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Abstract

Finite-horizon sequential experimental design
(SED) arises naturally in many contexts, includ-
ing hyperparameter tuning in machine learning
among more traditional settings. Computing the
optimal policy for such problems requires solv-
ing Bellman equations, which are generally in-
tractable. Most existing work resorts to severely
myopic approximations by limiting the decision
horizon to only a single time-step, which can
underweight exploration in favor of exploita-
tion. We present BINOCULARS: Batch-Informed
Nonmyopic Choices, Using Long-horizons for
Adaptive, Rapid SED, a general framework for de-
riving efficient, nonmyopic approximations to the
optimal experimental policy. Our key idea is sim-
ple and surprisingly effective: we first compute a
one-step optimal batch of experiments, then select
a single point from this batch to evaluate. We real-
ize BINOCULARS for Bayesian optimization and
Bayesian quadrature — two notable SED problems
with radically different objectives — and demon-
strate that BINOCULARS significantly outperforms
myopic alternatives in real-world scenarios.

1. Introduction

Many real-world problems can be framed as finite-horizon
sequential experimental design (SED), wherein an agent
adaptively designs a prespecified number of experiments
seeking to maximize some data-dependent utility function.
The optimal policy for SED can be formulated as dynamic
programming (DP), which balances the inherent tradeoff
between exploitation (immediately advancing the goal) and
exploration (learning for the future). However, this opti-
mal policy is intractable even for simple problems (Powell,
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2010). Common approximation schemes include rollout,
Monte Carlo tree search (Bertsekas, 2017; Powell, 2010), or
simply artificially limiting the horizon, known as a myopic
approximation.

In this work, we propose a novel method for efficient and
nonmyopic SED, called BINOCULARS: Batch-Informed
Nonmyopic Choices, Using Long-horizons for Adaptive,
Rapid SED. BINOCULARS is inspired by the fact that the
optimal batch (or non-adaptive) design is an approximation
to the optimal sequential (or adaptive) design. In fact, the
optimal adaptive and non-adaptive designs are exactly the
same in some notable cases where the data utility does not
depend on the observed outcomes, such as maximizing in-
formation gain for a fixed Gaussian process (GP) (Krause
and Guestrin, 2007). Even when this is not the case, we
show that the optimal batch expected utility is a lower bound
of the optimal sequential expected utility. Furthermore, it is
always as tight as the one-step optimal policy’s implied ex-
pected utility. Motivated by this insight, BINOCULARS iter-
atively computes an optimal batch of designs, then chooses
one point from this batch. While many existing methods
construct batch policies by simulating a sequential policy
(Ginsbourger et al., 2010; Desautels et al., 2014; Jiang et al.,
2018), BINOCULARS goes the other way and “reduces” se-
quential design to batch design.

BINOCULARS is a general framework applicable to any SED
problem. In this paper, we realize this framework on two
important yet fundamentally different SED tasks: Bayesian
optimization (BO) (Kushner, 1964; Mockus, 1974; Shahriari
et al., 2016) and Bayesian quadrature (BQ) (Larkin, 1972;
Diaconis, 1988; O’Hagan, 1991). In BO, an agent repeatedly
queries an expensive function seeking its global optimum,
whereas in BQ the goal is to estimate an intractable integral
of the function.

For both problems, many popular policies are myopic: ex-
amples include expected improvement (EI) for BO (Mockus,
1974) and uncertainty sampling (UNCT) for BQ (Gunter
et al., 2014). These are all one-step optimal for maximiz-
ing particular utility functions in expectation. While they
are computationally efficient and give reasonable empiri-
cal results, they are liable to suffer from myopia and over-
exploitation. Nonmyopic alternatives have recently been
applied to BO (Gonzélez et al., 2016b; Lam et al., 2016; Yue



BINOCULARS for Efficient, Nonmyopic Sequential Experimental Design

------- true
—— mean
/ s, LTI
Cl / /
’ \\\ ’l’ \\‘
N
—d N Fd
o

0.6

0.4 *

0.2

0.0

(d) EI, 2-EI and 2-step-EI

(e) 2-E1 iteration 1

(f) 2-El iteration 2

Figure 1: An illustration of our proposed nonmyopic method applied to BO. (a) A function in [—1, 1] drawn from a GP where the two end
points are known to be zero. (b) and (c) show two iterations of BO with the EI acquisition function. (d) EI, 2-EI and 2-step-EI curves with
their respective maximizers. (e) and (f) show two iterations of BO where the first point is chosen from the two points maximizing 2-EI,
and the second one is chosen by maximizing EI (conditioned on the observation in iteration one).

and Al Kontar, 2019): while results are promising, these are
typically costly to compute.

Our contributions can be summarized as follows: (1) We
propose a general framework for efficient and nonmyopic
SED with finite horizons, inspired by the close connection be-
tween optimal sequential and batch designs. (2) We realize
the framework on two important SED problems: Bayesian
optimization and Bayesian quadrature. This represents
the first nonmyopic policy proposed for BQ. (3) We con-
duct thorough experiments demonstrating that the proposed
method significantly outperforms the myopic baselines and
is competitive with (if not better than) state-of-the-art non-
myopic alternatives, while being much more efficient.

2. BINOCULARS

We first illustrate the intuition behind BINOCULARS and
provide explicit mathematical justification. We then realize
BINOCULARS for two specific SED scenarios: BO and BQ.
Throughout this work, we make extensive use of Gaussian
processes (GPs): a GP defines a probability distribution
over functions, where the joint distribution of the function’s
values at finitely many locations is multivariate normal; for
more details, see (Rasmussen and Williams, 2006).

Intuition. Consider the BO example in Fig. 1, where we
wish to maximize a one-dimensional objective function over
an interval, conditioned on initial observations at the bound-
ary. Suppose we have two more function evaluations left.
The myopic EI policy would greedily pick the middle point
first, followed by a point bisecting the left half of the do-
main. The resulting choices completely ignore the right half
of the domain, which is where the maximum happens to lie.

Now consider the following alternative for designing the
observations: we first construct the optimal batch of size
two (2-E1). These points can be determined relatively ef-
ficiently as recursion is not required and reflect a better
approximation of the remainder of the optimization than
just looking one step ahead. We then pick a point from this
batch (how the point is selected will be addressed later) and
use EI to choose the final point given the result. This policy
results in well-distributed queries and better performance.
We can compare these decisions with the optimal (but expen-
sive) policy maximizing the full lookahead expected utility
(2-step-E1 in Fig. 1(d)): our choices are nearly perfect.

2.1. The Optimal Adaptive Policy

Consider a general SED problem with a finite horizon, T'.
Let the design space be X, response space be ); for x €
X,ye Yand D C X x Y, letp(y | z, D) be a probabilistic
model; and let u(D) be some utility function of observed
data D. Define u(y | #, D) = u(D U (z,y)) — u(D) as the
marginal gain in utility after observing y from experiment z
when D has already been observed. Let Q. (z | D) be the
expected utility of designing experiment x after observing
D when there are k steps remaining, assuming all later
decisions are optimal. Q(z | D) can be expressed in the
form of a Bellman equation as follows:

Qu(@ | D) = Eyfuly | =, D)) +
Ey[max Qu-1(2' | DU{(@.m)})], ()

where the expectation is taken with respect to p(y | z, D).
The optimal (expected-case) policy is to observe

2

z* = argmax Qr_;(x | D),



BINOCULARS for Efficient, Nonmyopic Sequential Experimental Design

where D; is the observed set at iteration ¢. The opti-
mal policy is intractable for any moderately large hori-
zon; in general, the complexity is O (|X|7[S|T), where
S ={D | D C X x Y}, and in many settings X" and/or
S are uncountable. Thus, we must find some tractable ap-
proximation to proceed. A common solution is to limit the
horizon to some manageable value ¢, e.g. { = 1 or 2. This
is called ¢-step lookahead, and is computationally efficient
but myopic as it severely limits our view of the future: it
does not plan ahead and can thus make suboptimal tradeoffs
between exploration and exploitation.

2.2. Nonmyopic Approximation via the Optimal
Non-Adaptive Policy

Suppose T experiments X = {zi,..., 2z} must be de-
signed simultaneously given current observations D. The
expected marginal utility of the resulting observations is

where the expectation is taken over the joint distribution
of Y = {y1,...,ur}, p(Y | X,D). Rewriting (3) by
decomposing X into z; and X_; where X_; = X \ {z,},
we have (by telescoping sum)

Q(X | D) = Ey, [u(y; | =, D)]+
By, [Q(X5 | DU{Gs0)})]. @

The derivation of this decomposition can be found in the
supplement. Let X* € argmaxy Q(X | D) be an optimal
batch of experiments. For any 27 € X*,

B [Q(x, 1 DU ()] =

max By [Q(X; [ DU{@}9)h)].

as otherwise we could construct a batch with higher utility
than Q(X™* | D). Therefore, given that the expected reward
of the entire batch can be decomposed using (4), choos-
ing any experiment z* € X is equivalent to solving the
following optimization: z* € argmax, B(x | D) where

Bz | D) = Eyluly | z, D)+
E,[Q(X' | DU{@w)})]. ©

max
X7 X/ |=T—1

Comparing (6) and the Bellman equation (1), we see two
differences: 1) the expectation and maximization are ex-
changed in the future utility term and 2) the adaptive utility
is replaced by a non-adaptive counterpart. As such, (6) is

clearly a lower bound of the true expected utility:

e [Q(x 1 DU{(@.y)})]
<E, [X,:I)IgafT_lQ(X/ | DU {(x,y)})]

<, |mx Qo (o' DU L)) )

This is illustrated in Fig. 1(d): 2-step-EI corresponds to
(1), and 2-EI to (6). Note that while the one-step optimal
(myopic) policy also optimizes a lower bound of the true
expected utility, the lower bound in (6) is always at least as
tight as the lower bound optimized by the myopic policy.
An interesting open question is the tightness of this bound,
closely related to the so-called adaptivity gap (Jiang et al.,
2018; Krause and Guestrin, 2007).

The similarity between these formulations provides mathe-
matical justification for using (6) to approximate the optimal
policy. Note that (6) is exactly equal to (1) if the remaining
experiments ever become conditionally independent given
the observed data, in which case there is no advantage to
adaptation.

Algorithm 1 BINOCULARS

Input: design space X, response space ), model p(y |
x, D), utility function u(y | =, D), budget T’
Output: D, a sequence of experiments and observations
fori < 0to7T —1do
Compute the optimal batch X ™ of size T — i
Pick an experiment * € X ™ and observe response y*
Augment D = DU {(z*, y*)}

BINOCULARS is summarized in Algorithm 1. The pri-
mary computational cost comes from computing the optimal
batch, a high-dimensional optimization problem. For the ex-
amples considered below (BO and BQ), this optimization can
be done using gradient-based methods and we show empir-
ically that BINOCULARS runs much faster than previously
proposed nonmyopic methods (see section 6). Note that
while we do use a batch method, it is only as a subroutine.
Algorithm 1 is for sequential experimental design: in each
iteration, we only observe the outcome of one experiment.

3. BINOCULARS for Bayesian Optimization

Consider the task: o* = argmax,c, f(2); in this paper,
we model f with a GP. Suppose we have a budget of T’
function evaluations. Once the budget has been expended,
we recommend the point with the highest observed value as
the maximizer of f. In this setting, our goal is to sequentially
selecta set X = {x1,x9,..., 27} of T points from X such
that max{y; } is maximized, where y; = f(z;).
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Let Dy be a set of initial observations, and yg =
max(z )eD, ¥ iS the initial best observed value. We de-
fine the utility function as the improvement over yg:

_ L +
uwY | X, Do) = <§£E€D§(yj yo) , (®)

where ¢ = max(c, 0). Defining the utility as improvement
allows us to write the expected utility as a Bellman equation
with the same form as (1):

El(z) = Bl (z) + Ey [maxy Bl 1 (2" | 2,9)], (9)

where ETj(x) is the expected improvement of k adaptive
decisions starting from x, and EI;_1 (2’ | z,y) is an ex-
pectation taken over the posterior belief of f after further
conditioning on the observation (z, y) and replacing y, by
max (Yo, y). The derivation of (9) can be found in the supple-
ment. Observe that arg max, ET; (z) exactly corresponds
to the popular expected improvement (EI) policy (Mockus,
1974), which is one-step optimal; EI5(x) is already ana-
Iytically intractable as it requires an expensive numerical
integration: the integrand is max, FI; (2’ | ,y) and en-
tails global optimization!

To apply BINOCULARS, we optimize the batch EI objective,
also known as ¢-EI, via the recently developed reparameter-
ization trick and Monte Carlo approximation (Wang et al.,
2016). Then we pick a point from the optimal batch; how to
pick this point is discussed later. BINOCULARS trivially ex-
tends to other utility functions such as knowledge gradient
(Wu and Frazier, 2016), probability of improvement (Kush-
ner, 1964) and predictive entropy (Shah and Ghahramani,
2015) by replacing g-EI appropriately.

4. BINOCULARS for Bayesian Quadrature

Consider a non-analytic integral of the form Z =
J f(z)m(x) dz, where f(z) is a likelihood function and
m(x) is a prior. Such integrals frequently occur in Bayesian
inference (e.g., Bayesian model selection and averaging).
Bayesian quadrature operates by placing a GP on the in-
tegrand and then minimizing the posterior variance of Z:

Var|Z | X] = [[ Kx(z,2")w(z)r(2") deda’,  (10)

where X = {z1,22,...,27} is a set of T points that
needs to be optimized, and K x (x, z’) is the posterior co-
variance after conditioning on observations at X. If the
GP hyperparameters are fixed, the optimal design X* =
argmin y Var[Z | X| can be precomputed, as the posterior
covariance of a GP does not depend on the observed values
f(X); this effectively eliminates the need for sequential
experimental design in this setting.

However, in general the hyperparameters are not fixed a
priori, but are instead learned iteratively in light of new

observations. Furthermore, when the integrand is known to
be positive (e.g., a likelihood function), it is often a good
practice to place a GP on some non-linear transformation of
f.such as \/f or log(f) (Osborne et al., 2012; Gunter et al.,
2014; Chai and Garnett, 2019). As a result, the posterior GP
must be approximated (e.g., by moment matching), which
causes the posterior covariance to depend on the observed
values. In these cases adaptive sampling becomes critical.

The adaptive version of Var[Z | X] is computationally
expensive to evaluate so Gunter et al. (2014) proposed the
use of uncertainty sampling (UNCT) (Lewis and Gale, 1994;
Settles, 2010) as a surrogate, i.e., sequentially evaluating the
location with the largest variance. This greedily minimizes
the entropy of the integrand instead of the integral.

Formally, we use the differential entropy of the conditional
distribution p(Y | X) as the utility function:

H(p(Y | X)) = Llog (det (2me K(X,X))). (11)

Using the chain rule for differential entropy, this quantity
can be expressed in the same form as (1):

H(p(Y | X)) = H(ply; | z;))+
Ey, [H(P(ij\ij»xj,yj»] (12)

Note that arg max, H(p(y; | x;)) corresponds to the se-
quential uncertainty sampling policy. To apply BINOCU-
LARS for BQ, we must find arg max y H(p(Y | X)), which
is the mode of a determinantal point process (DPP) (Kulesza
and Taskar, 2012) defined over ¢ = | X| points. ! This can
be done using gradient-based optimization. Note that this
formulation can be applied to active learning of GPs, where
uncertainty sampling is also a common strategy.

Practical Considerations. Some practical issues arise
when applying BINOCULARS to real problems. First, given
an optimal batch, how should one select a point from this
batch? We considered several options: selecting the point
with the highest expected immediate reward or randomly
selecting a point, either uniformly or proportional to its
expected immediate reward. Empirically, we found that
“best” and “proportional sampling” perform similarly while
“uniform sampling” performs the worst.

Second, given that BINOCULARS is only an approximation
to the optimal policy, it is not necessarily true that setting ¢
to the exact remaining budget is the best. In theory, if the
model is perfect, then full lookahead is optimal. However,
in practice, the model is always wrong and thus planning
too far ahead could actually harm the empirical performance
(Yue and Al Kontar, 2019). Furthermore, smaller values of

"This connection is purely theoretical: our method uses no proper-
ties of DPPs but it is the basis of our BQ naming convention.
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q result in more efficient computation. We empirically study
the choice of ¢ in section 6.

5. Related Work

General introductions to approximate dynamic program-
ming (DP) can be found in Bertsekas (2017); Powell (2010).
On the subject of nonmyopic BO, Osborne et al. (2009) de-
rived the optimal policy for BO, and demonstrate that it is
possible to approximately compute the two-step lookahead
policy for low-dimensional functions and that it generally
performs better than the one-step policy. Ginsbourger and
Le Riche (2010) also derived the optimal policy and gave
an explicit example where two-step EI is better than one-
step EI in expectation with a desired degree of statistical
significance. Gonzélez et al. (2016b) proposed a nonmyopic
approximation of the optimal policy, known as GLASSES,
by simulating future decisions using a batch BO method.?
Jiang et al. (2017; 2018) proposed a nonmyopic policy for
(batch) active search, which can be understood as a special
case of BO with cumulative reward, using a similar idea.
Lam et al. (2016) proposed to use rollout for BO, a classic
approximate DP method (Bertsekas, 2017). Yue and Al Kon-
tar (2019) presented theoretical justification for rollout, and
gave theoretical and practical guidance on how to choose the
rollout horizon. Ling et al. (2016) proposed a branch-and-
bound near-optimal policy for GP planning assuming that
the reward function is Lipschitz continuous, and applied it
to BO and active learning. Wu and Frazier (2019) proposed
a gradient-based optimization of two-step EI, but each eval-
uation of two-step EI still requires a quadrature subroutine
with an expensive integrand: optimization of one-step EI.

Of these, GLASSES and rollout are most related to BINOC-
ULARS. GLASSES’s acquisition function shares almost the
same form as (6), except the future batch X" is constructed
using a heuristic batch policy, instead of optimized with the
g-El objective. The batch policy adds points one by one by
optimizing the sequential EI function penalized at locations
already added to the batch (Gonzédlez et al., 2016a), and
the expected utility of the chosen batch is estimated using
expectation propagation.

Rolling out two steps using EI as the heuristic policy is
exactly equivalent to the two-step lookahead policy, up to
quadrature error. Mathematically, the rollout acquisition
function can also be written in a similar form as (6), except
X' is adaptively constructed, depending on sampled values
of y instead of globally (irrespective of y) constructed or
optimized as in GLASSES and BINOCULARS. Both rollout
and GLASSES are very expensive to compute.

While we are unaware of any existing work on nonmyopic
BQ, there has been some prior work on nonmyopic active

>The name BINOCULARS is inspired by GLASSES.

learning of GPs. Krause and Guestrin (2007) derived the
adaptivity gap for active learning of GPs under two utility
functions. They also proposed a nonmyopic method for
active learning of GPs which separates the process into an
exploration phase and an exploitation phase. They con-
sidered different acquisition functions for the exploration
phase; notably, the implicit exploration (IE) method is com-
parable to the uncertainty sampling baseline in subsection
6.2. Hoang et al. (2014) developed a method for active
learning of GPs that does away with separate exploration
and exploitation phases and instead naturally trades off be-
tween the two. Their proposed policy, e-BAL, approximates
the solution to the Bellman formulation of the active GP
learning problem using a truncated sampling method. They
analyzed the theoretical performance of their method and
developed a pruning-based anytime version of their method.

The setting of our BQ work (integration of non-negative
integrands) and active learning of GPs appear related yet are
fundamentally different. The cited works focus exclusively
on learning the hyperparameters of the GP. In our setting,
the use of a transformation to model non-negativity intro-
duces adaptivity beyond the GP hyperparameters: even if
the true GP hyperparameters are known a priori, the nonlin-
ear transformation causes the approximate GP posterior to
depend on the observed values.

6. Experiments

We designed our experiments to broadly test the perfor-
mance and computational cost of BINOCULARS relative to
notable myopic and nonmyopic baselines for BO and BQ.
We also conducted a thorough exploration of the BINOCU-
LARS design choices: the number of steps to look ahead and
how to select a point from the optimal batch.

The primary takeaways of our experimental results are that
BINOCULARS outperforms myopic baselines while running
only slightly slower and is at least as good as previously
proposed nonmyopic methods while running orders of mag-
nitude faster. This places it on the Pareto front of the running
time—performance tradeoff in policy design. Furthermore,
BINOCULARS clearly demonstrates distinctively nonmyopic
behavior on both BO and BQ tasks, two entirely different
SED problems.

We use the following nomenclature to describe BINOCU-
LARS: our nonmyopic BO method will be denoted as “q.EL.s”
or “q.EL.b”, where q is the batch size and “s” represents sam-
pling from the batch while “b” means choosing the “best.”
For BQ, we replace “EI” with “DPP.” In addition to the my-
opic methods, ET and UNCT, we also compare against rollout

for both tasks and GLASSES for BO.? Each rollout method

3We did not compare against a BQ-equivalent of GLASSES as no
such method has been published.
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Table 1: Average GAP over 100 repeats on “hard” synthetic functions.

Rand EI 2ELb 2ELs 3.ELb 3ELs 4ELb 4ELs 10.ELb 10ELs 12.ELs 15ELs
eggholder 0498 0.613 0.614 0.633 0.604 0.657 0.646 0.694 0.622 0.704 0.738 0.694
dropwave 0486 0439 0507 0.531 0473 0552 0467 0514  0.397 0.591 0.598 0.585
shubert 0.355 0408 0366 0441 0394 0507 0388 0484 0.305 0.455 0.479 0.465
rastrigin4  0.374 0.801 0.769 0.775 0.817 0.821 0.840 0.805 0.797 0.804 0.793 0.799
ackley?2 0.358 0.821 0.825 0.823 0.819 0869 0812 0.872 0.801 0.892 0.886 0.888
ackley5 0.145 0509 0544 0509 0.601 0550 0.596  0.592  0.636 0.606 0.627 0.626
bukin 0.600 0.849 0.856 0.855 0872 0859 0864 0.865 0.878 0.850 0.829 0.853
shekel5 0.038 0.286 0311 0320 0330 0343 0342 0344 0.374 0.373 0.358 0.395
shekel7 0.045 0.268 0346 0313 0349 0325 0352 0370 0.399 0.358 0.412 0.386
Average 0.322  0.555 0571 0578 0584  0.609 0590 0.616 0.579 0.626 0.635 0.632

is denoted as “q.R.n”, where ¢ represents the number of
steps to roll out, and n is the number of samples used to
estimate the expectations encountered in each step. Each
GLASSES method is denoted as “q.G” where q represents the
size of the simulated batch. We use DIRECT (Jones, 2009)
to optimize the GLASSES and rollout acquisition functions,
following Gonzélez et al. (2016b). For all nonmyopic meth-
ods, when the remaining budget » < ¢, we set ¢ = r. Thus
the final decision is always made (optimally) with one-step
lookahead.

For all experiments, we start with 2d randomly-sampled
observations and perform 20d further iterations, where d
is the function’s dimensionality. Unless otherwise noted,
all results presented are aggregated over 100 repeats with
different random initializations. For all tabulated results,
the best method is indicated in bold and the entries not
significantly worse than the best (under a one-sided paired
Wilcoxon signed-rank test with o = 0.05) are in blue italics.

6.1. BO Results

We implemented our nonmyopic BO policy and all base-
lines using BoTorch,* which contains efficient EI and g-EI
implementations. We present experiments for two rollout
variants: “2.R.10” and “3.R.3.” As we will see, rolling out
with horizon two is already very expensive even for just ten
y samples. Gauss—Hermite quadrature is used for rollout as
in Lam et al. (2016). We also present experiments for two
GLASSES variants: “2.G” and “3.G7.°

We use GPs with a constant mean and a Matérn 5/2 ARD ker-
nel to model the objective function, the default in BoTorch.
We tune hyperparameters every iteration by maximizing the
marginal likelihood using L-BFGS-B. We also maximize the
@-EI acquisition function with L-BFGS-B. Complete details

*https://github.com/pytorch/botorch

SWith help from the authors of (Gonzilez et al., 2016b), we im-
plemented an advanced version of GLASSES in BoTorch, using
quasi Monte Carlo instead of expectation propagation to estimate
the expected improvement of the batch, a standard practice for
computing qEI in state of the art BO packages such as BoTorch.

can be found in our attached code. We use the GAP measure
to evaluate the performance: GAP = (y; — o) / (v* — vo),
where y;’s are maximum observed values and y* is the true
optimal value; we convert all problems to maximization
problems by negating if necessary.

Synthetic Functions. In this section, we focus on demon-
strating the superior performance of our method over EI
on nine “hard” benchmark functions. These nine functions
are selected by first running experiments on 31 functions®
with 30 repeats (see Table 1 in the supplement). We then
select the ones where EI terminates with average GAP < 0.9.
We believe nonmyopic methods are more advantageous on
challenging functions; by first identifying these hard prob-
lems, we will gain more insight into the various policies. To
put the BO performance into perspective, we also include a
comparison against a random baseline, “Rand.”

Table 1 shows the average GAP at termination. For the
results in Table 1, the p-values of the best BINOCULARS
variant for each function against EI in descending order
are 0.065, 0.025, 0.0030, 3.0e-5, ... Thus, after applying
the Bonferroni correction to account for the 10 variants of
BINOCULARS (p < «/10), the best variant of our method
remains significantly better than EI for 7 out of the 9 “hard”
functions. After applying the Holm-Bonferroni correction
to our aggregated results, every variant of BINOCULARS
remains significantly better than EI at the a = 0.05 level
and all but 2.ELb at the a = 0.01 level.

We summarize the results as follows: (1) All ¢.ELs variants
perform significantly better than EI on average, with 12.ELs
being the best and outperforming EI by a large margin. (2)
The q.ELs variants are consistently better than the ¢.EL.b
variants (for better spacing we did not show results for
12.E1.b and 15.E1.b). (3) The performance of our method
generally improves as we increase g, up to 12.

Perhaps more interestingly, we can clearly observe the non-
myopic behavior of 12.EL.s as shown in Figure 2: it is ini-

*https://www.sfu.ca/~ssurjano/
optimization.html
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Table 2: Average GAP over 50 repeats on real functions.

EI 2ELs 3ELs 4ELs 6ELs 8ELs 2G 3.G 2.R.10 3R3
SVM 0.738 0913 0940 0911 0937 0834 0881 0898 0930 0.928
LDA 0956 1.000 0996 0993 0982 0995 1.000 0999  0.999 1.000
LogReg 0963 0998 1.000 0999 0999 1.000 0989 0911 0965 0.948
NN Boston 0470 0467 0478 0460 0502 0467 0455 0512 0503 0482
NN Cancer 0.665 0.627 0.654 0.686 0.700 0.686 0.806 0.755 0.708  0.698
Robot pushing3d  0.928  0.960 0.962 0.957 0962 0.961 0.955 0951 0.955 0.954
Robot pushing4d 0.730  0.726  0.695 0.695 0.736 0.697 0.765 0.786 0.770  0.745
Average 0.779 0813 0818 0815 0831 0806 0.836 0830 0833 0.822
0.005 is negligible; the p-value under a one-sided paired
signed-rank test for 6.EI.s against 2.G is 0.4257.
06 EIZ'EI'S We now focus on comparing the time cost of the tested
methods. Figure 3 shows the average GAP versus average
0.5 time per iteration; the average is taken over 350 experiments
(seven functions with 50 repeats each); error bars are also
0.4 plotted. We again see that our methods are not significantly
% 0.3 different from rollout and GLASSES in terms of GAP per-
formance, but are considerably faster in terms of average
0.2 time cost per iteration (note the log scale on the time axis).
Clearly, our method lies on the Pareto front in terms of
0.1 computational cost and performance.
0.0
0.0 02 0.4 0.6 0.8 1.0

normalized iteration number

Figure 2: Average GAP over nine synthetic functions demonstrating
the nonmyopic behavior of 12.ELs.

tially outperformed by the myopic EI as it explores the space.
However, our method catches up to EI at ~20% of the bud-
get (on average) as it transitions to exploiting its findings
until finally, it outperforms EI by a large margin. This be-
havior indicates that our method seamlessly navigates the
exploration/exploitation tradeoff without the need for any
external intervention.

Real World Functions. In this section, we compare our
method against popular nonmyopic baselines: rollout and
GLASSES. We present results on hyperparameter tuning
functions used by Snoek et al. (2012); Wang and Jegelka
(2017); Malkomes and Garnett (2018). These functions
are evaluated on a predefined grid, so we first compute all
policies (except EI) using continuous optimization, then pick
the closest point from the grid.

Table 2 shows the results averaged over 50 repeats. We only
show the “sampling” variants of our method; full results
can be found in Table 3 in the appendix. First we see again
all ¢.ELs variants outperform EI by a large margin, with
q = 6 achieving the best results. Comparing 6.EI.s with the
nonmyopic baselines, 2.G is the best, but the difference of

0.84 26G

6.El.s 2.R.10

2.Els

0.78 El

1s 10s 1min 10min 1lh

log2(time/iter)

Figure 3: mean GAP with error bars at termination versus time per
iteration (in log scale) averaged over the seven real functions.

We also attempted to compare with the recently published
practical two-step EI method (Wu and Frazier, 2019), which
is intended to be a more efficient version of our 2.R.n; the
difference is first- versus zeroth-order optimization of the ac-
quisition function. Our implementation of rollout supports
gradient-based optimization thanks to automatic differentia-
tion. However, we did not find it considerably faster than
using DIRECT. We leave it to future work to optimize the
implementation and compare with our method.
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Table 3: Median fractional error values over 100 repeats on all BQ functions.

UNCT 2.DPPb 3.DPPb 10.DPPb 2.DPPs 3.DPPs 10.DPPs 2R.10 3.R3
cont 0.045 0.052 0.055 0.059 0.039 0.037 0.029 0.036 0.045
corner 0.265 0.206 0.137 0.065 0.047 0.078 0.132 0.074  0.063
discont  0.523 0511 0.488 0.446 0.572 0.610 0.590 0.537 0.577
Gauss 0.004 0.004 0.005 0.006 0.003 0.003 0.003 0.004  0.003
MM 0.254 0.207 0.203 0.207 0.221 0.161 0.177 0.110  0.086
prod 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.012 0.012
GP 0.231 0.082 0.057 0.077 0.069 0.073 0.116 0.283 0.248
DLA 0.019 0.013 0.025 0.013 0.016 0.016 0.033 0.019  0.011
Average  0.068 0.056 0.055 0.041 0.037 0.043 0.055 0.049 0.051
0.1
—— UNCT
0.5 2.DPP.s
0.3
0.4 0.08
s s s UNCT
;E; 0.3 ;‘z 0.2 ;‘z
s s 5 0:061 +10.DPP.S
8 kst kst 3R.3
£02 g £
0.1
o1 o 0.041 +2.DPP.s
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.02 1s Imin 3min 10min
normalized iteration number normalized iteration number log2(time/iter)
(a) (b) (©

Figure 4: Median fractional error over 100 repeats against iterations or time per iteration (in log scale). (a) synthetic functions, (b) real

functions, (c¢) all functions.

It is also possible to further improve rollout’s performance
using an adaptive rolling horizon in light of a recent study
(Yue and Al Kontar, 2019), but it would be even more ex-
pensive to compute. In fact, Figure 1 in (Yue and Al Kontar,
2019) shows that with their adaptive horizon approach, the
most frequently chosen horizon was two.

6.2. BQ Results

We implemented our nonmyopic BQ policy and all baselines
using the GPML MATLAB package.’ For all BQ experiments,
we use the framework of Chai and Garnett (2019): we place
GP priors on the log of the integrands as they are all non-
negative. We use GPs with a constant mean and a Matérn
3/2 ARD kernel to model the integrands. We tune the GP
hyperparameters after each observation by maximizing the
marginal likelihood using L-BFGS-B. We also use L-BFGS-
B to maximize the DPP likelihood. Complete details of our
implementation can be found in our attached code.

We perform experiments on five standard benchmark syn-

"http://gaussianprocess.org/gpml/code/matlab

thetic functions® as well as one additional synthetic bench-
mark and two real model likelihood functions used by
Chai et al. (2019). The additional synthetic benchmark
is: f(z) = [[o, 2aledteteots,
cluded because of its multi-modal (MM) nature. We evaluate
the performance of all methods using their fractional error:

|Z — Z|/Z where Z is the estimate of the integral.

this function was in-

Figure 4(a) indicates that 2.DPP.s exhibits the same nonmy-
opic behavior as 12.ELs: it initially lags behind but eventu-
ally overtakes the myopic UNCT, again suggesting a superior
and automatic tradeoff of exploration and exploitation.

Table 3 shows the median fractional error at termination for
all BQ experiments. Again, we analyzed the results in Table
3 to account for multiple comparisons: the p-values of the
best BINOCULARS variant for each function against UNCT
in descending order are 0.22, 0.16, 0.009, 0.0001, ... Thus
BINOCULARS significantly outperforms UNCT on 5 out of
8 functions after applying the Bonferroni correction. After
applying the Holm-Bonferroni correction to our aggregated
results, every variant of BINOCULARS remains significantly

$https://www.sfu.ca/~ssurjano/
integration.html
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better than UNCT at the o« = 0.05 level and all but 10.DPP.s
at the o« = 0.01 level.

Fig. 4 shows the convergence of the fractional error as a
function of both iterations and time per iteration (in log
scale). These results corroborate many of the findings from
our BO experiments: (1) All nonmyopic methods outper-
form UNCT on average with 2.DPP.s running only imper-
ceptibly slower than UNCT. (2) Our proposed nonmyopic
methods are competitive with, if not better than, rollout
while running orders of magnitude faster.

We also note that in general, ¢.DPP.s variants tend to outper-
form ¢.DPP.b variants and increasing the batch size g does
not consistently improve the performance.

The primary conclusion here is the same as for BO: BINOC-
ULARS significantly and consistently outperforms myopic
policies while only slightly increasing computational cost.

7. Conclusion and Future Work

We proposed BINOCULARS: an efficient, nonmyopic ap-
proximation framework for finite-horizon sequential experi-
mental design. BINOCULARS computes an optimal batch,
then picks a point from the batch. We gave an intuitive
understanding and a mathematical justification for why this
is a reasonable approximation. We applied BINOCULARS
to Bayesian optimization and Bayesian quadrature, two en-
tirely different problems, and empirically demonstrated that
it significantly outperforms commonly used myopic policies
while being much more efficient than popular nonmyopic
alternatives.

As suggested by Yue and Al Kontar (2019), it would be
useful to derive theories to guide the choice of lookahead
horizon ¢ for our method. Another interesting theoretical
question is whether we can provide explicit bounds for the
adaptivity gap for a general class of problems.
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