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Abstract. The classical Erdös-Gallai theorem kicked off the study of
graph realizability by characterizing degree sequences. We extend this line
of research by investigating realizability of directed acyclic graphs (DAGs)
given both a local constraint via degree sequences and a global constraint
via a sequence of reachability values (number of nodes reachable from a
given node). We show that, without degree constraints, DAG reachability
realization is solvable in linear time, whereas it is strongly NP-complete
given upper bounds on in-degree or out-degree. After defining a suitable
notion of bicriteria approximation based on consistency, we give two
approximation algorithms achieving O(log n)-reachability consistency
and O(log n)-degree consistency; the first, randomized, uses LP (Linear
Program) rounding, while the second, deterministic, employs a k-set
packing heuristic. We end with two conjectures that we hope motivate
further study of realizability with reachability constraints.
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1 Introduction

Given a property P , the Graph Realization problem asks whether there exists a
graph that satisfies the property P . Starting with the Erdös-Gallai paper [10] on
degree sequences [18,21] many other properties have been considered in the liter-
ature ranging from eccentricities [6,25] to connectivity and flow [11,12]. The best
studied among these remain extensions of realization given degree sequences [1,4]
and variants focusing on different subclasses of graphs [7,8,19,20,26]. In addition
to their theoretical significance, realization questions occur naturally in numer-
ous application contexts, including network design [12], social networks [5,28],
DNA sequencing [29], enumerating chemical compounds [2], and phylogeny and
evolutionary tree reconstruction [17,30].

We consider the realization problem on digraphs: we are given as input a
sequence of tuples (ri, I(i),O(i)), where ri is the reachability value1, I(i) the
in-degree and O(i) the out-degree of each node i, 1 ≤ i ≤ n; and we wish to
determine the existence of a digraph such that each node has the prescribed
reachability value and the prescribed in-degree and out-degree. This formulation
? This work was supported by the NSF-CNS-1718286 and NSF-CCF-1535929 grants.
1 The reachability value of a node is the number of nodes reachable from that node.
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extends the local properties considered by degree sequences to global properties
captured by the reachability sequence. Like all realization problems this has
connections [1] to the graph isomorphism problem and graph canonization.

The study of reachability sequences has applications in several contexts. In the
scientific context, reachability and degree constraints can reflect measurements
obtained from naturally occurring networks with the aim being to generate
a model that explains the measurements. Alternatively, from an engineering
perspective, the goal may be to find an implementation satisfying the desired
properties as specified by the reachability sequences. As an example scenario,
consider the spread of a malicious virus in a network. Perhaps the first step to
preventing the spread of this disease may be to understand the reach of infected
nodes (using reachability values) before controlling the spread by disconnecting
infected nodes from neighbors (using degree information). Alternatively, the goal
may be to construct resilient networks that restrict the spread of the virus.

1.1 Our Contributions

We characterize the complexity of the realizability of acyclic digraphs as sum-
marized in Table1. Instead of referring to bounded vs. unbounded in-degree, we
simply talk about trees vs. DAGs since trees are DAGs with in-degree bounded
by one and they capture the essential behavior of bounded in-degree digraphs.
This usage makes the exposition of the hardness results more natural.

Table 1: Reachability realization for unbounded out-degree DAGs is linear time.
The other three cases are strongly NP-complete with bicriteria approximation
algorithms achieving an approximation factor of (O(log n), O(log n)).

Out-degree Bounded Out-degree Unbounded

In-Degree Bounded (Trees) (O(log n), O(log n)) (O(log n), O(log n))
Unbounded (DAGs) (O(log n), O(log n)) Linear-time

• In Section 3 we give linear time verifiable, necessary and sufficient conditions,
for realizing unbounded out-degree DAGs (Theorem 1).
• We define a notion of bicriteria approximation in Section 2 and give two
algorithms in Section 4 to solve the reachability realization problem, both
achieving an (O(log n), O(log n))-approximation.
− Theorem 3: Randomized LP rounding algorithm that runs in time O(n

37
18 )

if that the matrix multiplication exponent ω ≈ 2 and its dual α ≈ 1 [23].
− Theorem 5: Deterministic algorithm using k-set packing heuristics [13,22]

that runs in nO(k3) time.
• In Section 5 we prove the strong NP-completeness of reachability realization
when there are degree constraints. This includes one of our most technically
involved results, a reduction from a generalized version of 3-Partition
to show the strong NP-completeness of reachability realization when both
in-degree and out-degree are bounded (Theorem 6). We also give simpler
reductions from 3-Partition for reachability realization when only one of
in-degree or out-degree is bounded (Theorems 7, 8).



Realization Problems on Reachability Sequences 3

Both approximation algorithms work in the presence of non-uniform degree
bounds, that is, each degree might be a different value. On the other hand, our
hardness results, except Theorem 8, prove that reachability realization problems
are strongly NP-complete even when the degree bounds are uniform. In particular,
we note that the Theorems 6 and 7 which have uniform degree bounds rely on
having the in-degree bounded while in Theorem 8, where only the out-degree is
bounded, we are only able to show hardness in the non-uniform case.

2 Preliminaries

Let n denote the length of the given reachability sequence and V the set of nodes
in the corresponding graph, so that |V | = n. For node i in graph G we let C(i)
denote the set of children of i, i.e., C(i) = {j|(i, j) ∈ G}. The out-degree of i,
OG(i) is the number of its children, i.e., |C(i)|; the in-degree of node i in graph
G, IG(i) is the number of nodes with arcs directed into i. The reachability value of
node u is the number of nodes it can reach: ru = |{v : ∃ path from u to v ∈ G}|.
If the graph is a tree the reachability value ri can be recursively defined as
1 +

∑
j∈C(i) rj . A rooted tree with out-degree upper bounded by k is called a

k-ary tree otherwise they are general trees. Full trees are k-ary trees where
every out-degree is either k or 0. A complete k-ary tree is a k-ary tree with
every level except possibly the last filled and all nodes in the last level filled from
the left. The unique reachability sequence of such trees is denoted by T ck (n).

We now define the appropriate notions for the purpose of approximation. We
say that a graph G is δ-in-degree consistent with graphH if they have the same
set of nodes and if for all nodes i the following holds: IH(i) ≤ IG(i) ≤ δ ·IH(i). Here
in-degree can be replaced with out-degree to get δ-out-degree consistency. If
a graph G is both in-degree and out-degree consistent with graph H , then we say
it is δ-degree-consistent. For ρ-reachability consistency we generalize the
idea of reachability to get a similar notion of approximation as degree consistency.
Given a tree we say that it is ρ-reachability consistent if for all nodes i the following
holds: ai ≤ 1 +

∑
j∈C(i) aj ≤ ρ · ai, where ai is the reachability label on node i in

the approximate solution. The above notion of approximation can be extended to
DAGs by replacing the inequality constraint with ai ≤ OG(i)+maxj∈C(i) aj ≤ ρ·ai.
Finally, we utilize the language of bicriteria optimization (see [9,27]) to say
that G (ρ, δ)-approximates graph H if it is ρ-reachability consistent with the
reachability sequence of H and it is δ-degree consistent with H. This captures
the intuition that G approximately matches both the structure of G and its
reachability sequence.

3 Linear time algorithm for DAGs

We show that there exist polynomial-time verifiable, necessary and sufficient
conditions that characterize reachability sequences of unbounded out-degree
DAGs. This is reminiscent of conditions for the reconstruction of graphs given
degree sequences (see [10]). However it is in contrast to the hardness result of
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degree realization for DAGs [8,20]. The inequalities in this section are deceptively
simple considering the hardness results we prove in Section 5. Readers fond of
puzzles are invited to prove the inequalities in Theorem 1 themselves before
reading on.

Theorem 1 (DAG reachability). Given a sequence of natural numbers {r1, r2,
. . . , rn} in non-decreasing order there exists a DAG for which the given sequence
is the sequence of the reachability sizes of the DAG iff ri ≤ i for all i.

Proof. In a DAG, nodes can only reach nodes with a strictly lower reachability
otherwise its reachability would increase to a higher value causing a contradiction.
Since there are at most i− 1 nodes of lower reachability than ri, it can reach at
most i nodes including itself. Hence ri ≤ i is a necessary condition. Next, for all i,
connect i to the first ri − 1 nodes. Observe that, excluding itself, i cannot reach
more than ri − 1 nodes since every node j it connects to can only connect to a
node k with k < j but i is already connected to k. Hence it can reach exactly ri
nodes and the inequality is also a sufficient condition. ut

4 Approximation Algorithms

We present two approximation algorithms that are ρ-reachability consistent
and δ-degree consistent with ρ = δ = O(log n) given the reachability sequence
along with the degree sequence. Thus the (ρ, δ)-approximation factor for our
algorithms comes out to be (O(log n), O(log n)). The randomized algorithm runs
in O(nω+max{ 1

18 ,ω−2,
1−α
2 }) time as detailed in Section 4.1 while the deterministic

algorithm runs in nO(k3) time as we detail in Section 4.2 . We compare further
trade-offs between the two algorithms in Section 4.3 including the motivation for
the more technically involved deterministic algorithm. While the exposition for
both the algorithms addresses details using the full k-ary tree case, the results
extend to all acyclic digraph cases in a straightforward manner by replacing
reachability and degree consistency conditions for trees with that of DAGs.

4.1 LP based randomized rounding (LPRR) algorithm

The intuition behind the LPRR algorithm is to model the desired graph G as a
collection of flows. Between every pair of nodes ri and rj with ri > rj we assume
a flow fij on each edge out of i and into j. We have three constraints for each
node: the sum of flows into it is I(i) (in-degree requirement), the sum of flows
out of it is OG(i) (out-degree requirement), and that the reachability consistency
conditions are satisfied. Further, there cannot be an edge (fij must be 0) from
node i to node j if node i has a smaller reachability value than node j.

The existence of G guarantees that the LP is feasible. After solving for
a feasible set of fij values we round each edge ij to 1 with probability fij
independently 24 lnn times. Each time an edge is rounded to 1 it is added to the
solution (initialized to a graph with all nodes in V but no edges). We then argue
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that the resulting structure satisfies the approximate reachability and degree
consistency requirements with high probability using concentration bounds.

min 1

s. t.
∑
j

fji = I(i) ∀i, In-degree requirement

∑
j

fij = OG(i) ∀i, Out-degree requirement

ri = 1 +
∑
j

fij · rj ∀i, Reachability consistency

fij = 0 ∀i, j s.t. ri ≤ rj Acyclicity

In particular, the following multiplicative form of the Chernoff bound is used.

Theorem 2. Let X =
∑n
i=1Xi, where Xi are independent Bernoulli trials with

Pr [Xi = 1] = pi ∀ 1 ≤ i ≤ n and let µ = E [X] =
∑n
i=1 pi. Then, for 0 < ε < 1

Pr [|X − µ| ≥ ε] ≤ 2e−µε
2/3 (1)

Theorem 3 (LPRR). Given a reachability sequence for a full k-ary tree, T ,
there exists a randomized O(nω+max{ 1

18 ,ω−2,
1−α
2 })-time algorithm that constructs

a DAG that is an (O(log n), O(log n))-approximation to T .

Proof. Analysis of running time: Clearly the bottleneck here is the LP solver
and the state of the art solver runs in O(nω+max{ 1

18 ,ω−2,
1−α
2 }) time [23] where ω

is the best known matrix multiplication exponent [24] and α is its dual. Further,
under the common belief that ω ≈ 2 and α ≈ 1, our algorithm runs in O(n

37
18 ).

Proof of correctness: First, observe that vertex i has a total flow of I(i) coming
into it. So in one rounding the expected in-degree will be I(i) and after 24 lnn
roundings the expected in-degree value will be µ1 = 24 lnn·I(i). Invoking Chernoff
bound with ε = 1/2 we get that the probability that the node’s in-degree lies
outside the range [µ1/2, 3µ1/2] is at most 2/n2. Similarly, we get the expected
out-degree to be µ2 = 24 lnn · OG(i) and the probability that the out-degree of
any node lies outside the range [µ2/2, 3µ2/2] is at most 2/n2. Further for any node
i, the reachability 1+

∑
j fij · rj will have expected value µ3 = 24 lnn · ri and the

probability that it lies outside the range [µ3/2, 3µ3/2] is at most 2/n2. Applying the
union bound over the 3n constraints in the LP, the probability that any of them
lies outside their prescribed range is at most 3n · 2

n2 = o(1) as n goes to infinity.
Thus with high probability after rounding, all of the quantities are within their
prescribed ranges, i.e., the degree and reachability consistency are guaranteed to
be within a logarithmic factor giving us the required (ρ, δ)-approximation. ut

4.2 k-set packing based deterministic algorithm

We give the intuition behind the algorithm, DSHS (Deterministic Sieving using
Hurkens-Schrijver) before presenting the technical details. DSHS runs in two
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(essentially independent) sieving phases, each phase taking O(log n) rounds: The
MatchChildren phase matches each node (other than the leaves) with a (valid)
set of children. The MatchParent phase matches each node (other than the root)
with a parent.2 Each phase starts with the entire set of candidate nodes and in
each round sets up a (k + 1)-set packing problem. The problem of k-set packing
is to find the largest disjoint sub-collection of a given collection of sets each
of cardinality k. The (approximate) solution to this problem sieves or reduces
the candidate set by a constant factor, allowing each phase to finish in O(log n)
rounds. Putting the results from the two phases together we get the desired (ρ, δ)-
approximation factor. We use the following improvement of Hurkens-Schrijver’s
algorithm [22]. Note that a smaller ε can improve the approximation but comes
at the cost of a worse running time.

Theorem 4 (Theorem 5, Furer-Yu [13]; with ε = 1
3). The (k+1)-Set Pack-

ing problem can be approximated to a factor 3
k+3 in deterministic time nO(k3).

Theorem 5 (DSHS). Given a reachability sequence {r1, r2, . . . , rn} for a full
k-ary tree, T , there exists a deterministic nO(k3)-time algorithm that constructs a
DAG that is an (O(log n), O(log n))-approximation to T .

Proof. DSHS (Deterministic Sieving using Hurkens-Schrijver): We ini-
tialize using an empty DAG with all the n nodes and no edges.

Phase MatchChildren: Initialize C1 to be the set of all candidate nodes: nodes
other than leaves (which have value 1). In round t the universe consists of Ct
along with an entire set of V . Note that this has cardinality |Ct|+ |V | and is not
the same as Ct ∪ V . We create a collection of all possible (k + 1)-sets with each
set consisting of an element i from Ct and k elements, j1, j2, . . . , jk from V such
that ri = 1+rj1 +rj2 + . . .+rjk . Note that each (k+1)-set is a possible match for
i to its children. The existence of T guarantees that the optimal solution to this
(k + 1)-Set Packing problem has size |Ct| – namely the sub-collection consisting
of each candidate node and its k children in T . Invoking the Hurkens-Schrijver
approximation algorithm from the above theorem we are guaranteed to find a
collection of sets that is at least (3/(k + 2)) · |Ct|. We use this sub-collection of
sets to augment our solution DAG with the corresponding arcs from the node i to
each of its children (j1, j2, . . . , jk) for each set. We also remove the corresponding
candidate nodes i from Ct to get Ct+1. Phase MatchChildren ends when the
candidate set Ct becomes empty.

Phase MatchParent: Initialize P1 to be the set of all candidate nodes: nodes
other than leaves. In round t the universe consists of Pt along with an entire set of
V . Note that this has cardinality |Pt|+|V | and is not the same as Pt∪V . We create
a collection of all possible (k+1)-sets with each set consisting of one element, i from
Pt and k elements from V , of which one, j is the parent and the remaining k − 1
nodes j1, j2, . . . , jk−1 are siblings of i such that rj = 1+ri+rj1 +rj2 + . . .+rjk−1

.
Note that each (k + 1)-set is a possible match for i to its parent j. The existence
of T guarantees that the optimal solution to this (k+1)-Set Packing problem has
2 The root will have value n and leaves will have value 1.
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size |Pt| – namely the sub-collection consisting of each candidate node and its
parent and siblings in T . Invoking the Hurkens-Schrijver approximation algorithm
from the above theorem we are guaranteed to find a collection of sets that is at
least (3/(k + 2)) · |Pt|. We use this sub-collection of sets to augment our solution
DAG with the corresponding arcs from the node j to i and to each of its k − 1
siblings for each set. We also remove the corresponding candidate nodes, i from
Pt to get Pt+1. Phase MatchParent ends when the candidate set Pt becomes
empty.
Analysis of running time: The bottleneck step is running the Hurkens-
Schrijver approximation algorithm for set-packing which takes nO(k3) time. Each
of the two phases takes a logarithmic number of rounds, log k+2

k−1
n to be precise,

which is absorbed into the total nO(k3)-time since the big-O is in the exponent.
Proof of correctness: Note that after phase MatchChildren every eligible node
is matched to exactly k children satisfying the reachability consistency condition
exactly. However, some nodes may not have parents and some may have too many
parents. Still every node is guaranteed to get at most one parent per round and
so no node has more than O(log n) parents at the end of Phase MatchChildren.
Similarly, after phase MatchParent every eligible node has at least one parent.
However some parents may get too many children. Yet, in each round a parent
gets at most k children and so no node gets more than O(k log n) children. Thus
at the end of the two phases we are guaranteed O(log n)-degree consistency. Now
observe that in each round of either phase, each node i either gets a valid set of k
children, that is children j1, j2, . . . jk such that ri = 1+ rj1 + rj2 + . . .+ rjk , or no
children at all; and we know that at the end of Phase MatchChildren every node
other than leaves gets at least one valid set of children. Hence, we are guaranteed
an O(log n)-reachability consistent solution. Thus the solution DAG at the end
of both phases is an (ρ, δ)-approximation to T . ut

4.3 Trade-offs between the two Approximation Algorithms

The major trade-off between the DSHS and LPRR algorithms is the running
time; while DSHS runs in nO(k3), the LPRR algorithm is independent of k
and runs in O(nω). Hence, unlike the deterministic algorithm, the randomized
algorithm can be used even when k is a function of n. We also note that LPRR
can be derandomized using the method of conditional probability [3]. While these
might suggest that the more complex and technically involved DSHS algorithm
is inferior, that is not the case. The LPRR algorithm results in more complex
solutions, in particular, LPRR may return digraphs with multi-edges while
DSHS is guaranteed to return simple digraphs. Also, the multi-edges provide a
tighter concentration of reachability consistency, albeit away from the reachability
values, which may be a desirable property in applications where certainty is more
important than consistency. While that is an important application, it is more
common to require simple digraphs which the randomized algorithm cannot
guarantee. This motivates the more technically involved DSHS algorithm.
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5 Strong NP-completeness Results

When the in-degrees and/or the out-degrees are constrained by the degree
sequence we prove strong NP-completeness [15] using pseudo-polynomial trans-
formations [16]. The reductions embed an instance of problems like 3-Partition
between two consecutive levels of a tree. We first present the proof for the full
k-ary tree realization problem (all in-degrees 1 or 0 and all out-degrees k or 0)
in Section 5.1 which illustrates all the technicalities involved. We give a simpler
reduction (in Section 5.2) to prove that realization of general trees (no out-degree
bound) is also strongly NP-complete. In Section 5.3 we give a reduction to prove
strong NP-completeness when there is only an out-degree bound.

5.1 Hardness of Realization for Full k-ary Trees

We prove hardness of the realization problem for full k-ary trees by reduction from
the K-PwT problem, which we show to be strongly NP-complete via an involved
series of reductions in the full version. Since K-PwT is strongly NP-complete we
can reduce from a subclass, Πp, such that the largest number in the instance is
polynomially bounded, formally, Max[I] ≤ p(Length[I]), ∀I ∈ Πp.

Problem 1 (K-PwT). Given a set X with |X| = Km, K ≥ 2, sizes s : X 7→ Z+

and a target vector B = (b1, . . . , bm) ∈ Nm, can X be partitioned into m disjoint
sets A1, A2, . . . , Am, such that, |Ai| = k and

∑
a∈Ai s(a) = bi, for 1 ≤ i ≤ m?

Theorem 6 (Full k-ary tree). It is strongly NP-complete to determine the
existence of a full k-ary tree whose reachability sequence equals a given sequence.

Proof. The problem is clearly in NP since a tree acts as a certificate. Set k = K
and define a number M which is a power of K, is much greater in magnitude
than any of the other numbers in the problem, and is polynomially bounded by
the maximum integer in the K-PwT instance (Eq. 2). We also define m′ and m′′
such that m+m′ and m+m′′ are powers of K (Eq. 3).

M1 = max
(
{s(xi)|xi ∈ X} ∪ {bi|bi ∈ B}

)
;M2 = KmM1;M = KdlogkM2e (2)

m′ = Kd −Km, m′′ = Kd−1 −m = m′/K, where d = dlogK(Km)e (3)

We make the sequence S = C ∪ P ∪ G ∪D using four “component” sequences:
the “child component” C = C ′ ∪ C ′′, the “parent component” P = P ′ ∪ P ′′, the
“ancestor component” G and the “descendant component” D.

The “child component” C is the union of the C ′ and C ′′ while the “parent
component” P is the union of the P ′ and P ′′. C ′ is in one-to-one correspondence
with the set X, using the sizes of elements from X with M added to them while
P ′ is in one-to-one-correspondence with B with changes to accommodate those
made to sizes of elements of X while making C ′. The sets C ′′ and P ′′ ensure that
the cardinality of C and P respectively are a power of K.

We construct the “ancestor component” in “levels”. The lowest level ld−2 is
constructed from P , by arbitrarily taking blocks of K elements, adding them all up
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and incrementing the result by one. Formally, order the elements in P arbitrarily
as P1, P2, . . . , PKd−1 and let ld−2 = {ld−2,i | ld−2,i = 1 +

∑K
j=1 P(i−1)K+j , 1 ≤

i ≤ Kd−2}. Other levels ld−i are constructed in a similarly from levels ld−i+1.
This is continued until l0 which has only one element since |P | is a power of
K and the size of each level above reduces by a factor of K. The element in l0
would be the largest number in the final instance. The “descendant component”
is constructed using reachability sequences of complete trees on the elements
ci ∈ C. For each such ci, we make a complete k-ary tree on ci nodes and use its
reachability sequence T ck (ci). The descendant component is then D =

⋃
i T

c
k (ci).

Since each ci ∈ C has the form Kx+ 1, T ck (ci) will also be full trees.

C ′ =
{
K(s(x) +M) + 1

∣∣x ∈ X}, C ′′ = { m′times︷ ︸︸ ︷
KM + 1, . . . , KM + 1

}
(4)

P ′ =
{
K(bi +KM + 1)

∣∣ bi ∈ B}, P ′′ = { m′′times︷ ︸︸ ︷
K2M +K, . . . , K2M +K)

}
(5)

G =

d−2⋃
i=0

li, where “levels”li are defined in text; D =

Kd⋃
i=1

T ck (ci), ∀ci ∈ C (6)

Constructing S takes polynomial time as elements in P and C are derived
directly from the K-PwT instance, there are a logarithmic number of levels each
computed in polynomial time, and the polynomial number of trees in D each be
computed in linear time. All that remains is to prove that the reduction is valid.

By construction, elements in G and P will form a partial full k-ary tree with
the elements in P as the “leaves”, elements in C and D will make a forest with
elements from C as roots of the trees in the forest, and C ′′ can be arbitrarily
partitioned to connect to P ′′ elements. If there is a partition of X, we can
partition C ′ accordingly to complete the tree.

To prove that a full k-ary tree implies a partition it is sufficient to prove that
in any tree the set of children of P ′ is equal to C ′, that is, the nodes of P ′ and
C ′ occur in consecutive levels in any tree. The node in l0 is the largest and will
necessarily have to be the root. This will be followed by the nodes from l1 since
no other nodes are large enough to reach those in l0 (given the out-degree bound
of k). Continuing the argument, li ∈ G will always appear in consecutive levels
in any tree and that P will follow below G. Since the in-degree is 1 no node from
p ∈ P will be a child of any p′ ∈ P . Further, nodes in D will all be less than
M/K in value and hence k of them will not be enough to reach nodes in P thus
necessitating that all children of nodes of P come from C. We note that nodes
from C ′ can not be children of nodes from P ′′ and so the set of children of P ′′
have to be C ′′. Since a value of the order of KM has to be reached for nodes in
P ′ and all nodes in C ′ are of the order of M , all the nodes from C ′ will be used.
Thus any tree will have nodes from P ′ and C ′ in consecutive levels and therefore
have a partition. This proves NP-completeness and as the maximum integer used
is polynomially bounded it also proves strong NP-completeness. ut



10 M. Dippel, R. Sundaram and A. Varma

5.2 Hardness of Realization for General Trees

Theorem 7 (General Trees). It is strongly NP-complete to realize a general
tree given a reachability sequence.

Proof. This problem is in NP as a tree acts as a certificate and all that remains
is give a reduction from 3-Partition.

Problem 2 ( 3-Partition). Given a set A, a target B and a size function s : A→
Z+ such that |A| = 3m and B/4 < s(ai) < B/2 ∀ai ∈ A, can A be partitioned
into m disjoint sets A1, A2, . . . , Am, such that for 1 ≤ i ≤ m,

∑
a∈Ai s(a) = B?

Since this problem is strongly NP-complete [14], for the reduction, we use an
instance of 3-Partition wherein the numbers are polynomially bounded in the
input length. The notation [n] is used for the set consisting of the first n natural
numbers. The constructed instance is as follows:

S = {m(B + 1) + 1} ∪ {B + 1, . . . m times . . . , B + 1} ∪
( m⋃
i=1

[s(ai)]
)

This construction is clearly polynomial time, all that remains is to show that this
is valid reduction. In an abuse of notation the reachability size is often used to
refer to the node with that reachability size.

In any potential tree, then the m(B + 1) + 1 node is forced to be the root
as it cannot be the child of any node. Further, it will have m children, all the
B + 1 nodes as they cannot be the children of any other node. Considering the
remaining nodes in a bottom up fashion, we see that a fixed structure is enforced
on all these nodes due to the in-degree constraint in rooted trees. Any 2 node
can only have a 1 as it’s child, exhausting all 1’s and leaving only 2’s to be single
children of 3’s and only 3’s as children for 4’s and so on. By construction, there
are exactly as many nodes of size s−1 as there are nodes of size s for all s < B+1
and hence they all get exhausted. This enforces that each node labelled s(ai) is a
root of a path consisting of nodes with sub-tree sizes [s(ai)].

These restrictions are always present and a tree can be realized iff the paths
rooted at s(ai) can be correctly made children of the B + 1 nodes. This happens
iff there is a partition of the 3-Partition instance; if there is no partition then
the paths cannot be joined to the partial tree above it to form a single tree. ut

5.3 Hardness of Realization with out-degree constraints

Theorem 8 (Bounded out-degree). It is strongly NP-complete to realize an
acyclic graph given a reachability sequence and out-degree constraints.

Proof. We reduce from 3-Partition, again using an instance with the maximum
number polynomially bounded in the length of the problem. Let si := s(ai)
and M := mB2 and note that M is much bigger than every number in the
3-Partition instance and that the

∑
i si = mB. Let the reachability sequence

S := Ss ∪ Sb ∪ Sa where Ss = {Msi}, Sb be a multiset with m copies of MB + 1,
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and S1 be a multiset of mB − |A| copies of 1. Let the out-degree constraint for
MB + 1 nodes be equal to three and for the si nodes be equal to si.

To achieve out-degree constraints, each of the si nodes will need to pick up
si− 1 ones exhausting nodes in S1. For the MB+1 nodes to achieve their degree
requirement they’ll have to pick up exactly three nodes from Ss set which will
be possible iff there is a valid partition of the 3-Partition instance. ut

6 Conclusion

In this paper we initiate the study of the realization problem for DAGs and rooted
directed trees given a reachability sequence. We provide a linear time algorithm
for DAGs with unbounded out-degrees and show hardness results for variants
when we are also given a degree sequence bounding the in-degree and/or out-
degree. We define a notion of bicriteria approximation based on reachability and
degree consistency and give two (O(log n), O(log n))-approximation algorithms
for all of these problems. We conclude with two intriguing conjectures:

• Given a uniform out-degree bound and a reachability sequence the DAG
realizability problem is solvable in poly-time.
• The general digraph realizability problem given a reachability sequence (with

or without degree sequences) is strongly NP-complete.
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