


tool, GQ-CNN, to plan grasps on the objects.

2) A method to show multiple facets of the objects to the

robot in order to generate grasps with higher qualities.

3) Experiments measuring the advantage of 3D point

clouds as input over traditional depth maps, that point

clouds reveal more geometric information of the ob-

jects.

II. RELATED WORK

a) Augmented Reality: Augmented reality (AR) is an

interactive experience of a real-world environment where

the objects in the real-world can be enhanced by perceptual

information generated by a computer. It was first introduced

by USAF Armstrong Labs [3] in order to create a virtual

augmentation of a real environment to improve human

performance in physical tasks. Recently, researchers have

combined AR with computer vision techniques to recognize

and classify objects in a real-world environment [4], [5], [6].

b) Structure from Motion: In 3D reconstruction, Struc-

ture from Motion (SfM) is used when 3D point positions are

not known in advance [7]. SfM simultaneously recovers the

3D structure and pose of the camera from image correspon-

dences given multiple frames of RGB images. In this way,

SfM estimates the 3D locations of points on the object’s

notable geometric features from continuous frames. One

limitation of SfM is that the objects being reconstructed must

have notable geometric features such as contours, edges,

and vertices. Thus, the objects need to be non-reflective and

chromatic for the feature points to be detected and recorded.

c) Point Cloud Cleaning: To clean the SfM-generated

3D point cloud, we use a k-Nearest Neighbors (kNN) based

approach which removes remote and isolated outliers. Ning

et al. [8] developed a method to locally fit a plane using kNN

and then project the near-surface, non-isolated outliers to the

plane, further making the surface smoother and cleaner. In

addition, Rakotosaona et al. [9] suggested a learning-based

approach to denoise dense point cloud data. We build on

this line of research by cleaning point cloud recorded by a

smartphone to generate better quality grasps.

d) Grasp Planning: Grasp planning considers the prob-

lem of finding a gripper configuration that maximizes the Q

value of grasp. There are several different approaches. An-

alytic approaches typically assume knowledge of the object

and gripper state and consider the capability of constraining

the object’s motion [10] under perturbations and noises.

Examples include GraspIt! [11], OpenGRASP [12], and the

Dexterity Network (Dex-Net) 2.0 [1]. In order to fully satisfy

the assumption of known state, analytic methods use a

registration-based perception system: matching sensor data

to known 3D models available in the existing database [13],

[14], [15], [16], [17]. Empirical approaches [18] use learning-

based methods to develop models that map sensor readings

to success labels from humans or physical trials [19]. Both

classes of approaches often use depth images taken from

high-end depth cameras for both training and real data. In

contrast, we explore planning grasps from relatively low-

cost point cloud data taken from commodity devices, such

as iPhones.

III. PROBLEM DEFINITION

We wish to take a sequence of images of an object from

moving the camera of a commodity smartphone, and plan

a grasp on the object. Suppose we move a camera around

an object to scan it, during the recording process, which we

define as a session, n frames are recorded. In each frame i,

the camera captures an RGB image fi, where fi ∈ R
W×H×3.

W and H are the width and height of fi, and they vary

depending on the camera we are using. Therefore, the input

F is a sequence of captured RGB images:

F = {f1, f2, ..., fn}

In each frame, SfM can detect notable geometric features

of the object in the RGB image, and record the features as

points, where each point is a 3D vector in R
3, representing

the (x, y, z) coordinates in the camera’s local coordinates

system. Multiple features detected in a frame can then be

recorded as a point cloud of this frame. Thus, from F , we

use SfM to generate point cloud data:

Craw = c1 ∪ c2 ∪ ... ∪ cn

where ci is the set of points extracted from image fi. In

each frame, we also record the frame number, a camera

transformation matrix, and the points’ unique identifiers.

However, for SfM to generate point clouds with higher

qualities, the scanned objects should not be monochromatic,

reflective, or small. Thus, the objects that perform better in a

session are those with a decent amount of texture variation.

Points extracted by SfM also contain a large amount of noisy

points, so Craw, as an aggregation of all point clouds that are

recorded, contains both point cloud of the object of interest

and points from noise. Let Q ⊂ R
3 be the actual points of

the objects’ surfaces captured in F , and let X ⊂ R
3 \Q be

the noise points that are captured. We want to clean Craw by

removing X from it to obtain a point cloud with less noise:

Cclean = f(Craw)

where f is our cleaning method applied to the aggregation

of all point clouds from different frames.

With a cleaner aggregated point cloud of the object, we

transform the data to a depth map D:

D = g (Cclean, dplane,nplane, Int, T )

where dplane and nplane are the depth and the normal vector,

respectively, of the ground plane or desktop on which the

object is placed, and Int is the known camera intrinsics

matrix of a depth camera, and T ∈ R
4×4 is the camera

pose transformation matrix.

To plan a grasp, we feed D into a convolutional neural

network architecture N called GQ-CNN [1], [20], [21]:

Q = N (D)

where the output value Q ∈ [0, 1] represents the quality of

the grasp planned. The objective is to generate a robust grasp

while maintaining a relatively high Q value, which largely

relies on high-quality point cloud data.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on

Robotics and Automation (ICRA). Received September 15, 2019.





Algorithm 1 kNN-Based Outliers Removal

Require: Uobj , k, and ε

1: for p ∈ Uobj do

2: knn = k-Nearest Neighbors of p

3: dist = 0

4: for nn ∈ knn do

5: dist ← dist + ‖p− nn‖
6: dist ← dist / k

7: if dist > ε then

8: Uobj ← Uobj \ {p}
9: return updated Uobj as Cclean

We propose an algorithm based on k-Nearest Neighbor

(kNN) to rid the point cloud of the sparse outliers by iterating

through every point p in Uobj .

In Algorithm 1, for each point p, we calculate its kNN,

and we reject the selected point if the average distance from

it to its kNN is above a threshold value ε, meaning that

the point is potentially a sparse outlier. Here, k and ε are

hyperparameters.

The updated Uobj point cloud contains substantially less

noise from the ground and isolated outliers. As a result, we

obtain a better-quality point cloud data, and we can convert

the updated Uobj into a depth map that is compatible with

GQ-CNN. We denote the updated Uobj as Cclean.

C. Transformation to a Depth Map

We want to transform the point clouds to depth maps

because most grasp planning tools are based on the depth

images captured by a depth camera. To generate a depth

map, we first create an artificial depth camera, and we fix

the camera at depth 0. Then to create an artificial “bin” to

emulate regular robot grasping and bin-picking tasks, we use

the output from RANSAC. First, since dplane

(

nplane · k̂
)

represents the approximate z-coordinate of the ground plane

in camera’s local coordinates, we use this value as the depth

of the bin or the desk in grasping scenarios, which should

be the farthest from the camera.

One of the potential advantages of point clouds over

traditional depth images is that a point cloud contains richer

geometric information about the object: depth images only

contain top-down views. Since we artificially create a depth

camera, we can manipulate the camera pose in order to view

the object from different angles, thus revealing more geome-

try of the objects which is potentially useful to generate more

robust grasps. We use a camera pose matrix T to adjust the

view orientations of the object, which can potentially reveal

more information about grasp locations on other facets of

the object.

One caveat about changing view orientation is that the

system is not aware of the ground after we change view an-

gle. Under this circumstance, the robotic arm might interfere

with the plane when it is trying to grasp from the side. Even

though such grasps have high Q values, interfering with the

ground plane makes such grasps not applicable. To address

this, we introduce a constraint function c, where c takes in

a grasp, analyzes its pose, and outputs a boolean value. If

the parallel jaws try to grasp some point beyond the plane

limit, we reject the grasp, and c outputs False. Since GQ-

CNN samples all possible grasps and outputs the grasp with

the highest Q, we will return the grasp G with the highest

Q such that it does not interfere with the ground plane and

c(G) returns True.

After setting the camera pose and defining the grasp

constraint function, we obtain a depth map converted from

the point cloud. Note that this depth map may have some

holes in it because of the sparsity of the point cloud data. The

resulting depth map is likely to be porous, where each hole is

a group of zero-valued pixels. So one last step we do before

feeding the image into GQ-CNN is to inpaint [24] the image.

This step fills in the zero-valued pixels in the holes based on

the values of surrounding pixels using OpenCV [25]. Having

reduced the number of holes, we can then feed the image into

GQ-CNN to plan a grasp.

D. Feeding into GQ-CNN

In this step, the pre-trained network GQ-CNN takes in a

depth image and generates 100 potential grasps, where each

potential grasp should satisfy the constraint function c. The

output grasp will be the grasp with the highest Q value. We

visualize the grasp with the overlaid grasp vector onto the

depth map and record the Q value of the grasp.

V. RESULTS

A. Simulation

To record the point cloud, we use an iPhone X with

ARKit. ARKit uses SFM to extract feature points from

an RGB image sequence [2]. As shown in Fig 1 and 3,

the points collected by ARKit is extremely noisy. We use

the default setting of the iPhone’s camera, which is 60fps.

In the simulation, we use parallel-jaw grippers with jaw

widths of 5 and 10 centimeters. Therefore, the objects are

chosen according to that size limit for the grippers to grasp

successfully. We use ε = 0.005 and k = 10, and this

combination of hyperparameters gives us the best point cloud

cleaning result. To add an artificial depth camera, we use

the intrinsics of a Photoneo PhoXi camera, which is the

camera that was used in GQ-CNN’s training process, and the

intrinsics are: fx = 1122.0, fy = 1122.0, cx = 511.5, cy =
384.0.

To test the proposed pipeline, we run the method on

nine different objects. Other than the size limit, the objects

should have relatively complex physical shapes in order to

reflect discrepancy in geometry when viewed from different

orientations. Object 9 in Fig 4 is actually a failure case. Such

an object demonstrates the drawback of SfM, which is that

it does not recognize features on reflective, monochromatic,

or small objects.

In the trials, for each object, we record 5 point clouds of

the object separately. For each point cloud, we plan 9 grasps

based on 9 different view orientations of the camera: one

grasp from traditional top-down view, four grasps from 45

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on

Robotics and Automation (ICRA). Received September 15, 2019.





Objects

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7 Obj 8 Obj 9 Total

Success Rate (%) 100 100 90 100 90 100 80 100 N/A 95

Processing Time (sec) 25 37 49 30 28 48 33 24 N/A 34.25

Fig. 6. Physical experiments result on 8 different objects, that were successfully recorded by SFM. Ten trials on each object.

total. To measure the performance, we use metrics in [1]:

1) Success Rate: as the percentage of grasps that we were

able to lift, transport, and hold a desired object without

collision when approaching the object.

2) Processing Time: as the amount of time spent to clean

up the point cloud using RANSAC and Algorithm 1.

Since we keep the scanning time for all objects identical

(2 minutes), the major difference of running time for the

objects comes from the cleaning process. As the geometric

complexity of the object increases, the number of points that

are recorded by SfM also increases correspondingly, so the

running time of running Algorithm 1 on the point cloud

also increases. For example, Obj 8 in Fig 4 has the simplest

geometry among all objects, so it requires the least cleaning

time as shown in Fig 6.

From Fig 6, the average success rate for all eight objects

(we have excluded Obj 9 whose point cloud failed to be

recorded) is 95%.

VI. CONCLUSION

We present Dex-Net AR: a pipeline to plan grasps from

data taken from commodity smartphones. With appropriate

post-processing and cleaning methods, the point clouds col-

lected by a smartphone can be used to plan robust grasps

from different view orientations using Dex-Net, and used as

input to pass into a physical robot to grasp the objects.

However, the time spent on data collection is exceedingly

high: one needs to spend at least 120 seconds to scan the

object in order to record sufficient data. Therefore, one

potential improvement is that we can try to bring down the

amount of time in video capturing using a learning-based

method to augment and complete the point cloud data given

that only limited data are available. Emerging smartphones

may also have depth cameras [26], so we are planning on

utilizing such smartphones to collect cleaner point clouds.

Furthermore, reconstructing the meshes from the point

clouds is also another option to generate better grasps.

Cleaner point clouds are also expected to be beneficial to

grasp planning, so we are working on some faster algorithms

to further clean the recorded point cloud.

ACKNOWLEDGEMENTS

This research was performed at the AUTOLAB at UC Berkeley in
affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep
Drive (BDD), the Real-Time Intelligent Secure Execution (RISE) Lab, and
the CITRIS ”People and Robots” (CPAR) Initiative. This research was
supported in part by: the Scalable Collaborative Human-Robot Learning
(SCHooL) Project, NSF National Robotics Initiative Award 1734633 and by
a Google Cloud Focused Research Award for the Mechanical Search Project
jointly to UC Berkeley’s AUTOLAB and the Stanford Vision Learning Lab.
The authors were supported in part by donations from Siemens, Google,
Toyota Research Institute, Autodesk, Honda, Intel, Hewlett-Packard and by

equipment grants from PhotoNeo, NVidia, and Intuitive Surgical. We thank
our colleagues who provided helpful feedback and suggestions, in particular
Priya Sundaresan, Jackson Chui, Michael Danielczuk, Kate Sanders, and
Ajay Tanwani.

REFERENCES

[1] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” 2017.

[2] (2019) ARKit: Apple Developer Documentation. [On-
line]. Available: https://web.archive.org/web/20190912200131/
https://developer.apple.com/documentation/arkit

[3] L. B. Rosenberg, “The use of virtual fixtures as perceptual overlays
to enhance operator performance in remote environments.” Stanford
Univ Ca Center for Design Research, Tech. Rep., 1992.

[4] T. Lee and T. Hollerer, “Handy ar: Markerless inspection of augmented
reality objects using fingertip tracking,” in 2007 11th IEEE Interna-

tional Symposium on Wearable Computers. IEEE, 2007, pp. 83–90.

[5] M. Billinghurst, A. Clark, G. Lee et al., “A survey of augmented
reality,” Foundations and Trends R© in Human–Computer Interaction,
vol. 8, no. 2-3, pp. 73–272, 2015.

[6] T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey, D. Kirsch,
R. W. Picard, and A. Pentland, “Augmented reality through wearable
computing,” Presence: Teleoperators & Virtual Environments, vol. 6,
no. 4, pp. 386–398, 1997.

[7] R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[8] X. Ning, F. Li, G. Tian, and Y. Wang, “An efficient outlier removal
method for scattered point cloud data,” PloS one, vol. 13, no. 8, p.
e0201280, 2018.

[9] M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra, and
M. Ovsjanikov, “Pointcleannet: Learning to denoise and remove out-
liers from dense point clouds,” in Computer Graphics Forum. Wiley
Online Library, 2019.

[10] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,”
The International Journal of Robotics Research, vol. 31, no. 7, pp.
886–900, 2012.

[11] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia
grasp database,” in 2009 IEEE International Conference on Robotics

and Automation. IEEE, 2009, pp. 1710–1716.

[12] B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner et al., “Opengrasp: a
toolkit for robot grasping simulation,” in International Conference

on Simulation, Modeling, and Programming for Autonomous Robots.
Springer, 2010, pp. 109–120.

[13] P. Brook, M. Ciocarlie, and K. Hsiao, “Collaborative grasp planning
with multiple object representations,” in 2011 IEEE International

Conference on Robotics and Automation. IEEE, 2011, pp. 2851–
2858.

[14] M. Ciocarlie, K. Hsiao, E. G. Jones, S. Chitta, R. B. Rusu, and
I. A. Şucan, “Towards reliable grasping and manipulation in household
environments,” in Experimental Robotics. Springer, 2014, pp. 241–
252.

[15] C. Hernandez, M. Bharatheesha, W. Ko, H. Gaiser, J. Tan, K. van
Deurzen, M. de Vries, B. Van Mil, J. van Egmond, R. Burger et al.,
“Team delft’s robot winner of the amazon picking challenge 2016,” in
Robot World Cup. Springer, 2016, pp. 613–624.

[16] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Gold-
berg, “Cloud-based robot grasping with the google object recognition
engine,” in 2013 IEEE International Conference on Robotics and

Automation. IEEE, 2013, pp. 4263–4270.

[17] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, “Multimodal templates for real-time de-
tection of texture-less objects in heavily cluttered scenes,” in 2011

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on

Robotics and Automation (ICRA). Received September 15, 2019.



international conference on computer vision. IEEE, 2011, pp. 858–
865.

[18] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 289–309, 2013.

[19] D. Wang, D. Tseng, P. Li, Y. Jiang, M. Guo, M. Danielczuk, J. Mahler,
J. Ichnowski, and K. Goldberg, “Adversarial grasp objects.”

[20] J. Mahler and K. Goldberg, “Learning deep policies for robot bin pick-
ing by simulating robust grasping sequences,” in Proceedings of the 1st

Annual Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds.,
vol. 78. PMLR, 13–15 Nov 2017, pp. 515–524.

[21] V. Satish, J. Mahler, and K. Goldberg, “On-policy dataset synthesis
for learning robot grasping policies using fully convolutional deep
networks,” IEEE Robotics and Automation Letters, 2019.

[22] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[23] M. Y. Yang and W. Förstner, “Plane detection in point cloud data,” in
Proceedings of the 2nd int conf on machine control guidance, Bonn,
vol. 1, 2010, pp. 95–104.

[24] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image
inpainting,” in Proceedings of the 27th annual conference on Computer

graphics and interactive techniques. ACM Press/Addison-Wesley
Publishing Co., 2000, pp. 417–424.

[25] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[26] (2019) Samsung Galaxy S10. [Online]. Available:

https://www.samsung.com/us/mobile/galaxy-s10/camera/

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1559 submitted to 2020 International Conference on

Robotics and Automation (ICRA). Received September 15, 2019.


