


probing to estimate an objects pose and reorient it. There has

also been model-based work on reorienting objects with robot

finger motions by planning grasp gaits which maintain grasp

stability [14]. While all of these works require knowledge

of object geometry, we propose a method which can reliably

reorient objects without 3D object models.

Another approach to reorienting objects explored by prior

work uses statistical methods for pose estimation. The goal in

this approach is to estimate the 6-DOF (translation + rotation)

pose of an object with known geometry subject to uncertainty

in sensing and occlusions. If 6-DOF poses can reliably be

estimated, then re-orientation plans can be computed using

the difference between the pose of the object in its initial

orientation and its goal orientation. Hodaň et al. [11] provides

eight datasets to train and test pose estimation algorithms and

a consistent benchmark that works well for evaluating various

methods on symmetric and partially occluded objects. Kingma

et al. [12] and Prokudin et al. [21] introduce a variational-auto-

encoder-based probabilistic model for pose estimation. Xiang

et al. [27] use semantic labeling and bounding-box prediction

as surrogate tasks to perform pose estimation via quaternion

regression with a new symmetry-invariant loss function. Li

et al. [15] builds on prior work by using PoseCNN [27] to

provide an initial pose estimate and then iteratively refines it

by matching the image rendered based on the pose estimate

and the observed image of the object. Do et al. [7] use Mask-

RCNN to perform instance segmentation and then finds a

Lie algebra representation of the 6D pose of each object in

a given image. Tian et al. [25] learn to predict the rotation

of symmetric objects by learning directly from their RGB-D

features, improve upon Shape-Match Loss of Xiang et al.

[27], and include an uncertainty on the rotation prediction.

Peretroukhin et al. [20] proposes a novel representation

of SO(3) which incorporates the belief over the predicted

rotation, making the learned model robust to unseen objects

and scenes. Hagelskjær et al. [9] uses spatial reasoning and

workcell constraints to accurately estimate poses. Deng et al.

[6] improve upon object segmentation and pose estimation

with a self-supervised method of collecting training data from

real images using an RGBD camera mounted onto the hand

of a robot manipulator. In contrast to these works, we propose

a method that does not require prior knowledge of object

geometry and can generalize to objects outside of those seen

during training.

Some recent work explores pose estimation for objects

unseen during training. Morrison et al. [18] provide over

2000 object models for grasping and other tasks, with 49

objects specifically intended for evaluation. Corona et al.

[2] predict the pose of objects unseen at training time, but

require a 3D model to adjust for ambiguities due to symmetry.

Xiao et al. [28] trains a pose-estimation network that is

conditioned on a test image and 3D object model, making

it possible to predict the pose of arbitrary objects in varied

visual environments if 3D models of the objects are available.

These works can generalize to unseen objects, but still require

3D object models. Park et al. [19] relax this assumption by

estimating a 3D geometric model by learning a 3D object

representation that enforces consistency across multiple views.

Then, this estimated 3D object model can be rendered as a

depth image of the object in a desired pose. This enables

generalization to objects with unknown geometry, but requires

that multiple views of each object are available at test time.

Wang et al. [26] extract 3D keypoints from RGBD images of

unseen objects for real-time pose tracking, but require that test

objects be relatively similar to those seen in training. Stevic

et al. [23] estimate a goal object’s pose to enable robots to

execute a complex assembly task. The approach generalizes

to unseen objects that contain a certain shape template. In

contrast, we make no geometric assumptions about the test

object, and present a method which can be applied towards

reorienting novel objects with unknown geometries.

The most similar works to the proposed method are Suwa-

janakorn et al. [24] and Melekhov et al. [17]. Suwajanakorn

et al. [24] uses 3D keypoints to estimate the orientation

difference between unseen objects of unknown geometries

given RGB images in two poses and knowledge of the object

category. Melekhov et al. [17] estimates the relative pose

between two cameras given RGB images from each. We build

on these ideas and also train a network to estimate the relative

orientation between two images of an 3D object. However,

in contrast to these works, we utilize simulated depth data

during learning and utilize the learned network to define a

controller to re-orient novel 3D objects.

III. PROBLEM STATEMENT

A. Problem Formulation

Let Rs ∈ SO(3) be the start rotational orientation of a rigid

object of unknown geometry and let Rg ∈ SO(3) be the goal

rotational orientation of the same rigid object where SO(3) is

the special orthogonal group of all rotations in 3D Euclidean

space. Let Is ∈ R
H×W be a depth image observation of the

object in Rs, and Ig ∈ R
H×W be the observation of Rg.

We do not have or define a reference rotational orientation,

but instead estimate sR
g ∈ SO(3), such that a rotation of

the object by sR
g reorients the object from Rs to Rg. Thus,

Rg = sR
gRs and sR

g = Rg(Rs)−1. The objective is two-fold:

(1) compute an estimate of sR
g, denoted sR̂

g, given only

image observations Is and Ig and (2) use this estimate to

reorient the object to orientation R̂g such that L(sR̂
g, sR

g)
is minimized, where L : SO(3)× SO(3)→ R is a distance

measure between orientations. In this work, we assume that

the rotation angle between Rs and Rg has magnitude at most

30°. For objects with symmetries, the objective is to estimate

and orient objects relative to a (symmetric) orientation that

results in Ig.

B. Background

We use unit quaternions to represent rotations. A quaternion

q = qr +qii+q j j+qkk is an extension of complex numbers

with a real component qr and 3 scaled fundamental imaginary

units i, j, and k. We represent q using the convention of a

vector
[

qr qi q j qk

]T
. A unit quaternion has the property

that ‖q‖2 = q2
r +q2

i +q2
j +q2

k = 1, and can represent a rotation

with properties we make use of in this work:



Fig. 2: Given two depth images Is and Ig of an object in orientations
Rs and Rg, we train a neural network to estimate the quaternion q̂ which
parameterizes the rotation difference between Rs and Rg. Both images are
fed into a ResNet-9 backbone to embed onto a feature vector of length 1024
per image. These embeddings are then concatenated and fed through two
fully connected layers with Leaky ReLU activation functions, to then output
a predicted q̂.

Normalization A unnormalized or non-unit quaternion q̃ can

be converted to a unit quaternion by dividing by its norm

q̃/‖q̃‖2

Angle difference The angle of rotation θ between two

quaternions q0 and q1 is 2cos−1|〈q0,q1〉|
Rotation difference The quaternion rotation between two

quaternions is qdiff = q0q−1
1 , where q−1

1 is the conjugate

(negated imaginary components) of q1

Slerp The spherical linear interpolation or slerp between

rotations q0 and q1 by a scalar t ∈ [0,1] is Slerp(q0,q1, t) =
(q0 sin(1− t)θ + q1 sin tθ)/sinθ , where θ is the angle be-

tween the two rotations [22].

Angle of rotation The angle of rotation of a quaternion is

defined by quat2angle(q) = 2cos−1 qr

Axis of rotation The axis of rotation of a quaternion is
[

qi q j qk

]

/
√

1−q2
r

Double Coverage Quaternions double cover SO(3), in that

q and −q represent the same rotation.

IV. METHOD

Here we describe a method to train a network to compute

sR̂
g from an image pair (Is, Ig) (Section IV-A). We then

describe a method that uses the trained network to create a

controller for re-orienting objects using image pairs (Section

IV-B).

A. Learning to Estimate 3D Rotations

To compute sR̂
g from depth images Is and Ig, we use

a quaternion representation for sR̂
g, denoted q̂. We train a

network fθ (I
s, Ig) = q̂ to minimize some loss L(q, q̂) between

q̂ and the quaternion corresponding to the ground truth 3D

rotation sR
g denoted by q, over training dataset Dtrain =

{Is
i , I

g
i ,qi}

N
i=1. Each of the N datapoints in Dtrain is a tuple

which is composed of a pair of images and the quaternion

corresponding to their relative orientation.

We consider two options for the loss function: Lmean and

LSM. Lmean is a loss function that computes the mean angle

between q and q̂. LSM is a modification of the ShapeMatch-

Loss from [27].

The mean angle between q and q̂ averaged over the training

Algorithm 1 Reorientation Controller

Require: Angle error threshold (δ ), trained fθ , step size

η ∈ (0,1], target image Ig, K maximum iterations

1: q(0)← current orientation of gripper

2: for all k = 1, . . . ,K do

3: I(k)← capture image

4: q̂ = fθ (I
(k), Ig) // predict rotation

5: if quat2angle(q̂)≤ δ then

6: return // small predicted angle, done.

7: q(k)← Slerp(q(k−1),q(k−1)q̂,η)
8: rotate gripper to q(k)

dataset can be computed as follows:

Lmean(Dtrain,θ) =
1

N

N
∑

i=1

cos−1(〈qi, fθ (I
s
i , I

g
i )〉) (IV.1)

This loss function, while effective for some objects, does

not encourage invariance to symmetry. Thus, it can penalize

correct predictions for objects with axes of symmetry. To

avoid this, we also consider the ShapeMatch-Loss [27], which

measures the norm difference between the point clouds

resulting from applying q and q̂ respectively to each point

x in Mi, the vertices of the 3D object mesh for the object

corresponding to training datapoint i.

LSM(Dtrain,θ) =

1

N

N
∑

i=1

1

2|Mi|

∑

x1∈Mi

min
x2∈Mi

||R( fθ (I
s
i , I

g
i ))x1−R(qi)x2||

2
2,

(IV.2)

where R(q) is the 3D rotation matrix corresponding to

quaternion q.

While the ShapeMatch-Loss, LSM is designed to handle

symmetries in object geometry unlike Lmean, in experiments

we observe poor performance when using LSM on datasets

both with and without symmetric objects while Lmean achieves

better performance. The reason for this appears to be due

to the double-coverage property of quaternions in which q

and −q correspond to the same rotation. LSM has the same

loss for quaternions with opposite signs, leading it to average

these results and predict quaternions with components close

to 0. However, while Lmean is unable to handle symmetries, it

encourages qr to be positive and thus removes the ambiguity

due to the double coverage problem. To resolve this ambiguity

while enforcing invariance to symmetry, we propose a hybrid

loss Lhybrid, which utilizes Lmean for the first epoch of learning

to encourage the predicted quaternion to have positive real

component and then switches to LSM to improve invariance

to symmetry. These properties allow Lhybrid to perform better

in practice than either Lmean or LSM in isolation.

B. Controller

As predictions from the trained network empirically have

errors proportional to the actual angle difference, a single

rotation prediction may not reorient an object correctly. We

thus implement a proportional controller to incrementally

reorient the object. This controller is defined in Algorithm 1.



Fig. 3: RGB Images of 3D objects in the non-symmetric dataset (top) and
full dataset (bottom). The objects in the non-symmetric dataset are selected
based on a scoring criteria discussed in Section VI-A.1. The objects in the
full dataset are taken from [16], and the dataset includes objects with clear
symmetries.

Let I(t) denote an overhead image of the object at some time

t. Given a goal image Ig, the controller uses fθ to predict

a rotation to align the orientation corresponding to I(t) (Rt)

with that corresponding to Ig (Rg). In each iteration, it rotates

the object in the direction of the prediction by a tunable

step-size parameter η ∈ (0,1], and stops once the predicted

angle is small or it reaches an iteration limit.

V. IMPLEMENTATION

In this section we describe an implementation of the pro-

posed method. We use a simulation environment (Section V-A)

to generate a dataset (Section V-B) which we then use to

train a network (Section V-C).

A. Simulator

To generate the dataset we use the simulation environment

from Danielczuk et al. [3]. This environment matches the

target domain and application, and makes it easy to import,

render, and manipulate 3D object meshes. The proposed

dataset generation method samples training examples using

two distributions: a state distribution, p(R), which randomizes

over a diverse set of object poses, and an observation

distribution, p(I|R), that models sensor operation and noise.

To sample a single datapoint, we first sample a state defined

by (Rs
i , sR

g
i ) ∼ p(R) using a dataset of 3D CAD models

and randomize object orientations and possible occlusions.

Next, we render synthetic depth images Is
i ∼ p(Is

i |R
s
i ) and

I
g
i ∼ p(Ig

i |sR
g
i ,R

s
i ). Each image has resolution 128x128 pixels

and is quantized to 16-bits. We implement the controller

by rendering an initial depth image Is and desired depth

image Ig whose relative rotation angle is at most 30 °. Then,

we iteratively rotate the object from Is towards Ig using

Algorithm 1 with parameters K = 100,η = 0.2,δ = 0.5.

B. Dataset Generation

We generate Dtrain = {I
s
i , I

g
i ,qi}

N
i=1 by leveraging the same

object dataset from [16]. To generate Dtrain, we repeatedly

sample an object Oi ∈ D with replacement and do the

following:

1) Randomize initial orientation of Oi to some Rs
i which

is sampled uniformly from SO3, and obtain rendered

synthetic depth image Is
i

2) Apply a random 3D rotation between 0 and 30 °,

parameterized by quaternion qi to Oi resulting in a new

orientation R
g
i and rendered synthetic depth image I

g
i

3) Store tuple (Is
i , I

g
i ,qi)

During dataset generation, we enforce that all sampled

quaternions satisfy the following properties: (1) have unit-

norm, (2) positive real component (if qr < 0, we use −q

instead), (3) the magnitude of the real component must be

larger than that of any imaginary component, and (4) the

magnitude of the real part is at least cos π
12

. This process helps

alleviate ambiguity due to the double-coverage property of

quaternions. Note that this restricts sampling to rotation angles

of magnitude at most π
6

radians, since quat2angle(q) ≤ π
6

,

thus qr ≥ cos π
12

.

Additionally, we perform domain randomization by picking

a point in start image Is and generating a random thin

rectangle centered at that point. This rectangle has a pixel

value of zero, and so does the background. We do this because

in physical experiments the object will be partially occluded

by the gripper holding it. We also zero out random pixels

to simulate real images taken by a Photoneo Phoxi depth

camera.

C. Training Details

We use the dataset to train the network shown in Fig-

ure 2. The two images Is, Ig first go through a ResNet-9

backbone [10] that embeds each image onto a feature vector.

There are 5 convolutional layers, each followed by Batch-

Normalization. Of these, 1 convolutional and Batch-Norm

layer is used for the identity addition. Then, we flatten the

channels into a size 4096 vector, go through a fully connected

layer to embed each image onto a size 1024 feature vector.

The two resulting embeddings are concatenated, then go

through two fully connected layers of size 1000, Leaky ReLU

with slope 0.02, and dropout of 0.4, a fully connected layer to

regress to a size 4 vector, and finally a normalization layer to

get a predicted unit-norm quaternion. The network is trained

with the Adam optimizer with learning rate 0.002, decaying

by a factor of 0.9 every 5 epochs with an l2 regularization

penalty of 10−9.

When training with the hybrid loss, we use vertices from

the mesh of the object. For objects with over 1000 vertices

in the mesh, we sample 1000 vertices in order to speed up

training and reduce memory requirements. When using the

mean angle loss defined in (IV.1), one issue is that numerical

differentiation of the arc-cosine function can be slow and

numerically unstable. Thus, to mitigate this issue, we derive



an equivalent loss function as follows:

argmin
θ

Lmean(Dtrain,θ)

≡ argmin
θ

1

N

N
∑

i=1

cos−1(〈qi, fθ (I
s
i , I

g
i )〉)

≡ argmax
θ

N
∑

i=1

〈qi, fθ (I
s
i , I

g
i )〉

≡ argmin
θ

N
∑

i=1

(1−〈qi, fθ (I
s
i , I

g
i )〉)

VI. EXPERIMENTS

Here we evaluate the performance of the trained network

and controller. We first evaluate the ability of the trained

network from Section IV-A to predict various rotations for

3D objects both without symmetries (Section VI-A.1) and

with unconstrained symmetries (Section VI-A.2). Then, in

Section VI-B, we evaluate the performance of the controller

from Section IV-B on re-orienting novel objects with unknown

geometry given a single goal depth image.

Fig. 4: Mean angle error between q̂ and q as a function of the angle of the
rotation applied by q across all predictions of unseen objects in the dataset.
We observe a mean angle error of 6.08° when using the mean loss and
a mean angle error of 5.76° when using the hybrid loss. As the angle of
rotation increases, so does the average error, but the ratio between the angle
error and the angle of rotation decreases slightly. Results of the network
trained solely on LSM are not included because the network does not learn
to adapt to the quaternion double-coverage problem. An ICP baseline is also
shown.

Fig. 5: The best prediction of the network trained with a cosine loss on
the non-symmetric dataset. The left two images are Is and Ig, and the right
image is the result of applying fθ (I

s, Ig) to Rs. Rs and Rg differ by a rotation
of 26.36°. The predicted rotation has an angle error under 0.1°.

Fig. 6: The worst prediction of the model of the network trained with cosine
loss on the non-symmetric dataset. The left two images are Is and Ig, and
the right image is the result of applying fθ (I

s, Ig) to Rs. Rs and Rg differ
by a rotation of 22.59°. The predicted rotation has an angle error of 25.09°.

Fig. 7: ShapeMatch-Loss between q̂ and q as a function of the angle of
rotation applied by q across all predictions of unseen objects in the Full
dataset. As the angle of rotation increases, so does the average loss, but
the ratio between the error and the angle of rotation decreases slightly. The
proposed method also significantly outperforms an ICP based baseline.

A. Predicting Rotation Transforms

We evaluate the prediction error of the trained network

on two datasets: one in which objects with clear axes of

symmetries are pruned out and one with a diverse array

of objects with varying degrees of symmetries. For each

dataset, we present error histograms when just Lmean is used

and when the hybrid loss (Lhybrid) is used. Then, given the

final learned network, we visualize the distribution of the

angle error between the predicted quaternion and ground truth

quaternion as a function of the true rotation angle applied

for non-symmetric objects in Figure 4. Since for symmetric

objects, angle error may not always be a meaningful metric

(consider predicting the rotation of a sphere, in this case any

predicted angle would be correct), for the full object dataset

we visualize the distribution of the ShapeMatch-Loss as a

function of the true rotation angle applied for all objects in

Figure 7.

1) Non-Symmetric Object Dataset Experiments: The first

dataset contains 100 objects which are selected from the same

dataset used in [16]. Objects are selected by rejecting objects

with clear axes of symmetry by (1) checking if an object mesh

has an axis of symmetry detectable by the open-source Python

library trimesh [5], and (2) computing all object stable poses

and determining whether any of these have axes of symmetry

about the x, y, or z axes. We do this by rotating each object

stable pose by 120° and 180° around each of the x, y, and

z axes, rendering the resulting point clouds before and after

each rotation, and computing the point cloud distance between

the initial and final point clouds. The resulting 100 objects are
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