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Abstract

For many tasks, the reward function is too complex to be specified procedurally, and
must instead be learned from user data. Prior work has evaluated learned reward
functions by examining rollouts from a policy optimized for the learned reward.
However, this method cannot distinguish between the learned reward function
failing to reflect user preferences, and the reinforcement learning algorithm failing
to optimize the learned reward. Moreover, the rollout method is highly sensitive to
details of the environment the learned reward is evaluated in, which often differ
in the deployment environment. To address these problems, we introduce the
Equivalent-Policy Invariant Comparison (EPIC) distance to quantify the difference
between two reward functions directly, without training a policy. We prove EPIC is
invariant on an equivalence class of reward functions that always induce the same
optimal policy. Furthermore, we find EPIC can be precisely approximated and is
more robust than baselines to the choice of visitation distribution. Finally, we find
that the EPIC distance of learned reward functions to the ground-truth reward is
predictive of the success of training a policy, even in different transition dynamics.

1 Introduction

Reinforcement learning (RL) has reached or surpassed human performance in many domains with
clearly-defined reward functions, such as games [26; 19; 28] and narrowly-scoped robotic manip-
ulation tasks [20]. Unfortunately, the reward functions for most real-world tasks are difficult or
impossible to procedurally specify. Even a task as simple as peg insertion from pixels has a non-trivial
reward function that must usually be learned [27, [V.A]. Most real-world tasks have far more complex
reward functions than this. In particular, tasks involving human interaction depend on complex and
user-dependent preferences. These challenges have inspired work on learning a reward function,
whether from demonstrations [17; 23; 31; 9; 4], preferences [1; 30; 7; 24; 32] or both [15; 5].

Prior work usually evaluates the learned reward function R using the “rollout method”: training
a policy mp, to optimize R and then examining rollouts from 7. Unfortunately, this method is
computationally expensive because it requires us to solve an RL problem. Furthermore, the rollout
method produces false negatives when the reward R matches user preferences, but the RL algorithm
fails to maximize R. The rollout method also produces false positives: of the many reward functions
inducing the desired rollout in a given environment, only a small subset align with the user’s
preferences. If the initial state distribution or transition dynamics change, misaligned rewards may
induce undesirable policies.

For example, suppose a user likes apricots, tolerates plums and abhors durians. A reward function
that prefers apricots to durians to plums induces the correct apricot-buying behavior at training time.
But if the robot is shopping during an apricot shortage, it would buy a fruit the user hates: durians. A
careful evaluation of the learned reward function before deployment should catch this error.
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Table 1: Summary of the desiderata satisfied by each reward function distance. Key — the distance is:
a pseudometric (section 3); invariant to potential shaping [18] and positive rescaling (section 3); a
computationally efficient approximation achieving low error (section 6.1); predictive of the similarity
of the trained policies (section 6.2); and robust to the choice of visitation distribution (section 6.3).

Distance Pseudometric Invariant Efficient Predictive Robust

EPIC v v v v v
NPEC X v X v/ X
ERC 4 X 4 4 X

Reinforcement learning is founded on the observation that it is usually easier and more robust to
specify a reward function, rather than a policy maximizing that reward function. Applying this insight
to reward function analysis, we develop methods to compare reward functions directly, without
training a policy. We summarize our desiderata for reward function distances in Table 1.

We introduce the Equivalent-Policy Invariant Comparison (EPIC) pseudometric that meets all five
desiderata. EPIC (section 4) canonicalizes the reward functions’ potential-based shaping, then
computes the correlation between the canonical rewards over a visitation distribution D of transitions.
For comparison, we also propose two baselines (section 5), Episode Return Correlation (ERC) and
Nearest Point in Equivalence Class (NPEC), which partially satisfy the desiderata.

EPIC works best when D has support on all realistic transitions. In our experiments, we achieve
this by using uninformative priors, such as a uniform distribution over transitions. Moreover, we
find EPIC is robust to the exact choice of distribution D, producing similar results across a range of
distributions, whereas ERC and especially NPEC are highly sensitive to the choice of D (section 6.3).

Reward learning algorithms are typically benchmarked on tasks with a known ground-truth reward
function R. When using the rollout method, it is common to report the regret: how much less true
reward I is obtained by a policy 7z, optimized for the learned reward R versus a policy 7 optimized
for R. We find learned reward functions with low EPIC distance to the true reward R induce policies
with low regret in both the training and an unseen test environment (section 6.2). Reward functions
with high EPIC distance fail in the test environment but sometimes work in the training environment.
EPIC therefore has a lower false positive rate than the rollout method, making it particularly attractive
in safety-critical applications where reliability is a key design goal.

2 Related work

There exists a variety of methods to learn reward functions. One prominent family is inverse
reinforcement learning (IRL; 17), which infers a reward function from demonstrations. The IRL
problem is inherently underconstrained: many different reward functions can lead to the same
demonstrations. Bayesian IRL [23] handles this ambiguity by inferring a posterior over reward
functions. By contrast, Maximum Entropy IRL [31] selects the highest entropy reward function
consistent with the demonstrations; this method has scaled to high-dimensional environments [8; 9].

An alternative approach is to learn from preference comparisons between two trajectories [1; 30; 7; 24].
T-REX [5] is a hybrid approach, learning from a ranked set of demonstrations. More directly, Cabi
et al. [6] learn from “‘sketches” of cumulative reward over an episode.

To the best of our knowledge, there is no prior work that focuses on evaluating reward functions
directly. The most closely related work is Ng et al. [18], identifying reward transformations guaranteed
not to change the optimal policy. However, a variety of ad-hoc methods have been developed to
evaluate reward functions. The rollout method — evaluating rollouts of a policy trained on the learned
reward — is evident in the earliest work on IRL [17]. Fu et al. [9] refined the rollout method by testing
on a transfer environment, inspiring our experiment in section 6.2. Recent work has compared reward
functions by scatterplotting returns [15; 5], inspiring our ERC baseline (section 5.1).



3 Background

This section introduces material needed for the distances defined in subsequent sections. We start
by defining a distance metric, then introduce the Markov Decision Process (MDP) formalism, and
finally describe when reward functions induce the same optimal policy in any compatible MDP.

Definition 3.1. Let X be a setand d : X x X — [0,00) a function. d is a premetric if d(x,z) =0
forall x € X. dis a pseudometric if, furthermore, for all x,y,z € X, d(x,y) = d(y,z) and
d(z, z) < d(z,y) +d(y, 2). dis a metric if, furthermore, forall x,y € X, d(z,y) =0 <= z =1y.

We wish for d(R4, Rp) = 0 when reward functions R4 and Ry are in the same equivalence class,
even if R4 # Rp. This is forbidden in a metric but permitted in a pseudometric, while retaining
other guarantees such as symmetry and triangle inequality that a metric provides. Accordingly, a
pseudometric is usually the best choice for a distance d over reward functions.

Definition 3.2. A Markov Decision Process (MDP) M = (S, A,v,u, T, R) consists of a set of
states S and a set of actions A; a discount factor vy € [0,1]; an initial state distribution u(s); a
transition distribution T (s' | s, a) specifying the probability of transitioning to s' from s after taking
action a; and a reward function R(s, a, s') specifying the reward upon taking action a in state s and
transitioning fo state s'.

A trajectory T consists of a sequence of states and actions, 7 = (sg, ag, $1,a1, - - ), where each
s; € Sand a; € A. The return on a trajectory is defined as the sum of discounted rewards,

g(T;R) = thio vt R(s¢, as, st41), where the length of the trajectory |7| may be infinite.

In the following, we assume a discounted (y < 1) infinite-horizon MDP. The results can be generalized
to undiscounted (v = 1) MDPs subject to regularity conditions needed for convergence.

A stochastic policy 7(a | s) assigns probabilities to taking action a € A in state s € S. The objective
of an MDP is to find a policy 7 that maximizes the expected return, G(m) = E, () [¢(7; R)], where
7(7) is a trajectory generated by sampling the initial state so from p, each action a; from the policy
m(as | s¢) and successor states s;41 from the transition distribution 7 (s¢11 | S¢,at). An MDP M
has a set of optimal policies 7* (/) that maximize the expected return, 7* (M) = arg max, G(r).

In this paper, we consider the setting where we only have access to an MDP\R, M~ = (S, A, v, u, T).
The unknown reward function R must be learned from human data. Typically, only the state space
S, action space A and discount «y are known exactly, with the initial state x and transition dynamics
T only observable from interacting with the environment M ~. In the following, we describe an
equivalence class whose members are guaranteed to have the same set of optimal policies in any
MDP\R M~ with fixed S, A and ~ (allowing the unknown 7~ and p to take arbitrary values).
Definition 3.3. A potential shaping reward is defined as R(s,a,s’) = v®(s') — ®(s), given a
potential ® : S — R and where ~y is the MDP discount rate.

Definition 3.4 (Reward Equivalence). We define two bounded reward functions R4 and Rp to be
equivalent, R4 = Rp, for afixed (S, A, ) if and only if there exists a constant X\ > 0 and a bounded
potential function ® : S — R such that for all s,s' € S and a € A:

Rp(s,a,s") = ARa(s,a,s’) +y®(s") — ®(s).

Note R4 — Rp = Zero (where Zero is the all-zero reward) if and only if R4 = Rp with A = 1.
Proposition 3.5. The binary relation = is an equivalence relation. Let R4, Rg, R : SXAXS — R
be bounded reward functions. Then = is reflexive, R4 = R4; symmetric, R4 = Rp implies
Rp = Ra; and transitive, (R4 = Rp) A (R = Rc¢) implies R4 = Rc.

Proof.  See section A.3.1 in supplementary material. O

The expected return of potential shaping v®(s’) — ®(s) on a trajectory segment (sq, - - , S7) is
YT ®(s7) — ®(sg). The first term 47 ®(sy) — 0 as T — oo, while the second term ®(sq) only
depends on the initial state, and so potential shaping does not change the set of optimal policies [18].

Scaling a reward function by a positive factor A > 0 scales the expected return of all trajectories by
A, leaving the set of optimal policies unchanged. The set of optimal policies is also invariant to a

constant shift ¢ € R of the reward, however this can already be obtained by shifting ® by Wfl g

"Note constant shifts in the reward of an undiscounted MDP would cause the value function to diverge.
Fortunately, the shaping y®(s’) — ®(s) is unchanged by constant shifts to & when v = 1.



If R4 = Rp, for a fixed (S,.A,7), then for any MDP\R M~ = (S, A,v,u,T) we have
7 ((M~,R4)) = n* ((M—,Rp)), where (M ~, R) denotes the MDP specified by M~ with re-
ward function R. In other words, R4 and Rp induce the same optimal policies for all initial state
distributions p and transition dynamics 7.

4 Comparing reward functions with EPIC

In this section we introduce the Equivalent-Policy Invariant Comparison (EPIC) pseudometric.
This novel distance canonicalizes the reward functions’ potential-based shaping, then compares
the canonical representatives using Pearson distance, which is invariant to scale. Together, this
construction makes EPIC invariant on reward equivalence classes. See section A.3.2 for proofs.

We define the canonically shaped reward Cpg p, (R) as an expectation over some arbitrary distri-
butions Dgs and D 4 over states S and actions A respectively. This construction means Cpg p, (R)
only depends on (S, .A,v), and not on the initial state distribution  or transition dynamics 7. In
particular, no environment interaction is required to compute Cpg p , (R).

Definition 4.1 (Canonically Shaped Reward). Let R : S x A X § — R be a reward function. Given
distributions Dg and D 4 over states S and actions A respectively, let S and S’ be random variables
independently sampled from Dg and A sampled from D 4. We define the canonically shaped R to be:

Cpspa (R)(s,a,s") = R(s,a,s") + E[yR(s', A, S") — R(s, A, S") —vR(S, A, 5")] .

Informally, if R’ is shaped by potential @, then increasing ®(s’) increases R’ (s, a, s") by v®(s’) but
decreases E [YR/(s', A, S")] by v®(s’), canceling. Similarly increasing ®(s) decreases R/ (s, a, s’)
but increases E [R/(s, A, .S”)]. Finally, E[R(S, A, S’)] centers the reward, canceling constant shift.
Proposition 4.2 (The Canonically Shaped Reward is Invariant to Shaping). Let R: S x A xS - R
be a reward function and ® : S — R a potential function. Let v € [0,1] be a discount rate,
and Ds and D 4 be distributions over states S and A respectively. Let R’ denote R shaped by
®: R'(s,a,s") = R(s,a,s") + y®(s') — ®(s). Then the canonically shaped R’ and R are equal:
Cps, D4 (R) = Cps, D4

Proposition 4.2 holds for arbitrary distributions Ds and D 4. However, distributions with broad
support over realistic states and actions produce more stable canonical transformations. Specifically,
we would like for small changes in the input reward to produce small changes in the canonical
representative. That is, letting € be a small noise term, Cpg p, (R+¢€) =~ Cpg p, (R).

Viewing R as areal vector, Cp; p, (R) is a linear transformation with coefficients given by the joint
distribution for S x A x S’. This transformation is most stable when the coefficients are uniform, so
we favor distributions with broad support in our experiments. However, sometimes it is appropriate
to place less weight on certain states and actions, e.g. if they’re known to be physically unreachable.

So far, we have removed any dependence on potential shaping. We must still normalize the scale of
rewards, and then compare the normalized rewards. The Pearson distance does this in a single step.

Definition 4.3. The Pearson distance between random variables X andY is defined by the expression

D,(X,Y) = %\ /1 — p(X,Y), where p(X,Y) is the Pearson correlation between X and Y .

Lemma 4.4. The Pearson distance D, is a pseudometric.

Lemma 4.5. Let a,b € (0,00), ¢,d € R and X,Y be random variables. Then it follows that
0< Dy(aX +¢bY +d)=D,(X,Y) <1

We can now define EPIC in terms of the Pearson distance between canonically shaped rewards.

Definition 4.6 (Equivalent-Policy Invariant Comparison (EPIC) pseudometric). Let D be some

visitation distribution over transitions s — s'. Let S, A, S’ be random variables jointly sampled from
D. Let Ds and D 4 be some distributions over states S and A respectively. The Equivalent-Policy
Invariant Comparison (EPIC) distance between reward functions R and Rp is the Pearson distance
between their canonically shaped versions over D:

Dgpic(Ra, Rp) = D, (Cps,p, (Ra) (S, A,S"),Cps.p, (RB) (S, A,5)).

Thorem 4.7. The Equivalent-Policy Invariant Comparison distance is a pseudometric.
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Figure 1: Heatmaps of reward functions R(s, a, s’) for a deterministic 3 x 3 gridworld. R(s, stay, s)
is given by the central circle in cell s. R(s,a, ') is given by the triangular wedge in cell s adjacent
to cell s’ in direction a. Optimal action(s) (for infinite horizon, discount v = 0.99) have bold labels
against a hatched background. See figure A.2 for the distances between all reward pairs.

EPIC is invariant to potential shaping and positive affine transformations, and so is invariant on = .

Thorem 4.8. Let Ry, Ry, Rp,R3 : S x A x S — R be reward functions such that Ry = R4 and
RIB = RB. Then O S DEPIC(RTAaRIB) = DEplc(RA,RB) S 1.

As a pedagogical example, we compute the EPIC distance between the reward functions in figure 1
for a deterministic 3 x 3 gridworld. Despite assigning different rewards to each transition, Sparse
and Dense are equivalent and have zero EPIC distance. By contrast, Dgpic (Path, C1iff) = 0.27,
almost as much as Dgpic (Sparse,Cliff) = 0.37. Although Path and C1liff have identical
optimal policies in deterministic settings, the rewards induce very different optimal policies under
stochastic dynamics. See figure A.2 for the distances between all reward pairs.

We choose state and action distributions Dg and D 4 uniform over S and A, and visitation distribution
Dunit uniform over state-action pairs (s, a), with s’ deterministically computed. It is important these
distributions have adequate support. As an extreme example, if Ds and D,,,;r have no support for
a particular state then the reward of that state has no effect on the distance. We can compute EPIC
exactly in a tabular setting, but in general must use a sample-based approximation (section A.1.1).

5 Baseline approaches for comparing reward functions

To the best of our knowledge, EPIC is the first method to quantitatively evaluate reward functions
without training a policy. Given the lack of established methods, we develop two alternatives as
baselines: Episode Return Correlation (ERC) and Nearest Point in Equivalence Class (NPEC).

5.1 Episode Return Correlation (ERC)

The goal of an MDP is to maximize expected episode return, so it is natural to compare reward
functions by the returns they induce. If the return of a reward function R4 is a positive affine
transformation of another reward Rp, then R4 and Rp have the same set of optimal policies. This
suggests using Pearson distance, which is invariant to positive affine transformations.

Definition 5.1 (Episode Return Correlation (ERC) pseudometric). Let D be some distribution over
trajectories. Let E be a random variable sampled from D. The Episode Return Correlation distance
between reward functions R 4 and Rp is the Pearson distance between their episode returns on D,
Derc(Ra, Rp) = Dy(9(E; Ra), 9(E; Rp)).

Prior work has scatterplot the return of R 4 against Rp over episodes [5, figure 3] and fixed-length
segments [15, section D]. ERC is the Pearson distance of such plots, so is a natural baseline. We
approximate ERC by the correlation of episode returns on a finite collection of rollouts.

Under special conditions, ERC is invariant to shaping. Let R be a reward function and & a potential
function, and define the shaped reward R’ (s, a,s’) = R(s,a,s’) +y®(s") — ®(s). The return under
the shaped reward on a trajectory T = (sg, ag, - -+ ,s7) is g(1; R') = g(1; R) +vT®(s7) — ®(s0).



If the initial state so and terminal state s are fixed, then 47 ®(s7) — ®(s() is constant. Since Pearson
distance is invariant to constant shifts, ERC is invariant to shaping in this case. For infinite-horizon
discounted MDPs, only the initial state sy need be fixed, since ’qu)(ST) —0asT — oo.

However, if the initial state sq is stochastic, the ERC distance can take on arbitrary values under
shaping. Let R4 and Rp be two arbitrary reward functions. Suppose that there are at least two
distinct initial states, s 4 and s, with non-zero measure in D. Choose potential ®(s) = 0 everywhere
except ®(s4) = ®(sp) = ¢, and let R/, and R; denote R4 and Rp shaped by ®. As ¢ — oo,
the correlation p (g(E; R/y), g(E; R’3)) tends to one. This is since the relative difference tends to
zero, even though g(E; R'y) and g(E; R/3) continue to have the same absolute difference as c varies.
Consequently, the ERC pseudometric Dgrc (R, Rz) — 0 as ¢ — co. By an analogous argument,
setting ®(s4) = cand ®(sp) = —c gives Dgrc (R4, Rz) — 1 as ¢ — oo.

5.2 Nearest Point in Equivalence Class (NPEC)

NPEC takes the minimum LP? distance between equivalence classes. See section A.3.3 for proofs.

Definition 5.2 (L? distance). Let D be a visitation distribution over transitions s — s' and let p > 1
be a power. The LP distance between reward functions R s and Rp is the LP norm of their difference:

1/p
Dr»(Ra, Rp) = ( E [|Ra(s,a,s") — Rp(s, a, s’)p}> :
Proposition 5.3. (1) Dy» is a metric in LP space, where functions f and g are identified if f = g
almost everywhere on D. (2) It is a pseudometric when f and g are identified if f = g at all points.

The L? distance is sensitive to shaping and positive rescaling that do not change the optimal policy. A
natural solution is to take the distance from the nearest point in the equivalence class. The Unnormal-
ized Nearest Point in Equivalence Class distance is: D{ppc(Ra, Rp) = infg, =g, Dr» (R, Rp).

Note the infimum over both R, = R4 and R'3 = Rp would always be zero, since all equivalence
classes come arbitrarily close to the origin in LP space. However, taking the infimum over only
'w = R4 causes D{pp(Ra, Rp) to be sensitive to the scale of Rp. We fix this by normalizing.

Definition 5.4. The Nearest Point in Equivalence Class (NPEC) premetric is defined by:

U
Dxprc(Ra, Rp) = % when DngC(Zero, Rp) # 0 and 0 otherwise.

Note if D{ppc(Zero, Rp) = 0 then D{ppc(Ra, Rp) = 0 since R4 can be scaled arbitrarily close
to Zero. Since all policies are optimal for R = Zero, we choose Dnprc (R4, Rp) = 0 in this case.

Proposition 5.5. Dypgc is a premetric.

Note that Dnpgc is 7ot in general a pseudometric: see proposition A.1 for a counterexample. It is,
however, bounded and invariant to shaping, similar to EPIC.

Thorem 5.6. Let R4, R4, Rp, R’ : S x A x 8§ — R be reward functions such that R4 = R’
and R = Rp’. Then 0 < Dnpec(RA’, RB/) = DNPEC(RA7 RB) <1

The infimum in D{ppo can be computed exactly in a tabular setting, but in general we must
approximate it using gradient descent. This gives an upper bound for DngC, but the quotient of
upper bounds Dnprc may be too low or too high. See section A.1.2 for details of the approximation.

6 Experiments

We evaluate EPIC and the baselines ERC and NPEC in a variety of continuous control tasks. First, we
compute the distance between hand-designed reward functions, finding EPIC to be the most reliable
distance. Although NPEC produces qualitatively similar results, it has a high degree of approximation
error. Moreover, ERC sometimes suffers from pathological failures, such as assigning a high distance
to equivalent rewards. Second, we find the distance of learned reward functions to a ground-truth
reward predicts the return obtained by policy training, even in an unseen test environment. Finally,
we show EPIC is robust to the exact choice of visitation distribution D, whereas ERC and especially
NPEC are highly sensitive to the choice of D.
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Figure 2: Approximate distances between hand-designed reward functions in PointMass. The
visitation distribution D is sampled from rollouts of a policy 7yi¢ taking actions uniformly at random.
Key: @j quadratic control penalty, g no control penalty. S is Sparse(z) = 1[|z| < 0.05], D is
shaped Dense(z, ') = Sparse(z) + |2'| — |z|, while M is Magnitude(z) = —|z|. Width of 95%
confidence interval (see Figure A.3) is less than 0.02 for EPIC and ERC but as large as 0.3 for NPEC.

6.1 Comparing hand-designed reward functions

We compare procedurally specified reward functions in four tasks. Figure 2 presents results in
the proof-of-concept PointMass task. The results for Gridworld, HalfCheetah and Hopper, in
section A.2.4, are qualitatively similar. In PointMass the agent can accelerate left or right on a line.
The reward functions include (gj) or exclude (g¢) a quadratic penalty ||a||3. The sparse reward (S)
gives a reward of 1 in the region around the goal state. The dense reward (D) is a shaped version of
the sparse reward. The magnitude reward (M) is the negative distance of the agent from the goal.

We find that EPIC correctly identifies the equivalent reward pairs (Sgj-Dgi and Sg¢-Dgt) with
estimated distance < 1 x 10~3. By contrast, NPEC suffers from considerable approximation error:
Dxpec(Dgt, Set) = 0.58. Similarly, ERC’s erroneous handling of shaping when the initial state is
stochastic produces Dggrc (Dgg, Sg¢) = 0.56. In the next section, we compare learned rewards.

6.2 Predicting policy performance from reward distance

We train reward models on the PointMaze task from Fu et al. [9], and evaluate the ground-truth (GT)
return of a policy optimized for the learned reward. Table 2 shows that rewards with low distance
from GT achieve high returns. Rewards with high distance sometimes work but are context sensitive.

PointMaze is a MuJoCo environment where a point mass agent must navigate around a wall to
reach a goal. The train and test variants differ only in the position of the wall. We evaluate four
reward learning algorithms: Regression onto reward labels [target method from 7, section 3.3],
Preference comparisons on trajectories [7], and adversarial IRL with a state-only (AIRL SO) and
state-action (AIRL SA) reward model [9]. All models are trained using synthetic data from an oracle
with access to the ground-truth; see section A.2.2 for details.

Both Regress and Pref achieve very low distances, producing near-expert policy performance
in both the train and test variants. The AIRL SO and AIRL SA models have distances an order of
magnitude greater. The more expressive AIRL SA achieves near-expert performance in train but fails
to transfer to fest. The less-expressive AIRL SO has poor performance in both variants, although the
generator policy (trained simultaneously with the reward) performs reasonably in train.

Due to reward ambiguity, rewards such as AIRL * that are distant from the ground-truth GT can still
produce a good policy. For example, a “memorized” reward function that assigns reward only to
states visited by an expert will induce the expert policy in the train variant. Nonetheless, it will have a
large distance from GT, even if the visitation distribution D only contains transitions from train. This
is appropriate since in fest the “expert” policy produced by this reward runs straight into the wall.

6.3 Sensitivity of reward distance to visitation state distribution

We would like the reward distances to be robust to the exact choice of visitation distribution D. In
Table 2, we report distances calculated under distributions induced by rollouts from three different



Table 2: Distances of reward models from ground-truth (GT), and the mean GT return of policies
optimized from-scratch for the reward model in the train and test variants of PointMaze. We also
report returns for AIRL’s generator policy, jointly trained with the reward. Distances (1000 x scale)
use visitation distribution D from rollouts in the train environment of: a uniform random policy
Tunif, an expert 7% and a Mixture of these policies. Ds and D 4 are computed by marginalizing D.
95% confidence intervals (see Table A.6) are tighter than 1% for EPIC and ERC but are as large as
+50% for NPEC due to high variance across seeds.

Reward 1000 X Dgpic 1000 X DnpeC 1000 X Dgrc Episode Return

Model Tunif 5 MiX 7wy 7 Mix w7 Mix Gen. Train Test
GT 0 0 0 0 0 0 0 0 0 — =599 —6.05
Regress 419 36.5 25.9 0.519 14.9 0.140 4.78 40.9 1.39 —  —6.99 -6.51
Pref 50.5 544 329 2.99 204 1.78 15.0 180 8.15 —  —6.62 —7.02
AIRL SO 488 600 395 684 3550 426 448 382 234 —9.44 —28.5 —11.7
AIRL SA 548 614 390 823 3030 376 506 467 208 —6.69 —6.91 —28.5

policies. myyis takes actions uniformly at random, producing broad support over transitions; 7 is an
expert policy, yielding a distribution concentrated at or near the goal; and Mix is a mixture of the two.

We find EPIC is robust to varying D: the distance varies by less than 2x, and the ranking between
the reward models is the same across visitation distributions, except for Mix favoring AIRL SA over
ATRL S0. By contrast, NPEC is highly sensitive to the choice of D: the distance of Pref varies by
over 500x between myy;r and 7*. ERC lies somewhere in the middle: the distances vary by as much
as 25 x. Overall, EPIC is clearly the least sensitive to choice of D in this environment.

Nonetheless, even with EPIC some care must be taken when choosing D. Typically, D is collected
via rollouts of some exploration policy in an environment. This works well when the deployment
environment has a similar set of reachable states to the rollout environment, even if some details of the
dynamics — such as the position of the wall in PointMaze — differ. However, when the deployment
environment allows a transition (s, a, s’) that is not physically attainable in the rollout environment,
then D will place no support on this transition and the reward R(s, a, s’) can take arbitrary values
without affecting the distance. In general, any black-box method for assessing reward models —
including the rollout method — only has predictive power on transitions that it visits during testing.

7 Discussion

Our novel EPIC distance compares reward functions directly, without training a policy. We have
proved it satisfies the axioms of a pseudometric, and moreover is bounded and invariant to equivalent
rewards. Empirically, we find the EPIC distance between procedurally specified reward functions is
more reliable than the NPEC and ERC baselines.

Furthermore, we find the distance of learned reward functions to the ground-truth reward predicts the
return of policies optimized for the learned reward, in both the frain and unseen test environments.
This is important since it is common for the initial state distribution or transition dynamics to change
between the training environment where the reward function was learned, and the test environment
where the system is deployed [22; 2; 21]. For example, one might learn a reward and policy in
simulation, and then fine-tune the policy in the real world with the learned reward.

An important direction for future work is to evaluate reward models trained on noisy and biased
human data. Such models will have a higher EPIC distance from the ground-truth than models trained
on synthetic data, however some algorithms may be more robust to imperfect feedback than others.

Benchmarks are an important driver of progress in machine learning. Unfortunately, traditional
policy-based metrics do not provide any guarantees as to the fidelity of the learned reward function.
We believe the EPIC distance will be a highly informative addition to the evaluation toolbox, and
would encourage researchers to report EPIC distance in addition to policy-based metrics.



Broader Impact

Reinforcement learning (RL) is used to choose push notifications to send to billions of users [10], and
in the coming years we are likely to see more large-scale deployment of RL systems in interactive
applications. This gives renewed urgency to specifying an appropriate objective for these systems to
optimize. Even with the best of intentions, designers cannot possibly anticipate the desires of all their
users, let alone procedurally specify this. In the absence of better methods, engineers often resort
to proxies such as user engagement. While such metrics are often correlated with user satisfaction,
Goodhart’s law predicts this correlation will break down when used as an optimization objective [12].
This can lead to negative unintended consequences, such as addiction to online platforms.

A natural alternative is to instead learn the reward function from user feedback. This democratizes Al
systems: rather than the designer picking an optimization objective, the users choose how they wish
the Al system to interact with them. The system could even learn a reward function for each user,
and optimize that objective on an individual basis (subject to some global fairness constraints).

However, current reward learning algorithms have considerable limitations. We believe quantifying
differences in reward functions will help improve benchmarking of reward learning algorithms,
spurring algorithmic improvements. Additionally, we anticipate it to be useful as a verification
method prior to deployment of a learned reward model.

The main potential downside we see from our work is if people place too much trust in the reward
distances proposed in this paper. While we are confident the distance between reward functions
will be a highly informative addition to the set of available evaluation metrics, it is intended as a
complement and not a replacement for other forms of testing. In particular, it will continue to be
important to test the trained policy prior to deployment, especially in safety-critical systems. Even if
the learned reward function is correct, there is no guarantee that the policy behaves as desired — for
example, policies often suffer from adversarial examples [14; 11].
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A Supplementary material

A.1 Approximation Procedures

A.1.1 Sample-based approximation for EPIC distance

We approximate EPIC distance (definition 4.6) using a sample-based approach. Specifically, we
sample a batch By of Ny samples from the visitation distribution D, and a batch Bj; of N, samples
from the joint state and action distributions Ds x D 4. We approximate the canonically shaped
rewards (definition 4.1) by taking the mean over B);:

Cpspa (R)(s,a,8") = R(s,a,5') +E[yR(s', A, §') — R(s, A, 5") = 7R(S, A, 5)]

~ R(s,a,s) +$ (e.wyeny (S’ U, )
N1 2 (muweny B8 U, T)

—Nigw Z(m,)eBM Z(m’,u)EBM R(z,u,1’).
We then compute the Pearson distance between the approximate canonically shaped rewards on the
batch of samples By .

A.1.2 Optimization-based approximation for NPEC distance

Dnprc(Ra, Rp) (section 5.2) is defined as the infimum of LP distance over an infinite set of
equivalent reward functions R = R 4. We approximate this using gradient descent on the reward
model:

Ry cw(s,a,s") =exp(V)Ra(s,a,8") + ¢+ 7Py (s") — Py (s),
where v, ¢ € R are scalar weights and w is a vector of weights parameterizing a deep neural network
®,,. The constant ¢ € R is unnecessary if ,, has a bias term, but its inclusion simplifies the
optimization problem.

We optimize v, ¢, w to minimize the mean of the cost J(v, c,w) = D(R, . (s,a,s), Rp(s,a,s’))
on samples (s, a, s’) from a visitation distribution D. Note the mean cost upper bounds the true
NPEC distance since R, ¢, = Ra.

We found empirically that v and c need to be initialized close to their optimal values for gradient
descent to reliably converge. To resolve this problem, we initialize the affine parameters to v <— log A

and c found by:
2

argmin E (ARa(s,a,s’) +c— Rgp(s,a,s))”.
A>0,c€R 5,a,8'~D
We use the active set method of Lawson and Hanson [16] to solve this constrained least-squares
problem. These initial affine parameters minimize the L? distance Dy» (R, c0(s,a,s’), Rp(s,a,s"))

under the metric £(z,y) = (z — y)? with the potential fixed at ®(s) = 0.

A.1.3 Confidence Intervals

We report confidence intervals to help measure the degree of error introduced by the approximation.
Since approximate distances may not be normally distributed, we use bootstrapping to produce a
distribution-free confidence interval. For EPIC and NPEC, we compute independent approximate
distances over different seeds, and then compute a bootstrapped confidence interval on the distances
for each seed. We use 30 seeds for EPIC but only 3 seeds for NPEC due to its greater computational
requirements. In ERC, computing the distance is very cheap, so we instead apply bootstrapping to
the collected episodes, computing the ERC distance for each bootstrapped episode sample.

A.2 Experiments
A.2.1 Hyperparameters for Approximate Distances

Table A.1 summarizes the hyperparameters and distributions used to compute the distances between
reward functions. Most parameters are the same across all environments. We use a visitation
distribution of uniform random transitions Dy,,;¢ in the simple GridWorld environment with known
determinstic dynamics. In other environments, the visitation distribution is sampled from rollouts
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Table A.1: Summary of hyperparameters and distributions used in experiments. The uniform random
visitation distribution D,,;+ samples states and actions uniformly at random, and samples the next
state from the transition dynamics. Random policy 7ry,;¢ takes uniform random actions. The synthetic
expert policy 7* was trained with PPO on the ground-truth reward. Mixture samples actions from
either ;s or 7%, switching between them at each timestep with probability 0.05. Warmstart Size is
the size of the dataset used to compute initialization parameters described in section A.1.2.

Parameter Value In experiment
Random transitions D pir GridWorld
Visitation Distribution D  Rollouts from 7 p;¢ PointMass, HalfCheetah, Hopper
Tunif, 7 and Mixture PointMaze
Bootstrap Samples 10000 All
Discount ~y 0.99 All
EPIC
e N(0,1) standard Gaussian PointMass, HalfCheetah, Hopper
State Distribution Ds Marginalized from D PointMaze
. o U[—1,1] continuous uniform PointMass, HalfCheetah, Hopper
Action Distribution D 4 Marginalized from D PointMaze
Seeds 30 All
Samples Ny 32768 All
Mean Samples Ny, 32768 All
NPEC
Seeds 3 All
Total Timesteps 1 x 106 All
Optimizer Adam All
Learning Rate 1x1072 All
Batch Size 4096 All
Warmstart Size 16 386 All
()2
Loss ¢ Uz.y) = (x—y) Al
ERC
Episodes 131072 All

of a policy. We use a random policy 7if for PointMass, HalfCheetah and Hopper in the hand-
designed reward experiments (section 6.1). In PointMaze, we compare three visitation distributions
(section 6.3) induced by rollouts of my,if, an expert policy 7* and a Mixture of the two policies,
sampling actions from either m,if or 7* and switching between them with probability 0.05 per
timestep.

A.2.2 Training Learned Reward Models

For the experiments on learned reward functions (sections 6.2 and 6.3), we trained reward models
using adversarial inverse reinforcement learning (AIRL; 9), preference comparison [7] and by
regression onto the ground-truth reward [farget method from 7, section 3.3]. For AIRL, we use
an existing open-source implementation [29]. We developed new implementations for preference
comparison and regression, available at — double blind: supplementary material —. We also
use the RL algorithm proximal policy optimization (PPO; 25) on the ground-truth reward to train
expert policies to provide demonstrations for AIRL, and on learned reward models to evaluate their
performance.

For PPO and AIRL we used the default hyperparameters in tables A.2 and A.3, finding them
adequate and so performing no further tuning. For preference comparison we performed a sweep
over batch size, trajectory length and learning rate to decide on the hyperparameters in table A.4.
Total timesteps was selected once diminishing returns were observed in loss curves. The exact value
of the regularization weight was found to be unimportant, largely controlling the scale of the output
at convergence. Finally, for regression we performed a sweep over batch size, learning rate and total
timesteps to decide on the hyperparameters in table A.5. We found batch size and learning rate to
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Table A.2: Hyperparameters for proximal policy optimisation (PPO) [25]. We used the implemen-
tation and default hyperparameters from Hill et al. [13]. PPO was used to train expert policies on
ground-truth reward and to optimize learned reward functions for evaluation.

Parameter Value In environment
Total Timesteps 1 x 108 All

. 16 384 PointMaze
Batch Size 1024 All others
Discount vy 0.99
Entropy Coefficient 0.01
Learning Rate 2.5 x 1074
Value Function Coefficient 0.5

Gradient Clipping Threshold 0.5
Ratio Clipping Thrsehold 0.2

Lambda (GAE) 0.95
Minibatches 4
Optimization Epochs 4
Parallel Environments 8

Table A.3: Hyperparameters for adversarial inverse reinforcement learning (AIRL) used in Wang
et al. [29].

Parameter Value
RL Algorithm PPO [25]
Total Timesteps 102 400
Discount ~ 0.99
Demonstration Timesteps 100000
Generator Batch Size 2048
Discriminator Batch Size 50
Entropy Weight 1.0

Reward Function Architecture MLP, two 32-unit hidden layers
Potential Function Architecture ~MLP, two 32-unit hidden layers

Table A.4: Hyperparameters for preference comparison used in our implementation of Christiano
etal. [7].

Parameter Value Range Tested

Total Timesteps 5 x 109 [1,10 x 10]

Batch Size 10000 [500, 250 000]
Trajectory Length 5 [1,100]

Learning Rate 1x 1072 [1x 10741 x 1071
Discount vy 0.99

Reward Function Architecture MLP, two 32-unit hidden layers

Output L2 Regularization Weight 1 x 10~*

Table A.5: Hyperparameters for regression used in our implementation of Christiano et al. [7, farget
method from section 3.3].

Parameter Value Range Tested

Total Timesteps 10 x 10° [1,20 x 106]

Batch Size 4096 [256, 16 384]
Learning Rate 2 x 1072 [1x1073,1x 107}
Discount vy 0.99

Reward Function Architecture MLP, two 32-unit hidden layers
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be relatively unimportant with many combinations performing well, but regression was found to
converge slowly but steadily requiring a relatively large 10 x 10° timesteps for good performance in
our environments.

All algorithms are trained on synthetic data generated from the ground-truth reward function. AIRL
is provided with a large demonstration dataset of 100 000 timesteps from an expert policy trained
on the ground-truth reward, similar in size to the total number of timesteps AIRL is trained for (see
table A.3). In preference comparison and regression, each batch is sampled afresh from the visitation
distribution specified in table A.1 and labeled according to the ground-truth reward.

A.2.3 Computing infrastructure

Experiments were conducted on a small number of n1-standard-96 Google Cloud Platform VM
instances, with 48 CPU cores on an Intel Skylake processor and 360 GB of RAM. It takes less than a
week of compute on a single n1-standard-96 instance to run all the experiments described in this

paper.
A.2.4 Comparing hand-designed reward functions

We compute distances between hand-designed reward functions in four environments: GridWorld,
PointMass, HalfCheetah and Hopper. The reward functions for GridWorld are described in
Figure A.1, and the distances are reported in Figure A.2. We report the approximate distances and
confidence intervals between reward functions in the other environments in Figures A.3, A.4 and A.S.

We find the (approximate) EPIC distance closely matches our intuitions for similarity between the
reward functions. NPEC often produces similar results to EPIC, but unfortunately is dogged by
optimization error. This is particularly notable in higher-dimensional environments like HalfCheetah
and Hopper, where the NPEC distance often exceeds the theoretical upper bound of 1.0 and the
confidence interval width is frequently larger than 0.2.

By contrast, ERC distance generally has a tight confidence interval, but systematically fails in the
presence of shaping. For example, it confidently assigns large distances between equivalent reward
pairs in PointMass such as Sg¢-Dg¢. However, ERC produces reasonable results in HalfCheetah
and Hopper where rewards are all similarly shaped. In fact, ERC picks up on a detail in Hopper that
EPIC misses: whereas EPIC assigns a distance of around 0.71 between all rewards of different types
(running vs backflipping), ERC assigns lower distances when the rewards are in the same direction
(forward or backward). Given this, ERC may be attractive in some circumstances, especially given
the ease of implementation. However, we would caution against using it in isolation due to the
likelihood of misleading results in the presence of shaping.

A.2.5 Comparing learned reward functions

Previously, we reported the mean approximate distance from a ground-truth reward of four learned
reward models in PointMaze (Table 2). Since these distances are approximate, we report 95% lower
and upper bounds computed via bootstrapping in Table A.6. We also include the relative difference
of the upper and lower bounds from the mean, finding the relative difference to be fairly consistent
across reward models for a given algorithm and visitation distribution pair. The relative difference is
less than 1% for all EPIC and ERC distances. However, NPEC confidence intervals can be as wide as
50%: this is due to the method’s high variance, and the small number of seeds we were able to run
because of the method’s computational expense.
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Figure A.1: Heatmaps of reward functions R(s, a, s) for a 3x 3 deterministic gridworld. R(s, stay, s)
is given by the central circle in cell s. R(s, a, ) is given by the triangular wedge in cell s adjacent
to cell s’ in direction a. Optimal action(s) (for infinite horizon, discount v = 0.99) have bold labels
against a hatched background. See figure A.2 for the distance between all reward pairs.
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(a) EPIC

1.0016 1.0009

1.0213
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-0.2

-0.0

(b) NPEC

Figure A.2: Distances between hand-designed reward functions for the 3 x 3 deterministic Gridworld
environment. See figure A.1 for definitions of each reward. Distances are computed using tabular
algorithms. We do not report confidence intervals since these algorithms are deterministic and exact
up to floating point error.
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Figure A.3: Approximate distances between hand-designed reward functions in PointMass. The
visitation distribution D is sampled from rollouts of a policy 7ryyi¢ taking actions uniformly at random.
Key: g quadratic control penalty, g no control penalty. S is Sparse(z) = 1[|z| < 0.05], D is shaped
Dense(z,z') = Sparse(z) + |2'| — |x|, while M is Magnitude(z) = —|z|. Confidence Interval
(CI): 95% CI computed by bootstraping over 10 000 samples.
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Figure A.4: Approximate distances between hand-designed reward functions in HalfCheetah. The
visitation distribution D is sampled from rollouts of a policy myir taking actions uniformly at random.
Key: £ is areward proportional to the change in center of mass and moving forward is rewarded
when £ to the right, and moving backward is rewarded when }. to the left. gjj quadratic control
penalty, g no control penalty. Confidence Interval (CI): 95% CI computed by bootstraping over

10000 samples.
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Figure A.5: Approximate distances between hand-designed reward functions in Hopper. The
visitation distribution D is sampled from rollouts of a policy 7,y taking actions uniformly at random.
Key: % is areward proportional to the change in center of mass and #y is the backflip reward defined
in Amodei et al. [3, footnote]. Moving forward is rewarded when . or # is to the right, and moving
backward is rewarded when }. or " is to the left. gjj quadratic control penalty, g no control penalty.
Confidence Interval (CI): 95% CI computed by bootstraping over 10 000 samples.
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Table A.6: Approximate distances of learned reward models from the ground-truth (GT). We report
the 95% bootstrapped lower and upper bounds, the mean, and a 95% bound on the relative error
from the mean. Distances (1000x scale) use visitation distribution D from rollouts in the train
environment of: a uniform random policy mpuif, an expert 7 and a Mixture of these policies. Dg
and D 4 are computed by marginalizing D.

(a) 95% lower bound D“°W of approximate distance.

Reward 1000 x DESYW, 1000 x DE@W. 1000 x DEo¥

Model Tunif ™5 MiX 7y 7™ Mix w0 Mix
Regress  41.7 36.4 25.9 0.506 13.3 0.126 4.75 40.7 1.38
Pref 50.2 54.3 32.7 2.80 159 1.76 15.0 179 8.11

AIRL S0 484 599 393 673 2640 417 446 380 232
AIRL SA 544 614 388 804 1630 370 505 465 206

(b) Mean approximate distance D. Results are the same as Table 2.

Reward 1000 X Dgpic 1000 X Dnprc 1000 X Dggrc

Model Tunit 75 Mix  7wgmr 7 Mix  wyne ©F Mix
Regress 419 36.5 25.9 0.519 14.9 0.140 4.78 409 1.39
Pref 50.5 54.4 329 299 204 1.78 15.0 180 8.15

AIRL SO 488 600 395 684 3550 426 448 382 234
AIRL SA 548 614 390 823 3030 376 506 467 208

(¢) 95% upper bound DY of approximate distance.

Reward 1000 x DYE,, 1000 x DYE.. 1000 x DYE_

Model Tunit 7™ Mix  wyne 7 Mix w7 Mix
Regress 422 36.5 26.0 0.535 16.8 0.162 4.80 41.1 1.40
Pref 50.9 54.5 33 3.16 240 1.80 15.1 181 8.19

AIRL SO 492 601 397 694 4420 436 450 384 235
AIRL SA 552 614 392 848 4660 385 008 469 209

(d) Relative 95% confidence interval D?*EY = max (% -1,1— vafgf) in percent. The population mean

is contained within +D®P% of the sample mean in Table A.6b with 95% probability.

Reward DEEL o, DREL o DRBLy,

Model Tunif 7 Mix 7wy 7 Mix 7wy 7 Mix
Regress  0.662 0.0950 0.352 3.04 12.9 16.0 0.589 0.544 0.620
Pref 0.683 0.158 0.411 6.31 21.8 1.41 0.499 0.538 0.481

AIRL SO  0.875 0.115 0.522 1.60 25.8 2.37 0.449 0.504 0.621
AIRL SA  0.654 0.0331 0.397 3.15 53.9 2.34 0.382 0.445 0.540
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A.3 Proofs

A.3.1 Background

Proposition 3.5. The binary relation = is an equivalence relation. Let R4, Rg, Rc : SXAXS — R
be bounded reward functions. Then = is reflexive, R4 = R4; symmetric, R4 = Rp implies
Rp = Ra; and transitive, (Ry = Rp) A (Rp = R¢) implies R4 = Re.

Proof. Ry = Ry since Ra(s,a,s") = ARa(s,a,8") +y®(s") — ®(s) forall s,s' € Sanda € A
for A =1 > 0 and ®(s) = 0, a bounded potential function.

Suppose R4 = Rp. Then there exists some A > 0 and a bounded potential function ® : S — R
such that Rp(s,a,s’) = ARA(s,a,s") +y®(s") — ®(s) forall s, s’ € S and a € A. Rearranging,
we have:

1 —1 —1
Ralsva.s) = SRols,0.) 4 (0] - (500
Since + > 0 and ®'(s) = S ®(s) is a bounded potential function, it follows that R = R 4.

Finally, suppose R4 = Rp and R = R¢. Then there exists some A1, A2 > 0 and bounded potential
functions ®1, P, : S — Rsuch thatforall s, s’ € Sand a € A:

Rp(s,a,s") = MRa(s,a,s") +yP1(s") — P1(s)
Ro(s,a,s") = \aRp(s,a,s") + yPa(s") — ®a(s)

Substituting the expression for Rp into the expression for R¢:
Re(s,a,8") = Ao (M RA(s,a,8") +yP1(s") — @1(s)) + 7Pa(s") — Pa(s)
= MARa(s,a,8) +7(MaP1(s) + Pa(s")) — (Aa®P1(s) + Pa(s))
= ARA(s,a,5") +~y®(s") — ®(s),
where A = A1\ > 0 and ®(s) = Ao®q(s) + Po(s) is bounded. Thus R4 = Re. O

A.3.2 [Equivalent-Policy Invariant Comparison (EPIC) pseudometric

Proposition 4.2 (The Canonically Shaped Reward is Invariant to Shaping). Let R: S x Ax S — R
be a reward function and ® : S — R a potential function. Let v € [0,1] be a discount rate,
and Ds and D 4 be distributions over states S and A respectively. Let R’ denote R shaped by
O: R'(s,a,s") = R(s,a,s") +vP(s") — ®(s). Then the canonically shaped R' and R are equal:
Cps,pa (R/) =Cps, D4 (R)

Proof. Let s,a,s’ € S x A x S. Then by substituting in the definition of R’ and using linearity of
expectations:

Cpsp, (R)(s,a,8) 2 R (s,a,8") +E[yR'(s', A, S") — R'(s,A,5") —vyR/(S, A, 5")]
= (R(s,a,5") +7®(s') — ®(s)) + E [YR(s', 0, 5") + ¥’ ®(5") — 7@ (s")]

—E[R(s,A,5) +7y®(S") — ®(s)] — E [yR(S, A, 5") + v*@(S") — v®(S5)]

= R(s,a,s') + E[yR(s',a,S") — R(s, A, S") —yR(S, A, 5")]
(7‘1’( ) = @(s)) + E[B(s) — 72(s)]
E [y*®(S") —7®(S)] — E [y*®(5") — 72(S)]
= R(s a,s')+E ["yR(s a,S") — R(s,A,S") —vR(S, A, S")]
= Cpepa (R) (s,a,5"),
where the penultimate step uses E[®(S)] = E[®(.5)] since S and S’ are identically distributed. [

Lemma 4.5. Let a,b € (0, oo), c,d € Rand X,Y be random variables. Then it follows that
0<D,(aX +¢,bY +d)=D,(X,Y) <

—
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Proof. D,(aX + ¢,bY + d) = D,(X,Y) immediate from p(X,Y) invariant to positive affine
transformations. Have —1 < p(X,Y) <1,500<1—p(X,Y) <2thus0< D,(X,Y)<1. O

Lemma 4.4. The Pearson distance D,, is a pseudometric.

Proof. For a random variable V, define a standardized (zero mean and variance) version:

o__ V-EV]

E[(v-EV)]

The Pearson correlation coefficient on random variables X and Y is equal to the expected product of
these standardized random variables:

p(X,Y)=E [XY} .
Let X, Y and Z be random variables.

Identity. Have p(X, X) =1,s0 D,(X, X) =0.

Symmetry. Have p(X,Y) = p(Y,X) by commutativity of multiplication, so D,(X,Y) =
D,(Y,X).

Triangle Inequality. For any random variables A, B:
E {(Af;ef] —E[i? - 245+ 5]
=K [212 —24AB + BQ}
—E |4°] +E 52| - 2E [4B]
—2-9E [AB}
= 2(1 - p(A,B))
=4D,(A, B)%.
So:

AD,(X,Z)? =E (XfZA)Q
_E (;z_m?_zﬂ

. (X_y)Q:+]E[(Y_Z)2]+2E[(X—Y) (v-2)]

= 4D,(X,Y)? +4D,(Y, Z)? + SE [(X - Y/) (Y . Z)} .

Since (A, B) = E[AB] is an inner product over R, it follows by the Cauchy-Schwarz inequality that
E[AB] < \/E[A?]E|B?]. So:

D,(X,Z)? < Dy(X,Y)*+ D,(Y, Z2)? + 2D,(X,Y)D,(Y, Z)
= (D,,(X, Y)+ Dp(Ya Z))2 :
Taking the square root of both sides:
Dy(X,2Z) < Dy(X,Y) + Dp(Y, Z),
as required. O

Thorem 4.8. Let R4, Ry, Rp, Rz : S x A x S — R be reward functions such that Ry = R4 and
R;B = RB. Then 0 S DEplc(R;‘, Rjg) = DEPIC(RA7RB) S L

22



Proof. The result follows from D, being a pseudometric. Let R4, Rp and R be reward functions
mapping from transitions S x A x S to real numbers R.

Identity. Have:
Dgpic(Ra,Ra) =D, (Cpgp, (Ra) (S, A,5"),Cpsp, (Ra) (S, A, S"))
0

)

since D, (X, X) = 0.
Symmetry. Have:
DEPIC(Rz‘b RB) = DP (CD&DA (RA) (87 A, S/)v CDS,DA (RB) (87 A, S/))
— D, (Coapa (Ri) (S, A,8),Ce., (Ra) (5,4, 5))
= Dgpic(Rp, Ra),
since D,(X,Y) = D,(Y, X).
Triangle Inequality. Have:
Dgpic(Ra, Re) = D, (Cps,pa (Ra) (S,A,8"),Cpsp, (Re) (S, A4, 5))
< DP (CDS’DA (RA) (Sv A, S/)7 CDS,'DA (RB) (Sv A, S/))
+ D, (Cps,pa (RB) (S, A,5),Cps,pa (Re) (S, 4,5"))
= Dgpic(Ra, Rp) + Deric(R5, Ro),
since D,(X,Z) < D,(X,Y)+ D,(Y, Z). O

A.3.3 Nearest Point in Equivalence Class (NPEC) premetric

Proposition 5.3. (1) Dy is a metric in LP space, where functions f and g are identified if f = g
almost everywhere on D. (2) It is a pseudometric when f and g are identified if { = g at all points.

Proof. (1) Dp» is a metric in the LP space since L” is anorm in the LP space, and d(z,y) = ||z — y/|
is always a metric. (2) As f = ¢ at all points implies f = g almost everywhere, certainly
Dp» (R, R) = 0. Symmetry and triangle inequality do not depend on identity so still hold. O

Proposition 5.5. Dypgc is a premetric.

Proof. Let R4, Rp be bounded reward functionson S x A x § — R.
Respects identity: Dxprc(Ra, Ra) =0

If DI(\JIPEC(Zero, R4) = 0 then Dnprc(Ra, Ra) = 0 as required. Suppose from now on that
Dxprc(Ra, Ra) # 0. It follows from prop 5.3 that Dy»(R4, Ra) = 0. Since X = X, 0is an
upper bound for D{ppc(Ra, Ra). By prop 5.3 Dy» is non-negative, so this is also a lower bound
for Dll\]IPEC(RA’ RA). So Dll\{PEC(RAv RA) = 0 and:

DRprc(Ra; Ra) 0

D Ry, Ra) = = =0
NPEC(Ra, Ra) DUppo(Zero,Ry)  DYppo(Zero, Ra)

Well-defined: Dyxpgrc(Ra, Rp) >0

By prop 5.3, it follows that Dy»(R, Rg) > 0 for all reward functions R : S X A x S. Thus 0
is a lower bound for {Dr»(R,Rp) | R : S x A x S}, and thus certainly a lower bound for
{Dr»(R,Y) | R = X} for any reward function X. Since the infimum is the largest lower bound, it
follows that for any reward function X:

Diprc(X, Rp) £ 1%2& Dr»(R,Rp) > 0.

In the case that DgPEC (Zero, Rp) = 0, then Dxprc(Ra, Rp) = 0 which is non-negative. From

now on, suppose tha ero, Rp . The quotient of a non-negative value with a positive
ppose that D{pp(Zero, R 0. The quotient of gat 1 th a posit
value is non-negative, so:

U
DNPEC(RAaRB) > (. 0

D Ra,Rp) =
vpec(Ra, RB) Dngc(Zero’RB) -

23



Note when Dy is a metric, then Dxprc(X,Y) =0ifand only if X =Y.

Proposition A.1. Dypgc is not symmetric in the undiscounted case.

Proof. We will provide a counterexample showing that Dxpgc is not symmetric.

Choose the state space S to be binary {0, 1} and the actions .A to be the singleton {0}. Choose the

visitation distribution D to be uniform on s £> s for s € S. Take v = 1, i.e. undiscounted. Note that
as the successor state is always the same as the start state, potential shaping has no effect on Dyjrect,
so WLOG we will assume potential shaping is always zero.

Now, take Ra(s) = 2s and Rp(s) = 1. Take p = 1 for the L? distance. Observe that
Dpv(Zero,Ry) = 3 (|0]+12]) = 1 and Dp»(Zero,Rp) = 1 (|1|+[1]) = 1. Since poten-
tial shaping has no effect, D{ppc(Zero, R) = Dp»(Zero, R) and so D(Zero, R4) = 1 and
D(Zero,Rp) = 1.

Now:

Dipgc(Ra, Rp) = ;r;f()DLp()\RA,RB)

1
inf = (|1 22 —1
inf 111+ 2A—1)
1
27
with the infimum attained at A\ = 1. But:

Diprc(Rp, Ra) = ir;f(; Drr»(ARp, R4)

1
=i f —_
STASY
1,
= 5 inf f(A),
where:
FO) =M +12= 2], A> 0.
Note that:

(2 e (0,2],
f()\)_{Q/\—Q A€ (2,00).

So f(\) > 2 on all of its domain, thus:

Diprc(Rp, Ra) = 1.

Consequently:
1
Dnprc(Ra, Rp) = S #F1= Dnprc(RB, Ra).
O

Proposition A.2 (Properties of D{ppc). Let Ra,Rp : S x A x 8 — R be bounded reward
functions, and X > 0. Then D{ppc:

e Is invariant under = in source:
Dll\{PEC(RAvRB) = D%pEC(RB,RB) if R = Rp.

o Invariant under scale-preserving = in target:
DI[\JIPEC(RA7 RA) = Dll\]IPEC(RA’ RB) if Ra — Rp = Zero.

e Scalable in target:
DgPEC(RAv ARp) = )‘DII\JIPEC(RAa Rp).

o Bounded:
DIE\I]PEC(Ra RB) S Dll\I]PEC (ZeI'O7 RB)
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Proof. We will show each case in turn.
Invariance under = in source
If R4 = Rp, then:
Dippc(Ra, Rp) £ w2 Die(R, Rp)

= inf Dr»
A Dr (R,Rp)
él)ll\I]PEC(]:L)B7fRB)’

since R = R4 if and only if R = Rp as = is an equivalence relation.

Invariance under scale-preserving = in target

If R4 — Rp = Zero, then we can write Rs(s,a,s’) — Rp(s,a,s’) = y®(s’) — ®(s) for some

potential function ® : S — R. Then for any reward function R, since D is induced by a norm:

Dr»(R,Ra)2 E [D(R(s,a,s),Ra(s,a,s"))]

s,a,s’'~D

= E [|R(s,a,5) — Ra(s,a,s)|]

s,a,s'~D

= JE LlIR(s,a,8) = (Rp(s,a,5) + (') = B(s))]]

s,a,s’'~D
= E__[I(R(s,a,8) —7®(s") + 2(s))
= E__[D(R(s,a,5) —7(s) + 0(s)

= Do (f(R), Rp),

- RB(Sv a, 8/)||]

,Rp(s,a,s"))]

(D

where f(R)(s,a,s') = R(s,a,s’) — y®(s") + ®(s). Crucially, note f(R) is a bijection on the
equivalence class [R]. Now, substituting this into the expression for NPEC premetric:

Dipgc(Ra, Ra) £ RiEn}l;A Dro(R,RA)
Rlznlf\’,A Dr»(f(R), Rp)

inf  Dr.(f(R), R
sy, P (B), Rp)
= RIEnIgA DLP (R7 RB)

2 Dypec(Ra, Rp).

eq. 1
f bijection on [R)

f bijection on [R]

Scalable in target First, note that Dy» is absolutely scalable in both arguments:

Dr»(ARA,ARp) = E D[D()\RA(&CL,3/)7>\RB(8,G78/))]

= E [||ARa(s,a,s") — ARg(s,a,s')|]

s,a,s'~D

I

s,a,s’~D

( )
= E _[Ml[Ra(s,a,8) — Rp(s,a,5)
=[Al E _[[[Ra(s,a, 8/)_RB(37(L75/)
s,a,s’'~D
2 |M\|Drs(Ra, Rp).
Now, for A > 0, applying this to NPEC premetric:
DRppc(Ra ARp) & inf Dps(R,ARp)
=Ra

= RlszgA DLp ()\R, /\RB)

= inf ADy»(R,Rp)
RERA

=A RlznlgA DLP (R, RB)

£ ADNprc(Ra, Rp).
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In the case A = 0, then:
Dippc(Ra,0) = inf Dr»(R,0)
R=R,4

DO =

. 1
o)

1
inf =Dy»
RlanA 9k (,0)

1.
= 3 i, Dor(R.0)

1
= §D1(\JIPEC(RAa 0).

Rearranging, we have:
Dfprc(Ra,0) =0.

Boundedness

Suppose R 4 is bounded by B: |R4(s,a,s’)| < Bforall s,s’ € S and a € A. Suppose the NPEC
premetric Dnpgrc(0, Rp) = d. Then for any € > 0, there exists some potential function ® : S — R
such that the L? of the potential shaping R(s, a, s') = y®(s) — ®(s) from Rp satisfies:

DLp(R,RB) <d-+e. (7

Let A € [0, 1]. Define:
R\(s,a,5") 2 AR4(s,a,s") + R(s,a,s'),
and:
fa(s,a,8") =D (R\(s,a,s"), R(s,a,s")).
Note that:
lim R\ = Rj, pointwise,
A—=0
and R, = R. Since D is a metric it is continuous, and so:
lim fy = fo pointwise.
A—=0

Moreover, fy(s,a,s’) = 0 everywhere since D(z,z) = 0. Now:
|f2(s,a,8")| = D(R)\(s,a,5"), R(s,a,5"))
= ||R/)\(S7 a, Sl) - R(Sv a, S,)”
= ”)‘RA(Sﬂ a, S/)H
< \B.

It follows by the bounded convergence theorem that:
lim Dpeo(Ry\,R)= lim E [fi(s,a,5)]
A—0t

A—0+ s,a,s'~D

. ’
E L\lg(r)lJr fa(s,a,s )}

s,a,8'~D

E [f0(57a7$/)]

s,a,8'~D

=0.

So in particular, for any € > 0 there exists some A > 0 such that:
Dp»(R\,R) <e. (8)

Note that R4 = R}, for all A > 0. So:
Dnprc(Ra, Rp) < Do (R, Rp)

< Dr»(R\,R)+ Dr» (R, Rp) prop. 5.3
<e+(d+e) eq. 7 and eq. 8
=d+ 2e.
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Since € > 0 can be made arbitrarily small, it follows:
Dxprc(Ra, Rp) < d. )
O

Thorem 5.6. Let R4, Rs',Rp,Rg’ : S x A x S — R be reward functions such that Ry = R 4’
and Rg = Rp’. Then 0 < Dxprc(Ra’, R') = Dnprc(Ra, Rp) < 1.

Proof. Since R}y = Rp, we have R}y — ARp = Zero for some A > 0. By proposition A.2, D{ppc
is invariant under scale-preserving = in target and scalable in target. That is, for any reward R:

D{ppc(R, Ry) = D{ppc(R,ARp) = AD{pgc(R, Rp). (10)

In particular, D{ppc(Zero, Rg') = ADYppc(Zero,Rp). As A > 0, it follows that
Dippc(Zero, Rp') =0 <= D{ppc(Zero, Rp) = 0.

Suppose DYppq(Zero, Rp) = 0. Then Dxprc (R, Rp) = 0 = Dxprc(R, Rp') for any reward R,
so the result trivially holds. From now on, suppose D{pp(Zero, Rp) # 0.

By proposition A.2, DY{,pc is invariant to = in source. That is, D{pp(Ra,Rp) =
Dprc (R, Rp), so:

D{ppc(Ry,Rs)  DEppc(Ra, Rp)
D Ry, Rp) = —prEC A = NEEC & =D Ra,Rp).
xeec (e B5) = By (Zero, Rp) ~ DYppc(zere Ry) L Nrecfia fin)

By eq. (10):

ADYppc(Ra, RB) D{ppc(Ra, RB)
Dnpec(Ra, Rg) = REEC 2 = —NEE . = Dnpec(Ra, RB).
sl 5) AD{ppc(Zero, Rp)  DRppc(Zero, Rp) ( )
Since DnpEc 1S a premetric it is non-negative. By the boundedness property of proposition A.2,
Diprc(R, Rp) < DYppc(Zero, Rp), so:

U
DNPEC(RA’RB) <1. 0

D Ra,Rp) =
npEC(Ra, Rp) D{ppc(Zero, Rp) ~

A.4 Direct Distance Variant of EPIC

Previously, we used Pearson distance to compare the canonicalized rewards. Pearson distance is
naturally invariant to scaling. An alternative is to explicitly normalize the canonicalized rewards, and
then compare them using any metric over functions.

Definition A.3 (Normalized Reward). Let R be a reward function mapping from transitions S x Ax S
to real numbers R. Let ||-|| be some norm on the vector space of reward functions over the real field.

Then the normalized R is:
R(s,a,s")

RN(s,a,sl) = ]

Note that ()\R)N = RY for any A > 0 as norms are absolutely homogeneous.
We say a reward is standardized if it has been canonicalized and then normalized.

Definition A.4 (Standardized Reward). Let R be a reward function mapping from transitions S X
A X 8 to real numbers R. Then the standardized R is:

R¥ = (Cpgp, (R)Y.

Now, we can define a pseudometric based on the direct distance between the standardized rewards.

Definition A.5 (Direct Distance Standardized Reward). Let D be some visitation distribution over
transitions s — s'. Let Ds and D 4 be some distributions over states S and A respectively. Let
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S, A, S" be random variables jointly sampled from D. The Direct Distance Standardized Reward pseu-
dometric between two reward functions R4 and Rp is the direct distance between their standardized
versions over D:

1
Dopsr(Ra, Bp) = 5 Drr (R3(S, A, 8'), R} (S, A, 8")) ,
where the norm used for direct distance is the same norm used for normalization in RN.

For brevity, we omit the proof that Dppgr is a pseudometric, but this follows from Dy» being a
pseudometric in a similar fashion to theorem 4.7. Note it additionally is invariant to equivalence
classes, similarly to EPIC.

Thorem A.6. Let R4, R4', Rp and Rp' be reward functions mapping from transitions S X A X S
to real numbers R such that Ry = Ry’ and Rg = Rp’. Then:

0 < Dppsr(R)y, Rp) = Dopsr (R4, Rp) < 1.
Proof. The invariance under the equivalence class follows from R® being invariant to potential
shaping and scale in R. The non-negativity follows from Dy» being a pseudometric. The upper

bound follows from the rewards being normalized to norm 1 and the triangle inequality:

1
Dppsr(Ra, Rp) = §||Ri — R3||

N

1
5 (RS0 + IRS))

(1+1)

el CYRC

O

Since both DDSR and EPIC are pseudometrics and invariant on equivalent rewards, it is interesting to
consider the connection between them. In fact, under the 2 norm with D chosen to be i.i.d. samples
from the joint distribution Ds x D4 x Dg, then DDSR recovers EPIC. First, we will show that
canonical shaping centers the reward functions.

Lemma A.7 (The Canonically Shaped Reward is Mean Zero). Let R be a reward function mapping
from transitions S x A x S to real numbers R. Then:

E[Cpsp, (R)(S,A,S")] =0.

Proof. Let X, U and X' be random variables that are independent of S, A and S’ but identically

distributed.

E [CD&DA (R> (S’ A, Sl)] =E [R(Sv A, S,) + ’YR(Slv U, X/) - R(Sv U, X/) - ’YR(Xa U, X/)]

=E[R(S,A,S)] +~vE[R(S",U,X")] —E[R(S,U, X")] —
E[R(S,U, X")] +7E [R(X,U, X')] - E[R(S,U, X")] - vE[R(

I
o

where the penultimate step follows since A is identically distributed to U, and S’ is identically
distributed to X’ and therefore to X. O

Recall from the proof of lemma 4.4 that:

D, (U, V)=

where ||-||2 is the L2 norm (treating the random variables as functions on a measure space) and U is a
centered (zero-mean) and rescaled (unit variance) random variable. By lemma A.7, the canonically
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shaped reward functions are already centered under the joint distribution Ds x D4 X Dg, and
normalization by the L? norm also ensures they have unit variance. Consequently:

Dgpic(Ra, Rg) =D, (Cpsp, (Ra) (S, A,5),Cps p, (RB) (S, A,5"))

1
3 HCD&DA (Ra)($,4,8") = Cps.p, (Rp)(S, 4,9

SRS A8~ Ri(5, 4,9

1
5 Drr (RA(S,A4,8"), (S, A, 8))

= Dppsr(Ra, Rp).
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