vehicles.

Since the victim policy , is held fixed, the two-player Markov game M reduces to a single-player

MDP M, = (S, Aa, Ty, R,,) that the attacker must solve. The state and action space of the adversary

are the same as in M, while the transition and reward function have the victim policy 7, embedded:
Ty (s,00) =T (8, a0, a,) and R. (s,a0,5") = Ra(s,a4,a,,5"),

where the victim’s action is sampled from the stochastic policy a, ~ m,(- | s). The goal of the
attacker is to find an adversarial policy 7, maximizing the sum of discounted rewards:

> 7' Ra(s",al), s ), where s ~ T, (s a)) and ag ~ ma(- [ sM). (D)
t=0

Note the MDP’s dynamics 7, will be unknown even if the Markov game’s dynamics 7" are known
since the victim policy 7, is a black-box. Consequently, the attacker must solve an RL problem.

4 FINDING ADVERSARIAL POLICIES

We demonstrate the existence of adversarial policies in zero-sum simulated robotics games. First, we
describe how the victim policies were trained and the environments they operate in. Subsequently, we
provide details of our attack method in these environments, and describe several baselines. Finally,
we present a quantitative and qualitative evaluation of the adversarial policies and baseline opponents.
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(a) Kick and Defend (b) You Shall Not Pass (c) Sumo Humans (d) Sumo Ants

Figure 2: Illustrations of the zero-sum simulated robotics games from Bansal et al. (2018a) we use
for evaluation. Environments are further described in Section 4.1.

4.1 ENVIRONMENTS AND VICTIM POLICIES

We attack victim policies for the zero-sum simulated robotics games created by Bansal et al. (2018a),
illustrated in Figure 2. The victims were trained in pairs via self-play against random old versions of
their opponent, for between 680 and 1360 million timesteps. We use the pre-trained policy weights
released in the “agent zoo” of Bansal et al. (2018b). In symmetric environments, the zoo agents are
labeled ZooN where NN is a random seed. In asymmetric environments, they are labeled ZooVN and
ZooON representing the Victim and Opponent agents.

All environments are two-player games in the MuJoCo robotics simulator. Both agents observe the
position, velocity and contact forces of joints in their body, and the position of their opponent’s joints.
The episodes end when a win condition is triggered, or after a time limit, in which case the agents
draw. We evaluate in all environments from Bansal et al. (2018a) except for Run to Goal, which we
omit as the setup is identical to You Shall Not Pass except for the win condition. We describe the
environments below, and specify the number of trained zoo policies and their type (MLP or LSTM):

Kick and Defend (3, LSTM). A soccer penalty shootout between two Humanoid robots. The
positions of the kicker, goalie and ball are randomly initialized. The kicker wins if the ball goes
between the goalposts; otherwise, the goalie wins, provided it remains within 3 units of the goal.

You Shall Not Pass (1, MLP). Two Humanoid agents are initialized facing each other. The runner
wins if it reaches the finish line; the blocker wins if it does not.

Sumo Humans (3, LSTM). Two Humanoid agents compete on a round arena. The players’ positions
are randomly initialized. A player wins by remaining standing after their opponent has fallen.?

Sumo Ants (4, LSTM). The same task as Sumo Humans, but with ‘Ant’ quadrupedal robot bodies.
We use this task in Section 5.2 to investigate the importance of dimensionality to this attack method.

4.2 METHODS EVALUATED

Following the RL formulation in Section 3, we train an adversarial policy to maximize Equation 1
using Proximal Policy Optimization (PPO; Schulman et al., 2017). We give a sparse reward at the end
of the episode, positive when the adversary wins the game and negative when it loses or ties. Bansal
et al. (2018a) trained the victim policies using a similar reward, with an additional dense component
at the start of training. We train for 20 million timesteps using the PPO implementation from Stable
Baselines (Hill et al., 2019). The hyperparameters were selected through a combination of manual
tuning and a random search of 100 samples; see Section A in the appendix for details. We compare
our methods to three baselines: a policy Rand taking random actions; a lifeless policy Zero that
exerts zero control; and all pre-trained policies Zoo from Bansal et al. (2018a).

4.3 RESULTS

Quantitative Evaluation We find the adversarial policies reliably win against most victim policies,
and outperform the pre-trained Zoo baseline for a majority of environments and victims. We report

Bansal et al. (2018a) consider the episode to end in a tie if a player falls before it is touched by an opponent.
Our win condition allows for attacks that indirectly modify observations without physical contact.
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Figure 3: Win rates while training adversary Adv against the median victim in each environment
(based on the difference between the win rate for Adv and Zoo). The adversary outperforms the
Zoo baseline against the median victim in Kick and Defend and You Shall Not Pass, and is compet-
itive on Sumo Humans. For full results, see figure 4 below or figure C.1 in the supplementary material.

Key: The solid line shows the median win rate for Adv across 5 random seeds, with the
shaded region representing the minimum and maximum. The win rate is smoothed with a rolling
average over 100 000 timesteps. Baselines are shown as horizontal dashed lines. Agents Rand and
Zero take random and zero actions respectively. The Zoo baseline is whichever ZooM (Sumo) or
ZooOM (other environments) agent achieves the highest win rate. The victim is ZooN (Sumo) or
ZooVN (other environments), where N is given in the title above each figure.

the win rate over time against the median victim in each environment in Figure 3, with full results in
Figure C.1 in the supplementary material. Win rates against all victims are summarized in Figure 4.

Qualitative Evaluation The adversarial policies beat the victim not by performing the intended task
(e.g. blocking a goal), but rather by exploiting weaknesses in the victim’s policy. This effect is best
seen by watching the videos at https://adversarialpolicies.github.io/. In Kick
and Defend and You Shall Not Pass, the adversarial policy never stands up. The adversary instead
wins by positioning their body to induce adversarial observations that cause the victim’s policy to
take poor actions. A robust victim could easily win, a result we demonstrate in Section 5.1.

This flavor of attacks is impossible in Sumo Humans, since the adversarial policy immediately loses if
it falls over. Faced with this control constraint, the adversarial policy learns a more high-level strategy:
it kneels in the center in a stable position. Surprisingly, this is very effective against victim 1, which
in 88% of cases falls over attempting to tackle the adversary. However, it proves less effective against
victims 2 and 3, achieving only a 62% and 45% win rate, below Zoo baselines. We further explore
the importance of the number of dimensions the adversary can safely manipulate in Section 5.2.

Distribution Shift One might wonder if the adversarial policies win because they are outside the
training distribution of the victim. To test this, we evaluate victims against two simple off-distribution
baselines: a random policy Rand (green) and a lifeless policy Zero (red). These baselines win as
often as 30% to 50% in Kick and Defend, but less than 1% of the time in Sumo and You Shall Not
Pass. This is well below the performance of our adversarial policies. We conclude that most victim
policies are robust to off-distribution observations that are not adversarially optimized.

5 UNDERSTANDING ADVERSARIAL POLICIES

In the previous section we demonstrated adversarial policies exist for victims in a range of competitive
simulated robotics environments. In this section, we focus on understanding why these policies exist.
Specifically, we establish that adversarial policies manipulate the victim through their body position;
that victims are more vulnerable to adversarial policies in high-dimensional environments; and that
activations of the victim’s policy network differ substantially when playing an adversarial opponent.
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Figure 4: Percentage of games won by opponent (out of 1000), the maximal cell in each row is in red.
Key: Agents ZooYN are pre-trained policies from Bansal et al. (2018a), where Y € {‘V’,*O’, "}
denotes the agent plays as (V)ictim, (O)pponent or either side, and NV is a random seed. Opponents
AdvN are the best adversarial policy of 5 seeds trained against the corresponding Zoo [V]N. Agents
Rand and Zero are baseline agents taking random and zero actions respectively. Defended victims
ZooXYN, where X € {‘S’',‘D’,*M’}, are derived from ZooYN by fine-tuning against a (S)ingle
opponent AdvN, (D)ual opponents AdvN and Zoo [O]N, or by (M)asking the observations.
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(a) Gaussian Mixture Model (GMM): likelihood the
activations of a victim’s policy network are “normal”.
We collect activations for 20, 000 timesteps of vic-
tim Zoo [V]1 playing against each opponent. We
fit a 20-component GMM to activations induced by
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(b) t-SNE activations of Kick and Defend victim
ZooV2 playing against different opponents. Model fit-
ted with a perplexity of 250 to activations from 5000
timesteps against each opponent. See Figures C.3
and C.4 in the supplementary results for visualizations
of other environments and victims.

Figure 5: Analysis of activations of the victim’s policy network. Both figures show the adversary
Adv induces off-distribution activations. Key: legends specify opponent the victim played against.
Adv is the best adversary trained against the victim, and Rand is a policy taking random actions.
Zoo*N corresponds to ZooN (Sumo) or ZooON (otherwise). Zoox1T and Zoox 1V are the train
and validation datasets, drawn from Zoo1 (Sumo) or ZooO1 (otherwise).
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5.1 MASKED POLICIES

We have previously shown that adversarial policies are able to reliably win against victims. In
this section, we demonstrate that they win by taking actions to induce natural observations that are
adversarial to the victim, and not by physically interfering with the victim. To test this, we introduce a
‘masked’ victim (labeled ZooMN or ZooMVN) that is the same as the normal victim ZooN or ZooVN,
except the observation of the adversary’s position is set to a static value corresponding to a typical
initial position. We use the same adversarial policy against the normal and masked victim.

One would expect it to be beneficial to be able to see your opponent. Indeed, the masked victims
do worse than a normal victim when playing normal opponents. For example, Figure 4b shows that
in You Shall Not Pass the normal opponent ZooO1 wins 78% of the time against the masked victim
ZooMV1 but only 47% of the time against the normal victim ZooV1. However, the relationship is
reversed when playing an adversary. The normal victim ZooV1 loses 86% of the time to adversary
Adv1 whereas the masked victim ZooMV1 wins 99% of the time. This pattern is particularly clear in
You Shall Not Pass, but the trend is similar in other environments.

This result is surprising as it implies highly non-transitive relationships may exist between policies
even in games that seem to be transitive. A game is said to be transitive if policies can be ranked such
that higher-ranked policies beat lower-ranked policies. Prima facie, the games in this paper seem
transitive: professional human soccer players and sumo wrestlers can reliably beat amateurs. Despite
this, there is a non-transitive relationship between adversarial policies, victims and masked victims.
Consequently, we urge caution when using methods such as self-play that assume transitivity, and
would recommend more general methods where practical (Balduzzi et al., 2019; Brown et al., 2019).

Our findings also suggest a trade-off in the size of the observation space. In benign environments,
allowing more observation of the environment increases performance. However, this also makes the
agent more vulnerable to adversaries. This is in contrast to an idealized Bayesian agent, where the
value of information is always non-negative (Good, 1967). In the following section, we investigate
further the connection between vulnerability to attack and the size of the observation space.

5.2 DIMENSIONALITY

A variety of work has concluded that classifiers are more vulnerable to adversarial examples on high-
dimensional inputs (Gilmer et al., 2018b; Khoury and Hadfield-Menell, 2018; Shafahi et al., 2019).
We hypothesize a similar result for RL policies: the greater the dimensionality of the component P
of the observation space under control of the adversary, the more vulnerable the victim is to attack.
We test this hypothesis in the Sumo environment, varying whether the agents are Ants or Humanoids.
The results in Figures 4c and 4d support the hypothesis. The adversary has a much lower win-rate
in the low-dimensional Sumo Ants (dim P = 15) environment than in the higher dimensional Sumo
Humans (dim P = 24) environment, where P is the position of the adversary’s joints.

5.3 VICTIM ACTIVATIONS

In Section 5.1 we showed that adversarial policies win by creating natural observations that are
adversarial to the victim. In this section, we seek to better understand why these observations are
adversarial. We record activations from each victim’s policy network playing a range of opponents,
and analyze these using a Gaussian Mixture Model (GMM) and a t-SNE visualization. See Section B
in the supplementary material for details of training and hyperparameters.

We fit a GMM on activations Zoo* 1T collected playing against a normal opponent, Zool or
ZooV1, holding out Zoo 1V for validation. Figure 5a shows that the adversarial policy Adv induces
activations with the lowest log-likelihood, with random baseline Rand only slightly more probable.
Normal opponents Zoo*2 and Zoo*3 induce activations with almost as high likelihood as the
validation set Zoo 1V, except in Sumo Humans where they are as unlikely as Rand.

We plot a t-SNE visualization of the activations of Kick and Defend victim ZooV2 in Figure 5b. As
expected from the density model results, there is a clear separation between between Adv, Rand and
the normal opponent Zoo02. Intriguingly, Adv induces activations more widely dispersed than the
random policy Rand, which in turn are more widely dispersed than Zoo0O2. We report on the full set
of victim policies in Figures C.3 and C.4 in the supplementary material.
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6 DEFENDING AGAINST ADVERSARIAL POLICIES

The ease with which policies can be attacked highlights the need for effective defenses. A natural
defense is to fine-tune the victim zoo policy against an adversary, which we term single training. We
also investigate dual training, randomly picking either an adversary or a zoo policy at the start of each
episode. The training procedure is otherwise the same as for adversaries, described in Section 4.2.

We report on the win rates in You Shall Not Pass in Figure 4b. We find both the single ZooSV1 and
dual ZooDV1 fine-tuned victims are robust to adversary Adv1, with the adversary win rate dropping
from 87% to around 10%. However, ZooSV1 catastrophically forgets how to play against the normal
opponent ZooO1. The dual fine-tuned victim ZooDV1 fares better, with opponent ZooO1 winning
only 57% of the time. However, this is still an increase from ZooO1’s 48% win rate against the
original victim ZooV1. This suggests ZooV1 may use features that are helpful against a normal
opponent but which are easily manipulable (Ilyas et al., 2019).

Although the fine-tuned victims are robust to the original adversarial policy Adv1, they are still
vulnerable to our attack method. New adversaries AdvS1 and AdvD1 trained against ZooSV1 and
ZooDV1 win at equal or greater rates than before, and transfer successfully to the original victim.
However, the new adversaries AdvS1 and AdvD1 are qualitatively different, tripping the victim up
by lying prone on the ground, whereas Adv1 causes ZooV1 to fall without ever touching it.

7 DISCUSSION

Contributions. Our paper makes three key contributions. First, we have proposed a novel threat
model of natural adversarial observations produced by an adversarial policy taking actions in a shared
environment. Second, we demonstrate that adversarial policies exist in a range of zero-sum simulated
robotics games against state-of-the-art victims trained via self-play to be robust to adversaries. Third,
we verify the adversarial policies win by confusing the victim, not by learning a generally strong
policy. Specifically, we find the adversary induces highly off-distribution activations in the victim,
and that victim performance increases when it is blind to the adversary’s position.

Self-play. While it may at first appear unsurprising that a policy trained as an adversary against
another RL policy would be able to exploit it, we believe that this observation is highly significant.
The policies we have attacked were explicitly trained via self-play to be robust. Although it is known
that self-play with deep RL may not converge, or converge only to a local rather than global Nash,
self-play has been used with great success in a number of works focused on playing adversarial games
directly against humans (Silver et al., 2018; OpenAl, 2018). Our work shows that even apparently
strong self-play policies can harbor serious but hard to find failure modes, demonstrating these
theoretical limitations are practically relevant and highlighting the need for careful testing.

Our attack provides some amount of testing by constructively lower-bounding the exploitability of a
victim policy — its performance against its worst-case opponent — by training an adversary. Since
the victim’s win rate declines against our adversarial policy, we can confirm that the victim and its
self-play opponent were not in a global Nash. Notably we expect our attack to succeed even for
policies in a local Nash, as the adversary is trained starting from a random point that is likely outside
the victim’s attractive basin.

Defense. We implemented a simple defense: fine-tuning the victim against the adversary. We find our
attack can be successfully reapplied to beat this defense, suggesting adversarial policies are difficult
to eliminate. However, the defense does appear to protect against attacks that rely on confusing the
victim: the new adversarial policy is forced to instead trip the victim up. We therefore believe that
scaling up this defense is a promising direction for future work. In particular, we envisage a variant
of population-based training where new agents are continually added to the pool to promote diversity,
and agents train against a fixed opponent for a prolonged period of time to avoid local equilibria.

Conclusion. Overall, we are excited about the implications the adversarial policy model has for
the robustness, security and understanding of deep RL policies. Our results show the existence of a
previously unrecognized problem in deep RL, and we hope this work encourages other researchers
to investigate this area further. Videos and other supplementary material are available online at
https://adversarialpolicies.github.io/ and our source code is available on GitHub
athttps://github.com/HumanCompatibleAI/adversarial-policies.



Published as a conference paper at ICLR 2020

ACKNOWLEDGMENTS

We thank Jakob Foerster, Matthew Rahtz, Dylan Hadfield-Menell, Catherine Olsson, Jan Leike, Rohin
Shah, Victoria Krakovna, Daniel Filan, Steven Wang, Dawn Song, Sam Toyer and Dan Hendrycks for
their suggestion and helpful feedback on earlier drafts of this paper. We thank Chris Northwood for
assistance developing the website accompanying this paper. We are also grateful to our anonymous
reviewers for valuable feedback and encouragement to explore defenses in this paper.

REFERENCES

J. Andrew Bagnell, Andrew Y. Ng, and Jeff G. Schneider. Solving uncertain Markov decision
processes. Technical Report CMU-RI-TR-01-25, August 2001.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech M. Czarnecki, Julien Pérolat, Max Jader-
berg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. arXiv:1901.08106v1

[cs.LG], 2019.

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent com-
plexity via multi-agent competition. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018a.

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Source code
and model weights for emergent complexity via multi-agent competition, 2018b. URL https:
//github.com/openai/multiagent—competition.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. In Advances in Neural Information Processing Systems (NeurIPS), pages 2494-2504.
2018.

Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret mini-
mization. In Proceedings of the International Conference on Machine Learning (ICML), 2019.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA:
An open urban driving simulator. In Proceedings of the Conference on Robot Learning (CoRL),
volume 78, pages 1-16, 2017.

John Doyle, James A. Primbs, Benjamin Shapiro, and Vesna Nevisti¢. Nonlinear games: examples
and counterexamples. In Proceedings of IEEE Conference on Decision and Control (CDC),
volume 4, pages 3915-3920, 1996.

Shromona Ghosh, Felix Berkenkamp, Gireeja Ranade, Shaz Qadeer, and Ashish Kapoor. Verifying
controllers against adversarial examples with Bayesian optimization. In IEEE International
Conference on Robotics and Automation (ICRA), pages 7306-7313, 2018.

Justin Gilmer, Ryan P. Adams, Ian Goodfellow, David Andersen, and George E. Dahl. Motivating the
rules of the game for adversarial example research. arXiv:1807.06732v2 [cs.LG], 2018a.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin Wattenberg,
and Ian Goodfellow. Adversarial spheres. arXiv:1801.02774v3 [cs.CV], 2018b.

I.J. Good. On the principle of total evidence. The British Journal for the Philosophy of Science, 17
(4):319-321, 1967.

Ian Goodfellow, Nicolas Papernot, Sandy Huang, Yan Duan, Pieter Abbeel, and Jack Clark.
Attacking machine learning with adversarial examples. https://openai.com/blog/
adversarial-example—-research/, 2017.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, and Yuhuai Wu. Stable Baselines. https://github.com/
hill-a/stable-baselines, 2019.

Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv:1702.02284v1 [cs.LG], 2017.



Published as a conference paper at ICLR 2020

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. arXiv:1905.02175v4 [stat. ML], 2019.

Marc Khoury and Dylan Hadfield-Menell. On the geometry of adversarial examples.
arXiv:1811.00525v1 [cs.LG], 2018.

Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. arXiv:1705.06452v1
[stat. ML], 2017.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. In Advances in Neural Information Processing Systems (NeurlPS), pages 4190-4203,
2017.

Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal? End-to-end
learning of negotiation dialogues. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2017.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. Tactics
of adversarial attack on deep reinforcement learning agents. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 3756-3762, 2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research (JMLR), 9(Nov):2579-2605, 2008.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially robust
policy learning: Active construction of physically-plausible perturbations. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3932-3939,
2017.

Laura Noonan. JPMorgan develops robot to execute trades. Financial Times, July 2017.
OpenAl. OpenAl Five. https://blog.openai.com/openai-five/, 2018.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Ro-
bust deep reinforcement learning with adversarial attacks. In Proceedings of the International
Conference on Autonomous Agents and MultiAgent System (AAMAS), pages 2040-2042, 2018.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In Proceedings of the International Conference on Machine Learning (ICML),
volume 70, pages 2817-2826, 2017.

Hadi Ravanbakhsh and Sriram Sankaranarayanan. Robust controller synthesis of switched systems
using counterexample guided framework. In Proceedings of the International Conference on
Embedded Software (EMSOFT), pages 8:1-8:10, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347v2 [cs.LG], 2017.

Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are adversarial
examples inevitable? In Proceedings of the International Conference on Learning Representations

(ICLR), 2019.

Lloyd S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):
1095-1100, 1953.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140-1144, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

10



Published as a conference paper at ICLR 2020

Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust MDPs using function approximation. In
Proceedings of the International Conference on Machine Learning (ICML), pages 1I-181-11-189,
2014.

Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aaron van den Oord. Adversarial risk
and the dangers of evaluating against weak attacks. In Proceedings of the International Conference
on Machine Learning (ICML), volume 80, pages 5025-5034, 2018.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature denoising for
improving adversarial robustness. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

11



Published as a conference paper at ICLR 2020

A TRAINING: HYPERPARAMETERS AND COMPUTATIONAL INFRASTRUCTURE

Parameter Value Search Range Search Distribution
Total Timesteps 20 x 105 [0,40 x 10°] Manual
Batch size 16 384 [2048, 65 536] Log uniform
Number of environments 8 [1,16] Manual
Mini-batches 4 [1,128] Log uniform
Epochs per update 4 [1,11] Uniform
Learning rate 3x107* [1x1075,1x1072] Log uniform
Discount 0.99 — —
Maximum Gradient Norm 0.5 — —

Clip Range 0.2 — —
Advantage Estimation Discount  0.95 — —

Entropy coefficient 0.0 — —

Value Function Loss Coefficient 0.5 — —

Table A.1: Hyperparameters for Proximal Policy Optimization.

Table A.1 specifies the hyperparameters used for training. The number of environments was cho-
sen for performance reasons after observing diminishing returns from using more than 8 parallel
environments. The total timesteps was chosen by inspection after observing diminishing returns to
additional training. The batch size, mini-batches, epochs per update, entropy coefficient and learning
rate were tuned via a random search with 100 samples on two environments, Kick and Defend and
Sumo Humans. All other hyperparameters are the defaults in the PPO2 implementation in Stable
Baselines (Hill et al., 2019).

We repeated the hyperparameter sweep for fine-tuning victim policies for the defense experiments,
but obtained similar results. For simplicity, we therefore chose to use the same hyperparameters
throughout.

We used a mixture of in-house and cloud infrastructure to perform these experiments. It takes around
8 hours to train an adversary for a single victim using 4 cores of an Intel Xeon Platinum 8000
(Skylake) processor.

B ACTIVATION ANALYSIS: T-SNE AND GMM

We collect activations from all feed forward layers of the victim’s policy network. This gives two
64-length vectors, which we concatenate into a single 128-dimension vector for analysis with a
Gaussian Mixture Model and a t-SNE representation.

B.1 T-SNE HYPERPARAMETER SELECTION

We fit models with perplexity 5, 10, 20, 50, 75, 100, 250 and 1000. We chose 250 since qualitatively
it produced the clearest visualization of data with a moderate number of distinct clusters.

B.2 GAUSSIAN MIXTURE MODEL HYPERPARAMETER SELECTION

We fit models with 5, 10, 20, 40 and 80 components with a full (unrestricted) and diagonal covariance
matrix. We used the Bayesian Information Criterion (BIC) and average log-likelihood on a held-
out validation set as criteria for selecting hyperparameters. We found 20 components with a full

covariance matrix achieved the lowest BIC and highest validation log-likelihood in the majority of
environment-victim pairs, and was the runner-up in the remainder.

C FIGURES

Supplementary figures are provided on the subsequent pages.
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Figure C.1: Win rates while training adversary Adv. The adversary exceeds baseline win rates
against most victims in Kick and Defend and You Shall Not Pass, is competitive on Sumo Humans,
but performs poorly in the low-dimensional Sumo Ants environment. Key: The solid line shows the
median win rate for Adv across 5 random seeds, with the shaded region representing the minimum
and maximum. The win rate is smoothed with a rolling average over 100 000 timesteps. Baselines are
shown as horizontal dashed lines. Agents Rand and Zero take random and zero actions respectively.
The Zoo baseline is whichever ZooM (Sumo) or ZooOM (other environments) agent achieves the
highest win rate. The victim is ZooN (Sumo) or ZooVN (other environments), where NV is given in
the title above each figure.
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Figure C.2: Percentage of episodes (out of 1000) won by the opponent, the victim or tied. The
maximal opponent win rate in each row is in red. Victims are on the y-axis and opponents on the z-axis.
Key: Agents ZooYN are pre-trained policies from Bansal et al. (2018a), where Y € {‘V’ ‘O’, '}
denotes the agent plays as (V)ictim, (O)pponent or either side, and N is a random seed. Opponents
AdvN are the best adversarial policy of 5 seeds trained against the corresponding Zoo [V]N. Agents
Rand and Zero are baseline agents taking random and zero actions respectively. Defended victims
ZooXYN, where X € {‘S’',‘D’,*M’}, are derived from ZooYN by fine-tuning against a (S)ingle

opponent AdvN, (D)ual opponents AdvN and Zoo [O]N, or by (M)asking the observations.
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Figure C.3: t-SNE activations of the victim when playing against different opponents. There is a clear
separation between the activations induced by Adv and those of the normal opponent Zoo. Model
fitted with a perplexity of 250 to activations from 5000 timesteps against each opponent. The victim
is ZooN (Sumo) or ZooVN (other environments), where N is given in the figure caption. Opponent
Adv is the best adversary trained against the victim. Opponent Zoo corresponds to ZooN (Sumo) or
ZooON (other environments). See Figure C.4 for activations for a single opponent at a time.

15



Published as a conference paper at ICLR 2020

@® Adversary (Adv) @® Normal (Zoo) @® Random (Rand)

Lot
A

N

Ty

(d) Sumo Ants.

Figure C.4: t-SNE activations of victim Zool (Sumo) or ZooV1 (other environments). The results
are the same as in Figure C.3 but decomposed into individual opponents for clarity. Model fitted
with a perplexity of 250 to activations from 5000 timesteps against each opponent. Opponent Adv
is the best adversary trained against the victim. Opponent Zoo is Zool (Sumo) or ZooO1 (other
environments). See Figure C.3 for results for other victims (one plot per victim).
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