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Abstract— The ability of robots to grasp novel objects has
industry applications in e-commerce order fulfillment and home
service. Data-driven grasping policies have achieved success
in learning general strategies for grasping arbitrary objects.
However, these approaches can fail to grasp objects which have
complex geometry or are significantly outside of the training
distribution. We present a Thompson sampling algorithm that
learns to grasp a given object with unknown geometry using
online experience. The algorithm leverages learned priors from
the Dexterity Network robot grasp planner to guide grasp
exploration and provide probabilistic estimates of grasp success
for each stable pose of the novel object. We find that seeding the
policy with the Dex-Net prior allows it to more efficiently find
robust grasps on these objects. Experiments suggest that the
best learned policy attains an average total reward 64.5% higher
than a greedy baseline and achieves within 5.7% of an oracle
baseline when evaluated over 300,000 training runs across a
set of 3000 object poses.

I. INTRODUCTION

Robotic grasping has a wide range of industry applications

such as warehouse order fulfillment, manufacturing, and

assistive robotics. However, grasping is a difficult problem

due to uncertainty in sensing and control, and there has

been significant prior work on both analytical [1, 22, 25,

26, 30] and data-driven methods [9, 13, 14] for tackling

these challenges. Recently, data-driven grasping algorithms

have shown impressive success in learning grasping policies

which generalize across a wide range of objects [6, 18, 21].

However, these techniques can fail to generalize to novel

objects that are significantly different from those seen during

training. Precisely, we investigate learning grasping policies

for objects where general purpose grasping systems such

as [18] produce relatively inaccurate grasp quality estimates,

resulting in persistent failures during policy execution.

This motivates algorithms which can efficiently learn from

on-policy experience by repeatedly attempting grasps on a new

object and leveraging grasp outcomes to adjust the sampling

distribution. Deep reinforcement learning has been a popular

approach for online learning of grasping policies from raw

visual input [8, 14, 24], but these approaches often take

prohibitively long to learn robust grasping policies. These

approaches typically attempt to learn tabula rasa, limiting

learning efficiency. In this work, we introduce a method which

leverages information from a general purpose grasping system

to provide a prior for the learned policy while using geometric

structure to inform online grasp exploration. We cast grasp

exploration in the multi-armed bandits framework as in [12,

19]. However, unlike Laskey et al. [12] which focuses on
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Fig. 1: For adversarial objects, state-of-the-art grasp planning algorithms
may incorrectly predict the distribution over grasp qualities (left column),
where each whisker represents a grasp candidate colored by the likelihood
of success (red indicates a poor grasp, green indicates a robust grasp). We
find that TSLP can use the prior to efficiently discover the best grasp on
the object (right column). Here, the policy discovers the only robust grasp
despite a poor initial estimate of its quality from the GQ-CNN prior.

grasping 2D objects where some rough geometric knowledge

is known and Mahler et al. [19] which presents a method to

transfer grasps to new 3D objects using a dataset of grasps

on 3D objects with known geometry, we focus on efficiently

learning grasping policies for 3D objects directly from depth

image observations. In addition, the algorithm learns to grasp

a specific object through online interaction, unlike Mahler et

al. [19] which learns a general grasping policy for arbitrary

objects. Specifically, we present a method which leverages

prior grasp success probabilities from the state-of-the-art

Dex-Net 4.0 grasp quality network GQ-CNN [18] to guide

online grasp exploration on unknown 3D objects with only

depth-image observations.

The contributions of this paper are:

1) A new problem formulation for leveraging learned priors

on grasp quality to accelerate online grasp exploration.

2) An efficient algorithm, Thompson Sampling with

Learned Priors (TSLP), for learning grasping policies

on novel 3D objects from depth images by leveraging

priors from the Dex-Net 4.0 robot grasping system [16].

3) A new formulation of the mismatch between a prior

distribution on grasp qualities and the ground truth grasp

quality distribution and empirical analysis studying the

effect of this mismatch on policy performance.

4) Simulation experiments suggesting that TSLP attains

an average total reward 64.5% higher than a greedy

baseline when evaluated over 300,000 training runs

across 3000 object poses and is able to effectively

leverage information from a GQ-CNN prior.



II. RELATED WORK

Robot grasping methods develop policies that execute

grasps on novel objects, and can be divided into analytical

methods and data-driven methods. Analytic methods assume

knowledge of the geometry of the object to be grasped [1, 15,

22, 25, 26] or use geometric similarities between known and

unknown objects to infer grasps on unknown objects [19]

However, the generalization of these methods is limited for

objects dissimilar to the known objects, or when geometric

information is unknown [3], as in the case we consider.

Data-driven methods rely on labels from humans [9, 13,

21, 28], self-supervision across many physical trials [2, 8,

14, 24], simulated grasp attempts [7, 29], or sim-to-real

transfer methods such as domain randomization [4] or domain

adaptation [6]. Hybrid approaches generate simulated grasp

labels using analytical grasp metrics such as force closure

or wrench resistance [16–18]. These data-driven and hybrid

approaches train a deep neural network on the labeled data

to predict grasp quality or directly plan reliable grasps on

novel objects. A recent paper in sim-to-real transfer learning

correct for inaccurate gripper poses predicted by the neural

network by combining domain adaptation and visual servoing

in the grasp planning process [23]. However, for adversarial

objects [30], for which very few high quality grasps exist,

or for objects significantly out of the training distribution,

grasps planned by these methods may still fail. The presented

method aims to leverage learned grasp quality estimates to

enable efficient online learning for difficult-to-grasp objects

through physical exploration of one pose of one object at a

time, without previous knowledge of the object’s geometry.

Past works have formulated grasp planning as a Multi-

Armed Bandit problem for grasping 2D objects where some

geometric knowledge is known [12] or for transferring grasps

to unknown 3D objects using a dataset of grasps on 3D objects

with known geometry. Laskey et al. [12] found that Thompson

sampling with a uniform prior significantly outperformed

uniform allocation or iterative pruning in 2D grasp planning

in terms of convergence rate to within 3% of the optimal

grasp, but their policy is limited to 2D grasps and cannot

operate directly on visual inputs. Mahler et al. [19] extend [12]

to 3D and incorporate prior information from Dex-Net 1.0,

a dataset of over 10,000 3D object models and a set of

associated robust grasps. The algorithm then uses Thompson

sampling, in which the prior belief distribution for each

grasp is calculated based on its similarity to grasps and

objects from the Dex-Net 1.0 database [19]. For objects with

geometrically similar neighbors in Dex-Net 1.0, the algorithm

converges to the optimal grasp approximately 2 times faster

than Thompson sampling without priors [19]. In contrast, we

present a Bayesian multi-armed bandit algorithm for robotic

grasping with depth image inputs that does not require a

database to compute priors but instead leverages the Dex-

Net 4.0 grasping system from [18] as a learned prior to

guide active grasp exploration. Instead of learning a general

grasping strategy for arbitrary objects as [19], the algorithm

learns to grasp a specific object through online interactions

with the object.

III. PROBLEM STATEMENT

Given a single unknown object on a planar workspace,

the objective is to effectively leverage prior estimates on

grasp qualities to learn a grasping policy that maximizes the

likelihood of grasp success. We first define the parameters and

assumptions on the environment (Sections III-A and III-B),

cast grasp exploration in the Bayesian bandits framework

(Section III-C), and formally define the policy learning

objective (Section III-D).

A. Assumptions

We make the following assumptions about the environment.

1) Pose Consistency: We assume that the object remains

in the same pose during all rounds of learning. In

simulation, this can be achieved by using ground-truth

knowledge of physics and object geometry. In physical

experiments, the pose consistency assumption will not

hold generally. We discuss methods to approximately

enforce pose consistency in physical experiments in

Section VIII.

2) Evaluating Grasp Success: We assume that the robot

can evaluate whether a grasp has succeeded. In simula-

tion, grasp success can be computed by using ground-

truth knowledge of physics and object geometry. In phys-

ical experiments, success or failure can be determined

using load cells, as in [18].

B. Definitions

1) Observation: An overhead depth image observation of

the object at time t = 0 before policy learning has begun,

given by o ∈ R
H×W
+ .

2) Arms: We define a set of K arms, {ak}
K
k=1.

3) Actions: Given a selected arm k we define a correspond-

ing grasp action uk ∈ U .

4) Reward Function: Rewards for each arm are drawn

from a Bernoulli distribution with unknown parameter pk:

r(uk)∼ Ber(pk). Here r(uk) = 1 if executing uk results

in the object being successfully grasped, and 0 otherwise.

5) Priors: We assume access to priors on the Bernoulli

parameter pk for each arm k.

6) Policy: Let πθ (uk) denote a policy parameterized by

θ which selects an arm k and executes the action uk.

Thus, πθ (uk) defines a distribution over U at any given

timestep t.

C. Bayesian Bandits

A multi-armed bandits problem is defined by an agent

which must make a decision at each timestep t ∈ {1,2, . . .T}
by selecting an arm k ∈ {1,2, . . .K} to pull. After each arm

pull, the agent receives a reward which is sampled from

an unknown reward distribution. In the Bayesian bandits

framework [27], the agent maintains a belief over the

parameters of the reward distribution for each arm, which can

optionally be seeded with a known prior. The objective is to

learn a policy with a distribution over arms that maximizes

the cumulative expected reward over T rounds.



Fig. 2: Method Overview: A pre-trained GQ-CNN is used to set the priors on the reward parameters for each arm given the initial observation o and arms
are sampled on observation o. Then, at each timestep the learned policy selects an arm and executes the corresponding action in the environment. The
Thompson sampling parameters are updated based on the reward received as described in Section IV-A.

D. Learning Objective

The objective in policy learning is to maximize the total

accumulated reward, which corresponds to maximizing the

frequency with which the object is grasped. Let ut denote the

action selected at timestep t. Then the objective is to learn

policy parameters θ to maximize the following:

J(θ) = Eut∼πθ (ut )

[

T
∑

t=1

r(ut)

]

(III.1)

IV. GRASP EXPLORATION METHOD

We discuss how to leverage learned priors from GQ-CNN

to guide grasp exploration by using Thompson sampling, to

learn a vision-based grasping policy. Since rewards are drawn

from a Bernoulli distribution as defined in Section III, we

represent the prior with a Beta distribution, the conjugate prior

for a Bernoulli distribution. As noted in [12], this choice of

prior is convenient since we can update the belief distribution

over an arm k after executing corresponding action uk in

closed form given the sampled reward. See Figure 2 for a

full method overview.

A. Thompson Sampling with a Beta-Bernoulli Process

Given that we pull arm k at time t and receive reward

r(uk) ∈ {0,1}, as shown in [12], we can form the posterior

of the Beta distribution by updating the shape parameters

αk,t and βk,t :

αk,t+1 = αk,t + r(uk)

βk,t+1 = βk,t +(1− r(uk))

For Thompson sampling, at time t, the policy samples

p̂k,t ∼ Beta(αk,t ,βk,t) for all arms k ∈ {1,2, . . .K}, selects

arm k∗ = argmaxk p̂k,t , and executes the corresponding action

uk∗ in the environment. Note that the expected Bernoulli

parameter for arm k can be computed from the current shape

parameters αk,t and βk,t as follows:

E
[

p̂k,t

]

=
αk,t

αk,t +βk,t

(IV.1)

However, it remains to appropriately initialize αk,0 and

βk,0. Note that setting αk,0 = βk,0 = 1 ∀ k ∈ {1,2, . . .K}
corresponds to a prior which is uniform on [0,1] for Bernoulli

parameter pk,t . We instead set αk,0,βk,0 according to a learned

prior by using the initial depth image observation o.

B. Leveraging Neural Network Priors

We use a pre-trained Grasp Quality Convolutional Neural

Network (GQ-CNN) from [18] to obtain an initial estimate

of the probability of grasp success. GQ-CNN learns a Q-

function, Qφ (·, ·), which given an overhead depth image of

an object and a proposed parallel jaw grasp, estimates the

probability of grasp success. However, as explored in [30],

there exist many objects for which the analytical methods

used for training GQ-CNN are relatively inaccurate, resulting

in significant errors. Thus, we refine the initial GQ-CNN

grasp quality estimates with online exploration.

We first compute Qφ (o,uk) ∀ k ∈ {1,2, . . .K} and use these

estimates as each arm’s initial mean Bernoulli parameter. Note

that αk,t and βk,t , as defined in Section IV-A, correspond to

the cumulative number of grasp successes and grasp failures

respectively for action uk up to time t. Thus, (αk,0,βk,0)
can be interpreted as pseudo-counts of grasp successes and

failures respectively for action uk before policy learning has

begun, while prior strength S = αk,0 +βk,0 can be interpreted

as the number of pseudo-rounds before policy learning. If

S is large, the prior induced by (αk,0,βk,0) will significantly

influence the expected Bernoulli parameter given in IV.1 for

many rounds, while if S is small, the resulting prior will be

quickly washed out by samples from online exploration. We

enforce the following initial conditions for (αk,0,βk,0), given

the GQ-CNN prior:

αk,0

αk,0 +βk,0

= Qφ (o,uk)

βk,0

αk,0 +βk,0

= 1−Qφ (o,uk)

For a desired prior strength S = αk,0 +βk,0, we set:

αk,0 = S ·Qφ (o,uk)

βk,0 = S · (1−Qφ (o,uk))

This prior enforcement technique in conjunction with online

learning with Thompson Sampling, as discussed in Section IV-

A, results in a stochastic policy πθ (uk) parameterized by

θ =
(

{(αk,βk)}
K
k=1,φ

)

, the learned Beta distribution shape

parameters across all arms and the fixed parameters of the

GQ-CNN used for initialization.



C. Prior Mismatch

To measure the quality of the GQ-CNN prior, we define

a notion of dissimilarity between the prior and ground truth

grasp probabilities, as in Chapelle et al. [5], termed the

prior mismatch. However, unlike Chapelle et al. [5], which

primarily focuses on mismatch between the mean of the prior

distribution and true Bernoulli parameter, we present a new

metric based on the discrepancy between how arms are ranked

under the prior and under the ground truth distribution.

Given the grasp quality estimates of the GQ-CNN prior

qp =
(

Qφ (o,uk)
)K

k=1
and the ground truth grasp probabilities

qg = (pk)
K
k=1 on all K arms, let P = {(qp[k],qg[k])}

K
k=1. We

then compute Kendall’s tau coefficient, defined as:

τ =
Nc −Nd

√

(Nc +Nd +Tp)(Nc +Nd +Tg)

where Nc and Nd are the number of concordant and discordant

pairs in P , respectively, and Tp and Tg are the number of

pairs for which qp[i] = qp[ j] and qg[i] = qg[ j], respectively [10,

11]. As a rank correlation coefficient, τ ∈ [−1,1], where 1

denotes a perfect match in the rankings and −1 denotes

perfectly inverse rankings. We define the prior mismatch M

as a dissimilarity measure that maps τ to [0,1]:

M =
1− τ

2

In practice, to control for stochasticity when sampling arms on

the initial observation o, we average M over 10 independently

sampled sets of K arms.

V. PRACTICAL IMPLEMENTATION

We implement the method from Section IV in a simulated

environment using 3D object models from the Dex-Net

4.0 dataset [18]. We render a simulated depth image of

the object using camera parameters that are selected to

be consistent with a Photoneo PhoXi S industrial depth

camera. Arms are selected by sampling parallel-jaw antipodal

grasp candidates on the observation o using the antipodal

image grasp sampling technique from Dex-Net 2.0 [16]. The

antipodal grasp sampler thresholds the depth image to find

areas with high gradients, then uses rejection sampling over

pairs of pixels to find antipodal grasp points. Each parallel jaw

grasp is represented by a center point p = (x,y,z) ∈ R
3 and

a grasp axis v ∈ R
3 [19]. They are visualized as whiskers in

Figures 1 and 5. Once the arms are sampled from the image,

we calculate the prior grasp probabilities using GQ-CNN,

then deproject each grasp from image space into a 3D grasp

using the known camera intrinsics. Note that TSLP can also

be easily be applied with different types of grasps such as

Suction grasps [17] provided that the actions corresponding

to the arms are parameterized accordingly. We then iteratively

choose grasps according to the policy for a set number of

timesteps and collect the reward for each grasp.

Algorithm 1 summarizes the full approach discussed in

Section IV along with implementation details. If we are

unable to sample K arms or if none of the corresponding

grasps has ground truth quality greater than zero, we do

Algorithm 1 Thompson Sampling with Learned Priors

(TSLP) for Image-Space Grasp Exploration

Input: Number of arms (K), Maximum Iterations T , Pre-

trained GQ-CNN Qφ (·, ·), Prior Strength S

Output: Grasp exploration policy: πθ (uk)
Capture observation o, sample K antipodal grasps {ak}

K
k=1,

and compute prior beliefs αk,0,βk,0 ∀ k ∈ {1,2, . . .K} using

Qφ (o,uk) using method from Section IV-B.

for t = 1, ...,T do

Select action uk using Thompson sampling as in Sec-

tion IV-A

Execute uk and observe r(uk)
Update αk,t ,βk,t ∀k ∈ {1,2, . . .K} as in Section IV-A

end for

not consider the object pose. In simulation, we evaluate the

probability of grasp success for each arm using the robust

wrench resistance metric, which measures the grasp’s ability

to resist the gravity wrench under perturbations in the grasp

pose, as in [17]. Then, rewards during policy learning and

evaluation are sampled from a Bernoulli distribution with

parameter defined by this metric. Note that while computing

this metric requires knowledge of the object geometry, this

metric is simply used to simulate grasp success on a physical

robotic system and is not exposed to TSLP.

VI. EXPERIMENTS

A. Setup

In simulation experiments, we evaluate both the accuracy

of the prior mismatch metric and the ability of TSLP to

increase grasp exploration efficiency. We assess whether

TSLP can discover higher quality grasps than baselines which

do not explore online or which explore online but do not

leverage learned priors for the grasp selection policy. In both

experiments, we make use of the dataset from Mahler et al.

[18], which contains approximately 1,600 object meshes.

We evaluate the learned policies every 10 steps of learning,

and perform 500 learning steps in total for all experiments. To

evaluate the learned policies, we sample 100 grasps from the

current policy without policy updates and compute the metric

defined in Equation (III.1). We evaluate TSLP with a variety

of different prior strengths to evaluate how important the GQ-

CNN prior is for policy performance. We also compare to

Thompson sampling with a uniform prior over the arms. Thus,

this policy does not utilize the GQ-CNN prior at all, and

all learning is performed online. Note that when evaluating

policies, there are two key sources of uncertainty: (1) the

variability in the arms sampled on the initial observation o,

and (2) the inherent stochasticity during learning given a set

of arms. To control for variations in these parameters, when

reporting results on a particular pose of an object, 10 different

sets of K = 100 arms are sampled on the corresponding

observation o. Then, for each of these sets of arms, every

policy is trained 10 times for a total of 100 rollouts for each

object pose.





Fig. 4: Visualization of policy performance for all baselines and TSLP policies (labeled with their prior strength). The first row visualizes grasp qualities as
measured by the GQ-CNN prior (left) and the ground truth grasp success probabilities (right) for a single stable pose of each of the four objects (shown top
down). Green whiskers indicate high estimated or ground truth grasp quality, while red whiskers indicate low estimated or ground truth grasp quality. In
the second row, we visualize the distributions of GQ-CNN prior and ground truth grasp qualities. (a) With a low prior mismatch (M = 0.29), the greedy
policy performs well and all Thompson sampling policies with non-zero prior strengths converge quickly to the ground truth. (b-c) For objects with higher
prior mismatch, the Thompson sampling policies with non-zero prior strength rapidly improve on the prior for object poses with higher prior mismatch
(M = 0.35 and M = 0.40, respectively). (d) For objects with very high prior mismatch (M = 0.46), the Thompson sampling policies with non-zero prior
strength converge more slowly, but still show improvement on the baseline with prior strength 0.

Fig. 5: We visualize the evolution of the mean Bernoulli parameter (defined in Equation (IV.1)) inferred by TSLP with varying prior strengths on sampled
arms over learning steps for two different objects. Grasps with high estimated success probabilities or ground truth quality values are colored green,
while those with low estimated success probabilities or ground truth qualities are colored orange or red. The inferred mean Bernoulli parameter for TSLP
eventually converges to the ground truth probabilities. For the first object, we note that TSLP is able to find the best grasps when the prior strength is
relatively weak, but unable to do so when the prior strength is too high since the prior is overly pessimistic (M = 0.46). For the second object, the prior is
relatively good (M = 0.31), so increasing the prior strength accelerates discovery of the best grasps.



the greedy policy and the Thompson sampling policies

which place very high weight on the GQ-CNN prior (high

prior strength) perform very well. However, for objects

with higher prior mismatch (M = 0.35, M = 0.41), we

find that the greedy policy performs much more poorly,

and online exploration is critical to finding high quality

grasps. However, even with high prior mismatch, the gap

in performance between the Thompson sampling policies

that use the prior and the uniform prior Thompson sampling

policy indicates that the GQ-CNN prior helps accelerate grasp

exploration substantially. Finally, for objects with very high

prior mismatch (M = 0.46), the greedy policy and Thompson

sampling policies with high prior strengths perform poorly,

as expected. However, Thompson sampling policies with low

prior strength outperform Thomspon sampling with a uniform

prior. This result indicates that although the prior is of very

low quality, it still provides useful guidance to the Thompson

sampling policy if a low prior strength is used.

Figure 5 shows how the mean Bernoulli parameter inferred

by TSLP evolves over learning steps for each of the sampled

arms. TSLP is able to successfully learn grasp qualities close

to the ground truth grasp qualities for a wide variety of

different objects. Note that the learned policy is generally

more accurate for higher quality grasps, which makes sense

since Thompson sampling directs exploration towards high

reward grasps, allowing it to focus on distinguishing between

high quality grasps rather than capturing the quality distribu-

tion of low quality grasps. For the first object, TSLP is able

to find the best grasp when the prior strength is relatively

weak, but performs poorly when the prior strength is set too

high. For the second object, the prior mismatch is lower,

so increasing the prior strength accelerates discovery of the

best grasps on the object. Note that with a uniform prior,

Thompson sampling is generally able to discover most of the

best grasps, but fails to distinguish them from bad grasps,

resulting in poorer policy performance when these grasps are

sampled during policy evaluation.

VII. DISCUSSION AND CONCLUSION

In this paper, we present Thompson Sampling with Learned

Priors (TSLP), a bandit exploration strategy for robotic

grasping which facilitates use of expressive neural network-

based prior belief distributions and enables efficient online

exploration for objects for which this prior is inaccurate. We

quantify the notion of prior mismatch as it pertains to the

ranking of arms and explore the effect of prior strength on

the efficiency and efficacy of online learning. Experiments

suggest that across a dataset of 3000 object poses, TSLP

outperforms both a greedy baseline as well as a Thompson

sampling baseline that uses a uniform prior and is able to

leverage a GQ-CNN prior to significantly accelerate grasp

exploration.

VIII. FUTURE WORK

In future work, we will design new online learning

algorithms to explore grasps across different object stable

poses and extend experiments to new grasping modalities,

such as suction. In addition, we will explore ways to approxi-

mately enforce pose consistency in physical experiments. For

example, we can use a string to lift the object after each

grasp and put it into pose. Additionally, we can detect stable

pose changes by evaluating whether the observed depth image

changes in a way that cannot be described by a planar rotation

and translation. Using the Super4PCS algorithm [20], we can

compute the registration of the new point cloud with respect

to the original point cloud and restrict the range of output to

planar transformations. If the algorithm cannot find such a

planar transformation, we resample grasps on the new pose.
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