
Quantifying Differences in Reward Functions

Adam Gleave1∗ Michael Dennis1 Shane Legg2 Stuart Russell1 Jan Leike2

1UC Berkeley 2DeepMind
gleave@berkeley.edu

Abstract

For many tasks, the reward function is too complex to be specified procedurally, and
must instead be learned from user data. Prior work has evaluated learned reward
functions by examining rollouts from a policy optimized for the learned reward.
However, this method cannot distinguish between the learned reward function
failing to reflect user preferences, and the reinforcement learning algorithm failing
to optimize the learned reward. Moreover, the rollout method is highly sensitive to
details of the environment the learned reward is evaluated in, which often differ
in the deployment environment. To address these problems, we introduce the
Equivalent-Policy Invariant Comparison (EPIC) distance to quantify the difference
between two reward functions directly, without training a policy. We prove EPIC is
invariant on an equivalence class of reward functions that always induce the same
optimal policy. Furthermore, we find EPIC can be precisely approximated and is
more robust than baselines to the choice of visitation distribution. Finally, we find
that the EPIC distance of learned reward functions to the ground-truth reward is
predictive of the success of training a policy, even in different transition dynamics.

1 Introduction

Reinforcement learning (RL) has reached or surpassed human performance in many domains with
clearly-defined reward functions, such as games [26; 19; 28] and narrowly-scoped robotic manip-
ulation tasks [20]. Unfortunately, the reward functions for most real-world tasks are difficult or
impossible to procedurally specify. Even a task as simple as peg insertion from pixels has a non-trivial
reward function that must usually be learned [27, IV.A]. Most real-world tasks have far more complex
reward functions than this. In particular, tasks involving human interaction depend on complex and
user-dependent preferences. These challenges have inspired work on learning a reward function,
whether from demonstrations [17; 23; 31; 9; 4], preferences [1; 30; 7; 24; 32] or both [15; 5].

Prior work usually evaluates the learned reward function R̂ using the “rollout method”: training

a policy πR̂ to optimize R̂ and then examining rollouts from πR̂. Unfortunately, this method is
computationally expensive because it requires us to solve an RL problem. Furthermore, the rollout

method produces false negatives when the reward R̂ matches user preferences, but the RL algorithm

fails to maximize R̂. The rollout method also produces false positives: of the many reward functions
inducing the desired rollout in a given environment, only a small subset align with the user’s
preferences. If the initial state distribution or transition dynamics change, misaligned rewards may
induce undesirable policies.

For example, suppose a user likes apricots, tolerates plums and abhors durians. A reward function
that prefers apricots to durians to plums induces the correct apricot-buying behavior at training time.
But if the robot is shopping during an apricot shortage, it would buy a fruit the user hates: durians. A
careful evaluation of the learned reward function before deployment should catch this error.

∗Work partially conducted during an internship at DeepMind.

Preprint. Under review.

a
rX

iv
:2

0
0
6
.1

3
9
0
0
v
1

[c

s.
L

G
]

 2
4
 J

u
n
 2

0
2
0

Table 1: Summary of the desiderata satisfied by each reward function distance. Key – the distance is:
a pseudometric (section 3); invariant to potential shaping [18] and positive rescaling (section 3); a
computationally efficient approximation achieving low error (section 6.1); predictive of the similarity
of the trained policies (section 6.2); and robust to the choice of visitation distribution (section 6.3).

Distance Pseudometric Invariant Efficient Predictive Robust

EPIC 3 3 3 3 3

NPEC 7 3 7 3 7

ERC 3 7 3 3 (7)

Reinforcement learning is founded on the observation that it is usually easier and more robust to
specify a reward function, rather than a policy maximizing that reward function. Applying this insight
to reward function analysis, we develop methods to compare reward functions directly, without
training a policy. We summarize our desiderata for reward function distances in Table 1.

We introduce the Equivalent-Policy Invariant Comparison (EPIC) pseudometric that meets all five
desiderata. EPIC (section 4) canonicalizes the reward functions’ potential-based shaping, then
computes the correlation between the canonical rewards over a visitation distribution D of transitions.
For comparison, we also propose two baselines (section 5), Episode Return Correlation (ERC) and
Nearest Point in Equivalence Class (NPEC), which partially satisfy the desiderata.

EPIC works best when D has support on all realistic transitions. In our experiments, we achieve
this by using uninformative priors, such as a uniform distribution over transitions. Moreover, we
find EPIC is robust to the exact choice of distribution D, producing similar results across a range of
distributions, whereas ERC and especially NPEC are highly sensitive to the choice of D (section 6.3).

Reward learning algorithms are typically benchmarked on tasks with a known ground-truth reward
function R. When using the rollout method, it is common to report the regret: how much less true

reward R is obtained by a policy πR̂ optimized for the learned reward R̂ versus a policy πR optimized
for R. We find learned reward functions with low EPIC distance to the true reward R induce policies
with low regret in both the training and an unseen test environment (section 6.2). Reward functions
with high EPIC distance fail in the test environment but sometimes work in the training environment.
EPIC therefore has a lower false positive rate than the rollout method, making it particularly attractive
in safety-critical applications where reliability is a key design goal.

2 Related work

There exists a variety of methods to learn reward functions. One prominent family is inverse
reinforcement learning (IRL; 17), which infers a reward function from demonstrations. The IRL
problem is inherently underconstrained: many different reward functions can lead to the same
demonstrations. Bayesian IRL [23] handles this ambiguity by inferring a posterior over reward
functions. By contrast, Maximum Entropy IRL [31] selects the highest entropy reward function
consistent with the demonstrations; this method has scaled to high-dimensional environments [8; 9].

An alternative approach is to learn from preference comparisons between two trajectories [1; 30; 7; 24].
T-REX [5] is a hybrid approach, learning from a ranked set of demonstrations. More directly, Cabi
et al. [6] learn from “sketches” of cumulative reward over an episode.

To the best of our knowledge, there is no prior work that focuses on evaluating reward functions
directly. The most closely related work is Ng et al. [18], identifying reward transformations guaranteed
not to change the optimal policy. However, a variety of ad-hoc methods have been developed to
evaluate reward functions. The rollout method – evaluating rollouts of a policy trained on the learned
reward – is evident in the earliest work on IRL [17]. Fu et al. [9] refined the rollout method by testing
on a transfer environment, inspiring our experiment in section 6.2. Recent work has compared reward
functions by scatterplotting returns [15; 5], inspiring our ERC baseline (section 5.1).

2

3 Background

This section introduces material needed for the distances defined in subsequent sections. We start
by defining a distance metric, then introduce the Markov Decision Process (MDP) formalism, and
finally describe when reward functions induce the same optimal policy in any compatible MDP.

Definition 3.1. Let X be a set and d : X ×X → [0,∞) a function. d is a premetric if d(x, x) = 0
for all x ∈ X . d is a pseudometric if, furthermore, for all x, y, z ∈ X , d(x, y) = d(y, x) and
d(x, z) ≤ d(x, y) + d(y, z). d is a metric if, furthermore, for all x, y ∈ X , d(x, y) = 0 ⇐⇒ x = y.

We wish for d(RA, RB) = 0 when reward functions RA and RB are in the same equivalence class,
even if RA 6= RB . This is forbidden in a metric but permitted in a pseudometric, while retaining
other guarantees such as symmetry and triangle inequality that a metric provides. Accordingly, a
pseudometric is usually the best choice for a distance d over reward functions.

Definition 3.2. A Markov Decision Process (MDP) M = (S,A, γ, µ, T , R) consists of a set of
states S and a set of actions A; a discount factor γ ∈ [0, 1]; an initial state distribution µ(s); a
transition distribution T (s′ | s, a) specifying the probability of transitioning to s′ from s after taking
action a; and a reward function R(s, a, s′) specifying the reward upon taking action a in state s and
transitioning to state s′.

A trajectory τ consists of a sequence of states and actions, τ = (s0, a0, s1, a1, · · ·), where each
si ∈ S and ai ∈ A. The return on a trajectory is defined as the sum of discounted rewards,

g(τ ;R) =
∑|τ |

t=0 γ
tR(st, at, st+1), where the length of the trajectory |τ | may be infinite.

In the following, we assume a discounted (γ < 1) infinite-horizon MDP. The results can be generalized
to undiscounted (γ = 1) MDPs subject to regularity conditions needed for convergence.

A stochastic policy π(a | s) assigns probabilities to taking action a ∈ A in state s ∈ S . The objective
of an MDP is to find a policy π that maximizes the expected return, G(π) = Eτ(π) [g(τ ;R)], where

τ(π) is a trajectory generated by sampling the initial state s0 from µ, each action at from the policy
π(at | st) and successor states st+1 from the transition distribution T (st+1 | st, at). An MDP M
has a set of optimal policies π∗(M) that maximize the expected return, π∗(M) = argmaxπ G(π).

In this paper, we consider the setting where we only have access to an MDP\R, M− = (S,A, γ, µ, T).
The unknown reward function R must be learned from human data. Typically, only the state space
S , action space A and discount γ are known exactly, with the initial state µ and transition dynamics
T only observable from interacting with the environment M−. In the following, we describe an
equivalence class whose members are guaranteed to have the same set of optimal policies in any
MDP\R M− with fixed S , A and γ (allowing the unknown T and µ to take arbitrary values).

Definition 3.3. A potential shaping reward is defined as R(s, a, s′) = γΦ(s′) − Φ(s), given a
potential Φ : S → R and where γ is the MDP discount rate.

Definition 3.4 (Reward Equivalence). We define two bounded reward functions RA and RB to be
equivalent, RA ≡ RB , for a fixed (S,A, γ) if and only if there exists a constant λ > 0 and a bounded
potential function Φ : S → R such that for all s, s′ ∈ S and a ∈ A:

RB(s, a, s
′) = λRA(s, a, s

′) + γΦ(s′)− Φ(s).

Note RA −RB ≡ Zero (where Zero is the all-zero reward) if and only if RA ≡ RB with λ = 1.

Proposition 3.5. The binary relation≡ is an equivalence relation. Let RA, RB , RC : S×A×S → R

be bounded reward functions. Then ≡ is reflexive, RA ≡ RA; symmetric, RA ≡ RB implies
RB ≡ RA; and transitive, (RA ≡ RB) ∧ (RB ≡ RC) implies RA ≡ RC .

Proof. See section A.3.1 in supplementary material.

The expected return of potential shaping γΦ(s′) − Φ(s) on a trajectory segment (s0, · · · , sT) is
γTΦ(sT) − Φ(s0). The first term γTΦ(sT) → 0 as T → ∞, while the second term Φ(s0) only
depends on the initial state, and so potential shaping does not change the set of optimal policies [18].

Scaling a reward function by a positive factor λ > 0 scales the expected return of all trajectories by
λ, leaving the set of optimal policies unchanged. The set of optimal policies is also invariant to a
constant shift c ∈ R of the reward, however this can already be obtained by shifting Φ by c

γ−1 .†

†Note constant shifts in the reward of an undiscounted MDP would cause the value function to diverge.
Fortunately, the shaping γΦ(s′)− Φ(s) is unchanged by constant shifts to Φ when γ = 1.

3

If RA ≡ RB , for a fixed (S,A, γ), then for any MDP\R M− = (S,A, γ, µ, T) we have
π∗ ((M−, RA)) = π∗ ((M−, RB)), where (M−, R) denotes the MDP specified by M− with re-
ward function R. In other words, RA and RB induce the same optimal policies for all initial state
distributions µ and transition dynamics T .

4 Comparing reward functions with EPIC

In this section we introduce the Equivalent-Policy Invariant Comparison (EPIC) pseudometric.
This novel distance canonicalizes the reward functions’ potential-based shaping, then compares
the canonical representatives using Pearson distance, which is invariant to scale. Together, this
construction makes EPIC invariant on reward equivalence classes. See section A.3.2 for proofs.

We define the canonically shaped reward CDS ,DA
(R) as an expectation over some arbitrary distri-

butions DS and DA over states S and actions A respectively. This construction means CDS ,DA
(R)

only depends on (S,A, γ), and not on the initial state distribution µ or transition dynamics T . In
particular, no environment interaction is required to compute CDS ,DA

(R).

Definition 4.1 (Canonically Shaped Reward). Let R : S ×A× S → R be a reward function. Given
distributions DS and DA over states S and actions A respectively, let S and S′ be random variables
independently sampled from DS and A sampled from DA. We define the canonically shaped R to be:

CDS ,DA
(R) (s, a, s′) = R(s, a, s′) + E [γR(s′, A, S′)−R(s,A, S′)− γR(S,A, S′)] .

Informally, if R′ is shaped by potential Φ, then increasing Φ(s′) increases R′(s, a, s′) by γΦ(s′) but
decreases E [γR′(s′, A, S′)] by γΦ(s′), canceling. Similarly increasing Φ(s) decreases R′(s, a, s′)
but increases E [R′(s,A, S′)]. Finally, E[R(S,A, S′)] centers the reward, canceling constant shift.

Proposition 4.2 (The Canonically Shaped Reward is Invariant to Shaping). Let R : S ×A×S → R

be a reward function and Φ : S → R a potential function. Let γ ∈ [0, 1] be a discount rate,
and DS and DA be distributions over states S and A respectively. Let R′ denote R shaped by
Φ: R′(s, a, s′) = R(s, a, s′) + γΦ(s′) − Φ(s). Then the canonically shaped R′ and R are equal:
CDS ,DA

(R′) = CDS ,DA
(R).

Proposition 4.2 holds for arbitrary distributions DS and DA. However, distributions with broad
support over realistic states and actions produce more stable canonical transformations. Specifically,
we would like for small changes in the input reward to produce small changes in the canonical
representative. That is, letting ε be a small noise term, CDS ,DA

(R+ ε) ≈ CDS ,DA
(R).

Viewing R as a real vector, CDS ,DA
(R) is a linear transformation with coefficients given by the joint

distribution for S ×A× S′. This transformation is most stable when the coefficients are uniform, so
we favor distributions with broad support in our experiments. However, sometimes it is appropriate
to place less weight on certain states and actions, e.g. if they’re known to be physically unreachable.

So far, we have removed any dependence on potential shaping. We must still normalize the scale of
rewards, and then compare the normalized rewards. The Pearson distance does this in a single step.

Definition 4.3. The Pearson distance between random variables X and Y is defined by the expression

Dρ(X,Y) = 1√
2

√

1− ρ(X,Y), where ρ(X,Y) is the Pearson correlation between X and Y .

Lemma 4.4. The Pearson distance Dρ is a pseudometric.

Lemma 4.5. Let a, b ∈ (0,∞), c, d ∈ R and X,Y be random variables. Then it follows that
0 ≤ Dρ(aX + c, bY + d) = Dρ(X,Y) ≤ 1.

We can now define EPIC in terms of the Pearson distance between canonically shaped rewards.

Definition 4.6 (Equivalent-Policy Invariant Comparison (EPIC) pseudometric). Let D be some

visitation distribution over transitions s
a
→ s′. Let S,A, S′ be random variables jointly sampled from

D. Let DS and DA be some distributions over states S and A respectively. The Equivalent-Policy
Invariant Comparison (EPIC) distance between reward functions RA and RB is the Pearson distance
between their canonically shaped versions over D:

DEPIC(RA, RB) = Dρ (CDS ,DA
(RA) (S,A, S′), CDS ,DA

(RB) (S,A, S′)) .

Thorem 4.7. The Equivalent-Policy Invariant Comparison distance is a pseudometric.

4

If the initial state s0 and terminal state sT are fixed, then γTΦ(sT)−Φ(s0) is constant. Since Pearson
distance is invariant to constant shifts, ERC is invariant to shaping in this case. For infinite-horizon
discounted MDPs, only the initial state s0 need be fixed, since γTΦ(sT)→ 0 as T →∞.

However, if the initial state s0 is stochastic, the ERC distance can take on arbitrary values under
shaping. Let RA and RB be two arbitrary reward functions. Suppose that there are at least two
distinct initial states, sA and sB , with non-zero measure inD. Choose potential Φ(s) = 0 everywhere
except Φ(sA) = Φ(sB) = c, and let R′

A and R′
B denote RA and RB shaped by Φ. As c → ∞,

the correlation ρ (g(E;R′
A), g(E;R′

B)) tends to one. This is since the relative difference tends to
zero, even though g(E;R′

A) and g(E;R′
B) continue to have the same absolute difference as c varies.

Consequently, the ERC pseudometric DERC(R
′
A, R

′
B)→ 0 as c→∞. By an analogous argument,

setting Φ(sA) = c and Φ(sB) = −c gives DERC(R
′
A, R

′
B)→ 1 as c→∞.

5.2 Nearest Point in Equivalence Class (NPEC)

NPEC takes the minimum Lp distance between equivalence classes. See section A.3.3 for proofs.

Definition 5.2 (Lp distance). Let D be a visitation distribution over transitions s
a
→ s′ and let p ≥ 1

be a power. The Lp distance between reward functions RA and RB is the Lp norm of their difference:

DLp(RA, RB) =

(

E
s,a,s′∼D

[

|RA(s, a, s
′)−RB(s, a, s

′)|
p]
)1/p

.

Proposition 5.3. (1) DLp is a metric in Lp space, where functions f and g are identified if f = g
almost everywhere on D. (2) It is a pseudometric when f and g are identified if f = g at all points.

The Lp distance is sensitive to shaping and positive rescaling that do not change the optimal policy. A
natural solution is to take the distance from the nearest point in the equivalence class. The Unnormal-
ized Nearest Point in Equivalence Class distance is: DU

NPEC(RA, RB) = infR′
A
≡RA

DLp(R′
A, RB).

Note the infimum over both R′
A ≡ RA and R′

B ≡ RB would always be zero, since all equivalence
classes come arbitrarily close to the origin in Lp space. However, taking the infimum over only
R′

A ≡ RA causes DU
NPEC(RA, RB) to be sensitive to the scale of RB . We fix this by normalizing.

Definition 5.4. The Nearest Point in Equivalence Class (NPEC) premetric is defined by:

DNPEC(RA, RB) =
DU

NPEC(RA,RB)

DU
NPEC

(Zero,RB)
when DU

NPEC(Zero, RB) 6= 0 and 0 otherwise.

Note if DU
NPEC(Zero, RB) = 0 then DU

NPEC(RA, RB) = 0 since RA can be scaled arbitrarily close
to Zero. Since all policies are optimal for R ≡ Zero, we choose DNPEC(RA, RB) = 0 in this case.

Proposition 5.5. DNPEC is a premetric.

Note that DNPEC is not in general a pseudometric: see proposition A.1 for a counterexample. It is,
however, bounded and invariant to shaping, similar to EPIC.

Thorem 5.6. Let RA, RA
′, RB , RB

′ : S × A × S → R be reward functions such that RA ≡ RA
′

and RB ≡ RB
′. Then 0 ≤ DNPEC(RA

′, RB
′) = DNPEC(RA, RB) ≤ 1.

The infimum in DU
NPEC can be computed exactly in a tabular setting, but in general we must

approximate it using gradient descent. This gives an upper bound for DU
NPEC, but the quotient of

upper bounds DNPEC may be too low or too high. See section A.1.2 for details of the approximation.

6 Experiments

We evaluate EPIC and the baselines ERC and NPEC in a variety of continuous control tasks. First, we
compute the distance between hand-designed reward functions, finding EPIC to be the most reliable
distance. Although NPEC produces qualitatively similar results, it has a high degree of approximation
error. Moreover, ERC sometimes suffers from pathological failures, such as assigning a high distance
to equivalent rewards. Second, we find the distance of learned reward functions to a ground-truth
reward predicts the return obtained by policy training, even in an unseen test environment. Finally,
we show EPIC is robust to the exact choice of visitation distribution D, whereas ERC and especially
NPEC are highly sensitive to the choice of D.

6

Table 2: Distances of reward models from ground-truth (GT), and the mean GT return of policies
optimized from-scratch for the reward model in the train and test variants of PointMaze. We also
report returns for AIRL’s generator policy, jointly trained with the reward. Distances (1000× scale)
use visitation distribution D from rollouts in the train environment of: a uniform random policy
πunif , an expert π∗ and a Mixture of these policies. DS and DA are computed by marginalizing D.
95% confidence intervals (see Table A.6) are tighter than ±1% for EPIC and ERC but are as large as
±50% for NPEC due to high variance across seeds.

Reward 1000 × DEPIC 1000 × DNPEC 1000 × DERC Episode Return

Model πunif π∗ Mix πunif π∗ Mix πunif π∗ Mix Gen. Train Test

GT 0 0 0 0 0 0 0 0 0 — −5.99 −6.05
Regress 41.9 36.5 25.9 0.519 14.9 0.140 4.78 40.9 1.39 — −6.99 −6.51
Pref 50.5 54.4 32.9 2.99 204 1.78 15.0 180 8.15 — −6.62 −7.02
AIRL SO 488 600 395 684 3550 426 448 382 234 −9.44 −28.5 −11.7
AIRL SA 548 614 390 823 3030 376 506 467 208 −6.69 −6.91 −28.5

policies. πunif takes actions uniformly at random, producing broad support over transitions; π∗ is an
expert policy, yielding a distribution concentrated at or near the goal; and Mix is a mixture of the two.

We find EPIC is robust to varying D: the distance varies by less than 2×, and the ranking between
the reward models is the same across visitation distributions, except for Mix favoring AIRL SA over
AIRL SO. By contrast, NPEC is highly sensitive to the choice of D: the distance of Pref varies by
over 500× between πunif and π∗. ERC lies somewhere in the middle: the distances vary by as much
as 25×. Overall, EPIC is clearly the least sensitive to choice of D in this environment.

Nonetheless, even with EPIC some care must be taken when choosing D. Typically, D is collected
via rollouts of some exploration policy in an environment. This works well when the deployment
environment has a similar set of reachable states to the rollout environment, even if some details of the
dynamics – such as the position of the wall in PointMaze – differ. However, when the deployment
environment allows a transition (s, a, s′) that is not physically attainable in the rollout environment,
then D will place no support on this transition and the reward R(s, a, s′) can take arbitrary values
without affecting the distance. In general, any black-box method for assessing reward models –
including the rollout method – only has predictive power on transitions that it visits during testing.

7 Discussion

Our novel EPIC distance compares reward functions directly, without training a policy. We have
proved it satisfies the axioms of a pseudometric, and moreover is bounded and invariant to equivalent
rewards. Empirically, we find the EPIC distance between procedurally specified reward functions is
more reliable than the NPEC and ERC baselines.

Furthermore, we find the distance of learned reward functions to the ground-truth reward predicts the
return of policies optimized for the learned reward, in both the train and unseen test environments.
This is important since it is common for the initial state distribution or transition dynamics to change
between the training environment where the reward function was learned, and the test environment
where the system is deployed [22; 2; 21]. For example, one might learn a reward and policy in
simulation, and then fine-tune the policy in the real world with the learned reward.

An important direction for future work is to evaluate reward models trained on noisy and biased
human data. Such models will have a higher EPIC distance from the ground-truth than models trained
on synthetic data, however some algorithms may be more robust to imperfect feedback than others.

Benchmarks are an important driver of progress in machine learning. Unfortunately, traditional
policy-based metrics do not provide any guarantees as to the fidelity of the learned reward function.
We believe the EPIC distance will be a highly informative addition to the evaluation toolbox, and
would encourage researchers to report EPIC distance in addition to policy-based metrics.

8

Broader Impact

Reinforcement learning (RL) is used to choose push notifications to send to billions of users [10], and
in the coming years we are likely to see more large-scale deployment of RL systems in interactive
applications. This gives renewed urgency to specifying an appropriate objective for these systems to
optimize. Even with the best of intentions, designers cannot possibly anticipate the desires of all their
users, let alone procedurally specify this. In the absence of better methods, engineers often resort
to proxies such as user engagement. While such metrics are often correlated with user satisfaction,
Goodhart’s law predicts this correlation will break down when used as an optimization objective [12].
This can lead to negative unintended consequences, such as addiction to online platforms.

A natural alternative is to instead learn the reward function from user feedback. This democratizes AI
systems: rather than the designer picking an optimization objective, the users choose how they wish
the AI system to interact with them. The system could even learn a reward function for each user,
and optimize that objective on an individual basis (subject to some global fairness constraints).

However, current reward learning algorithms have considerable limitations. We believe quantifying
differences in reward functions will help improve benchmarking of reward learning algorithms,
spurring algorithmic improvements. Additionally, we anticipate it to be useful as a verification
method prior to deployment of a learned reward model.

The main potential downside we see from our work is if people place too much trust in the reward
distances proposed in this paper. While we are confident the distance between reward functions
will be a highly informative addition to the set of available evaluation metrics, it is intended as a
complement and not a replacement for other forms of testing. In particular, it will continue to be
important to test the trained policy prior to deployment, especially in safety-critical systems. Even if
the learned reward function is correct, there is no guarantee that the policy behaves as desired – for
example, policies often suffer from adversarial examples [14; 11].

References

[1] Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In
Machine Learning and Knowledge Discovery in Databases, 2011.

[2] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. arXiv: 1606.06565v2 [cs.AI], 2016.

[3] Dario Amodei, Paul Christiano, and Alex Ray. Learning from hu-
man preferences, June 2017. URL https://openai.com/blog/
deep-reinforcement-learning-from-human-preferences/.

[4] Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Pushmeet Kohli,
and Edward Grefenstette. Learning to understand goal specifications by modelling reward. In
ICLR, 2019.

[5] Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from observations. In ICML,
2019.

[6] Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott
Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, Oleg Sushkov, David
Barker, Jonathan Scholz, Misha Denil, Nando de Freitas, and Ziyu Wang. Scaling data-driven
robotics with reward sketching and batch reinforcement learning. arXiv: 1909.12200v2 [cs.RO],
2019.

[7] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In NIPS, pages 4299–4307, 2017.

[8] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In ICML, 2016.

[9] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse
reinforcement learning. In ICLR, 2018.

9

[10] Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary Kaden,
Vivek Narayanan, Xiaohui Ye, Zhengxing Chen, and Scott Fujimoto. Horizon: Facebook’s
open source applied reinforcement learning platform. arXiv: 1811.00260 [cs.LG], 2018.

[11] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell.
Adversarial policies: Attacking deep reinforcement learning. In ICLR, 2020.

[12] C. A. E. Goodhart. Problems of monetary management: the UK experience. In Monetary
Theory and Practice, pages 91–121. Springer, 1984.

[13] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable Baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[14] Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv:1702.02284v1 [cs.LG], 2017.

[15] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in Atari. In NeurIPS, pages 8011–8023,
2018.

[16] Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problems. SIAM, 1995.

[17] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In ICML,
2000.

[18] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transforma-
tions: theory and application to reward shaping. In NIPS, 1999.

[19] OpenAI. OpenAI Five. https://blog.openai.com/openai-five/, 2018.

[20] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving Rubik’s Cube with a robot hand. arXiv: 1910.07113v1 [cs.LG], 2019.

[21] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In ICRA, pages 3803–3810, 2018.

[22] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence,
editors. Dataset Shift in Machine Learning. MIT Press, 2008.

[23] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI,
2007.

[24] Dorsa Sadigh, Anca D. Dragan, S. Shankar Sastry, and Sanjit A. Seshia. Active preference-based
learning of reward functions. In RSS, July 2017.

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv:1707.06347v2 [cs.LG], 2017.

[26] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[27] Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothörl, Todd Hester, and Jon Scholz. A
practical approach to insertion with variable socket position using deep reinforcement learning.
In ICRA, 2019.

10

[28] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKin-
ney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris
Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782):350–354, 2019.

[29] Steven Wang, Adam Gleave, and Sam Toyer. imitation: implementations of in-
verse reinforcement learning and imitation learning algorithms. https://github.com/
humancompatibleai/imitation, 2020.

[30] Aaron Wilson, Alan Fern, and Prasad Tadepalli. A Bayesian approach for policy learning from
trajectory preference queries. In NIPS, 2012.

[31] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In AAAI, 2008.

[32] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv: 1909.08593v2 [cs.CL], 2019.

11

A Supplementary material

A.1 Approximation Procedures

A.1.1 Sample-based approximation for EPIC distance

We approximate EPIC distance (definition 4.6) using a sample-based approach. Specifically, we
sample a batch BV of NV samples from the visitation distributionD, and a batch BM of NM samples
from the joint state and action distributions DS × DA. We approximate the canonically shaped
rewards (definition 4.1) by taking the mean over BM :

CDS ,DA
(R) (s, a, s′) = R(s, a, s′) +E [γR(s′, A, S′)−R(s,A, S′)− γR(S,A, S′)]

≈ R(s, a, s′) + γ
NM

∑

(x,u)∈BM
R(s′, u, x)

− 1
NM

∑

(x,u)∈NM
R(s, u, x)

− γ
N2

M

∑

(x,·)∈BM

∑

(x′,u)∈BM
R(x, u, x′).

We then compute the Pearson distance between the approximate canonically shaped rewards on the
batch of samples BV .

A.1.2 Optimization-based approximation for NPEC distance

DNPEC(RA, RB) (section 5.2) is defined as the infimum of Lp distance over an infinite set of
equivalent reward functions R ≡ RA. We approximate this using gradient descent on the reward
model:

Rν,c,w(s, a, s
′) = exp(ν)RA(s, a, s

′) + c+ γΦw(s
′)− Φw(s),

where ν, c ∈ R are scalar weights and w is a vector of weights parameterizing a deep neural network
Φw. The constant c ∈ R is unnecessary if Φw has a bias term, but its inclusion simplifies the
optimization problem.

We optimize ν, c, w to minimize the mean of the cost J(ν, c, w) = D(Rν,c,w(s, a, s
′), RB(s, a, s

′))
on samples (s, a, s′) from a visitation distribution D. Note the mean cost upper bounds the true
NPEC distance since Rν,c,w ≡ RA.

We found empirically that ν and c need to be initialized close to their optimal values for gradient
descent to reliably converge. To resolve this problem, we initialize the affine parameters to ν ← log λ
and c found by:

argmin
λ≥0,c∈R

E
s,a,s′∼D

(λRA(s, a, s
′) + c−RB(s, a, s

′))
2
.

We use the active set method of Lawson and Hanson [16] to solve this constrained least-squares
problem. These initial affine parameters minimize the Lp distance DLp(Rν,c,0(s, a, s

′), RB(s, a, s
′))

under the metric `(x, y) = (x− y)2 with the potential fixed at Φ0(s) = 0.

A.1.3 Confidence Intervals

We report confidence intervals to help measure the degree of error introduced by the approximation.
Since approximate distances may not be normally distributed, we use bootstrapping to produce a
distribution-free confidence interval. For EPIC and NPEC, we compute independent approximate
distances over different seeds, and then compute a bootstrapped confidence interval on the distances
for each seed. We use 30 seeds for EPIC but only 3 seeds for NPEC due to its greater computational
requirements. In ERC, computing the distance is very cheap, so we instead apply bootstrapping to
the collected episodes, computing the ERC distance for each bootstrapped episode sample.

A.2 Experiments

A.2.1 Hyperparameters for Approximate Distances

Table A.1 summarizes the hyperparameters and distributions used to compute the distances between
reward functions. Most parameters are the same across all environments. We use a visitation
distribution of uniform random transitions Dunif in the simple GridWorld environment with known
determinstic dynamics. In other environments, the visitation distribution is sampled from rollouts

12

Table A.1: Summary of hyperparameters and distributions used in experiments. The uniform random
visitation distribution Dunif samples states and actions uniformly at random, and samples the next
state from the transition dynamics. Random policy πunif takes uniform random actions. The synthetic
expert policy π∗ was trained with PPO on the ground-truth reward. Mixture samples actions from
either πunif or π∗, switching between them at each timestep with probability 0.05. Warmstart Size is
the size of the dataset used to compute initialization parameters described in section A.1.2.

Parameter Value In experiment

Visitation Distribution D
Random transitions Dunif GridWorld
Rollouts from πunif PointMass, HalfCheetah, Hopper
πunif , π

∗ and Mixture PointMaze
Bootstrap Samples 10 000 All
Discount γ 0.99 All

EPIC

State Distribution DS
N(0, 1) standard Gaussian PointMass, HalfCheetah, Hopper
Marginalized from D PointMaze

Action Distribution DA
U [−1, 1] continuous uniform PointMass, HalfCheetah, Hopper
Marginalized from D PointMaze

Seeds 30 All
Samples NV 32 768 All
Mean Samples NM 32 768 All

NPEC
Seeds 3 All

Total Timesteps 1× 106 All
Optimizer Adam All

Learning Rate 1× 10−2 All
Batch Size 4096 All
Warmstart Size 16 386 All

Loss `
`(x, y) = (x− y)2 All

ERC
Episodes 131 072 All

of a policy. We use a random policy πunif for PointMass, HalfCheetah and Hopper in the hand-
designed reward experiments (section 6.1). In PointMaze, we compare three visitation distributions
(section 6.3) induced by rollouts of πunif , an expert policy π∗ and a Mixture of the two policies,
sampling actions from either πunif or π∗ and switching between them with probability 0.05 per
timestep.

A.2.2 Training Learned Reward Models

For the experiments on learned reward functions (sections 6.2 and 6.3), we trained reward models
using adversarial inverse reinforcement learning (AIRL; 9), preference comparison [7] and by
regression onto the ground-truth reward [target method from 7, section 3.3]. For AIRL, we use
an existing open-source implementation [29]. We developed new implementations for preference
comparison and regression, available at — double blind: supplementary material —. We also
use the RL algorithm proximal policy optimization (PPO; 25) on the ground-truth reward to train
expert policies to provide demonstrations for AIRL, and on learned reward models to evaluate their
performance.

For PPO and AIRL we used the default hyperparameters in tables A.2 and A.3, finding them
adequate and so performing no further tuning. For preference comparison we performed a sweep
over batch size, trajectory length and learning rate to decide on the hyperparameters in table A.4.
Total timesteps was selected once diminishing returns were observed in loss curves. The exact value
of the regularization weight was found to be unimportant, largely controlling the scale of the output
at convergence. Finally, for regression we performed a sweep over batch size, learning rate and total
timesteps to decide on the hyperparameters in table A.5. We found batch size and learning rate to

13

Table A.2: Hyperparameters for proximal policy optimisation (PPO) [25]. We used the implemen-
tation and default hyperparameters from Hill et al. [13]. PPO was used to train expert policies on
ground-truth reward and to optimize learned reward functions for evaluation.

Parameter Value In environment

Total Timesteps 1× 106 All

Batch Size
16 384 PointMaze
1024 All others

Discount γ 0.99
Entropy Coefficient 0.01
Learning Rate 2.5× 10−4

Value Function Coefficient 0.5
Gradient Clipping Threshold 0.5
Ratio Clipping Thrsehold 0.2
Lambda (GAE) 0.95
Minibatches 4
Optimization Epochs 4
Parallel Environments 8

Table A.3: Hyperparameters for adversarial inverse reinforcement learning (AIRL) used in Wang
et al. [29].

Parameter Value

RL Algorithm PPO [25]
Total Timesteps 102 400
Discount γ 0.99
Demonstration Timesteps 100 000
Generator Batch Size 2048
Discriminator Batch Size 50
Entropy Weight 1.0
Reward Function Architecture MLP, two 32-unit hidden layers
Potential Function Architecture MLP, two 32-unit hidden layers

Table A.4: Hyperparameters for preference comparison used in our implementation of Christiano
et al. [7].

Parameter Value Range Tested

Total Timesteps 5× 106 [1, 10× 106]
Batch Size 10 000 [500, 250 000]
Trajectory Length 5 [1, 100]
Learning Rate 1× 10−2 [1× 10−4, 1× 10−1]
Discount γ 0.99
Reward Function Architecture MLP, two 32-unit hidden layers

Output L2 Regularization Weight 1× 10−4

Table A.5: Hyperparameters for regression used in our implementation of Christiano et al. [7, target
method from section 3.3].

Parameter Value Range Tested

Total Timesteps 10× 106 [1, 20× 106]
Batch Size 4096 [256, 16 384]
Learning Rate 2× 10−2 [1× 10−3, 1× 10−1]
Discount γ 0.99
Reward Function Architecture MLP, two 32-unit hidden layers

14

Table A.6: Approximate distances of learned reward models from the ground-truth (GT). We report
the 95% bootstrapped lower and upper bounds, the mean, and a 95% bound on the relative error
from the mean. Distances (1000× scale) use visitation distribution D from rollouts in the train
environment of: a uniform random policy πunif , an expert π∗ and a Mixture of these policies. DS
and DA are computed by marginalizing D.

(a) 95% lower bound DLOW of approximate distance.

Reward 1000 × D
LOW

EPIC
1000 × D

LOW

NPEC
1000 × D

LOW

ERC

Model πunif π∗ Mix πunif π∗ Mix πunif π∗ Mix

Regress 41.7 36.4 25.9 0.506 13.3 0.126 4.75 40.7 1.38
Pref 50.2 54.3 32.7 2.80 159 1.76 15.0 179 8.11
AIRL SO 484 599 393 673 2640 417 446 380 232
AIRL SA 544 614 388 804 1630 370 505 465 206

(b) Mean approximate distanceD. Results are the same as Table 2.

Reward 1000 ×DEPIC 1000 ×DNPEC 1000 ×DERC

Model πunif π∗ Mix πunif π∗ Mix πunif π∗ Mix

Regress 41.9 36.5 25.9 0.519 14.9 0.140 4.78 40.9 1.39
Pref 50.5 54.4 32.9 2.99 204 1.78 15.0 180 8.15
AIRL SO 488 600 395 684 3550 426 448 382 234
AIRL SA 548 614 390 823 3030 376 506 467 208

(c) 95% upper bound DUP of approximate distance.

Reward 1000 × D
UP

EPIC
1000 × D

UP

NPEC
1000 × D

UP

ERC

Model πunif π∗ Mix πunif π∗ Mix πunif π∗ Mix

Regress 42.2 36.5 26.0 0.535 16.8 0.162 4.80 41.1 1.40
Pref 50.9 54.5 33 3.16 240 1.80 15.1 181 8.19
AIRL SO 492 601 397 694 4420 436 450 384 235
AIRL SA 552 614 392 848 4660 385 508 469 209

(d) Relative 95% confidence interval DREL = max
(

Upper

Mean
− 1, 1− Lower

Mean

)

in percent. The population mean

is contained within ±DREL% of the sample mean in Table A.6b with 95% probability.

Reward D
REL

EPIC
% D

REL

NPEC
% D

REL

ERC
%

Model πunif π∗ Mix πunif π∗ Mix πunif π∗ Mix

Regress 0.662 0.0950 0.352 3.04 12.9 16.0 0.589 0.544 0.620
Pref 0.683 0.158 0.411 6.31 21.8 1.41 0.499 0.538 0.481
AIRL SO 0.875 0.115 0.522 1.60 25.8 2.37 0.449 0.504 0.621
AIRL SA 0.654 0.0331 0.397 3.15 53.9 2.34 0.382 0.445 0.540

20

A.3 Proofs

A.3.1 Background

Proposition 3.5. The binary relation≡ is an equivalence relation. Let RA, RB , RC : S×A×S → R

be bounded reward functions. Then ≡ is reflexive, RA ≡ RA; symmetric, RA ≡ RB implies
RB ≡ RA; and transitive, (RA ≡ RB) ∧ (RB ≡ RC) implies RA ≡ RC .

Proof. RA ≡ RA since RA(s, a, s
′) = λRA(s, a, s

′) + γΦ(s′)− Φ(s) for all s, s′ ∈ S and a ∈ A
for λ = 1 > 0 and Φ(s) = 0, a bounded potential function.

Suppose RA ≡ RB . Then there exists some λ > 0 and a bounded potential function Φ : S → R

such that RB(s, a, s
′) = λRA(s, a, s

′) + γΦ(s′)− Φ(s) for all s, s′ ∈ S and a ∈ A. Rearranging,
we have:

RA(s, a, s
′) =

1

λ
RB(s, a, s

′) + γ

(

−1

λ
Φ(s′)

)

−

(

−1

λ
Φ(s)

)

.

Since 1
λ > 0 and Φ′(s) = −1

λ Φ(s) is a bounded potential function, it follows that RB ≡ RA.

Finally, suppose RA ≡ RB and RB ≡ RC . Then there exists some λ1, λ2 > 0 and bounded potential
functions Φ1,Φ2 : S → R such that for all s, s′ ∈ S and a ∈ A:

RB(s, a, s
′) = λ1RA(s, a, s

′) + γΦ1(s
′)− Φ1(s)

RC(s, a, s
′) = λ2RB(s, a, s

′) + γΦ2(s
′)− Φ2(s)

Substituting the expression for RB into the expression for RC :

RC(s, a, s
′) = λ2 (λ1RA(s, a, s

′) + γΦ1(s
′)− Φ1(s)) + γΦ2(s

′)− Φ2(s)

= λ1λ2RA(s, a, s
′) + γ (λ2Φ1(s

′) + Φ2(s
′))− (λ2Φ1(s) + Φ2(s))

= λRA(s, a, s
′) + γΦ(s′)− Φ(s),

where λ = λ1λ2 > 0 and Φ(s) = λ2Φ1(s) + Φ2(s) is bounded. Thus RA ≡ RC .

A.3.2 Equivalent-Policy Invariant Comparison (EPIC) pseudometric

Proposition 4.2 (The Canonically Shaped Reward is Invariant to Shaping). Let R : S ×A×S → R

be a reward function and Φ : S → R a potential function. Let γ ∈ [0, 1] be a discount rate,
and DS and DA be distributions over states S and A respectively. Let R′ denote R shaped by
Φ: R′(s, a, s′) = R(s, a, s′) + γΦ(s′) − Φ(s). Then the canonically shaped R′ and R are equal:
CDS ,DA

(R′) = CDS ,DA
(R).

Proof. Let s, a, s′ ∈ S ×A× S. Then by substituting in the definition of R′ and using linearity of
expectations:

CDS ,DA
(R′) (s, a, s′) , R′(s, a, s′) + E [γR′(s′, A, S′)−R′(s,A, S′)− γR′(S,A, S′)]

= (R(s, a, s′) + γΦ(s′)− Φ(s)) + E
[

γR(s′, a, S′) + γ2Φ(S′)− γΦ(s′)
]

− E [R(s,A, S′) + γΦ(S′)− Φ(s)]− E
[

γR(S,A, S′) + γ2Φ(S′)− γΦ(S)
]

= R(s, a, s′) + E [γR(s′, a, S′)−R(s,A, S′)− γR(S,A, S′)]

+ (γΦ(s′)− Φ(s)) + E [Φ(s)− γΦ(s′)]

+ E
[

γ2Φ(S′)− γΦ(S′)
]

− E
[

γ2Φ(S′)− γΦ(S)
]

= R(s, a, s′) + E [γR(s′, a, S′)−R(s,A, S′)− γR(S,A, S′)]

, CDS ,DA
(R) (s, a, s′),

where the penultimate step uses E[Φ(S′)] = E[Φ(S)] since S and S′ are identically distributed.

Lemma 4.5. Let a, b ∈ (0,∞), c, d ∈ R and X,Y be random variables. Then it follows that
0 ≤ Dρ(aX + c, bY + d) = Dρ(X,Y) ≤ 1.

21

Proof. Dρ(aX + c, bY + d) = Dρ(X,Y) immediate from ρ(X,Y) invariant to positive affine
transformations. Have −1 ≤ ρ(X,Y) ≤ 1, so 0 ≤ 1− ρ(X,Y) ≤ 2 thus 0 ≤ Dρ(X,Y) ≤ 1.

Lemma 4.4. The Pearson distance Dρ is a pseudometric.

Proof. For a random variable V , define a standardized (zero mean and variance) version:

V̂ =
V − E[V]

√

E

[

(V − E[V])
2
]

.

The Pearson correlation coefficient on random variables X and Y is equal to the expected product of
these standardized random variables:

ρ(X,Y) = E

[

X̂Ŷ
]

.

Let X , Y and Z be random variables.

Identity. Have ρ(X,X) = 1, so Dρ(X,X) = 0.

Symmetry. Have ρ(X,Y) = ρ(Y,X) by commutativity of multiplication, so Dρ(X,Y) =
Dρ(Y,X).

Triangle Inequality. For any random variables A,B:

E

[

(

Â− B̂
)2

]

= E

[

Â2 − 2ÂB̂ + B̂2
]

= E

[

Â2 − 2ÂB̂ + B̂2
]

= E

[

Â2
]

+ E

[

B̂2
]

− 2E
[

ÂB̂
]

= 2− 2E
[

ÂB̂
]

= 2 (1− ρ(A,B))

= 4Dρ(A,B)2.

So:

4Dρ(X,Z)2 = E

[

(

X̂ − Ẑ
)2

]

= E

[

(

X̂ − Ŷ + Ŷ − Ẑ
)2

]

= E

[

(

X̂ − Ŷ
)2

]

+ E

[

(

Ŷ − Ẑ
)2

]

+ 2E
[(

X̂ − Ŷ
)(

Ŷ − Ẑ
)]

= 4Dρ(X,Y)2 + 4Dρ(Y, Z)2 + 8E
[(

X̂ − Ŷ
)(

Ŷ − Ẑ
)]

.

Since 〈A,B〉 = E[AB] is an inner product over R, it follows by the Cauchy-Schwarz inequality that

E[AB] ≤
√

E[A2]E[B2]. So:

Dρ(X,Z)2 ≤ Dρ(X,Y)2 +Dρ(Y, Z)2 + 2Dρ(X,Y)Dρ(Y, Z)

= (Dρ(X,Y) +Dρ(Y, Z))
2
.

Taking the square root of both sides:

Dρ(X,Z) ≤ Dρ(X,Y) +Dρ(Y, Z),

as required.

Thorem 4.8. Let RA, R′
A, RB , R

′
B : S ×A×S → R be reward functions such that R′

A ≡ RA and
R′

B ≡ RB . Then 0 ≤ DEPIC(R
′
A, R

′
B) = DEPIC(RA, RB) ≤ 1.

22

Proof. The result follows from Dρ being a pseudometric. Let RA, RB and RC be reward functions
mapping from transitions S ×A× S to real numbers R.

Identity. Have:

DEPIC(RA, RA) = Dρ (CDS ,DA
(RA) (S,A, S′), CDS ,DA

(RA) (S,A, S′))

= 0,

since Dρ(X,X) = 0.

Symmetry. Have:

DEPIC(RA, RB) = Dρ (CDS ,DA
(RA) (S,A, S′), CDS ,DA

(RB) (S,A, S′))

= Dρ (CDS ,DA
(RB) (S,A, S′), CDS ,DA

(RA) (S,A, S′))

= DEPIC(RB , RA),

since Dρ(X,Y) = Dρ(Y,X).

Triangle Inequality. Have:

DEPIC(RA, RC) = Dρ (CDS ,DA
(RA) (S,A, S′), CDS ,DA

(RC) (S,A, S′))

≤ Dρ (CDS ,DA
(RA) (S,A, S′), CDS ,DA

(RB) (S,A, S′))

+Dρ (CDS ,DA
(RB) (S,A, S′), CDS ,DA

(RC) (S,A, S′))

= DEPIC(RA, RB) +DEPIC(RB , RC),

since Dρ(X,Z) ≤ Dρ(X,Y) +Dρ(Y, Z).

A.3.3 Nearest Point in Equivalence Class (NPEC) premetric

Proposition 5.3. (1) DLp is a metric in Lp space, where functions f and g are identified if f = g
almost everywhere on D. (2) It is a pseudometric when f and g are identified if f = g at all points.

Proof. (1) DLp is a metric in the Lp space since Lp is a norm in the Lp space, and d(x, y) = ‖x− y‖
is always a metric. (2) As f = g at all points implies f = g almost everywhere, certainly
DLp(R,R) = 0. Symmetry and triangle inequality do not depend on identity so still hold.

Proposition 5.5. DNPEC is a premetric.

Proof. Let RA, RB be bounded reward functions on S ×A× S → R.

Respects identity: DNPEC(RA, RA) = 0

If DU
NPEC(Zero, RA) = 0 then DNPEC(RA, RA) = 0 as required. Suppose from now on that

DNPEC(RA, RA) 6= 0. It follows from prop 5.3 that DLp(RA, RA) = 0. Since X ≡ X , 0 is an
upper bound for DU

NPEC(RA, RA). By prop 5.3 DLp is non-negative, so this is also a lower bound

for DU
NPEC(RA, RA). So DU

NPEC(RA, RA) = 0 and:

DNPEC(RA, RA) =
DU

NPEC(RA, RA)

DU
NPEC(Zero, RA)

=
0

DU
NPEC(Zero, RA)

= 0.

Well-defined: DNPEC(RA, RB) ≥ 0

By prop 5.3, it follows that DLp(R,RB) ≥ 0 for all reward functions R : S × A × S. Thus 0
is a lower bound for {DLp(R,RB) | R : S × A × S}, and thus certainly a lower bound for
{DLp(R, Y) | R ≡ X} for any reward function X . Since the infimum is the largest lower bound, it
follows that for any reward function X:

DU
NPEC(X,RB) , inf

R≡X
DLp(R,RB) ≥ 0.

In the case that DU
NPEC(Zero, RB) = 0, then DNPEC(RA, RB) = 0 which is non-negative. From

now on, suppose that DU
NPEC(Zero, RB) 6= 0. The quotient of a non-negative value with a positive

value is non-negative, so:

DNPEC(RA, RB) =
DU

NPEC(RA, RB)

DU
NPEC(Zero, RB)

≥ 0.

23

Note when DLp is a metric, then DNPEC(X,Y) = 0 if and only if X = Y .

Proposition A.1. DNPEC is not symmetric in the undiscounted case.

Proof. We will provide a counterexample showing that DNPEC is not symmetric.

Choose the state space S to be binary {0, 1} and the actions A to be the singleton {0}. Choose the

visitation distribution D to be uniform on s
0
→ s for s ∈ S . Take γ = 1, i.e. undiscounted. Note that

as the successor state is always the same as the start state, potential shaping has no effect on Ddirect,
so WLOG we will assume potential shaping is always zero.

Now, take RA(s) = 2s and RB(s) = 1. Take p = 1 for the Lp distance. Observe that
DLp(Zero, RA) = 1

2 (|0|+ |2|) = 1 and DLp(Zero, RB) = 1
2 (|1|+ |1|) = 1. Since poten-

tial shaping has no effect, DU
NPEC(Zero, R) = DLp(Zero, R) and so D(Zero, RA) = 1 and

D(Zero, RB) = 1.

Now:

DU
NPEC(RA, RB) = inf

λ>0
DLp(λRA, RB)

= inf
λ>0

1

2
(|1|+ |2λ− 1|)

=
1

2
,

with the infimum attained at λ = 1
2 . But:

DU
NPEC(RB , RA) = inf

λ>0
DLp(λRB , RA)

= inf
λ>0

1

2
f(λ)

=
1

2
inf
λ>0

f(λ),

where:
f(λ) = |λ|+ |2− λ|, λ > 0.

Note that:

f(λ) =

{

2 λ ∈ (0, 2],

2λ− 2 λ ∈ (2,∞).

So f(λ) ≥ 2 on all of its domain, thus:

DU
NPEC(RB , RA) = 1.

Consequently:

DNPEC(RA, RB) =
1

2
6= 1 = DNPEC(RB , RA).

Proposition A.2 (Properties of DU
NPEC). Let RA, RB : S × A × S → R be bounded reward

functions, and λ ≥ 0. Then DU
NPEC:

• Is invariant under ≡ in source:
DU

NPEC(RA, RB) = DU
NPEC(RB , RB) if RA ≡ RB .

• Invariant under scale-preserving ≡ in target:
DU

NPEC(RA, RA) = DU
NPEC(RA, RB) if RA −RB ≡ Zero.

• Scalable in target:
DU

NPEC(RA, λRB) = λDU
NPEC(RA, RB).

• Bounded:
DU

NPEC(R,RB) ≤ DU
NPEC(Zero, RB).

24

Proof. We will show each case in turn.

Invariance under ≡ in source

If RA ≡ RB , then:

DU
NPEC(RA, RB) , inf

R≡RA

DLp(R,RB)

= inf
R≡RB

DLp(R,RB)

, DU
NPEC(RB , RB),

since R ≡ RA if and only if R ≡ RB as ≡ is an equivalence relation.

Invariance under scale-preserving ≡ in target

If RA − RB ≡ Zero, then we can write RA(s, a, s
′) − RB(s, a, s

′) = γΦ(s′) − Φ(s) for some
potential function Φ : S → R. Then for any reward function R, since D is induced by a norm:

DLp(R,RA) , E
s,a,s′∼D

[D (R(s, a, s′), RA(s, a, s
′))]

= E
s,a,s′∼D

[‖R(s, a, s′)−RA(s, a, s
′)‖]

= E
s,a,s′∼D

[‖R(s, a, s′)− (RB(s, a, s
′) + γΦ(s′)− Φ(s))‖]

= E
s,a,s′∼D

[‖(R(s, a, s′)− γΦ(s′) + Φ(s))−RB(s, a, s
′)‖]

= E
s,a,s′∼D

[D (R(s, a, s′)− γΦ(s′) + Φ(s), RB(s, a, s
′))]

, DLp(f(R), RB), (1)

where f(R)(s, a, s′) = R(s, a, s′) − γΦ(s′) + Φ(s). Crucially, note f(R) is a bijection on the
equivalence class [R]. Now, substituting this into the expression for NPEC premetric:

DU
NPEC(RA, RA) , inf

R≡RA

DLp(R,RA)

= inf
R≡RA

DLp(f(R), RB) eq. 1

= inf
f(R)≡RA

DLp(f(R), RB) f bijection on [R]

= inf
R≡RA

DLp(R,RB) f bijection on [R]

, DU
NPEC(RA, RB).

Scalable in target First, note that DLp is absolutely scalable in both arguments:

DLp(λRA, λRB) , E
s,a,s′∼D

[D (λRA(s, a, s
′), λRB(s, a, s

′))] (2)

= E
s,a,s′∼D

[‖λRA(s, a, s
′)− λRB(s, a, s

′)‖] (3)

= E
s,a,s′∼D

[|λ|‖RA(s, a, s
′)−RB(s, a, s

′)‖] ‖·‖absolutely scalable (4)

= |λ| E
s,a,s′∼D

[‖RA(s, a, s
′)−RB(s, a, s

′)‖] (5)

, |λ|DLp(RA, RB). (6)

Now, for λ > 0, applying this to NPEC premetric:

DU
NPEC(RA, λRB) , inf

R≡RA

DLp(R, λRB)

= inf
R≡RA

DLp(λR, λRB) R ≡ λR

= inf
R≡RA

λDLp(R,RB)

= λ inf
R≡RA

DLp(R,RB)

, λDU
NPEC(RA, RB).

25

In the case λ = 0, then:

DU
NPEC(RA, 0) , inf

R≡RA

DLp(R, 0)

= inf
R≡RA

DLp

(

1

2
R, 0

)

R ≡
1

2
R

= inf
R≡RA

1

2
DLp(R, 0)

=
1

2
inf

R≡RA

DLp(R, 0)

=
1

2
DU

NPEC(RA, 0).

Rearranging, we have:

DU
NPEC(RA, 0) = 0.

Boundedness

Suppose RA is bounded by B: |RA(s, a, s
′)| ≤ B for all s, s′ ∈ S and a ∈ A. Suppose the NPEC

premetric DNPEC(0, RB) = d. Then for any ε > 0, there exists some potential function Φ : S → R

such that the Lp of the potential shaping R(s, a, s′) , γΦ(s)− Φ(s) from RB satisfies:

DLp(R,RB) ≤ d+ ε. (7)

Let λ ∈ [0, 1]. Define:

R′
λ(s, a, s

′) , λRA(s, a, s
′) +R(s, a, s′),

and:
fλ(s, a, s

′) = D (R′
λ(s, a, s

′), R(s, a, s′)) .

Note that:
lim
λ→0

R′
λ = R′

0 pointwise,

and R′
0 = R. Since D is a metric it is continuous, and so:

lim
λ→0

fλ = f0 pointwise.

Moreover, f0(s, a, s
′) = 0 everywhere since D(x, x) = 0. Now:

|fλ(s, a, s
′)| = D(R′

λ(s, a, s
′), R(s, a, s′))

= ‖R′
λ(s, a, s

′)−R(s, a, s′)‖

= ‖λRA(s, a, s
′)‖

≤ λB.

It follows by the bounded convergence theorem that:

lim
λ→0+

DLp(R′
λ, R) = lim

λ→0+
E

s,a,s′∼D
[fλ(s, a, s

′)]

= E
s,a,s′∼D

[

lim
λ→0+

fλ(s, a, s
′)

]

= E
s,a,s′∼D

[f0(s, a, s
′)]

= 0.

So in particular, for any ε > 0 there exists some λ > 0 such that:

DLp(R′
λ, R) ≤ ε. (8)

Note that RA ≡ R′
λ for all λ > 0. So:

DNPEC(RA, RB) ≤ DLp(R′
λ, RB)

≤ DLp(R′
λ, R) +DLp(R,RB) prop. 5.3

≤ ε+ (d+ ε) eq. 7 and eq. 8

= d+ 2ε.

26

Since ε > 0 can be made arbitrarily small, it follows:

DNPEC(RA, RB) ≤ d. (9)

Thorem 5.6. Let RA, RA
′, RB , RB

′ : S × A × S → R be reward functions such that RA ≡ RA
′

and RB ≡ RB
′. Then 0 ≤ DNPEC(RA

′, RB
′) = DNPEC(RA, RB) ≤ 1.

Proof. Since R′
B ≡ RB , we have R′

B − λRB ≡ Zero for some λ > 0. By proposition A.2, DU
NPEC

is invariant under scale-preserving ≡ in target and scalable in target. That is, for any reward R:

DU
NPEC(R,R′

B) = DU
NPEC(R, λRB) = λDU

NPEC(R,RB). (10)

In particular, DU
NPEC(Zero, RB

′) = λDU
NPEC(Zero, RB). As λ > 0, it follows that

DU
NPEC(Zero, RB

′) = 0 ⇐⇒ DU
NPEC(Zero, RB) = 0.

Suppose DU
NPEC(Zero, RB) = 0. Then DNPEC(R,RB) = 0 = DNPEC(R,RB

′) for any reward R,

so the result trivially holds. From now on, suppose DU
NPEC(Zero, RB) 6= 0.

By proposition A.2, DU
NPEC is invariant to ≡ in source. That is, DU

NPEC(RA, RB) =
DU

NPEC(R
′
A, RB), so:

DNPEC(R
′
A, RB) =

DU
NPEC(R

′
A, RB)

DU
NPEC(Zero, RB)

=
DU

NPEC(RA, RB)

DU
NPEC(Zero, RB)

= DNPEC(RA, RB).

By eq. (10):

DNPEC(RA, R
′
B) =

λDU
NPEC(RA, RB)

λDU
NPEC(Zero, RB)

=
DU

NPEC(RA, RB)

DU
NPEC(Zero, RB)

= DNPEC(RA, RB).

Since DNPEC is a premetric it is non-negative. By the boundedness property of proposition A.2,
DU

NPEC(R,RB) ≤ DU
NPEC(Zero, RB), so:

DNPEC(RA, RB) =
DU

NPEC(RA, RB)

DU
NPEC(Zero, RB)

≤ 1.

A.4 Direct Distance Variant of EPIC

Previously, we used Pearson distance to compare the canonicalized rewards. Pearson distance is
naturally invariant to scaling. An alternative is to explicitly normalize the canonicalized rewards, and
then compare them using any metric over functions.

Definition A.3 (Normalized Reward). Let R be a reward function mapping from transitions S×A×S
to real numbers R. Let ‖·‖ be some norm on the vector space of reward functions over the real field.
Then the normalized R is:

RN (s, a, s′) =
R(s, a, s′)

‖R‖

Note that (λR)
N

= RN for any λ > 0 as norms are absolutely homogeneous.

We say a reward is standardized if it has been canonicalized and then normalized.

Definition A.4 (Standardized Reward). Let R be a reward function mapping from transitions S ×
A× S to real numbers R. Then the standardized R is:

RS = (CDS ,DA
(R))

N
.

Now, we can define a pseudometric based on the direct distance between the standardized rewards.

Definition A.5 (Direct Distance Standardized Reward). Let D be some visitation distribution over

transitions s
a
→ s′. Let DS and DA be some distributions over states S and A respectively. Let

27

S,A, S′ be random variables jointly sampled fromD. The Direct Distance Standardized Reward pseu-
dometric between two reward functions RA and RB is the direct distance between their standardized
versions over D:

DDDSR(RA, RB) =
1

2
DLp

(

RS
A(S,A, S′), RS

B(S,A, S′)
)

,

where the norm used for direct distance is the same norm used for normalization in RN .

For brevity, we omit the proof that DDDSR is a pseudometric, but this follows from DLp being a
pseudometric in a similar fashion to theorem 4.7. Note it additionally is invariant to equivalence
classes, similarly to EPIC.

Thorem A.6. Let RA, RA
′, RB and RB

′ be reward functions mapping from transitions S ×A× S
to real numbers R such that RA ≡ RA

′ and RB ≡ RB
′. Then:

0 ≤ DDDSR(R
′
A, R

′
B) = DDDSR(RA, RB) ≤ 1.

Proof. The invariance under the equivalence class follows from RS being invariant to potential
shaping and scale in R. The non-negativity follows from DLp being a pseudometric. The upper
bound follows from the rewards being normalized to norm 1 and the triangle inequality:

DDDSR(RA, RB) =
1

2
‖RS

A −RS
B‖

≤
1

2

(

‖RS
A‖+ ‖R

S
B‖

)

=
1

2
(1 + 1)

= 1.

Since both DDSR and EPIC are pseudometrics and invariant on equivalent rewards, it is interesting to
consider the connection between them. In fact, under the L2 norm with D chosen to be i.i.d. samples
from the joint distribution DS × DA × DS , then DDSR recovers EPIC. First, we will show that
canonical shaping centers the reward functions.

Lemma A.7 (The Canonically Shaped Reward is Mean Zero). Let R be a reward function mapping
from transitions S ×A× S to real numbers R. Then:

E [CDS ,DA
(R) (S,A, S′)] = 0.

Proof. Let X , U and X ′ be random variables that are independent of S, A and S′ but identically
distributed.

E [CDS ,DA
(R) (S,A, S′)] = E [R(S,A, S′) + γR(S′, U,X ′)−R(S,U,X ′)− γR(X,U,X ′)]

= E [R(S,A, S′)] + γE [R(S′, U,X ′)]− E [R(S,U,X ′)]− γE [R(X,U,X ′)]

= E [R(S,U,X ′)] + γE [R(X,U,X ′)]− E [R(S,U,X ′)]− γE [R(X,U,X ′)]

= 0,

where the penultimate step follows since A is identically distributed to U , and S′ is identically
distributed to X ′ and therefore to X .

Recall from the proof of lemma 4.4 that:

Dρ(U, V) =
1

2

√

E

[

(

Û − V̂
)2

]

=
1

2

∥

∥

∥
Û − V̂

∥

∥

∥

2
,

where ‖·‖2 is the L2 norm (treating the random variables as functions on a measure space) and Û is a
centered (zero-mean) and rescaled (unit variance) random variable. By lemma A.7, the canonically

28

shaped reward functions are already centered under the joint distribution DS × DA × DS , and
normalization by the L2 norm also ensures they have unit variance. Consequently:

DEPIC(RA, RB) = Dρ (CDS ,DA
(RA) (S,A, S′), CDS ,DA

(RB) (S,A, S′))

=
1

2

∥

∥

∥

̂CDS ,DA
(RA)(S,A, S′)− ̂CDS ,DA

(RB)(S,A, S′)
∥

∥

∥

2

=
1

2

∥

∥RS
A(S,A, S′)−RS

B(S,A, S′)
∥

∥

2

=
1

2
DLp

(

RS
A(S,A, S′), RS

B(S,A, S′)
)

= DDDSR(RA, RB).

29

	1 Introduction
	2 Related work
	3 Background
	4 Comparing reward functions with EPIC
	5 Baseline approaches for comparing reward functions
	5.1 Episode Return Correlation (ERC)
	5.2 Nearest Point in Equivalence Class (NPEC)

	6 Experiments
	6.1 Comparing hand-designed reward functions
	6.2 Predicting policy performance from reward distance
	6.3 Sensitivity of reward distance to visitation state distribution

	7 Discussion
	A Supplementary material
	A.1 Approximation Procedures
	A.1.1 Sample-based approximation for EPIC distance
	A.1.2 Optimization-based approximation for NPEC distance
	A.1.3 Confidence Intervals

	A.2 Experiments
	A.2.1 Hyperparameters for Approximate Distances
	A.2.2 Training Learned Reward Models
	A.2.3 Computing infrastructure
	A.2.4 Comparing hand-designed reward functions
	A.2.5 Comparing learned reward functions

	A.3 Proofs
	A.3.1 Background
	A.3.2 Equivalent-Policy Invariant Comparison (EPIC) pseudometric
	A.3.3 Nearest Point in Equivalence Class (NPEC) premetric

	A.4 Direct Distance Variant of EPIC

