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Abstract

Finite-horizon sequential experimental design

(SED) arises naturally in many contexts, includ-

ing hyperparameter tuning in machine learning

among more traditional settings. Computing the

optimal policy for such problems requires solv-

ing Bellman equations, which are generally in-

tractable. Most existing work resorts to severely

myopic approximations by limiting the decision

horizon to only a single time-step, which can

underweight exploration in favor of exploita-

tion. We present BINOCULARS: Batch-Informed

NOnmyopic Choices, Using Long-horizons for

Adaptive, Rapid SED, a general framework for de-

riving efficient, nonmyopic approximations to the

optimal experimental policy. Our key idea is sim-

ple and surprisingly effective: we first compute a

one-step optimal batch of experiments, then select

a single point from this batch to evaluate. We real-

ize BINOCULARS for Bayesian optimization and

Bayesian quadrature – two notable SED problems

with radically different objectives – and demon-

strate that BINOCULARS significantly outperforms

myopic alternatives in real-world scenarios.

1. Introduction

Many real-world problems can be framed as finite-horizon

sequential experimental design (SED), wherein an agent

adaptively designs a prespecified number of experiments

seeking to maximize some data-dependent utility function.

The optimal policy for SED can be formulated as dynamic

programming (DP), which balances the inherent tradeoff

between exploitation (immediately advancing the goal) and

exploration (learning for the future). However, this opti-

mal policy is intractable even for simple problems (Powell,
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2010). Common approximation schemes include rollout,

Monte Carlo tree search (Bertsekas, 2017; Powell, 2010), or

simply artificially limiting the horizon, known as a myopic

approximation.

In this work, we propose a novel method for efficient and

nonmyopic SED, called BINOCULARS: Batch-Informed

NOnmyopic Choices, Using Long-horizons for Adaptive,

Rapid SED. BINOCULARS is inspired by the fact that the

optimal batch (or non-adaptive) design is an approximation

to the optimal sequential (or adaptive) design. In fact, the

optimal adaptive and non-adaptive designs are exactly the

same in some notable cases where the data utility does not

depend on the observed outcomes, such as maximizing in-

formation gain for a fixed Gaussian process (GP) (Krause

and Guestrin, 2007). Even when this is not the case, we

show that the optimal batch expected utility is a lower bound

of the optimal sequential expected utility. Furthermore, it is

always as tight as the one-step optimal policy’s implied ex-

pected utility. Motivated by this insight, BINOCULARS iter-

atively computes an optimal batch of designs, then chooses

one point from this batch. While many existing methods

construct batch policies by simulating a sequential policy

(Ginsbourger et al., 2010; Desautels et al., 2014; Jiang et al.,

2018), BINOCULARS goes the other way and “reduces” se-

quential design to batch design.

BINOCULARS is a general framework applicable to any SED

problem. In this paper, we realize this framework on two

important yet fundamentally different SED tasks: Bayesian

optimization (BO) (Kushner, 1964; Močkus, 1974; Shahriari

et al., 2016) and Bayesian quadrature (BQ) (Larkin, 1972;

Diaconis, 1988; O’Hagan, 1991). In BO, an agent repeatedly

queries an expensive function seeking its global optimum,

whereas in BQ the goal is to estimate an intractable integral

of the function.

For both problems, many popular policies are myopic: ex-

amples include expected improvement (EI) for BO (Močkus,

1974) and uncertainty sampling (UNCT) for BQ (Gunter

et al., 2014). These are all one-step optimal for maximiz-

ing particular utility functions in expectation. While they

are computationally efficient and give reasonable empiri-

cal results, they are liable to suffer from myopia and over-

exploitation. Nonmyopic alternatives have recently been

applied to BO (González et al., 2016b; Lam et al., 2016; Yue
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where Di is the observed set at iteration i. The opti-

mal policy is intractable for any moderately large hori-

zon; in general, the complexity is O
(

|X |T |S|T
)

, where

S = {D | D ⊆ X × Y}, and in many settings X and/or

S are uncountable. Thus, we must find some tractable ap-

proximation to proceed. A common solution is to limit the

horizon to some manageable value ℓ, e.g. ℓ = 1 or 2. This

is called ℓ-step lookahead, and is computationally efficient

but myopic as it severely limits our view of the future: it

does not plan ahead and can thus make suboptimal tradeoffs

between exploration and exploitation.

2.2. Nonmyopic Approximation via the Optimal

Non-Adaptive Policy

Suppose T experiments X = {x1, . . . , xT } must be de-

signed simultaneously given current observations D. The

expected marginal utility of the resulting observations is

Q(X | D) = EY [u(Y | X,D)], (3)

where the expectation is taken over the joint distribution

of Y = {y1, . . . , yT }, p(Y | X,D). Rewriting (3) by

decomposing X into xj and X−j where X−j = X \ {xj},
we have (by telescoping sum)

Q(X | D) = Eyj
[u(yj | xj ,D)]+

Eyj

[

Q
(

X−j | D ∪ {(xj , yj)}
)

]

. (4)

The derivation of this decomposition can be found in the

supplement. Let X∗ ∈ argmaxX Q(X | D) be an optimal

batch of experiments. For any x∗
j ∈ X∗,

Ey∗

j

[

Q
(

X∗
−j | D ∪ {(x∗

j , y
∗
j )}

)

]

=

max
X−j

Ey∗

j

[

Q
(

X−j | D ∪ {(x∗
j , y

∗
j )}

)

]

, (5)

as otherwise we could construct a batch with higher utility

than Q(X∗ | D). Therefore, given that the expected reward

of the entire batch can be decomposed using (4), choos-

ing any experiment x∗ ∈ X∗ is equivalent to solving the

following optimization: x∗ ∈ argmaxx B(x | D) where

B(x | D) = Ey[u(y | x,D)]+

max
X′:|X′|=T−1

Ey

[

Q
(

X ′ | D ∪ {(x, y)}
)

]

. (6)

Comparing (6) and the Bellman equation (1), we see two

differences: 1) the expectation and maximization are ex-

changed in the future utility term and 2) the adaptive utility

is replaced by a non-adaptive counterpart. As such, (6) is

clearly a lower bound of the true expected utility:

max
X′:|X′|=T−1

Ey

[

Q
(

X ′ | D ∪ {(x, y)}
)

]

≤ Ey

[

max
X′:|X′|=T−1

Q
(

X ′ | D ∪ {(x, y)}
)

]

≤ Ey

[

max
x′

QT−1

(

x′ | D ∪ {(x, y)}
)

]

. (7)

This is illustrated in Fig. 1(d): 2-step-EI corresponds to

(1), and 2-EI to (6). Note that while the one-step optimal

(myopic) policy also optimizes a lower bound of the true

expected utility, the lower bound in (6) is always at least as

tight as the lower bound optimized by the myopic policy.

An interesting open question is the tightness of this bound,

closely related to the so-called adaptivity gap (Jiang et al.,

2018; Krause and Guestrin, 2007).

The similarity between these formulations provides mathe-

matical justification for using (6) to approximate the optimal

policy. Note that (6) is exactly equal to (1) if the remaining

experiments ever become conditionally independent given

the observed data, in which case there is no advantage to

adaptation.

Algorithm 1 BINOCULARS

Input: design space X , response space Y , model p(y |
x,D), utility function u(y | x,D), budget T
Output: D, a sequence of experiments and observations

for i← 0 to T − 1 do

Compute the optimal batch X∗ of size T − i
Pick an experiment x∗ ∈ X∗ and observe response y∗

Augment D = D ∪ {(x∗, y∗)}

BINOCULARS is summarized in Algorithm 1. The pri-

mary computational cost comes from computing the optimal

batch, a high-dimensional optimization problem. For the ex-

amples considered below (BO and BQ), this optimization can

be done using gradient-based methods and we show empir-

ically that BINOCULARS runs much faster than previously

proposed nonmyopic methods (see section 6). Note that

while we do use a batch method, it is only as a subroutine.

Algorithm 1 is for sequential experimental design: in each

iteration, we only observe the outcome of one experiment.

3. BINOCULARS for Bayesian Optimization

Consider the task: x∗ = argmaxx∈X f(x); in this paper,

we model f with a GP. Suppose we have a budget of T
function evaluations. Once the budget has been expended,

we recommend the point with the highest observed value as

the maximizer of f . In this setting, our goal is to sequentially

select a set X = {x1, x2, . . . , xT } of T points from X such

that max{yj} is maximized, where yj = f(xj).
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Let D0 be a set of initial observations, and y0 =
max(x,y)∈D0

y is the initial best observed value. We de-

fine the utility function as the improvement over y0:

u(Y | X,D0) =

(

max
xj∈X

yj − y0

)

+, (8)

where c+ = max(c, 0). Defining the utility as improvement

allows us to write the expected utility as a Bellman equation

with the same form as (1):

EIk(x) = EI1(x) + Ey [maxx′EIk−1(x
′ | x, y)] , (9)

where EIk(x) is the expected improvement of k adaptive

decisions starting from x, and EIk−1(x
′ | x, y) is an ex-

pectation taken over the posterior belief of f after further

conditioning on the observation (x, y) and replacing y0 by

max(y0, y). The derivation of (9) can be found in the supple-

ment. Observe that argmaxx EI1(x) exactly corresponds

to the popular expected improvement (EI) policy (Močkus,

1974), which is one-step optimal; EI2(x) is already ana-

lytically intractable as it requires an expensive numerical

integration: the integrand is maxx′ EI1(x
′ | x, y) and en-

tails global optimization!

To apply BINOCULARS, we optimize the batch EI objective,

also known as q-EI, via the recently developed reparameter-

ization trick and Monte Carlo approximation (Wang et al.,

2016). Then we pick a point from the optimal batch; how to

pick this point is discussed later. BINOCULARS trivially ex-

tends to other utility functions such as knowledge gradient

(Wu and Frazier, 2016), probability of improvement (Kush-

ner, 1964) and predictive entropy (Shah and Ghahramani,

2015) by replacing q-EI appropriately.

4. BINOCULARS for Bayesian Quadrature

Consider a non-analytic integral of the form Z =
∫

f(x)π(x) dx, where f(x) is a likelihood function and

π(x) is a prior. Such integrals frequently occur in Bayesian

inference (e.g., Bayesian model selection and averaging).

Bayesian quadrature operates by placing a GP on the in-

tegrand and then minimizing the posterior variance of Z:

Var[Z | X] =
∫∫

KX(x, x′)π(x)π(x′) dx dx′, (10)

where X = {x1, x2, . . . , xT } is a set of T points that

needs to be optimized, and KX(x, x′) is the posterior co-

variance after conditioning on observations at X . If the

GP hyperparameters are fixed, the optimal design X∗ =
argminXVar[Z | X] can be precomputed, as the posterior

covariance of a GP does not depend on the observed values

f(X); this effectively eliminates the need for sequential

experimental design in this setting.

However, in general the hyperparameters are not fixed a

priori, but are instead learned iteratively in light of new

observations. Furthermore, when the integrand is known to

be positive (e.g., a likelihood function), it is often a good

practice to place a GP on some non-linear transformation of

f , such as
√
f or log(f) (Osborne et al., 2012; Gunter et al.,

2014; Chai and Garnett, 2019). As a result, the posterior GP

must be approximated (e.g., by moment matching), which

causes the posterior covariance to depend on the observed

values. In these cases adaptive sampling becomes critical.

The adaptive version of Var[Z | X] is computationally

expensive to evaluate so Gunter et al. (2014) proposed the

use of uncertainty sampling (UNCT) (Lewis and Gale, 1994;

Settles, 2010) as a surrogate, i.e., sequentially evaluating the

location with the largest variance. This greedily minimizes

the entropy of the integrand instead of the integral.

Formally, we use the differential entropy of the conditional

distribution p(Y | X) as the utility function:

H
(

p(Y | X)
)

= 1
2 log

(

det
(

2πeK(X,X)
)

)

. (11)

Using the chain rule for differential entropy, this quantity

can be expressed in the same form as (1):

H
(

p(Y | X)
)

= H
(

p(yj | xj)
)

+

Eyj

[

H
(

p(Y−j |X−j , xj , yj)
)

]

. (12)

Note that argmaxxj
H(p(yj | xj)) corresponds to the se-

quential uncertainty sampling policy. To apply BINOCU-

LARS for BQ, we must find argmaxX H(p(Y | X)), which

is the mode of a determinantal point process (DPP) (Kulesza

and Taskar, 2012) defined over q = |X| points. 1 This can

be done using gradient-based optimization. Note that this

formulation can be applied to active learning of GPs, where

uncertainty sampling is also a common strategy.

Practical Considerations. Some practical issues arise

when applying BINOCULARS to real problems. First, given

an optimal batch, how should one select a point from this

batch? We considered several options: selecting the point

with the highest expected immediate reward or randomly

selecting a point, either uniformly or proportional to its

expected immediate reward. Empirically, we found that

“best” and “proportional sampling” perform similarly while

“uniform sampling” performs the worst.

Second, given that BINOCULARS is only an approximation

to the optimal policy, it is not necessarily true that setting q
to the exact remaining budget is the best. In theory, if the

model is perfect, then full lookahead is optimal. However,

in practice, the model is always wrong and thus planning

too far ahead could actually harm the empirical performance

(Yue and Al Kontar, 2019). Furthermore, smaller values of

1This connection is purely theoretical: our method uses no proper-
ties of DPPs but it is the basis of our BQ naming convention.
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q result in more efficient computation. We empirically study

the choice of q in section 6.

5. Related Work

General introductions to approximate dynamic program-

ming (DP) can be found in Bertsekas (2017); Powell (2010).

On the subject of nonmyopic BO, Osborne et al. (2009) de-

rived the optimal policy for BO, and demonstrate that it is

possible to approximately compute the two-step lookahead

policy for low-dimensional functions and that it generally

performs better than the one-step policy. Ginsbourger and

Le Riche (2010) also derived the optimal policy and gave

an explicit example where two-step EI is better than one-

step EI in expectation with a desired degree of statistical

significance. González et al. (2016b) proposed a nonmyopic

approximation of the optimal policy, known as GLASSES,

by simulating future decisions using a batch BO method.2

Jiang et al. (2017; 2018) proposed a nonmyopic policy for

(batch) active search, which can be understood as a special

case of BO with cumulative reward, using a similar idea.

Lam et al. (2016) proposed to use rollout for BO, a classic

approximate DP method (Bertsekas, 2017). Yue and Al Kon-

tar (2019) presented theoretical justification for rollout, and

gave theoretical and practical guidance on how to choose the

rollout horizon. Ling et al. (2016) proposed a branch-and-

bound near-optimal policy for GP planning assuming that

the reward function is Lipschitz continuous, and applied it

to BO and active learning. Wu and Frazier (2019) proposed

a gradient-based optimization of two-step EI, but each eval-

uation of two-step EI still requires a quadrature subroutine

with an expensive integrand: optimization of one-step EI.

Of these, GLASSES and rollout are most related to BINOC-

ULARS. GLASSES’s acquisition function shares almost the

same form as (6), except the future batch X ′ is constructed

using a heuristic batch policy, instead of optimized with the

q-EI objective. The batch policy adds points one by one by

optimizing the sequential EI function penalized at locations

already added to the batch (González et al., 2016a), and

the expected utility of the chosen batch is estimated using

expectation propagation.

Rolling out two steps using EI as the heuristic policy is

exactly equivalent to the two-step lookahead policy, up to

quadrature error. Mathematically, the rollout acquisition

function can also be written in a similar form as (6), except

X ′ is adaptively constructed, depending on sampled values

of y instead of globally (irrespective of y) constructed or

optimized as in GLASSES and BINOCULARS. Both rollout

and GLASSES are very expensive to compute.

While we are unaware of any existing work on nonmyopic

BQ, there has been some prior work on nonmyopic active

2The name BINOCULARS is inspired by GLASSES.

learning of GPs. Krause and Guestrin (2007) derived the

adaptivity gap for active learning of GPs under two utility

functions. They also proposed a nonmyopic method for

active learning of GPs which separates the process into an

exploration phase and an exploitation phase. They con-

sidered different acquisition functions for the exploration

phase; notably, the implicit exploration (IE) method is com-

parable to the uncertainty sampling baseline in subsection

6.2. Hoang et al. (2014) developed a method for active

learning of GPs that does away with separate exploration

and exploitation phases and instead naturally trades off be-

tween the two. Their proposed policy, ε-BAL, approximates

the solution to the Bellman formulation of the active GP

learning problem using a truncated sampling method. They

analyzed the theoretical performance of their method and

developed a pruning-based anytime version of their method.

The setting of our BQ work (integration of non-negative

integrands) and active learning of GPs appear related yet are

fundamentally different. The cited works focus exclusively

on learning the hyperparameters of the GP. In our setting,

the use of a transformation to model non-negativity intro-

duces adaptivity beyond the GP hyperparameters: even if

the true GP hyperparameters are known a priori, the nonlin-

ear transformation causes the approximate GP posterior to

depend on the observed values.

6. Experiments

We designed our experiments to broadly test the perfor-

mance and computational cost of BINOCULARS relative to

notable myopic and nonmyopic baselines for BO and BQ.

We also conducted a thorough exploration of the BINOCU-

LARS design choices: the number of steps to look ahead and

how to select a point from the optimal batch.

The primary takeaways of our experimental results are that

BINOCULARS outperforms myopic baselines while running

only slightly slower and is at least as good as previously

proposed nonmyopic methods while running orders of mag-

nitude faster. This places it on the Pareto front of the running

time–performance tradeoff in policy design. Furthermore,

BINOCULARS clearly demonstrates distinctively nonmyopic

behavior on both BO and BQ tasks, two entirely different

SED problems.

We use the following nomenclature to describe BINOCU-

LARS: our nonmyopic BO method will be denoted as “q.EI.s”

or “q.EI.b”, where q is the batch size and “s” represents sam-

pling from the batch while “b” means choosing the “best.”

For BQ, we replace “EI” with “DPP.” In addition to the my-

opic methods, EI and UNCT, we also compare against rollout

for both tasks and GLASSES for BO.3 Each rollout method

3We did not compare against a BQ-equivalent of GLASSES as no
such method has been published.
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Table 1: Average GAP over 100 repeats on “hard” synthetic functions.

Rand EI 2.EI.b 2.EI.s 3.EI.b 3.EI.s 4.EI.b 4.EI.s 10.EI.b 10.EI.s 12.EI.s 15.EI.s

eggholder 0.498 0.613 0.614 0.633 0.604 0.657 0.646 0.694 0.622 0.704 0.738 0.694
dropwave 0.486 0.439 0.507 0.531 0.473 0.552 0.467 0.514 0.397 0.591 0.598 0.585
shubert 0.355 0.408 0.366 0.441 0.394 0.507 0.388 0.484 0.305 0.455 0.479 0.465
rastrigin4 0.374 0.801 0.769 0.775 0.817 0.821 0.840 0.805 0.797 0.804 0.793 0.799
ackley2 0.358 0.821 0.825 0.823 0.819 0.869 0.812 0.872 0.801 0.892 0.886 0.888
ackley5 0.145 0.509 0.544 0.509 0.601 0.550 0.596 0.592 0.636 0.606 0.627 0.626
bukin 0.600 0.849 0.856 0.855 0.872 0.859 0.864 0.865 0.878 0.850 0.829 0.853
shekel5 0.038 0.286 0.311 0.320 0.330 0.343 0.342 0.344 0.374 0.373 0.358 0.395
shekel7 0.045 0.268 0.346 0.313 0.349 0.325 0.352 0.370 0.399 0.358 0.412 0.386

Average 0.322 0.555 0.571 0.578 0.584 0.609 0.590 0.616 0.579 0.626 0.635 0.632

is denoted as “q.R.n”, where q represents the number of

steps to roll out, and n is the number of samples used to

estimate the expectations encountered in each step. Each

GLASSES method is denoted as “q.G” where q represents the

size of the simulated batch. We use DIRECT (Jones, 2009)

to optimize the GLASSES and rollout acquisition functions,

following González et al. (2016b). For all nonmyopic meth-

ods, when the remaining budget r < q, we set q = r. Thus

the final decision is always made (optimally) with one-step

lookahead.

For all experiments, we start with 2d randomly-sampled

observations and perform 20d further iterations, where d
is the function’s dimensionality. Unless otherwise noted,

all results presented are aggregated over 100 repeats with

different random initializations. For all tabulated results,

the best method is indicated in bold and the entries not

significantly worse than the best (under a one-sided paired

Wilcoxon signed-rank test with α = 0.05) are in blue italics.

6.1. BO Results

We implemented our nonmyopic BO policy and all base-

lines using BoTorch,4 which contains efficient EI and q-EI

implementations. We present experiments for two rollout

variants: “2.R.10” and “3.R.3.” As we will see, rolling out

with horizon two is already very expensive even for just ten

y samples. Gauss–Hermite quadrature is used for rollout as

in Lam et al. (2016). We also present experiments for two

GLASSES variants: “2.G” and “3.G”.5

We use GPs with a constant mean and a Matérn 5/2 ARD ker-

nel to model the objective function, the default in BoTorch.

We tune hyperparameters every iteration by maximizing the

marginal likelihood using L-BFGS-B. We also maximize the

q-EI acquisition function with L-BFGS-B. Complete details

4https://github.com/pytorch/botorch
5With help from the authors of (González et al., 2016b), we im-
plemented an advanced version of GLASSES in BoTorch, using
quasi Monte Carlo instead of expectation propagation to estimate
the expected improvement of the batch, a standard practice for
computing qEI in state of the art BO packages such as BoTorch.

can be found in our attached code. We use the GAP measure

to evaluate the performance: GAP = (yi − y0) / (y
∗ − y0),

where yi’s are maximum observed values and y∗ is the true

optimal value; we convert all problems to maximization

problems by negating if necessary.

Synthetic Functions. In this section, we focus on demon-

strating the superior performance of our method over EI

on nine “hard” benchmark functions. These nine functions

are selected by first running experiments on 31 functions6

with 30 repeats (see Table 1 in the supplement). We then

select the ones where EI terminates with average GAP < 0.9.

We believe nonmyopic methods are more advantageous on

challenging functions; by first identifying these hard prob-

lems, we will gain more insight into the various policies. To

put the BO performance into perspective, we also include a

comparison against a random baseline, “Rand.”

Table 1 shows the average GAP at termination. For the

results in Table 1, the p-values of the best BINOCULARS

variant for each function against EI in descending order

are 0.065, 0.025, 0.0030, 3.0e-5, . . . Thus, after applying

the Bonferroni correction to account for the 10 variants of

BINOCULARS (p ≤ α/ 10), the best variant of our method

remains significantly better than EI for 7 out of the 9 “hard”

functions. After applying the Holm-Bonferroni correction

to our aggregated results, every variant of BINOCULARS

remains significantly better than EI at the α = 0.05 level

and all but 2.EI.b at the α = 0.01 level.

We summarize the results as follows: (1) All q.EI.s variants

perform significantly better than EI on average, with 12.EI.s

being the best and outperforming EI by a large margin. (2)

The q.EI.s variants are consistently better than the q.EI.b

variants (for better spacing we did not show results for

12.EI.b and 15.EI.b). (3) The performance of our method

generally improves as we increase q, up to 12.

Perhaps more interestingly, we can clearly observe the non-

myopic behavior of 12.EI.s as shown in Figure 2: it is ini-

6https://www.sfu.ca/~ssurjano/

optimization.html
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better than UNCT at the α = 0.05 level and all but 10.DPP.s

at the α = 0.01 level.

Fig. 4 shows the convergence of the fractional error as a

function of both iterations and time per iteration (in log
scale). These results corroborate many of the findings from

our BO experiments: (1) All nonmyopic methods outper-

form UNCT on average with 2.DPP.s running only imper-

ceptibly slower than UNCT. (2) Our proposed nonmyopic

methods are competitive with, if not better than, rollout

while running orders of magnitude faster.

We also note that in general, q.DPP.s variants tend to outper-

form q.DPP.b variants and increasing the batch size q does

not consistently improve the performance.

The primary conclusion here is the same as for BO: BINOC-

ULARS significantly and consistently outperforms myopic

policies while only slightly increasing computational cost.

7. Conclusion and Future Work

We proposed BINOCULARS: an efficient, nonmyopic ap-

proximation framework for finite-horizon sequential experi-

mental design. BINOCULARS computes an optimal batch,

then picks a point from the batch. We gave an intuitive

understanding and a mathematical justification for why this

is a reasonable approximation. We applied BINOCULARS

to Bayesian optimization and Bayesian quadrature, two en-

tirely different problems, and empirically demonstrated that

it significantly outperforms commonly used myopic policies

while being much more efficient than popular nonmyopic

alternatives.

As suggested by Yue and Al Kontar (2019), it would be

useful to derive theories to guide the choice of lookahead

horizon q for our method. Another interesting theoretical

question is whether we can provide explicit bounds for the

adaptivity gap for a general class of problems.
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