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Abstract—Stencil kernel is an important type of kernel used extensively
in many application domains. Over the years, researchers have been
studying the optimizations on parallelization, communication reuse, and
computation reuse for various target platforms. However, challenges still
exist, especially on the computation reuse problem for accelerators, due to
the lack of complete design-space exploration and effective design-space
pruning. In this paper, we present solutions to the above challenges for a
wide range of stencil kernels (i.e., stencil with reduction operations),
where the computation reuse patterns are extremely flexible due to
the commutative and associative properties. We formally define the
complete design space, based on which we present a provably optimal
dynamic programming algorithm and a heuristic beam search algorithm
that provides near-optimal solutions under an architecture-aware model.
Experimental results show that for synthesizing stencil kernels to FPGAs,
compared with state-of-the-art stencil compiler without computation
reuse capability, our proposed algorithm can reduce the look-up table
(LUT) and digital signal processor (DSP) usage by 58.1% and 54.6%
on average respectively, which leads to an average speedup of 2.3x for
compute-intensive kernels, outperforming the latest CPU/GPU results.

I. INTRODUCTION

Stencil computation [1] is often intuitively defined as the type
of computation that uses a sliding window of the input array to
compute the output array. Such computation patterns are widely
used in many areas, including image processing (e.g., [2], [3])
and solving partial differential equations (e.g., [4]). Although the
concept itself is relatively simple, it is non-trivial to optimize for
performance. Researchers have been optimizing stencil kernels in
three aspects. The first is parallelization. Stencil computation has
a large degree of inherent parallelism, but the sliding window
access pattern and the dependencies among elements in different
stages make it hard to fully utilize the available parallelism [4]-
[8]. The second is communication reuse. The sliding window pattern
makes it possible to reuse input data and reduce external memory
communication. On instruction-based processors (CPU, GPU), this
translates into improving locality [4], [9] and reducing inter-core
communication [10]. On accelerators (FPGA, ASIC) where data
paths can be fully customized, the communication reuse problem
can be optimally solved [11], [12]. The third is computation reuse.
Although stencil kernels often consist of multiple stages or iterations
and are compute-intensive, almost all such stencil kernels perform
commutative and associative reduction operations, thus making it
possible to reuse some of the computation [2], [13]-[17]. As a

motivating example, for a 17x17 kernel used in calcium image >
stabilization [2], the number of multiplication operations can be °
dramatically reduced from 197 to only 30, while yielding the same
throughput. However, that design was done with extensive manual ¢

optimization. Our goal is to automate such optimization process.
Unlike the parallelization problem and the communication reuse
problem which have been optimally solved in [12], there are still
major challenges that have not been systematically addressed for the
computation reuse problem. One such challenge is that most stencil
compilers [13]-[17] are designed for instruction-based processors and
do not explore the complete design space for computation reuse, due
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to the fact that parallelization and communication reuse have more
impact on performance and computation reuse is often just a by-
product [4], [9]. However, for accelerators, computation reuse can
be fully decoupled from parallelization and communication reuse via
datapath customization. An ideal stencil compiler for accelerators
should be capable of finding the optimal computation reuse if
possible. Moreover, since no stencil compiler uses an accelerator-
oriented model to evaluate the computation-storage trade-off, it is
hard to guide the design-space pruning and find the best solution.

This presents another challenge. In this paper, we present solutions

to the challenges mentioned above. Our major contributions include:

o Complete Design-Space Exploration: We formally define the
problem of computation reuse for stencil with reduction operations,
under which we present a dynamic programming algorithm that can
find the optimal computation reuse pattern.

« Optimality-Preserving Heuristics: We present a heuristic beam
search algorithm that significantly prunes the evaluated design
points while producing near-optimal results, which scales well
for large kernels. We also present an architecture-aware metric to
enable quantitative analysis of the computation-storage trade-off.

o Fully Automated Design Flow: We implement our algorithm
based on the open-source SODA compiler [12] and perform
design-space exploration and code generation in a fully automated
way. Since SODA is designed to be suitable as an intermediate
representation for stencil applications, other projects using SODA
as a backend (e.g., [18], [19]) can benefit from our work, too.

« Extensive Experiments: We evaluate our presented compiler with
various artificial and real-world kernels on a state-of-the-art FPGA
platform. Post-synthesis results on FPGAs show that on average
our proposed algorithm can reduce look-up table (LUT) and digital
signal processor (DSP) usage by 58.1% and 54.6%, respectively,
compared with the state-of-the-art SODA stencil compiler [12]
without computation reuse capability. For compute-intensive sten-
cils, our algorithm achieves an average speedup of 2.3x.

II. BACKGROUND

Stencil computation kernels can be defined as kernels that com-
pute output data elements using a multidimensional input array
according to some fixed, local pattern.

void Jacobi(const float X[NJ[M], float Y[NI[M])

for (int j = 1; j < N - 1; j++)
for (int i = 1; 1 < M - 1; i++)
Y[jI0il = (XCj - 11011 + X[3I0i - 11 + X[3ICil+

XL3I0i + 11 + X[ + 11[i1) * 0.2f;

Listing 1: A 5-point 2-dimensional Jacobi kernel.

As an example, Listing 1 shows a 5-point, 2-dimensional Jacobi
kernel on an M x N input X that computes output Y. In general,
an n-point, m-dimensional stencil kernel A defines a spatial window
{@s|]s = 0,...,n — 1} and a function to compute the output at
spatial coordinate 7 = (y'*,...,y™ V) by consuming inputs at



{#s = y+ds|s = 0,...,n — 1}. ds denotes the offset between
the s-th input and the output. Since all multidimensional indices are
eventually converted to 1-dimensional indices [12], when there is no
ambiguity, we will omit the vector notation on top of the coordinates.

Reduction operations are operations that are commutative and as-
sociative'. Given an n-point stencil kernel with reduction operations

Yyl = g(fo(X[y+aol) @ ... & fu-1(X[y + an-1]))
The reduction expression we are interested in is
fO[aO} @-n@fn—l[an—l] (1)
where fs[as] = fs(X[y+as]), meaning to apply a pointwise scaling
function f, on the input element in X with an offset of a, relative
to the output element. We will, e.g., use [—1][0] or X[—1][0] to
represent X [j — 1][¢] when it is clear from the context.

Computation reuse is a well-known concept in compiler optimiza-
tion, more commonly known as common subexpression elimination
(CSE). The classical CSE technique is based on expression analysis
of the program or value numbering. For example, to evaluate two
expressions x=axb+c and y=a*b+d, a compiler is expected to find
that the two expressions for x and y share the same subexpression
a*b, which can be evaluated only once by evaluating a new expression
tmp=axb before x=tmp+c and y=tmp+d.

While the classical CSE is powerful and effective, we notice
that it can only achieve spatial computation reuse, i.e., common
subexpressions exposed independently of the “temporal” loop vari-
ables. For example, in Listing 1, there is no common subexpres-
sions in the classical sense, but there actually is computation that
can be reused across loop iterations, i.e., temporal reuse. This
is because when iterating over arrays, different array references
from different loop iterations may be referring to the same data
element of arrays. For example, in Listing 1, the same computa-
tion X[11[21+X[2][1] is done twice, X[j][i + 1] + X[j + 1][¢] for
Y[1101] and X[j — 1][5] + X [5][5 — 1] for Y[21[2]. O ® O O

Fig. 1 visualizes the above reuse by showing the “\w, :
overlapping inputs used for producing Y[1][1] and .f(g O
Y[2]1[2]. With computation reuse, the new kernel O ; b:f/Q
becomes a 2-stage kernel (Formula 2), which requires O‘glap o
only 3 additions per output. As a comparison, the orig- Fig. 1:
inal kernel (Listing 1) needs 4 additions per output. Overlapping

T = X[5 — 1] + X[5][¢ — 1] pattern.
YUl = (T + XU + 70 + 100 + 1) x 0.2

Note that there is an implication: when processing such computa-
tion reuse, the compiler must recognize the reduction operation and
select operands for reuse from a proper computation order, e.g.

((I=1][0] + [0][-1]) + [0]{0]) + ([0][1] + [1][0]) €)
otherwise the binary + operator will not expose subexpressions like
[0][1]4[1][0] due to its default left-to-right associativity. In summary,
a compiler must perform both temporal exploration among different
loop iterations and spatial exploration among reduction operands to
find the best design point for computation reuse.

(@)

III. RELATED WORK

Previous work on computation reuse has limited temporal and/or
spatial exploration over the computation reuse design space.

On the temporal exploration side, [16], [17] find reuse among
iterations via loop unrolling plus spatial CSE, which is sub-optimal,
e.g., for Listing 1 it may only reuse 1 addition operation per 2 outputs,
resulting in 3.5 additions per output, as opposed to 3 achieved by
Formula 2. [2], [4], [20] only reuse the pointwise scaling operations
among iterations, resulting in redundant reduction operations.

' @ is commutative iff a @ b = b @ a. @ is associative iff (a D b) B c =
a® (b® c). We treat floating point additions as if they were associative.

On the spatial exploration side, [2], [17], [21] do not consider
commutativity and associativity. [13], [21] only consider operands
spanning in the horizontal direction (corresponding to the innermost
loop variable). [14] only considers operands spanning the horizontal
or vertical directions (corresponding to the loop variable of each level
of the loop nest). [15] additionally considers diagonal directions, i.e.,
all loop variables incrementing by the same value. Yet, computation
reuse could appear along any spatial direction of the stencil window,
which is likely missed by the prior work mentioned above.

Besides, previous work on computation reuse heavily focuses
on CPU and/or GPU [4], [13]-[17], where the trade-off between
computation and storage relies heavily on register pressure [13]
and/or cache [4], [9] analysis, which is generally hard to characterize
quantitatively due to the close yet unmanaged interaction between
the computation units and the memory system. For accelerators, [12]
shows that parallelization and communication can be fully decoupled
and presents a microarchitecture that requires the Pareto-optimal on-
chip buffer size w.r.t. the degree of parallelism. However, it does not
remove any redundant computation. We will show in this paper that
computation reuse can be applied independent of parallelization and
communication reuse, and how to obtain the Pareto-optimal on-chip
buffer size with computation reuse being taken into consideration.

IV. REUSE DISCOVERY ALGORITHM
A. Problem Formulation

A reduction expression defined by Formula 1 in Section II does not
define a specific computation order. This means the number of non-
redundant operations required to compute the expression may vary.
To account for that, we define the reduction schedule as a specific
computation order of an expression. A schedule has a well-defined
computational cost in terms of the number of reduction operations
@ and the number of scaling operations f, e.g., a naive left-to-right
schedule would require (n — 1) @ operations and n f operations.
Although different schedules produce the same computational result
mathematically, the computational cost can be different. Note that
even if two schedules have the same computational cost, the storage
requirement on accelerators can still be different.

In this paper, we aim to find a schedule of an expression with 1)
the least possible number of & reduction operations, and 2) the least
possible number of f scaling operations. Notice that f operations can
be reused optimally by creating an intermediate array for each scaled
operand, we will focus on the optimal reuse of @ operations in the
following part of this section. Furthermore, if multiple schedules have
the same number of operations, we aim to find the schedule with the
least storage requirement, which will be discussed in Section V.

B. Optimal Reuse by Dynamic Programming (ORDP)

Rep!ace b.z
(+)

To discover the optimal reuse, we enu-
merate over all possible schedules of a
reduction expression opdy & opdi P ... B
opdn—1 and count the number of unique
subexpressions as the number of & op- @ © @ b ® ©
erations. Notice that a schedule with n- Fig. 2: Reduction trees
operands corresponds to a binary reduction ¢, + b+ ¢ augmented
tree, whose n leaf nodes correspond 0 from o +b
the n operands and n — 1 non-leaf nodes
correspond to the n—1 & operations, we can enumerate all schedules
via dynamic programming. As an example, let a+b+-c be a 3-operand
reduction expression. The schedules of a 4+ b+ ¢ can be constructed
by adding the third operand c to the existing schedules of a + b,
while a + b only has 1 trivial schedule, which corresponds to the
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binary tree shown in the upper part of Fig. 2. To obtain schedules of
a + b+ c from a + b, we need to replace one node of a + b with
a new node, whose children are the original node and c. Since the
reduction tree of a+b has 3 nodes, there are 3 replacement outcomes,
too. The lower part of Fig. 2 shows all the 3 reduction trees obtained
in this way. The 3 trees correspond to (a + ¢) + b, (a + b) + ¢, and
a+ (b+ c), respectively. In general, assume we have enumerated all
schedules of the first k£ operands, k = 2, 3, ..., n—1. To enumerate all
schedules of the first k 4+ 1 operands, all we need to do is to replace
one of the nodes in the k-operand reduction tree with a new node,
whose children are the newly added operand and the original node.
By doing so for all 2k — 1 nodes of all k-operand reduction trees,
we can obtain all schedules of the first £+ 1 operands. By induction,
we can enumerate all schedules of n operands. Such enumeration
achieves spatial exploration of computation reuse.

To count the number of operations required
for a schedule, we need to count the number
of unigue subexpressions. Since subexpressions
can be relatively shifted, we align their access
offsets (array references) for comparison. The
aligned access offsets are obtained by subtract-
ing the least-lexicographical-order [11] offset from all access offsets.
As an example, for the schedule given in Formula 3, there are
4 subexpressions (including the whole expression itself), each of
which corresponds to a non-leaf node shown in Fig. 3. Among
them, two subexpressions, [—1]{0] 4 [0][—1] and [0][1] 4 [1][0], align
to the same [0][0] 4 [1][—1], which means they can be reused. A
hash table is used to count the number of unique subexpressions,
where the hash table is keyed by the aligned access offsets and
the scaling functions. Subexpressions with the same key indicate
reduction operation reuse opportunities. In the previous example, the
number of unique subexpressions is 3, which matches the analysis in
Section II. Access offset alignment achieves temporal exploration of
computation reuse.

(+) (00} [0[1] [1]fo]
(-2]{0] [O]-1]

Fig. 3: Reduction
tree of Formula 3.

The number of all possible schedules of an (n + 1)-operand
expression is (2n — 1)!!= 1 x 3 x5 x ... X (2n — 1), which
is (2n — 1)x that of an m-operand expression, as discussed in the
dynamic programming algorithm presented above. This is asymptot-
ically O ((22=1)"). The optimal solution works well when 7 is not
large (n < 10) but does not scale. Next, we shall present an efficient
heuristic-based solution.

C. Heuristic Search-Based Reuse (HSBR)

In this section, we present a heuristic search—based reuse (HSBR)
discovery algorithm that can help us find near-optimal solutions with
polynomial time and space complexity. HSBR is a variant of beam
search [9] and is composed of three steps, namely 1) reuse discovery,
2) candidate generation, and 3) iterative invocation.

Reuse discovery enumerates all pairs of operands to find potential
reuse. If a pair of operand appears more than once after alignment,
it would be a reuse pattern that leads to computation reuse. Note
that although we only select pairs of operands, larger patterns are
considered since each operand itself can be a subexpression that is
composed of multiple operands (e.g., Fig. 4). For the example of
Formula 3, after enumerating all pairs of operands, we would find
both [—1][0] + [0][—1] and [0][1] + [1][0] align to [0][0] + [1][—1],
indicating a reuse opportunity. If no reuse is found in this step, the
algorithm terminates.

Candidate generation creates candidate schedules by replacing
reuse patterns with new, non-leaf operands. Such non-leaf operands
correspond to the intermediate arrays created for reuse, e.g., 1" in

Formula 2. Since there can be many different combinations of reuse
patterns, this step may generate a large number of candidates. For
example, for Formula 3, in addition to reusing [—1][0] + [0][—1]
for [0][1] + [1][0], we would also generate a candidate schedule that
reuses [—1][0] + [0][1] for [0][—1] + [1][0]. For each candidate, we
evaluate how much computation is reused by counting the number of
unique subexpressions and how much storage is required as will be
discussed in Section V. The best W candidates will be selected for
the next step. The constant W is the beam width in the beam search
algorithm.

Iterative invocation enqueues each selected candidate for the next
iteration of HSBR. New reuse patterns are found for each candidate
separately, but all next-generation candidates are subject to the same
constant bound of beam width W. Since the number of selected
candidates in each iteration is O(W) and the number of iterations
is O(n) where n is the number of operands in the kernel, the total
number of candidates generated and evaluated will be O(Wn). For
each candidate, the number of operation required is O(n?), because
we enumerate all pairs of operands. Overall, HSBR is O(Wn?),
which guarantees scalability.

In the remaining part of this subsection, we discuss some opti-
mizations that reduce exploration time and improve quality of result.

1) Operand Selection: We maximize the number of reused
operand pairs in each iteration so that the number of iterations
is reduced, resulting in faster completion of HSBR, especially for
large stencil kernels. This greedy optimization is applied in two
places of the candidate generation step. First, for each reuse pattern,
we replace as many operand pairs as possible. For example, given
X[0] +2X 1]+ X[2] + 2X[3] + X[4] + 2X[5], the reuse discovery
step would find that the reuse pattern 7'[0] = X[0] + 2X[1] can
be reused for X[0] + 2X[1], X[2] + 2X[3], and X[4] + 2X[5].
In the candidate generation step, we greedily replace all operand
pairs for reuse (i.e., we replace the aforementioned operand pairs
with T'[0], T[2], and T'[4], respectively). Second, in addition to
the operand pairs that reuse the same reuse pattern, we also try
to apply other reuse patterns if permissible. For example, given
X[0]+2X[1]4+ X [2] +2X[3]+3X [4] +4X[5] +3X[6] +4X[7], we
reuse both 71[0] = X[0] + 2X[1] and 7»[0] = 3X[0] + 4X|[1] and
generate 71[0] + 71[2] + T>[4] + T>[6] directly in a single iteration.

2) Conflict Resolution: When selecting operand pairs for reuse,
sometimes not all valid pairs can be selected at the same time. For
example, given [0] 4 [1] 4 [2] 4 [3] 4 [4] 4 [5], we’ll find that [0] + [1]
can be reused for 5 different operations, ie., [0] + [1], [1] + [2],
[2] + [3], [3] + [4], and [4] + [5]. However, since these operand pairs
overlap, e.g., the first two share the same operand [1], we cannot
possibly select all of them for reuse. Although it seems that this
problem can be formalized as a graph matching problem, where the
nodes are the operands and the edges are the operand pairs, it cannot
be solved using the standard minimum matching because the weight
(computational cost) of an edge is not static and may vary in different
matchings due to the sharing nature of the computational cost. HSBR
resolves the conflicts as follows. Notice that we only consider pairs
of operands, for the same reuse pattern, each pair can conflict with at
most two other pairs, making the conflict graph bipartite, i.e., there
are two conflict-free subsets for each group of conflicting operands.
In the previous example, the two choices of conflict-free subsets
are {[0] + [1], [2] + [3],[4] + [5]} and {[1] + [2], [3] + [4]}. In the
candidate generation step, we generate candidates from both choices.
To account for the conflicts between different reuse patterns, we
generate multiple candidates prioritizing each reuse pattern while
greedily selecting other non-conflicting reuse patterns.



3) Regularity Exaction: Reusing operands spanning multiple di-
mensions may break regularity and lead to sub-optimality. Take a 4x3
uniform-weight kernel as an example. The aforementioned greedy
algorithm selects two reuse patterns (labeled @ and @) in the same
iteration, which ends up with a total of 5 & operations, as shown on
the left side in Fig. 4. Non-leaf nodes that correspond to the same
reuse pattern are labeled with the same number.

However, if we manually, Q.0 Q
look for reuse, it is not hard %/(@\%p ®/C%(§@ @%@/O
to figure out a schedule with @%}'@/O @%'@/O \®/O \®/O \@/O \CD/O
only 4 @ operations (right o % o v v o ‘o ‘o

side of Fig. 4), which could Fig. 4: Different operand selections.
be generated if we only select patterns along the vertical dimension
(®) in the first iteration of the algorithm. To address this, when
the number of reuse patterns exceeds a threshold (e.g., number of
operands), candidate generation becomes less greedy and only selects
reuse patterns along the same direction.

V. STORAGE REQUIREMENT CHARACTERIZATION

Given the number of parallel processing elements (i.e., the parallel
factor), prior work [12] generates Pareto-optimal communication
reuse buffers and proves that the minimum on-chip storage required
by a stencil kernel is determined by the sum of the reuse distance and
the parallel factor. Since the parallel factor is an additive term and can
be chosen independently, the storage requirement of a stencil kernel
can be fully characterized by the reuse distance, independent of the
underlying hardware platform or microarchitecture. For a complex
multi-stage kernel, which is common after computation reuse is
applied (e.g., Formula 2), the conclusion from [12] still holds, and
the total storage requirement can be characterized by the total reuse
distance®. However, the total reuse distance is no longer a constant
attribute of the kernel. We will show an example of such case,
followed by an algorithm that minimizes it. The minimum total reuse
distance obtained will be used to characterize the storage requirement
with computation reuse.

A. Total Reuse Distance for a Complex Stencil Kernel

We start with the following example involving two input arrays
X1, X2, an intermediate array 7', and an output array Y':
T[2] = X1[0] + X1 [1] + X2[0] + X2[1] @
Y[0] = X1 (3] + X2[3] + T(0] + T'[2]
The reuse distances for X1, X2, and 7" are X1[0]--- X1[3] = 3,
X2[0] -+ X2[3] = 3, and T[0] - - - T'[2] = 2, respectively. The total
reuse distance is 3 + 3 + 2 = 8. Notice that Formula 4 implies 7[2]
and Y'[0] are produced at the same time, we can shift the production
of T and make T'[4] be produced at the same time as Y[0], i.e.
T[4] = X1[2] + X1 [3] + X2[2] + X2[3] )
Y[0] = X1[3] + X2[3] + T[0] + T'[2]
The reuse distances become X1[2]--- X1[3] =1, X2[2] -+ X2[3] =
1, and T[0]---T[4] = 4, respectively. The total reuse distance
becomes 1 + 1+ 4 = 6 < 8. Obviously, the total reuse distance
for a complex stencil kernel may vary as the relative offset between
stages change. Section V-B will discuss how to minimize it.

B. Minimizing Total Reuse Distance

Assume we implement our stencil accelerator with a synchronous
clock. Given a stencil kernel in which ¢ arrays {Y:|t = 0,...,q —
1} are involved, let {Y;} be the children of Y; and Y;[0] consume
{Y%]a.]} from Y;. For example, in Formula 4, X1, X2, T, Y are the

2 WLOG we assume all element sizes are the same for conciseness.

TABLE I: Stencil benchmarks used in the experiments.

Name Computation Size Name Computation Size

s2d5pt weighted sum of 5 3x3 s2d33pt  weighted sum of 33 17x17
f2d9pt weighted sum 3x3 f2d81pt  weighted sum 9x9

s3d7pt weighted sum of 7 3x3x3  s3d25pt  weighted sum of 25 9x9x9
f3d27pt  weighted sum 3x3x3  f3d125pt weighted sum 5x5x5
contrast®  weighted sum of 197 17x17  erosion® minimum 19x19
xcorr? sum except center 19x19  smoother weighted sum 25x25

bigbiharm weighted sum of 25  7x7 lilbiharm weighted sum of 13 5x5

arrays involved. 7" is a child of both X and X5. T'[0] consumes X
and X at X1[—2], X1[—1] and X2[—2], X2[—1], respectively. Let
{Yi[p:]|t =0, ...,p— 1} be produced at the same cycle. {p;} are the
variables to be determined. The reuse distance of each Y; is

D; = pt — min (ps + av|s € children(t), u € accesses(t — s))

Our goal is to minimize the total reuse distance ) . D;. For For-
mula 4,
Tlpr] = Xilpr — 2] + Xi[pr — 1] + Xe[pr — 2] + Xa[pr — 1]
Y[py] = Xa[py + 3] + Xz[py + 3] + T[py] + T'[py + 2]

Dx, =px, —min(pr —2,py +3)  Dr =pr —py
Dx, = px, —min (pr — 2,py +3)
The constraint is that an array cannot be consumed before produced:
Dt > Ps + auy, Vt, s € children(t), u € accesses(t — s)

For Formula 4, the constraints are:

Px; 2pr —2 px; 2pr—1 px; 2py +3 pr>py

PXxy 2Ppr —2 px,2pr—1 px, Z2py+3 pr>py +2
Notice that each constraint is of the type x; — x; < ¢y, this is a
systems of difference constraints (SDC) problem and can be solved
optimally in polynomial time [22]. For Formula 4, the solution is
Px, = Pxy, = Py +3,pr = py +4, which gives the minimum total
reuse distance of 6 and matches Formula 5.

VI. EXPERIMENTAL RESULTS

We extend the open-source SODA compiler [12] to implement
the presented algorithms. DSE is written in C++ and runs on a
single thread of Intel Xeon E5-2699 v3 CPU. Synthesis is performed
by Vivado 2019.1, targeting the Alveo U250 board. The stencil
kernels used in the experiments include eight Laplacian kernels
used in [4], [12], [20], [23], three image stabilization kernels used
in [2], a Gaussian smoother kernel used in pose detection [3], and
two biharmonic operator kernels used in [14], [15]. Details about
the kernels are listed in Table I. In addition to these real-world
benchmarks, we also generate artificial 3x3 kernels to assess the
optimality gap between the heuristic algorithm and the optimal one.

A. Number of Operation Reduction

Table II shows the number and type of operations required to
produce each output element. The performance of the kernels are
fixed to produce 1 output element per clock cycle and all off-chip
communication is fully reused. The baseline SODA [12] compiler
implements the kernels without computation reuse optimization. Note
that SODA outperforms previous papers [11], [23], [24] by up to
9.82x [12]. DCMI [20] is a recent work that synthesizes iterative
stencil kernels to FPGAs. DCMI removes redundant multiplication
operations, but not the addition (reduction) operations. HSBR shows
the result of our heuristic algorithm. Note that for kernels that are
small enough (less than 10 points), we are able to verify that the
heuristic algorithm actually produces the optimal result. On average,
our presented algorithm reduces the reduction operations by 58.2%*.

3 Marked benchmarks use 8-bit integers; others use 32-bit float.
4 = 1 — GeoMean {target/baseline}



TABLE II: Operation reduction. Bold items are verified to be optimal.

Pointwise Operations Reduction Operations

Kernel  g0pA [12] DCMI [20/HSBR ~ SODA/DCMI HSBR
s2d5pt 5 1 (-80%) 4 3 (-25%)
s2d33pt 33 9 (-73%) 32 24 (-25%)
f2d9pt 9 3 (-67%) 8 6 (-25%)
£2d81pt 81 15 (-82%) 80 48 (-40%)
s3d7pt 7 1 (-86%) 6 5(-17%)
s3d25pt 25 5 (-80%) 24 20 (-17%)
£3d27pt 27 4 (-85%) 26 14 (-46%)
f3d125pt 125 10 (-92%) 124 40 (-68%)
contrast 197 30 (-85%) 196 113 (-42%)
erosion 0 0 360 12 (-97%)
XCOoIT 0 0 359 13 (-96%)
smoother 625 91 (-85%) 624 336 (-46%)
bigbiharm 25 5 (-80%) 24 14 (-42%)
lilbiharm 9 3 (-67%) 12 9 (-25%)
average* — -81% — -58%
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Fig. 5: Impact of heuristics in HSBR. Lower is better.

B. Impact of Design-Space Pruning Heuristics

Fig. 5 shows the average operation reduction and the design-space
exploration (DSE) time with different beam widths and heuristics
used in HSBR. Time is normalized per benchmark to obtain mean-
ingful averages over different benchmarks. In general, larger beam
width yields better results, but requires longer DSE time. Operation
selection speeds up HSBR by reducing the search depth. Conflict
resolution adds some over-pruned points back to the design space
and thus compensates some quality of result loss caused by operation
selection. Regularity exaction further improves the quality and the
runtime by prioritizing regular patterns.

C. Performance Boost for Compute-Intensive Stencil

Stencil computation can be compute-intensive if it is iterative [12],
[23]-[25], or has a large number of operations per output. For
compute-intensive stencil kernels, computation reuse can save re-
sources (Section VI-D) and directly result in a performance boost.
We compare the 8 iterative kernels with CPU/GPU results from [4] in
Fig. 6. Note that [4] includes all three aspects of stencil optimizations,
i.e., parallelization, communication reuse, and computation reuse. All
FPGA implementations are scaled up to use the available DSPs and
runs at 100 — 125 MHZz’. On average, DCMI [20] achieves 1.6x
speedup over SODA [12], whereas our proposed HSBR algorithm
achieves 2.3x. Moreover, thanks to the highly customized datapaths
and fully pipelined microarchitecture, HSBR outperforms multi-core
Xeon Gold CPU by 10.9%, many-core Xeon Phi processor by 3.17x,
and P100 GPU by 1.53x on average, respectively.

D. Resource Consumption Reduction

Fig. 7 compares the resource usage of the DCMI optimization
and our proposed HSBR algorithm with the baseline SODA imple-
mentation. Flip-flop (FF) usage is not reported in the figure because
it is tightly coupled with look-up table (LUT) usage and is never

5 Designs are HLS-based prototypes and are not fine-tuned for high-
frequency [26]. We expect instrumentation at RTL level to further improve
the frequency and leave that as future work.
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Fig. 6: Performance of iterative kernels. Xeon & P100 are from [4].

used more than LUTs. From the figure, we can see that both opti-
mizations can save computational resources like LUTs and digital-
signal processors (DSP) compared with the baseline implementation,
possibly at the cost of storage resources (e.g., block random-access
memories, BRAMs). On average, DCMI uses 85.1% LUT and 62.6%
DSP with 100.0% BRAM usage (compared with SODA baseline).
The reduction on LUT and DSP is from the reuse of multiplication
operations, and the BRAM usage is the same as SODA since reusing
multiplication can be done without additional storage. The HSBR
algorithm, on the other hand, only uses 41.0% LUT and 45.4%
DSP with 123.7% BRAM usage (compared with SODA baseline).
For large kernels (e.g., contrast, erosion, and xcorr), the baseline
implementations generate very deep pipelines that lead to a high
BRAM usage. With computation reuse, the kernels are decomposed
into smaller ones with shallower pipelines, which can significantly
reduce the BRAM usage. The geometric mean of BRAM usage is
strongly biased by those cases; after excluding them, the average
BRAM usage is 231.9% for HSBR. Note that although the storage
(BRAM) usage with computation reuse applied can be as high as
7%, we argue that one can scale up the performance at the cost
of computational resources (LUTs and DSPs) without significant
increase of storage resources, which makes it reasonable to trade-off
storage for computation. Actually, when we scale up each benchmark,
we find that BRAM usage never bottlenecks the resource usage; the
bottleneck is always DSP (for floating-point numbers) or LUT (for
fixed-point numbers).

E. Design-Space Exploration Cost

The optimal algorithm scales up to 10-point stencil kernels and
runs in 10 minutes with 6 MiB memory. Although the memory usage
remains low, scaling to 11 points requires more than 2 hours on
our test machine. Fig. 8 shows the HSBR design-space exploration
(DSE) time with various beam widths. Note that since the DSE time is
tightly coupled with the kernels, the data points do not align well on a
straight line. Since beam search has bounded memory complexity, the
memory consumption of HSBR is moderate (< 100 MiB). In general,
the cost of the DSE becomes low with the heuristic algorithm.

F. Optimality Gap

Although it is impossible to assess the optimality gap for all
kernels, we assess the gap between the heuristic algorithm and
the optimal algorithm for small kernels. In addition to the real-
world benchmarks, we randomly generate artificial 3x3 kernels to
examine how well the heuristics perform. Out of the 11528 kernels
we generated randomly, there are 5281 kernels with computation
reuse opportunity, and our heuristic algorithm can find all of them
with the least number of required operations with a beam width of
3. Even with the storage overhead (total reuse distance) taken into
consideration, HSBR can yield the optimal reuse buffer size with a
beam width of 4. This is shown in Fig. 9.
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VII. CONCLUSION

In this paper, we exploit computation reuse optimizations for
stencil accelerators. We present an optimal algorithm that can thor-
oughly explore the complete design space of computation reuse for
stencil accelerators with reduction operations. In addition, we present
a heuristic beam search algorithm that can effectively prune the
vast design space while yielding near-optimal results. Moreover, we
fully automate the computation reuse by integrating our algorithms
into the SODA compiler. Experimental results show an average of
58.2% reduction on the number reduction operations needed and
58.1% and 54.6% post-synthesis resource reduction on LUT and
DSP, respectively, compared with the state-of-the-art SODA compiler.
For compute-intensive stencils, our algorithm achieves an average
speedup of 2.3x over SODA and outperforms optimized CPU/GPU
programs in various benchmarks.
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