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ADVERSARIAL POLICIES: ATTACKING

DEEP REINFORCEMENT LEARNING

Adam Gleave1 Michael Dennis Cody Wild Neel Kant Sergey Levine Stuart Russell
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ABSTRACT

Deep reinforcement learning (RL) policies are known to be vulnerable to adversar-
ial perturbations to their observations, similar to adversarial examples for classifiers.
However, an attacker is not usually able to directly modify another agent’s observa-
tions. This might lead one to wonder: is it possible to attack an RL agent simply
by choosing an adversarial policy acting in a multi-agent environment so as to
create natural observations that are adversarial? We demonstrate the existence of
adversarial policies in zero-sum games between simulated humanoid robots with
proprioceptive observations, against state-of-the-art victims trained via self-play to
be robust to opponents. The adversarial policies reliably win against the victims but
generate seemingly random and uncoordinated behavior. We find that these policies
are more successful in high-dimensional environments, and induce substantially
different activations in the victim policy network than when the victim plays against
a normal opponent. Fine-tuning protects a victim against a specific adversary, but
the attack method can be successfully reapplied to find a new adversarial policy.
Videos are available at https://adversarialpolicies.github.io/.

1 INTRODUCTION

The discovery of adversarial examples for image classifiers prompted a new field of research into
adversarial attacks and defenses (Szegedy et al., 2014). Recent work has shown that deep RL policies
are also vulnerable to adversarial perturbations of image observations (Huang et al., 2017; Kos and
Song, 2017). However, real-world RL agents inhabit natural environments populated by other agents,
including humans, who can only modify another agent’s observations via their actions. We explore
whether it’s possible to attack a victim policy by building an adversarial policy that takes actions in a
shared environment, inducing natural observations which have adversarial effects on the victim.

RL has been applied in settings as varied as autonomous driving (Dosovitskiy et al., 2017), nego-
tiation (Lewis et al., 2017) and automated trading (Noonan, 2017). In domains such as these, an
attacker cannot usually directly modify the victim policy’s input. For example, in autonomous driving
pedestrians and other drivers can take actions in the world that affect the camera image, but only in a
physically realistic fashion. They cannot add noise to arbitrary pixels, or make a building disappear.
Similarly, in financial trading an attacker can send orders to an exchange which will appear in the
victim’s market data feed, but the attacker cannot modify observations of a third party’s orders.

As a proof of concept, we show the existence of adversarial policies in zero-sum simulated robotics
games with proprioceptive observations (Bansal et al., 2018a). The state-of-the-art victim policies
were trained via self-play to be robust to opponents. We train each adversarial policy using model-free
RL against a fixed black-box victim. We find the adversarial policies reliably beat their victim, despite
training for less than 3% of the timesteps initially used to train the victim policies.

Critically, we find the adversaries win by creating natural observations that are adversarial, and not
by becoming generally strong opponents. Qualitatively, the adversaries fall to the ground in contorted
positions, as illustrated in Figure 1, rather than learning to run, kick or block like normal opponents.
This strategy does not work when the victim is ‘masked’ and cannot see the adversary’s position,
suggesting that the adversary succeeds by manipulating a victim’s observations through its actions.

Having observed these results, we wanted to understand the sensitivity of the attack to the dimen-
sionality of the victim’s observations. We find that victim policies in higher-dimensional Humanoid
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perturbations guiding the victim to a target state. Our work differs from these previous approaches by
using a physically realistic threat model that disallows direct modification of the victim’s observations.

Lanctot et al. (2017) showed agents may become tightly coupled to the agents they were trained
with. Like adversarial policies, this results in seemingly strong polices failing against new opponents.
However, the victims we attack win against a range of opponents, and so are not coupled in this way.

Adversarial training is a common defense to adversarial examples, achieving state-of-the-art robust-
ness in image classification (Xie et al., 2019). Prior work has also applied adversarial training to
improve the robustness of deep RL policies, where the adversary exerts a force vector on the victim
or varies dynamics parameters such as friction (Pinto et al., 2017; Mandlekar et al., 2017; Pattanaik
et al., 2018). Our defense of fine-tuning the victim against the adversary is inspired by this work.

This work follows a rich tradition of worst-case analysis in RL. In robust MDPs, the transition function
is chosen adversarially from an uncertainty set (Bagnell et al., 2001; Tamar et al., 2014). Doyle et al.
(1996) solve the converse problem: finding the set of transition functions for which a policy is optimal.
Methods also exist to verify controllers or find a counterexample to a specification. Bastani et al.
(2018) verify decision trees distilled from RL policies, while Ghosh et al. (2018) test black-box closed-
loop simulations. Ravanbakhsh et al (2016) can even synthesize controllers robust to adversarial
disturbances. Unfortunately, these techniques are only practical in simple environments with low-
dimensional adversarial disturbances. By contrast, while our method lacks formal guarantees, it can
test policies in complex multi-agent tasks and naturally scales with improvements in RL algorithms.

3 FRAMEWORK

We model the victim as playing against an opponent in a two-player Markov game (Shapley, 1953).
Our threat model assumes the attacker can control the opponent, in which case we call the opponent
an adversary. We denote the adversary and victim by subscript α and ν respectively. The game
M = (S, (Aα, Aν), T, (Rα, Rν)) consists of state set S, action sets Aα and Aν , and a joint state
transition function T : S ×Aα ×Aν → ∆(S) where ∆(S) is a probability distribution on S. The
reward function Ri : S ×Aα ×Aν ×S → R for player i ∈ {α, ν} depends on the current state, next
state and both player’s actions. Each player wishes to maximize their (discounted) sum of rewards.

The adversary is allowed unlimited black-box access to actions sampled from πv , but is not given any
white-box information such as weights or activations. We further assume the victim agent follows a
fixed stochastic policy πv , corresponding to the common case of a pre-trained model deployed with
static weights. Note that in safety critical systems, where attacks like these would be most concerning,
it is standard practice to validate a model and then freeze it, so as to ensure that the deployed model
does not develop any new issues due to retraining. Therefore, a fixed victim is a realistic reflection of
what we might see with RL-trained policies in real-world settings, such as with autonomous vehicles.

Since the victim policy πν is held fixed, the two-player Markov game M reduces to a single-player
MDP Mα = (S,Aα, Tα, R

′

α
) that the attacker must solve. The state and action space of the adversary

are the same as in M, while the transition and reward function have the victim policy πν embedded:

Tα (s, aα) = T (s, aα, aν) and R′

α
(s, aα, s

′) = Rα(s, aα, aν , s
′),

where the victim’s action is sampled from the stochastic policy aν ∼ πν(· | s). The goal of the
attacker is to find an adversarial policy πα maximizing the sum of discounted rewards:

∞∑

t=0

γtRα(s
(t), a(t)

α
, s(t+1)), where s(t+1) ∼ Tα(s

(t), a(t)
α
) and aα ∼ πα(· | s

(t)). (1)

Note the MDP’s dynamics Tα will be unknown even if the Markov game’s dynamics T are known
since the victim policy πν is a black-box. Consequently, the attacker must solve an RL problem.

4 FINDING ADVERSARIAL POLICIES

We demonstrate the existence of adversarial policies in zero-sum simulated robotics games. First, we
describe how the victim policies were trained and the environments they operate in. Subsequently, we
provide details of our attack method in these environments, and describe several baselines. Finally,
we present a quantitative and qualitative evaluation of the adversarial policies and baseline opponents.
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(a) Kick and Defend (b) You Shall Not Pass (c) Sumo Humans (d) Sumo Ants

Figure 2: Illustrations of the zero-sum simulated robotics games from Bansal et al. (2018a) we use
for evaluation. Environments are further described in Section 4.1.

4.1 ENVIRONMENTS AND VICTIM POLICIES

We attack victim policies for the zero-sum simulated robotics games created by Bansal et al. (2018a),
illustrated in Figure 2. The victims were trained in pairs via self-play against random old versions of
their opponent, for between 680 and 1360 million timesteps. We use the pre-trained policy weights
released in the “agent zoo” of Bansal et al. (2018b). In symmetric environments, the zoo agents are
labeled ZooN where N is a random seed. In asymmetric environments, they are labeled ZooVN and
ZooON representing the Victim and Opponent agents.

All environments are two-player games in the MuJoCo robotics simulator. Both agents observe the
position, velocity and contact forces of joints in their body, and the position of their opponent’s joints.
The episodes end when a win condition is triggered, or after a time limit, in which case the agents
draw. We evaluate in all environments from Bansal et al. (2018a) except for Run to Goal, which we
omit as the setup is identical to You Shall Not Pass except for the win condition. We describe the
environments below, and specify the number of trained zoo policies and their type (MLP or LSTM):

Kick and Defend (3, LSTM). A soccer penalty shootout between two Humanoid robots. The
positions of the kicker, goalie and ball are randomly initialized. The kicker wins if the ball goes
between the goalposts; otherwise, the goalie wins, provided it remains within 3 units of the goal.

You Shall Not Pass (1, MLP). Two Humanoid agents are initialized facing each other. The runner
wins if it reaches the finish line; the blocker wins if it does not.

Sumo Humans (3, LSTM). Two Humanoid agents compete on a round arena. The players’ positions
are randomly initialized. A player wins by remaining standing after their opponent has fallen.2

Sumo Ants (4, LSTM). The same task as Sumo Humans, but with ‘Ant’ quadrupedal robot bodies.
We use this task in Section 5.2 to investigate the importance of dimensionality to this attack method.

4.2 METHODS EVALUATED

Following the RL formulation in Section 3, we train an adversarial policy to maximize Equation 1
using Proximal Policy Optimization (PPO; Schulman et al., 2017). We give a sparse reward at the end
of the episode, positive when the adversary wins the game and negative when it loses or ties. Bansal
et al. (2018a) trained the victim policies using a similar reward, with an additional dense component
at the start of training. We train for 20 million timesteps using the PPO implementation from Stable
Baselines (Hill et al., 2019). The hyperparameters were selected through a combination of manual
tuning and a random search of 100 samples; see Section A in the appendix for details. We compare
our methods to three baselines: a policy Rand taking random actions; a lifeless policy Zero that
exerts zero control; and all pre-trained policies Zoo* from Bansal et al. (2018a).

4.3 RESULTS

Quantitative Evaluation We find the adversarial policies reliably win against most victim policies,
and outperform the pre-trained Zoo baseline for a majority of environments and victims. We report

2Bansal et al. (2018a) consider the episode to end in a tie if a player falls before it is touched by an opponent.
Our win condition allows for attacks that indirectly modify observations without physical contact.
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5.1 MASKED POLICIES

We have previously shown that adversarial policies are able to reliably win against victims. In
this section, we demonstrate that they win by taking actions to induce natural observations that are
adversarial to the victim, and not by physically interfering with the victim. To test this, we introduce a
‘masked‘ victim (labeled ZooMN or ZooMVN) that is the same as the normal victim ZooN or ZooVN,
except the observation of the adversary’s position is set to a static value corresponding to a typical
initial position. We use the same adversarial policy against the normal and masked victim.

One would expect it to be beneficial to be able to see your opponent. Indeed, the masked victims
do worse than a normal victim when playing normal opponents. For example, Figure 4b shows that
in You Shall Not Pass the normal opponent ZooO1 wins 78% of the time against the masked victim
ZooMV1 but only 47% of the time against the normal victim ZooV1. However, the relationship is
reversed when playing an adversary. The normal victim ZooV1 loses 86% of the time to adversary
Adv1 whereas the masked victim ZooMV1 wins 99% of the time. This pattern is particularly clear in
You Shall Not Pass, but the trend is similar in other environments.

This result is surprising as it implies highly non-transitive relationships may exist between policies
even in games that seem to be transitive. A game is said to be transitive if policies can be ranked such
that higher-ranked policies beat lower-ranked policies. Prima facie, the games in this paper seem
transitive: professional human soccer players and sumo wrestlers can reliably beat amateurs. Despite
this, there is a non-transitive relationship between adversarial policies, victims and masked victims.
Consequently, we urge caution when using methods such as self-play that assume transitivity, and
would recommend more general methods where practical (Balduzzi et al., 2019; Brown et al., 2019).

Our findings also suggest a trade-off in the size of the observation space. In benign environments,
allowing more observation of the environment increases performance. However, this also makes the
agent more vulnerable to adversaries. This is in contrast to an idealized Bayesian agent, where the
value of information is always non-negative (Good, 1967). In the following section, we investigate
further the connection between vulnerability to attack and the size of the observation space.

5.2 DIMENSIONALITY

A variety of work has concluded that classifiers are more vulnerable to adversarial examples on high-
dimensional inputs (Gilmer et al., 2018b; Khoury and Hadfield-Menell, 2018; Shafahi et al., 2019).
We hypothesize a similar result for RL policies: the greater the dimensionality of the component P
of the observation space under control of the adversary, the more vulnerable the victim is to attack.
We test this hypothesis in the Sumo environment, varying whether the agents are Ants or Humanoids.
The results in Figures 4c and 4d support the hypothesis. The adversary has a much lower win-rate
in the low-dimensional Sumo Ants (dimP = 15) environment than in the higher dimensional Sumo
Humans (dimP = 24) environment, where P is the position of the adversary’s joints.

5.3 VICTIM ACTIVATIONS

In Section 5.1 we showed that adversarial policies win by creating natural observations that are
adversarial to the victim. In this section, we seek to better understand why these observations are
adversarial. We record activations from each victim’s policy network playing a range of opponents,
and analyze these using a Gaussian Mixture Model (GMM) and a t-SNE visualization. See Section B
in the supplementary material for details of training and hyperparameters.

We fit a GMM on activations Zoo*1T collected playing against a normal opponent, Zoo1 or
ZooV1, holding out Zoo*1V for validation. Figure 5a shows that the adversarial policy Adv induces
activations with the lowest log-likelihood, with random baseline Rand only slightly more probable.
Normal opponents Zoo*2 and Zoo*3 induce activations with almost as high likelihood as the
validation set Zoo*1V, except in Sumo Humans where they are as unlikely as Rand.

We plot a t-SNE visualization of the activations of Kick and Defend victim ZooV2 in Figure 5b. As
expected from the density model results, there is a clear separation between between Adv, Rand and
the normal opponent ZooO2. Intriguingly, Adv induces activations more widely dispersed than the
random policy Rand, which in turn are more widely dispersed than ZooO2. We report on the full set
of victim policies in Figures C.3 and C.4 in the supplementary material.
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6 DEFENDING AGAINST ADVERSARIAL POLICIES

The ease with which policies can be attacked highlights the need for effective defenses. A natural
defense is to fine-tune the victim zoo policy against an adversary, which we term single training. We
also investigate dual training, randomly picking either an adversary or a zoo policy at the start of each
episode. The training procedure is otherwise the same as for adversaries, described in Section 4.2.

We report on the win rates in You Shall Not Pass in Figure 4b. We find both the single ZooSV1 and
dual ZooDV1 fine-tuned victims are robust to adversary Adv1, with the adversary win rate dropping
from 87% to around 10%. However, ZooSV1 catastrophically forgets how to play against the normal
opponent ZooO1. The dual fine-tuned victim ZooDV1 fares better, with opponent ZooO1 winning
only 57% of the time. However, this is still an increase from ZooO1’s 48% win rate against the
original victim ZooV1. This suggests ZooV1 may use features that are helpful against a normal
opponent but which are easily manipulable (Ilyas et al., 2019).

Although the fine-tuned victims are robust to the original adversarial policy Adv1, they are still
vulnerable to our attack method. New adversaries AdvS1 and AdvD1 trained against ZooSV1 and
ZooDV1 win at equal or greater rates than before, and transfer successfully to the original victim.
However, the new adversaries AdvS1 and AdvD1 are qualitatively different, tripping the victim up
by lying prone on the ground, whereas Adv1 causes ZooV1 to fall without ever touching it.

7 DISCUSSION

Contributions. Our paper makes three key contributions. First, we have proposed a novel threat
model of natural adversarial observations produced by an adversarial policy taking actions in a shared
environment. Second, we demonstrate that adversarial policies exist in a range of zero-sum simulated
robotics games against state-of-the-art victims trained via self-play to be robust to adversaries. Third,
we verify the adversarial policies win by confusing the victim, not by learning a generally strong
policy. Specifically, we find the adversary induces highly off-distribution activations in the victim,
and that victim performance increases when it is blind to the adversary’s position.

Self-play. While it may at first appear unsurprising that a policy trained as an adversary against
another RL policy would be able to exploit it, we believe that this observation is highly significant.
The policies we have attacked were explicitly trained via self-play to be robust. Although it is known
that self-play with deep RL may not converge, or converge only to a local rather than global Nash,
self-play has been used with great success in a number of works focused on playing adversarial games
directly against humans (Silver et al., 2018; OpenAI, 2018). Our work shows that even apparently
strong self-play policies can harbor serious but hard to find failure modes, demonstrating these
theoretical limitations are practically relevant and highlighting the need for careful testing.

Our attack provides some amount of testing by constructively lower-bounding the exploitability of a
victim policy – its performance against its worst-case opponent – by training an adversary. Since
the victim’s win rate declines against our adversarial policy, we can confirm that the victim and its
self-play opponent were not in a global Nash. Notably we expect our attack to succeed even for
policies in a local Nash, as the adversary is trained starting from a random point that is likely outside
the victim’s attractive basin.

Defense. We implemented a simple defense: fine-tuning the victim against the adversary. We find our
attack can be successfully reapplied to beat this defense, suggesting adversarial policies are difficult
to eliminate. However, the defense does appear to protect against attacks that rely on confusing the
victim: the new adversarial policy is forced to instead trip the victim up. We therefore believe that
scaling up this defense is a promising direction for future work. In particular, we envisage a variant
of population-based training where new agents are continually added to the pool to promote diversity,
and agents train against a fixed opponent for a prolonged period of time to avoid local equilibria.

Conclusion. Overall, we are excited about the implications the adversarial policy model has for
the robustness, security and understanding of deep RL policies. Our results show the existence of a
previously unrecognized problem in deep RL, and we hope this work encourages other researchers
to investigate this area further. Videos and other supplementary material are available online at
https://adversarialpolicies.github.io/ and our source code is available on GitHub
at https://github.com/HumanCompatibleAI/adversarial-policies.
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and counterexamples. In Proceedings of IEEE Conference on Decision and Control (CDC),
volume 4, pages 3915–3920, 1996.

Shromona Ghosh, Felix Berkenkamp, Gireeja Ranade, Shaz Qadeer, and Ashish Kapoor. Verifying
controllers against adversarial examples with Bayesian optimization. In IEEE International
Conference on Robotics and Automation (ICRA), pages 7306–7313, 2018.

Justin Gilmer, Ryan P. Adams, Ian Goodfellow, David Andersen, and George E. Dahl. Motivating the
rules of the game for adversarial example research. arXiv:1807.06732v2 [cs.LG], 2018a.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin Wattenberg,
and Ian Goodfellow. Adversarial spheres. arXiv:1801.02774v3 [cs.CV], 2018b.

I.J. Good. On the principle of total evidence. The British Journal for the Philosophy of Science, 17
(4):319–321, 1967.

Ian Goodfellow, Nicolas Papernot, Sandy Huang, Yan Duan, Pieter Abbeel, and Jack Clark.
Attacking machine learning with adversarial examples. https://openai.com/blog/

adversarial-example-research/, 2017.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, and Yuhuai Wu. Stable Baselines. https://github.com/
hill-a/stable-baselines, 2019.

Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv:1702.02284v1 [cs.LG], 2017.

9



Published as a conference paper at ICLR 2020

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. arXiv:1905.02175v4 [stat.ML], 2019.

Marc Khoury and Dylan Hadfield-Menell. On the geometry of adversarial examples.
arXiv:1811.00525v1 [cs.LG], 2018.

Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. arXiv:1705.06452v1
[stat.ML], 2017.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. In Advances in Neural Information Processing Systems (NeurIPS), pages 4190–4203,
2017.

Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal? End-to-end
learning of negotiation dialogues. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2017.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. Tactics
of adversarial attack on deep reinforcement learning agents. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 3756–3762, 2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research (JMLR), 9(Nov):2579–2605, 2008.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially robust
policy learning: Active construction of physically-plausible perturbations. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3932–3939,
2017.

Laura Noonan. JPMorgan develops robot to execute trades. Financial Times, July 2017.

OpenAI. OpenAI Five. https://blog.openai.com/openai-five/, 2018.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Ro-
bust deep reinforcement learning with adversarial attacks. In Proceedings of the International
Conference on Autonomous Agents and MultiAgent System (AAMAS), pages 2040–2042, 2018.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In Proceedings of the International Conference on Machine Learning (ICML),
volume 70, pages 2817–2826, 2017.

Hadi Ravanbakhsh and Sriram Sankaranarayanan. Robust controller synthesis of switched systems
using counterexample guided framework. In Proceedings of the International Conference on
Embedded Software (EMSOFT), pages 8:1–8:10, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347v2 [cs.LG], 2017.

Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are adversarial
examples inevitable? In Proceedings of the International Conference on Learning Representations
(ICLR), 2019.

Lloyd S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):
1095–1100, 1953.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

10



Published as a conference paper at ICLR 2020

Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust MDPs using function approximation. In
Proceedings of the International Conference on Machine Learning (ICML), pages II–181–II–189,
2014.

Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aaron van den Oord. Adversarial risk
and the dangers of evaluating against weak attacks. In Proceedings of the International Conference
on Machine Learning (ICML), volume 80, pages 5025–5034, 2018.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature denoising for
improving adversarial robustness. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

11



Published as a conference paper at ICLR 2020

A TRAINING: HYPERPARAMETERS AND COMPUTATIONAL INFRASTRUCTURE

Parameter Value Search Range Search Distribution

Total Timesteps 20× 106 [0, 40× 106] Manual
Batch size 16 384 [2048, 65 536] Log uniform
Number of environments 8 [1, 16] Manual
Mini-batches 4 [1, 128] Log uniform
Epochs per update 4 [1, 11] Uniform

Learning rate 3× 10−4 [1× 10−5, 1× 10−2] Log uniform
Discount 0.99 — —
Maximum Gradient Norm 0.5 — —
Clip Range 0.2 — —
Advantage Estimation Discount 0.95 — —
Entropy coefficient 0.0 — —
Value Function Loss Coefficient 0.5 — —

Table A.1: Hyperparameters for Proximal Policy Optimization.

Table A.1 specifies the hyperparameters used for training. The number of environments was cho-
sen for performance reasons after observing diminishing returns from using more than 8 parallel
environments. The total timesteps was chosen by inspection after observing diminishing returns to
additional training. The batch size, mini-batches, epochs per update, entropy coefficient and learning
rate were tuned via a random search with 100 samples on two environments, Kick and Defend and
Sumo Humans. All other hyperparameters are the defaults in the PPO2 implementation in Stable
Baselines (Hill et al., 2019).

We repeated the hyperparameter sweep for fine-tuning victim policies for the defense experiments,
but obtained similar results. For simplicity, we therefore chose to use the same hyperparameters
throughout.

We used a mixture of in-house and cloud infrastructure to perform these experiments. It takes around
8 hours to train an adversary for a single victim using 4 cores of an Intel Xeon Platinum 8000
(Skylake) processor.

B ACTIVATION ANALYSIS: T-SNE AND GMM

We collect activations from all feed forward layers of the victim’s policy network. This gives two
64-length vectors, which we concatenate into a single 128-dimension vector for analysis with a
Gaussian Mixture Model and a t-SNE representation.

B.1 T-SNE HYPERPARAMETER SELECTION

We fit models with perplexity 5, 10, 20, 50, 75, 100, 250 and 1000. We chose 250 since qualitatively
it produced the clearest visualization of data with a moderate number of distinct clusters.

B.2 GAUSSIAN MIXTURE MODEL HYPERPARAMETER SELECTION

We fit models with 5, 10, 20, 40 and 80 components with a full (unrestricted) and diagonal covariance
matrix. We used the Bayesian Information Criterion (BIC) and average log-likelihood on a held-
out validation set as criteria for selecting hyperparameters. We found 20 components with a full
covariance matrix achieved the lowest BIC and highest validation log-likelihood in the majority of
environment-victim pairs, and was the runner-up in the remainder.

C FIGURES

Supplementary figures are provided on the subsequent pages.
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