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Moving among levels of abstraction is an important skill in 
mathematics and computer science, and students show simi-
lar difficulties when applying abstraction in each discipline. 
While computer science educators have examined ways to 
explicitly teach students how to consciously navigate levels 
of abstraction, these ideas have not been explored in math-
ematics education. In this study, we examined elementary 
students’ solutions to a commonplace mathematics task to 
determine whether and how students moved among levels 
of abstraction as they solved the task. Furthermore, we ana-
lyzed student errors, categorizing them according to whether 
they related to moves among levels of abstraction or to purely 
mathematical steps. Our analysis showed: (1) students im-
plicitly shift among levels of abstraction when solving “real-
world” mathematics problems; (2) students make errors when 
making those implicit shifts in abstraction level; (3) the errors 
students make in abstraction outnumber the errors they make 
in purely mathematical skills. We discuss the implications for 
these findings, arguing they establish that there are oppor-
tunities for explicit instruction in abstraction in elementary 
mathematics, and that students’ overall mathematics achieve-
ment and problem-solving skills have the potential to benefit 
from applying these computer-science ideas to mathematics 
instruction.
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INTRODUCTION

Utilizing abstraction is considered an important skill for mathematics 
students to develop, as highlighted in recent mathematical practice stan-
dards (Common Core State Standards Initiative [CCSSI], 2010). Students 
must move among levels of abstraction—for example, shifting between 
a contextualized situation and a mathematical model of that situation—as 
they solve mathematical problems. Moreover, students face difficulties 
when engaging in abstraction during mathematics problem solving (Hazzan, 
2003; Hazzan & Zazkis, 2005). Even so, few conversations in mathematics 
education have attended to the idea of moving among levels of abstraction 
or explored the affordances of explicitly teaching this skill to students.

Computer science has several parallels with mathematics regarding 
abstraction. Several scholars have argued that abstraction, and particularly, 
freely and consciously moving among levels of abstraction, is a critically 
important skill for computer scientists. Kramer (2007) suggested it is “a 
key skill for computing” (p. 41), and Hazzan (2008) described it as a cen-
tral theme of both computer science (CS) and software engineering. The im-
portance of abstraction in CS, combined with the challenges of teaching it 
(Hazzan, 2008), have led CS researchers to develop and test frameworks for 
helping students learn how to consciously move among levels of abstraction 
as they solve problems (Armoni, 2013; Statter & Armoni, 2016). Given the 
lack of explicit attention to moving among levels of abstraction in mathe-
matics education, this raises questions about how the instructional emphasis 
on levels of abstraction in computer science might be applied to mathemat-
ics to better support the development of mathematics students’ abstraction 
skills.

In this paper, we examine elementary students’ work on a common-
place mathematics task, attending specifically to the ways that students are 
required to use abstraction as they solve the problems. We bring the idea of 
levels of abstraction, or more specifically, “being able to move freely and 
consciously between levels of abstraction” (Armoni, 2013, p. 272) to bear 
on our examination of the student work. We use the results to argue that at-
tention to levels of abstraction, discussed by many computer science schol-
ars (Armoni, 2013; Hazzan, 2005; Wing, 2006) but not by mathematics edu-
cators, could be a valuable addition to elementary mathematics curricula. 
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BACKGROUND

What is Abstraction? What Are Levels of Abstraction?

Abstraction refers broadly to the process of reducing complexity by ig-
noring irrelevant details in order to focus attention on important elements of 
a problem, situation, or phenomenon (College Board, 2017; Kramer, 2007; 
Statter & Armoni, 2016). Representations of phenomena that capture impor-
tant elements but do not focus on irrelevant details are also often referred to 
as abstractions; thus, the term refers to both a process (creating such repre-
sentations) and the product of that process. Kramer (2007) argued that ab-
straction is applied in many contexts and disciplines, noting that artists em-
ploy abstraction when creating simplified figures and landscapes, and jazz 
musicians use abstraction to identify and then embellish a core melody. 

Computer science is one of the disciplines where abstraction is used 
extensively. CS scholars and educators have argued that CS students must 
learn not only to create and interpret abstractions, but to work at multiple 
levels of abstraction and be able to consciously and freely move among 
those levels (Armoni, 2013; Hillis, 1998; Wing, 2006). Levels of abstraction 
can be distinguished by both scope and amount of detail currently in view. 
When working at a higher level of abstraction, a problem solver has a wider 
view of the scope of the problem and the context in which it is situated, 
but as such, cannot necessarily consider all the fine details and complexities 
of the situation. For example, when computer scientists are thinking about 
the overall problem to identify the kind of algorithm that might be used to 
solve it, they are working at a higher level of abstraction. They are not nec-
essarily considering any details about implementation. At a lower level of 
abstraction, a problem solver can see the fine-grained details by focusing on 
different aspects of the situation, but cannot attend to the full scope of the 
problem (Armoni, 2013). For example, when computer scientists are imple-
menting a particular algorithm in a particular language, they are working 
at a lower level of abstraction, and may not be considering the full scope 
of the problem. Statter and Armoni (2016) described the skill of identify-
ing and moving to the appropriate level of abstraction for different points in 
the problem-solving process as “[f]inding the right degree of resolution” (p. 
80). 

While abstraction is not discussed as a key mathematical concept as of-
ten as it is discussed as a key CS concept, abstraction is also an important 
concept in mathematics. This is highlighted in one of the eight Standards for 
Mathematical Practice (SMPs) articulated in the Common Core State Stan-
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dards for Mathematics (CCSS-M; Common Core State Standards Initiative 
[CCSSI], 2010), Reason abstractly and quantitatively. The description of 
the standard states that mathematically proficient students should have 

the ability to decontextualize—to abstract a given situation and 
represent it symbolically and manipulate the representing symbols 
as if they have a life of their own, without necessarily attending to 
their referents—and the ability to contextualize, to pause as needed 
during the manipulation process in order to probe into the referents 
for the symbols involved. (CCSSI, 2010, p. 6)

Although the standard does not directly reference moving among levels 
of abstraction, the language implies the same general idea. When students 
decontextualize, they are zooming in to a lower level of abstraction to ma-
nipulate mathematical symbols without referencing the full scope of a situ-
ation. When student contextualize, they are zooming out to a higher level of 
abstraction to consider greater scope, but fewer details. Thus, this standard 
for mathematical practice calls for students to “move freely and conscious-
ly between levels of abstraction” (Armoni, 2013, p. 272), suggesting that 
levels of abstraction may be a worthy point of instruction in mathematics. 
We explore this idea further in this study by examining elementary students’ 
mathematics work with specific attention to levels of abstraction.

Student Difficulties with Abstraction

Standards documents (College Board, 2017; CCSSI, 2010) suggest 
that moving among levels of abstraction is an important skill for computer 
science and mathematics students to develop. This raises questions about 
whether learning to use abstraction requires explicit instruction or can be 
acquired by students implicitly as they solve problems. Hazzan illustrated 
the ways in which mathematics and computer science students unconscious-
ly move among levels of abstraction as they solve problems (Hazzan, 2003; 
Hazzan & Zazkis, 2005). Specifically, Hazzan noted a tendency for students 
to move to lower levels of abstraction (or reduce abstraction) when they 
were uncomfortable or unfamiliar with topics. For example, when asked to 
generate a proof across a set of numbers—to think at a high level of ab-
straction—mathematics students often begin by examining a few examples 
within the set, thus moving to a lower level of abstraction where more detail 
is visible (Hazzan & Zazkis, 2005). 

Hazzan argued her work illustrated the utility of using reductions in ab-
straction as a framework for making sense of students’ strategies for solving 
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problems in mathematics and computer science (Hazzan, 2003; Hazzan & 
Zazkis, 2005). We see implications of Hazzan’s work that go beyond estab-
lishing the utility of the reducing-abstraction framework: It also reinforces 
the importance of explicitly teaching abstraction to students. From Hazzan’s 
work we know that students unconsciously shift to lower levels of abstrac-
tion in both math and CS. While researchers argue that consciously mov-
ing among levels of abstraction is an important skill (Armoni, 2013; Hillis, 
1998; Wing, 2006), unconsciously shifting among abstraction levels can be 
problematic in at least two ways. First, when shifts are unconscious, stu-
dents may have difficulty attending to whether the shifts have been carried 
out correctly or whether the shift allowed them to maintain key aspects of 
the problem. For example, shifting from thinking about arrays as a data 
structure to real-world examples of single objects (Hazzan, 2003) may not 
be a productive shift. Arrays and real-world objects have different proper-
ties. Even though a single real-world object does not need a container, a sin-
gle data element can have a container and therefore can be an array.

Second, even when shifts are potentially productive, such as when stu-
dents shift from thinking about a set of numbers to a single number in that 
set (Hazzan & Zazkis, 2005), students who make such a shift unconsciously 
may not realize they need to move back to the higher level of abstraction 
to completely solve the problems. A proof for one element of a set, for ex-
ample, does not constitute a proof for the whole set. Thinking about one ele-
ment may spur a full solution, but only if a student moves back to a higher 
level of abstraction eventually. Thus, Hazzan’s studies establish the difficul-
ty of abstraction for students, and also illustrate the need for explicit instruc-
tional attention to teaching it.

Proposed Methods for Teaching Abstraction 

Given the difficulty that abstraction poses for students when they use 
it unconsciously (Hazzan, 2003; Hazzan & Zazkis, 2005), it is prudent to 
consider how students might be taught to move among levels of abstrac-
tion consciously. Writing from the perspective of computer science, Hazzan 
(2008) noted that abstraction is a “soft idea.” In other words, abstraction is 
difficult to explicitly define and cannot be carried out via a predetermined 
list of steps, which makes it difficult to teach. Hazzan, therefore, advocated 
for teaching abstraction by making it explicit to students, with instructors 
articulating how they move among levels abstraction to solve problems. 
Further, Hazzan argued students should be given opportunities to reflect on 
the ways that they move among levels of abstraction in their own problem 
solving. 
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In computer science, Armoni (2013) developed a framework for teach-
ing abstraction in the context of algorithm development that emphasizes ex-
plicit attention to levels of abstraction. Specifically, Armoni advocated that 
instructors should be persistent and precise in pointing out the various levels 
of abstraction they use as they solve problems and distinguish among the 
levels. Moreover, she suggested that instructors should use language cues to 
distinguish between levels and provide plenty of opportunities for students 
to reflect upon their own problem-solving processes and the levels of ab-
straction they used. A preliminary study found that use of Armoni’s frame-
work led computer science students as young as 7th graders to improve their 
abstraction abilities (Statter & Armoni, 2016). 

In mathematics, little work has explicitly addressed how to teach ab-
straction. However, just as the standards for mathematical practice (CCSSI, 
2010) discuss moving among levels of abstraction without explicitly calling 
it out, mathematics education researchers have proposed frameworks that 
partially echo Armoni’s (2013) intent without using abstraction language. 
For example, Greer (1997) proposed teaching mathematics through a mod-
eling approach where teachers would give explicit attention to the problem 
context, a situation model that captures important information in the con-
text, a mathematical model that identifies the appropriate mathematical op-
erations, and the solution interpreted in the context of all three of the for-
mer elements. These elements—context, situation model, and mathematical 
model—could be viewed as levels of abstraction, and Greer’s recommenda-
tions could be viewed as parallel to Armoni’s recommendations for explicit 
attention to levels of abstraction by instructors. Even so, specific changes 
to mathematics teaching that build on Greer’s framework tend to emphasize 
the authenticity of the problems posed to students (Palm, 2008) and/or plac-
ing students in the role of deciding on the validity of an approach or answer 
(Vershaffel & DeCourte, 1997). Less attention has been given to examining 
students’ processes of moving among levels of abstraction or focusing in-
struction on how to improve these processes.

CURRENT STUDY

We have established moving among levels of abstraction is an impor-
tant skill for mathematics and computer science students to learn (College 
Board, 2017; CCSSI, 2010) and that students in each discipline exhibit diffi-
culties with this skill (Hazzan, 2003; Hazzan & Zazkis, 2005). But whereas 
computer science educators have developed teaching methods and examined 
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students’ work in terms of how they move among levels of abstraction (Ar-
moni, 2013; Statter & Armoni, 2016), these ideas have not been explored in 
mathematics education. 

In this paper, we take preliminary steps to examine the feasibility and 
potential benefits of providing explicit instruction on moving among levels 
of abstraction in elementary school mathematics. In particular, our goal in 
this study was to see where and how opportunities exist to make instruction 
on abstraction explicit within elementary mathematics. First, we must de-
termine whether common elementary mathematics tasks offer opportunities 
for discussing levels of abstraction. Assuming there are such opportunities, 
we must examine students’ attempts to shift between levels and consider the 
impact of difficulties students encounter. Lastly, we must consider whether 
elementary school teachers and administrators could be convinced of the 
value of spending instructional time attending to abstraction. In this study, 
we examine these issues by analyzing a commonplace elementary mathe-
matics task, and students’ work on this task, through the lens of abstraction 
and moving between levels. We pose the following research questions:

1. How do fourth- and fifth-grade students move between levels of 
abstraction during mathematics problem solving?

2. To what extent are students successful at carrying out the abstrac-
tion steps of their problem-solving strategies? What errors do they 
make?

3. How does their level of success with abstraction compare to their 
level of success with the mathematics steps?

We see these questions as aligning with the three issues outlined above re-
garding bringing explicit instruction in abstraction to elementary mathemat-
ics. The answer to research question 1 will establish whether or not there are 
opportunities for addressing abstraction through work on elementary math-
ematics tasks. The answer to research question 2 will shed light on what 
difficulties students encounter as they move among levels of abstraction, the 
impact of these difficulties on their overall problem solving, and instruction-
al approaches that might be used to help students more productively shift 
among levels of abstraction. Finally, if it can be established, via answer-
ing research question 3, that increasing focus on the abstraction involved in 
mathematics problem solving has the potential to increase students’ overall 
performance in mathematics, teachers and administrators might be more in-
clined to implement abstraction instruction in elementary classrooms.
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METHODS

Context

The data for this study was collected as part of the broader NSF-funded 
CT4EDU project, which is a Networked Improvement Community (NIC; 
Bryk, Gomez, & Grunhow, 2010) involving a School of Education in a large 
Midwestern university and a small cohort of elementary school teachers in a 
large, nearby intermediate school district. The focus of the project is to sup-
port the teachers in bringing computational thinking ideas into their mathe-
matics and science instruction and to study how this effort impacts teachers’ 
thinking as well as students’ mathematics, science, and computer science at-
titudes and learning. Abstraction is one of the four key computational think-
ing ideas explored in the project.

Participants

A total of 204 fourth- and fifth-grade students from eight classrooms in 
five schools participated in this study. The students were in classes taught 
by one of the elementary school teachers participating in the broader proj-
ect. The number of students who participated in each class, grade levels, and 
school demographics are given in Table 1.

Table 1
Summary of Student and School Characteristics

Classroom Characteristics School Characteristics

Class Grade Participating 
Students

% Non-white % Free or 
Reduced Lunch

% English Language 
Learners

A 4 21

66.3 84.8 **B 5 31

C 5 18

D 5 49 87.3 65.4 31.5

E 4 20
57.2 76.0 3.9

F 5 18

G 4 25 41.8 62.5 **

H 5 22 26.3 84.8 75.9

**Percent ELL for these schools was not available.
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Task

Students completed a task called Parking Cars (Mathematics As-
sessment Resource Service [MARS], 2007), shown in Figure 1. The task 
presents a scaled bar graph showing the number of cars parked on each of 
eight floors of a parking garage. This task is aligned with a Grade 3 con-
tent standard (3.MD.3) from the CCSS-M: “Draw a scaled picture graph 
and a scaled bar graph to represent a data set with several categories. Solve 
one- and two-step ‘how many more’ and ‘how many less’ problems using 
information presented in scaled bar graphs” (CCSSI, 2010, p. 25). It is also 
aligned with the practice standards Reason abstractly and quantitatively and 
Attend to precision (CCSSI, 2010). We chose to use a third-grade task with 
fourth and fifth graders in hopes that most students would attempt the task 
and reveal useful information about their thinking and strategies. 

This bar chart shows the number of cars 

parked in the multi-level parking garage at a 

shopping center today. Each floor holds up 

to 50 cars.

1. On which floor are the most cars parked? 

How many cars are on this floor?

2. On which two floors are the same 

number of cars parked?

3. How many more cars are parked on 

Floor 1 then on Floor 8?

4. How many cars, in all, are parked on 

the parking garage? Show how you 

figured this out.

5. Fifteen more cars come into the parking 

garage. Show these cars on the graph, 

parking them in the lowest floors. Explain 

why you parked the cars in this way.

Figure 1. The parking cars task (MARS, 2007©; Reuse under Creative Com-
mons License).

Questions 1–3 of the task focus on simple graph reading and have sin-
gle numerical answers. Questions 4 and 5, by contrast, are more complex 
problems and ask students to show their work and/or explain their thinking. 
We chose the Parking Cars task, in particular, because we felt Questions 4 
and 5 required shifts in levels of abstraction. Three pertinent levels of ab-
straction for this task are shown in Figure 2. At the highest level of abstrac-
tion is the overall problem context. At the lowest level are strictly numeric 
representations and strategies. In the middle is the bar graph, which serves 
as a mathematical model of the situation. Potential shifts in the level of ab-
straction are represented by block arrows. 
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Figure 2. Three levels of abstraction involved in Parking Cars task

To answer Question 5, students had to identify the requirements of 15 
cars and parking on the lowest levels as the important elements of the ques-
tion’s requirements and assign meaning to that information in the context of 
the graph—a shift from the highest level of abstraction to the middle level. 
To answer Question 4 (How many cars are parked in the garage?), students 
had to identify the pertinent information embedded in the graph and re-rep-
resent and manipulate that information to find a total (shift from the middle 
level to the lowest level). For these reasons, although we report student per-
formance on the first three questions, this analysis focuses mostly on Ques-
tions 4 and 5.

Procedure 

Teachers administered the mathematics task to their students near the 
end of the 2017-2018 school year, shortly after the broader project began. 
The teachers had experienced an early introduction to computational think-
ing, but had not yet begun using computational thinking or abstraction ideas 
in their instruction. 
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Analysis

All student work was de-identified and assigned an identification num-
ber before analysis began. We began by scoring students’ responses to the 
first three questions on the task as correct or incorrect. 

Next, the first author sorted the student work according to the strategy 
applied in Question 4. As she developed categories of strategies, she itera-
tively developed codes to describe the strategies in terms of the way stu-
dents applied abstraction to identify information shown in the graph relevant 
to finding the total number of cars and formulate finding the total as a strict-
ly mathematical task. The four shaded rows in Table 2 provide names and 
descriptions of the four identified strategies: Adding the bar heights, Count-
ing the shaded squares, Reproducing the graph, and making a Literal draw-
ing. Below each shaded row, each strategy is broken down into an abstrac-
tion step and a mathematics step (as applicable). 

To consider accuracy of application of these strategies, the first author 
subsequently developed codes to describe categories of errors students made 
as they applied each strategy, categorizing the errors according to whether 
they were made during the abstraction step or the mathematics step. The er-
ror codes are also given in Table 2. Note that there are no error codes for 
the latter two strategies in Table 2. The reasons for this are described in the 
results section.

Table 2
Strategies, Abstraction Errors, and Mathematics Errors Used to Code Q4

Abstraction Step and Error Codes Mathematics Step and Error Codes 

STRATEGY: Adding bar heights. Student attempts to find total by adding heights of each 
bar.

Abstraction step: Read the bar heights.

Abstraction error codes:

Shifted Height: Student records heights 
that do not match graph, but may reflect a 
compensation shift.

Misread Height: Student records heights 
that do not match graph, and errors do not 
suggest a compensation shift.

Missing or Extra Addend: Student records 
correct bar heights, but misses one or 
includes extra heights.

Mathematics step: Find sum of the bar 
heights.

Mathematics error codes:

Undetermined Error: Student records an 
incorrect sum for their addends, but it is 
unclear where an error was made.

Place Value Error: Student incorrectly 
combines digits of different place value.

Composition Error: Student incorrectly 
combines pairwise sums (e.g., uses an ad-
dend twice).
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Abstraction Step and Error Codes Mathematics Step and Error Codes 

STRATEGY: Counting. Student attempts to find the total by counting shaded squares.

Abstraction step: Determine how many cars 
a square represents.

Abstraction error code:

Scaling Error: Student counts each square 
as 1 rather than as 10.

Mathematics step: Count shaded squares.

Mathematics error code:

Counting Error: Student counts the num-
ber of shaded squares incorrectly (either by 
1s or 10s).

STRATEGY: Reproduce graph. Student attempts to draw or otherwise reproduce the 
graph.

Abstraction step: N/A. Mathematics step: N/A. 

STRATEGY: Literal drawing. Student draws cars, parking spaces, or a picture of the 
garage.

Abstraction step: Create a representation of 
the overall problem context. 

Mathematics step: N/A. 

 
To examine students’ shifts in abstraction in Question 5 (from the high-

est level, the problem context, to the middle level, the graph), the first author 
iteratively developed codes to describe how students’ changes to the graph 
reflected the meaning they assigned to two important elements of the ques-
tion, 15 cars and lowest level. To examine how students interpreted 15 cars 
in the context of the graph, she first developed codes to describe how much 
shading they added to the graph, because correctly shifting this element of 
the problem context from the highest level of abstraction to the middle level 
requires using the graph scale to determine that 15 cars will be represented 
by 1.5 squares. These codes to describe the amount of shading are shown in 
the left column of Table 3. During coding, the first author also noted that a 
few students violated basic constraints of the graph, such as the requirement 
that shading build up from the bottom, and also violated the problem con-
straint of 50 cars per floor by adding shading beyond 50. These errors reflect 
difficulties in shifting from the problem context to the graph, and so were 
captured using the codes in the right column of Table 3. 
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Table 3
Codes for How Students Shifted “15 cars” from Problem Context to Graph

Codes for Amount of Shading Codes for Violations of Graph and Con-
text Constraints

Shaded 1.5 squares: Student added one 
and a half squares worth of shading to the 
graph.

Shaded 15 squares: Student added 15 
squares of shading to the graph, suggesting 
a scaling error.

Overshaded or Undershaded: Student 
adds a different amount of shading to the 
graph, typically between 1.5 and 15 squares.

Shaded from top: Student added shading at 
the top of the graph.

Ignored maximum: Student added shading 
beyond the 50-car limit for a floor.

To examine how students interpreted “lowest floors” in the context of 
the graph, the first author next developed codes to describe where students 
placed the shading on the graph, because correctly shifting this element of 
the problem context from the highest level of abstraction to the middle level 
requires identifying floors 2 and 3 as the lowest floors in the parking ga-
rage that are not full. The codes to describe the position in which students 
added shading to the graph are shown in the left column of Table 4. The first 
author also examined students’ written explanations in Question 5 for why 
they placed the cars (or the shading) where they did and developed codes to 
describe ways that students appeared to be interpreting “lowest floor.” These 
codes are in the right column of Table 4. During coding the first author no-
ticed that a number of students had provided an explanation that referenced 
a practical consideration for the drivers, such as getting out of the parking 
garage more quickly. She added this code to the codebook as a separate cat-
egory, and simply coded as whether a practical consideration was referenced 
or not.
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Table 4
Codes for How Students Shifted “lowest cars” from Problem Context to Graph

Codes for Placement of Shading Codes for Explanations of Lowest

Floors 1-3: Student added cars in some 
combination to floors 1-3.

Floors 5-8: Student added shading on floor 
8 (and 7, 6, and 5 if student made a scaling 
error).

Empty or near-empty floors: Student 
added shading to empty floors or floor 8 
(nonempty floor with fewest)

Lowest as starting with 1: Student’s 
explanation reflects interpretation of Floor 1 
as the lowest floor.

Lowest as starting with 8: Student’s 
explanation reflects interpretation of Floor 8 
as the lowest floor.

Lowest as emptiest: Student’s explanation 
reflects interpretation of lowest to mean the 
floors with the fewest numbers of cars.

The initial coding scheme described in Tables 2-4 was presented to the 
third author, including a description of each code and one example piece 
of student work for each code. The third author used the codebook to code 
20% of the data (randomly selected). After checking for initial inter-rater 
reliability, the first author made minor changes to the codebook descriptions 
and returned the codebook to the third author. They had a short conversation 
about the meaning of the codes without referencing any specific examples 
of student work. The third author then adjusted her codes based on the re-
vised codebook. After this adjustment, the coders had high reliability, with 
an average Kappa of 0.81 across codes. This was deemed sufficient agree-
ment to proceed with the first author’s original coding.

The first author next calculated the percent of students with work re-
flecting each code for Questions 4 and 5 and wrote summaries and reflec-
tions on patterns across codes. She also mapped the various codes onto par-
ticular shifts in levels of abstraction. This analysis is presented in the section 
that follows.

RESULTS

The percentage of students who answered each part of the first three 
task questions correctly are shown in Table 5, aggregated by grade level. 
As might be expected, a higher percentage of fifth-grade students answered 
each question correctly than fourth-grade students, although this difference 
was very low in the case of Questions 1a and 1b. Questions 1a and 2, which 
involved holistic comparisons of bar heights, were answered correctly by 
the most students. Question 1b, which involved reading the height of a sin-
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gle bar on the graph scale, was answered correctly by slightly fewer stu-
dents. Performance dropped markedly for Question 3, which involved read-
ing two bar heights and operating on them.

Table 5
Student Performance on Basic Graph-Reading Questions

Grade 
Level

Percent of Students Answering Correctly

1a. On which 
floor are the most 
cars parked?

1b. How many 
cars are there on 
this floor?

2. On which two 
floors are the 
same number of 
cars parked?

3. How many 
more cars are 
parked on Floor 1 
than on Floor 8?

Grade 4 93.94 78.79 81.82 46.97

Grade 5 94.20 79.71 89.13 65.22

Overall 94.12 79.41 86.76 59.31

This pattern of results suggested two preliminary conclusions that guid-
ed our analyses of responses to Question 4. First, the high levels of success 
on Questions 1 and 2 suggested that students have some successful strate-
gies for mapping contextualized questions onto appropriate information in 
the graph (moving from the highest level of abstraction to the middle). As 
such, even though Question 4 required use of these same skills, we felt com-
fortable focusing our Question 4 analyses on discerning whether and what 
strategies students used for moving from the middle level of abstraction 
(mathematical model) to the lowest level (numerical representation). Sec-
ond, students had greater difficulty with Question 3, which involved a shift 
in abstraction level—extracting the appropriate numeric information from 
the graph, a shift from the middle level to the low level—as well as a mathe-
matical computation. It was unclear if students’ difficulty with this question 
was more directly related to the abstraction or the mathematical computa-
tion. As such, we examined errors in abstraction and errors in mathematical 
computation separately when analyzing student responses to Question 4. 

Question 4

Question 4 Strategies. A total of 105 students (51.47%) found the 
correct total of 150 cars for Question 4. This included 31 fourth graders 
(46.97%) and 74 fifth graders (53.62%). A total of 76% of students applied 
at least one of the four strategies (Adding bar heights, Counting, Reproduc-
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ing graph, and/or Literal drawing; see Table 2) while attempting to solve the 
problem. The remaining 24% did not provide a response or provided a re-
sponse we were unable to interpret. The four strategies are shown in Figure 
3 mapped onto the relevant shift among levels of abstraction. The numbers 
of students who used each strategy are shown in Table 6.

Figure 3. Question 4 Strategies Mapped onto Shifts in Level of Abstraction.
 
The two most commonly used strategies for finding the total number of 

cars had an abstraction step for shifting from the mid-level graph to a low-
level mathematical representation, followed by a mathematical step. The 
Adding bar heights strategy was the dominant strategy at both grade levels. 
As described in Table 2, the abstraction step of this strategy involved read-
ing and recording the heights of each of the five bars to transform the prob-
lem into an addition problem. The subsequent mathematics step involved 
adding the resulting numbers. 

The second most common strategy, used by about 6% of students, was 
to count the shaded squares on the graph to find the total number of cars. 
As noted in Table 2, the abstraction step of this strategy involved determin-
ing the number of cars that each shaded square represented to transform the 
problem into a low-abstraction counting problem. The subsequent math-
ematics step was to count the squares (either by 10s or by 1s). 

Students showed evidence of using two other strategies (reproduce 
graph and literal drawing) in service of answering Question 4. First, around 
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5% of students attempted to reproduce the graph as part of their answer to 
Question 4. We note that that this strategy suggests difficulty with selecting 
and extracting important information from the graph. It does not reflect a 
change in the abstraction level, but rather stays at the middle level of ab-
straction. Because there is no translation to a low level of abstraction, there 
is no mathematics step in this strategy. Second, around 5% of students made 
a literal drawing of the floors of the parking garage, arrangements of park-
ing spaces, or cars themselves. While these literal drawings were not an im-
mediate step toward finding the total number of cars, they do reflect a shift 
in abstraction level, from the middle level to the highest level. Students who 
made literal drawings may have been trying to make sense of the situation 
the graph represented, perhaps as a precursor deciding what information 
they needed to abstract from the graph. However, because the shift in ab-
straction is upward to the problem context rather than downward to a math-
ematical representation, there is no mathematics step in this strategy, either.

Table 6
Number of Students Using Each of the Question 4 Strategies

Strategy 
Name

Example No. (%) of 
G4 Students 

No. (%) of 
G5 Students 

Overall No. 
(%) Students

Adding bar 
heights

33
(45.45)

102
(73.91)

135
(64.71)

Counting 9
(13.64)

4
(2.90)

13
(6.37)

Reproduce 
graph

7
(15.15)

2
(1.45)

9
(4.41)

Literal 
drawing

7
(10.61)

5
(3.62)

12
(5.88)
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 Question 4 abstraction errors. As noted above, the Adding bar 
heights and Counting strategies described in Table 2 each involved an ab-
straction step followed by a mathematics step. We examined the student 
work for errors in each of these phases of problem solving to discern which 
parts of the problem-solving process students had difficulty with and to 
what extent. Table 7 summarizes the errors students made in the abstraction 
level shift involved in each strategy. For the Counting strategy, five fourth 
graders made a scaling error and counted each square on the graph as 1 car. 
The remaining eight students (4 fourth graders and 4 fifth graders) who used 
the counting strategy correctly abstracted that each square on the graph 
stood for 10 cars.

Table 7
Number of Students Who Made Various Abstraction Errors in Question 4

Error 
Name

Example No. (%) of G4 
Students 

No. (%) of G5 
Students 

Overall No. 
(%) Students

Counting: 
Scaling 
error

5
(7.58)

0
(0)

5
(2.45)

Bar 
heights: 
Shifted 
height

4
(6.06)

13
(9.42)

17
(8.33)

Bar 
heights: 
Misread 
height

11
(16.67)

28
(20.29)

39
(19.12)

Bar 
heights: 
Missing 
or extra 
addend

6
(9.09)

15
(10.87)

21
(10.29)
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About 43% of the students who attempted the Adding bar heights strat-
egy correctly completed the abstraction level shift, as evidenced by record-
ing all five bar heights as directly read from the graph. Three additional stu-
dents wrote that they used addition to solve Question 4, but did not record 
any work that allowed us to evaluate their use of the strategy. The remaining 
students who used the Adding bar heights strategy made three kinds of er-
rors. First, about eight percent of students recorded bar heights that did not 
match the heights on the graph, but may have reflected a mental compensa-
tion shift among bars. For instance, in the example shown in Table 4, the 
student recorded 20 and 30 as bar heights in lieu of recording 25 and 25. It 
is possible that these shifts were not abstraction errors, but we are unable 
to tell for certain based on our data and so report these shifts as possible 
abstraction errors. Nearly 20% of students recorded bar heights that did not 
match the graph and did not suggest a compensation shift. Lastly, around 
10% of students either missed a bar height when recording them or added 
an extra bar height.

In summary, around 62% of the students who used the Counting strat-
egy and 43% of the students who used the Adding bar heights strategy to 
solve Problem 4 completed the abstraction level shift involved in their cho-
sen strategy correctly. The remaining students—38% of those who used the 
Counting strategy and 57% of those who used the Adding Bar Heights strat-
egy—made an error during the abstraction shift from middle to lowest level.

Question 4 mathematics errors. Table 8 summarizes students’ errors 
in the mathematics step of the Counting and Adding bar heights strategies. 
Four of the 13 students who attempted the Counting strategy made a count-
ing error after deciding whether to count by 1s or 10s. Of the 135 students 
who attempted the Adding bar heights strategy, 113 (84%) executed the ad-
dition step correctly. The remaining 22 students (16%) had errors in their 
addition. For most of these students, their work did not reveal the specific 
nature of the error. In two cases, we were able to pinpoint an error relating 
to place value. In an additional two cases, we were able to pinpoint an error 
related to composition of pairwise sums.

Thus, roughly the same proportion of students who attempted the 
Counting strategy made mathematics errors as made abstraction errors. 
However, the vast majority of students who attempted the Adding bar 
heights strategy executed the mathematics step correctly. This is in stark 
contrast to errors in the abstraction step, which were made by roughly half 
of the students. To further explore the relationship between the mathemat-
ics errors and the abstraction errors, we examined the work of the 58 stu-
dents who both recorded an incorrect total number of cars in Question 4 
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and provided work we were able to interpret in terms of any abstraction and 
mathematics errors. Of these 58 students, 15 (26%) made errors in both the 
abstraction and mathematics steps, 7 (12%) made errors only in the math-
ematics step, and 36 (62%) made errors only in the abstraction step. This 
further demonstrates the impact of abstraction difficulties on students’ prob-
lem solving.

Table 8
Number of Students Who Made Mathematics Errors in Question 4

Error Name Example No. (%) of 
G4 Students 

No. (%) of 
G5 Students 

Overall No. 
(%) Students

Counting error 4
(6.06)

0
(0)

4
(1.96)

Addition: 
Undetermined 
error

7
(10.61)

11
(7.97)

12
(9.31)

Addition: 
Place value 
error

1
(1.52)

1
(0.72)

2
(0.98)

Addition: 
Composition 
error

0
(0)

2
(1.45)

2
(0.98)

Question 5

To further investigate these students’ difficulties with abstraction, we 
examined their work on Question 5. We organize the results according to 
the two pieces of information that had to be shifted from the highest level 
of abstraction (the context) to the middle level (the graph): 15 cars and the 
lowest levels of the parking garage. Only 26 students (12.75%) added shad-
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ing to the graph reflecting 10 additional cars on floor 2 and 5 additional cars 
on floor 3, which is the intended solution to the problem. To arrive at this 
solution, students had to discern how to represent 15 cars on the graph and 
decide where on the graph the lowest floors were represented.

Question 5 representations of 15 cars. In order to translate the 15-car 
requirement to shading on the graph, students had to interpret the scale of 
the graph and determine that 15 cars would be represented by 1.5 squares. 
As shown in Table 9, about 45% the students in our sample did not make 
any change to the graph. Of the remaining 113 students, 79 (70%) added 
1.5 squares of shading. Small numbers of students in each grade level added 
15 squares of shading, suggesting an error in interpreting the graph scale. 
Additionally, less than 10% of students added a different amount of shading 
to the graph other than 1.5 or 15 squares, which we considered over- or un-
der-shading that did not necessarily suggest a misinterpretation of the graph 
scale.

Even smaller numbers of students made other errors not related to the 
amount of shading that suggest difficulty in interpreting the graph. Three 
students added shading to the floor 1 column, despite that column already 
showing the graph’s maximum of 50 cars. (Note that this maximum is also 
stated in the text of the task.) Two students added shading starting at the top 
of the graph, rather than building up from the bottom of the graph or the 
current level of a bar. This suggests a significant misunderstanding of how 
to read and interpret a bar graph.

Table 9
Number of Students Adding Each Amount of Shading in Question 5

Change Example No. (%) of 
G4 Students 

No. (%) of 
G5 Students 

Overall No. 
(%) Students

No change 34
(51.52)

57
(41.30)

91
(44.61)

Shaded 1.5 
squares

19
(28.79)

60
(43.58)

79
(38.73)
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Change Example No. (%) of 
G4 Students 

No. (%) of 
G5 Students 

Overall No. 
(%) Students

Shaded 15 
squares 

8
(12.12)

9
(6.52)

17
(8.33)

Over or Un-
der shaded

5
(7.58)

14
(10.14)

19
(9.31)

Ignored 
maxi-mum

1
(1.52)

2
(1.45)

3
(1.47)

Shading 
from top

0
(0)

2
(1.45)

2
(0.98)

 
In summary, of the students who made a change to the graph, a vast 

majority made changes that reflected understanding how to use the graph 
scale to translate the 15-car problem requirement into 1.5 squares of shad-
ing—a successful shift from the highest level of abstraction to the middle. 
Even so, about 8% of students made a scaling error that reflected difficulty 
with this abstraction shift. Moreover, 45% did not make any change to the 
graph. We are unable to tell from our data whether this reflects lack of un-
derstanding or of time to complete the task.

Question 5 interpretations of the “lowest floors” constraint. The 
above analysis of shading on the graph did not take account of either the 
place on the graph where the shading was added or the explanation that stu-
dents gave for this placement. In this section, we address students’ place-
ment of shading and explanations to gain insight into how they shifted the 
“lowest floors” constraint to a position on the graph. We analyzed students’ 
explanations for their work on Question 5 with an eye toward evidence for 
their interpretation of the meaning of lowest. 
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As shown in Table 10, about 13% of students did not provide any expla-
nation, and an additional 39% provided an explanation that did not reference 
the lowest floor constraint. Interestingly, a significant number of students 
(14%) gave a practical reason (from the perspective of the drivers of the cars) 
for their placement, such as explaining that the drivers would be able to get 
out of the garage easier. This suggests that these students did not shift from 
the problem context to a lower level of abstraction, as shown in Figure 4.

Figure 4 also shows the three codes that reflect a shift from the problem 
context (highest abstraction level) to the graph (lower abstraction level). A 
total of 71 students (35%) provided an explanation that made some refer-
ence to the idea of lowest floors. Nine students referenced “lowest” in their 
explanations but did not say anything else that would allow us to infer how 
they interpreted it. The remaining 62 students provided explanations that 
suggested one of three interpretations of lowest. The highest number of stu-
dents appeared to interpret floors 1, 2, and 3 as the lowest, as intended by 
the problem. A slightly lower number of students interpreted “lowest floors” 
to refer to the floors that had the fewest cars on them, including empty 
floors or floor 8, which was the nonempty floor with the lowest number of 
cars on it. Finally, three students appeared to interpret floor 8 as the lowest 
floor. Thus, although analysis of the student work revealed three interpreta-
tions that reflect a translation of “lowest floors” into a position on the graph, 
only one of those interpretations is the one intended by the problem. The 
remaining two, Lowest starting with 8 and Lowest as least cars, could be 
considered abstraction errors. 

Table 10
Number of Student Explanations Reflecting Each Interpretation of Lowest
Explanation 
code

Example G4 
Students 

G5 
Students 

Overall 
Students

No 
explanation

13
(19.70)

13
(9.42)

26
(12.75)

No connection 
to lowest

29
(43.94)

50
(36.23)

79
(38.73)

Practical 
consideration

8
(12.12)

20
(14.49)

28
(13.73)

Unclear 
reference to 
lowest

2
(3.03)

7
(5.07)

9
(4.41)
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Explanation 
code

Example G4 
Students 

G5 
Students 

Overall 
Students

Lowest start-
ing with 1

8
(12.12)

25
(18.12)

32
(15.69)

Lowest as 
least cars

5
(7.58)

22
(15.94)

27
(13.24)

Lowest start-
ing with 8

2
(3.03)

1
(0.72)

3
(1.47)

Figure 4. Lowest Floor Interpretations Mapped onto Abstraction Level 
Shifts.

With only one exception, the students who provided an explanation that 
allowed us to infer their interpretation of lowest and also made changes to 
the graph made changes that matched their explanations. For example, all 
32 students whose explanations reflected understanding of floors 1-3 as the 
lowest floors added shading only to those floors. Given this consistency, we 
examined the placement of shading on the graph for the students who pro-
vided no explanation or an explanation that did not elucidate an interpreta-
tion of lowest. The numbers of students who added shading consistent with 
each interpretation of lowest, with and without an accompanying explana-
tion to support that interpretation, are shown in Table 11. For simplicity, we 
did not separate these by grade level. Note that students who added shad-
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ing to floor 8 could have been seeing that floor as lowest because it had the 
fewest cars or because it was last on the graph, so we list the students who 
added shading to floor 8 without a supporting explanation to both of the lat-
ter two rows of Table 11.

Based on Table 10, it appears that roughly the same proportion (13-
16%) of students interpreted “lowest floors” to be the bottom floors (1-3) 
as interpreted “lowest floors” to mean the floors with the fewest cars, with 
comparatively few interpreting floor 8 as the lowest floor. Table 11, how-
ever, suggests that more students (34% versus 19%) may have interpreted 
“lowest” in terms of the number of cars rather than the position of the floor 
in the garage. 

In summary, students appear to have significant difficulty mapping the 
intended meaning of lowest floor onto a location on the graph. Although 
about 60% of students show some form of evidence (placement of shading, 
sometimes accompanied by an explanation) of attempting to translate the 
lowest floors requirement into a position on the graph, less than 20% of stu-
dents showed evidence of translating it correctly.

Table 11
Patterns of Shading Reflecting “Lowest” Interpretations

Explanation 
code

Example No. (%) 
Students with 
Explanation 

No. (%) 
Students 
without 
Explanation 

Overall 
No. (%) 
Students

Lowest 
starting 
with 1

32
(15.69)

7
(3.43)

39
(19.12)

Lowest as 
least cars

27
(13.24)

43
(21.08)

70
(34.41)

Lowest 
starting 
with 8

3
(1.47)

5
(2.45)

8
(3.92)



292 Rich, Yadav, and Zhu

DISCUSSION

This study examined fourth and fifth graders’ work on a mathematics 
task to discern when and how they shift among levels of abstraction during 
mathematics problem solving. Our chosen mathematics task required three 
such shifts: (1) transforming the graph into an addition, counting, or other 
mathematical problem in Question 4, (2) shifting the 15 cars requirement 
into an amount of shading on the graph in Question 5, and (3) shifting the 
lowest floor requirement into a position on the graph, also in Question 5. We 
organize our discussion around three main findings that correspond to our 
three research questions. The discussion of each finding connects each ques-
tion and its results to implications for how abstraction instruction might best 
take place in elementary mathematics classrooms and what needs there may 
be for teacher education.

Finding 1: Fourth and fifth grade students make shifts in levels of abstraction 
as they solve mathematics problems.

Our first research question was: How do fourth- and fifth-grade students 
move between levels of abstraction during mathematics problem solving? 
Our analysis revealed that a significant number of students showed evi-
dence of shifting among levels abstraction. In Question 4, 65% of students 
shifted from the middle-level bar graph to a low-level mathematics repre-
sentation by transforming the problem of finding the total to the addition 
of bar heights. An additional 6% of students made the same shift by trans-
forming the interpretation of the graph into a counting problem. In Question 
5, 38% of students added shading to the graph that suggested a successful 
shift from the high-level problem context to the graph via evidence of un-
derstanding of the graph and its scale, with an additional 9% making only 
minor over- or undershading errors that may reflect carelessness rather than 
mistakes in abstraction. Lastly, 35% of students provided an explanation in 
Question 5 that reflected an attempt to abstract the meaning of the “lowest 
floor” constraint and transform it to a particular position for shading on the 
graph. An additional 27% added shading in a location consistent with one 
of the interpretations found in the corpus of student answers, although these 
27% did not corroborate this reasoning in their explanations. In sum, at least 
a third of students attempted to shift among abstraction levels in all three of 
the aspects of the task identified above. This was the case even though these 
classes did not receive any explicit instruction in abstraction.
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The purpose in answering research question 1 was to establish whether 
or not there are opportunities for addressing abstraction through work on el-
ementary mathematics tasks. Our results replicate and extend the findings of 
Hazzan and Zazkis (2005) in showing that elementary students, like middle 
school students, do shift among levels of abstraction, either consciously or 
unconsciously, as they solve mathematical problems. Further, we estab-
lished that elementary students use multiple strategies when shifting ab-
straction levels. For example, in Question 4, transforming the problem of 
finding the total number of cars into an addition problem was one way to 
shift to a lower level of abstraction, while transforming the problem into a 
counting problem was another. This establishes that elementary mathemat-
ics problem solving presents opportunities for discussing abstraction with 
students. 

Given that students have strategies for shifting the level of abstrac-
tion when reading and interpreting graphs, it would be fruitful to explore 
what other types of mathematical tasks prompt elementary school stu-
dents to shift levels of abstraction. When common shifts made by students 
are identified, they could be leveraged to integrate preliminary instruction 
about abstraction into elementary mathematics courses. Successful leverage 
of these shifts in abstraction will also require that teachers be educated on 
what levels of abstraction are, how to recognize when students are making 
shifts among levels, and how to effectively discuss those shifts in the class-
room. Such teacher education efforts would allow teachers to explicitly call 
out shifts in levels of abstraction to students, as advocated Armoni (2013). 
Educating teachers to recognize shifts in levels when made spontaneously 
by students may be particularly important in light of our finding that a small 
number of students made literal drawings of the situation when working on 
Question 4 (see Figure 2). This was an unexpected shift in abstraction not 
explicitly required by the problem. Such a shift could reflect productive pre-
liminary sense-making, or problematic abstraction shifts. If teachers were 
able to discuss these shifts in the classroom, it would provide opportunities 
to highlight student thinking and potentially remedy difficulties.

Finding 2: Although they have starting points for thinking about abstraction, 
many students struggle with making abstraction shifts.

Our second research question was: To what extent are students success-
ful at carrying out the abstraction steps of their problem-solving strategies? 
What errors do they make? Our results show that although many students at-
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tempted to use abstraction, they made several kinds of errors when doing so. 
About 38% of students who transformed Question 4 into a counting prob-
lem made an abstraction error by misinterpreting the scale, and a little more 
than half of students who transformed Question 4 into an addition problem 
made an abstraction error when reading or recording the bar heights. More-
over, about six percent of students attempted to answer Question 4 by repro-
ducing the graph, suggesting they did not have an abstraction strategy that 
allowed them to get started on the problem. In Question 5, a small number 
of students (less than 10%) made shading errors that reflected lack of under-
standing of the graph scale, its maximum, or its general manner of represen-
tation, suggesting serious difficulty in interpreting the graph as an abstrac-
tion and translating the 15-car requirement into an amount of shading. 

Lastly and most strikingly, only 15-20% of students showed evidence 
of mapping the lowest-floor constraint onto the graph in the way intended 
by the problem (with floors 1-3 as the lowest). Half of students did not 
provide any evidence of attempting to operationalize the lowest floor con-
straint. At least 13%, and as many as 34%, of students interpreted lowest 
floors to mean those with the fewest cars on them, which could also some-
times reflect understanding lowest to refer to the heights of the bars on the 
graph.

The purpose in answering research question 2 was to shed light on what 
difficulties students encounter as they move among levels of abstraction, the 
impact of these difficulties on their overall problem solving, and instruction-
al approaches that might be used to help students more productively shift 
among levels of abstraction. Our data provides clear examples of how er-
rors in abstraction can impact students’ success with problem solving. For 
example, students who made a scaling error when using the Counting strat-
egy to solve Question 4 produced answers that were incorrect by a factor 
of 10, and students who misread the bar heights while using the Adding 
bar heights strategy often produced incorrect totals (see Table 7). The high 
amount of errors in abstraction illustrates that bringing abstraction instruc-
tion into elementary school will take more than simply making all shifts 
in abstraction level explicit. Students will need guidance in evaluating the 
accuracy and effectiveness on their shifts. We see this as akin to Armoni’s 
(2013) and Hassan’s (2008) calls for students to be provided opportunities 
to reflect on their abstraction efforts. As of now, we know little about how 
elementary school students might think about shifts in abstraction level 
when introduced to the idea, how they might be best engaged in reflection, 
and how teachers might develop skills in helping students through these re-
flection experiences. Further research is needed to explore these questions. 
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For example, future research could explore whether and how students are 
able to identify abstraction errors in their own and other students’ work 
when explicitly prompted to do so, and if and how they attempt to correct 
the errors once they discover them. The results of such studies could be used 
to devise instructional methods for abstraction that are responsive to student 
thinking.

Finding 3: Students made more errors with abstraction than with pure 
mathematics.

Our third research question was: How does students’ level of success 
with abstraction compare to their level of success with the mathematics 
steps? Our results show that when students needed to engage both in ab-
straction and strictly mathematics steps to solve a problem, they made more 
mistakes during abstraction than when executing the mathematical steps. 
This is most evident in the analysis of Question 4. Whereas only 14% of 
students who used the Adding bar heights strategy made an error in ad-
dition, half of the students made an error when abstracting the numbers 
to add. Moreover, for the 58 students who produced an incorrect final an-
swer to Question 4 and interpretable work, 62% made errors in abstraction 
but not in the pure mathematics step. This is in contrast to 12% who made 
mathematical errors only and 26% who made errors in both abtraction and 
mathematics.

The purpose in answering research question 3 was to explore whether 
increasing focus on the abstraction involved in mathematics problem solv-
ing had the potential to increase students’ overall performance in mathe-
matics. That the vast majority of errors students made were in abstraction 
steps suggests that instruction focused on abstraction has the potential to 
improve mathematics achievement. While additional research is needed to 
explore this idea, this finding suggests a potential avenue for encouraging 
teachers and administrators to implement abstraction instruction in elemen-
tary classrooms. Explicit instruction about shifting levels of abstraction may 
focus student attention on the aspects of the problem where they make the 
most errors. Moreover, providing teachers information about how to sepa-
rate abstraction shifts from purely mathematical steps when examining stu-
dent work could provide them with new ways of identifying and remedying 
sources of student difficulty.
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CONCLUSION

This study serves as an illustrative example of how elementary school 
mathematics tasks ask students to make shifts among levels of abstraction 
and the ways in which students make those shifts. The current study has 
yielded the following key insights: (1) students implicitly shift among lev-
els of abstraction when solving “real-world”  mathematical problems; (2) 
students make errors when making those implicit shifts in abstraction level; 
(3) the errors students make in abstraction outnumber the errors they make 
purely mathematical skills. Further research should examine how levels of 
abstraction could provide a useful lens for examining other kinds of elemen-
tary mathematics tasks and student strategies for solving those tasks. Ad-
ditionally, further research should examine elementary school teacher think-
ing about their students’ work in relation to abstraction to better understand 
how instruction on abstraction might fit into the elementary school class-
room. 

Given the broad similarities between the importance (College Board, 
2017; CCSSI, 2010) and difficulties (Hazzan, 2003; Hazzan & Zazkis, 
2005) of levels of abstraction in mathematics and computer science, we be-
lieve this study may also have implications for computer science education. 
The CS education is field is increasingly exploring ways to connect comput-
er science education with other disciplines (Schanzer, Fisler, Krishnamurthi, 
& Felleisen, 2015; Weintrop, 2016). A recent analysis of the CCSS-M for 
grades K-5 (Rich, Spaepen, Strickland, & Moran, 2019) suggested that el-
ementary mathematics concepts offer opportunities to begin a spiral curricu-
lum (Bruner, 1977) focused on computational thinking ideas, and that ideas 
first explored in elementary mathematics could be revisited later in com-
puter science contexts. This paper has established that there are also oppor-
tunities in elementary mathematics for students to explore moving among 
levels of abstraction, another important computer science concept (Armoni, 
2013). Furthermore, Rich, Yadav, and Schwarz (2019) leveraged elementary 
teachers’ ideas about how computational thinking fit into their mathematics 
and science teaching to help the teachers integrate computational thinking in 
their classrooms. If explicit instruction in moving among levels of abstrac-
tion is taken up in elementary mathematics classrooms, research could simi-
larly examine ways in which the ideas about abstraction elementary students 
develop in mathematics instruction can be leveraged during their later in-
structional experiences with computer science.

Given the importance and difficulty of abstraction for mathematics and 
computer science students alike, we hope this study spurs new lines of re-
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search and development that help all students gain access to these important 
and powerful ideas.
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