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Abstract20

We initiate the algorithmic study of retracting a graph into a cycle in the graph, which seeks a21

mapping of the graph vertices to the cycle vertices so as to minimize the maximum stretch of any22

edge, subject to the constraint that the restriction of the mapping to the cycle is the identity map.23

This problem has its roots in the rich theory of retraction of topological spaces, and has strong ties24

to well-studied metric embedding problems such as minimum bandwidth and 0-extension. Our first25

result is an O(min{k,
√
n})-approximation for retracting any graph on n nodes to a cycle with k26

nodes. We also show a surprising connection to Sperner’s Lemma that rules out the possibility of27

improving this result using certain natural convex relaxations of the problem. Nevertheless, if the28

problem is restricted to planar graphs, we show that we can overcome these integrality gaps by giving29

an optimal combinatorial algorithm, which is the technical centerpiece of the paper. Building on our30

planar graph algorithm, we also obtain a constant-factor approximation algorithm for retraction of31

points in the Euclidean plane to a uniform cycle.32
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1 Introduction46

Originally introduced in 1930 by K. Borsuk in his PhD thesis [5], retraction is a fundamental47

concept in topology describing continuous mappings of a topological space into a subspace48

that leaves the position of all points in the subspace fixed. Over the years, this has developed49

into a rich theory with deep connections to fundamental results in topology such as Brouwer’s50

Fixed Point Theorem [22]. Inspired by this success, graph theorists have extensively studied a51

discrete version of the problem in graphs, where a retraction is a mapping from the vertices of52

a graph to a given subgraph that produces the identity map when restricted to the subgraph53

(i.e., it leaves the subgraph fixed). For a rich history of retraction in graph theory, we refer54

the reader to [21]. Define the stretch of a retraction to be the maximum distance between55

the images of the endpoints of any edge, as measured in the subgraph. We use stretch-k56

retraction to mean a retraction whose stretch is k; in particular, a stretch-1 retraction is a57

mapping where every edge of the graph is mapped to either an edge of the subgraph, or both58

its ends are mapped to the same vertex of the subgraph1.59

In this paper, we study the algorithmic problem of finding a minimum stretch retraction60

in a graph. This problem belongs to the rich area of metric embeddings, but somewhat61

surprisingly, has not received much attention in spite of the deep but non-constructive62

results in the graph theory literature. The graph retraction problem has a close resemblance63

to the well-studied 0-extension problem [6, 24, 25] (and its generalizations such as metric64

labeling [27, 8]), which is also an embedding of a graph G to a metric over a subset of65

terminals H with the constraint that each vertex in H maps to itself. The two problems66

differ in their objective: whereas 0-extension seeks to minimize the average stretch of edges,67

graph retraction minimizes the maximum stretch. The different objectives lead to significant68

technical differences. For instance, a well-studied linear program called the earthmover69

LP has a nearly logarithmic integrality gap for 0-extension. In contrast, we show that a70

corresponding earthmover LP for graph retraction has integrality gap Ω(
√
n). A well-studied71

problem in the metric embedding literature that considers the maximum stretch objective is72

the minimum bandwidth problem, where one seeks an isomorphic embedding of a graph into73

a line (or cycle) that minimizes maximum stretch. In contrast, in graph retraction, we allow74

homomorphic maps2 but additionally require a subset of vertices (called the anchors) to be75

mapped to themselves.76

From an applications standpoint, our original motivation for studying minimum-stretch77

graph retraction comes from a distributed systems scenario where the aim is to map processes78

comprising a distributed computation to a network of servers where some processes are79

constrained to be mapped onto specific servers. The objective is to minimize the maximum80

communication latency between two communicating processes in the embedding. Such81

anchored embedding problems can be shown to be equivalent to graph retraction for gen-82

eral subgraphs, and arise in several other domains including VLSI layout, multi-processor83

placement, graph drawing, and visualization [20, 19, 31].84

1 In the literature, a stretch-1 retraction is often simply referred to as a retraction or a retract [21]. Also,
in many studies, a (stretch-1) retraction requires that the two end-points of an edge in the graph are
mapped to two end-points of an edge in the subgraph. These studies differentiate between the case
where the subgraph being retracted to is reflexive (has self-loops) or irreflexive (no self-loops). In this
sense, our notion of graph retraction corresponds to their notion of retraction to a reflexive subgraph.

2 A homomorphic map is one where an image can have multiple pre-images, while an isomorphic map
requires that every image has at most one pre-image.
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1.1 Problem definition, techniques, and results85

We begin with a formal definition of the minimum stretch retraction problem.86

IDefinition 1. Given an unweighted guest graph G = (V,E) and a host subgraph H = (A,E′)87

of G, a mapping f : V → A is a retraction of G to H if f(v) = v for all v ∈ A. For a given88

retraction f of G to H, define the stretch of an edge e = (u, v) ∈ E(G) to be dH(f(u), f(v)),89

where dH is the distance metric induced by H, and define the stretch of f to be the maximum90

stretch over all edges of graph G. The goal of the minimum-stretch graph retraction problem91

is to find a retraction of G to H with minimum stretch. We refer to the vertices of A as92

anchors.93

The graph retraction problem is easy if the subgraph H is acyclic (see, e.g., [29]); therefore,94

the first non-trivial problem is to retract a graph into a cycle. Indeed, this problem is NP-95

hard even when H is just a 4-cycle [13]. Given this intractability result, a natural goal is96

to obtain an algorithm for retracting graphs to cycles that approximately minimizes the97

stretch of the retraction. This problem is the focus of our work. While there has been98

considerable interest in identifying conditions under which retracting to a cycle with stretch99

1 is tractable [17, 21, 37], there has been no work (to the best of our knowledge) on deriving100

approximations to the minimum stretch.3101

We consider the following lower bound for the problem: if anchors u and v are distance102

` in H, and there exists a path of p vertices in G between u and v, then every retraction103

has stretch at least `/p. This lower bound turns out to be tight when H is acyclic, which is104

the reason retraction to acyclic graphs is an easy problem. However, this lower bound is no105

longer tight when H is a cycle. For example, consider a grid graph where H is the border of106

the grid. The lower bound given above says that any retraction has stretch at least Ω(1).107

However, using the well-known Sperner’s lemma, we show that the optimal retraction has108

stretch at least Ω(
√
n).109

Using just the simple distance based lower bound, we show that the gap on the grid is in110

fact the worst possible by giving a O(min{k,
√
n})-approximation for the problem, where k111

is the number of vertices of H. Our algorithm works by first mapping vertices of the graph112

into a grid, then projecting vertices outward to the border from the largest hole in the grid,113

which is the largest region containing no vertices.114

I Theorem 2. There is a deterministic, polynomial-time algorithm that computes a retraction115

of a graph to a cycle with stretch at most min{k/2, O(
√
n)} times the optimal stretch, where116

n and k are respectively the number of vertices in the graph and the cycle.117

Our results for retracting a general graph to a cycle appear in Section 2. We also give118

evidence that the gap induced by Sperner’s lemma on a grid graph is fundamental, showing an119

Ω(min{k,
√
n}) integrality gap for natural linear and semi-definite programming relaxations120

of the problem. To overcome this gap, we focus on the special case of planar graphs, of which121

the grid is an example. Retraction in planar graphs has been considered in the past, most122

notably in a beautiful paper of Quilliot [30] that uses homotopy techniques to characterize123

stretch-1 retractions of a planar graph to a cycle. Quillot’s proof, however, does not yield124

an efficient algorithm. In Section 3, we provide an exact algorithm for retraction in planar125

graphs by developing the gap induced by Sperner’s lemma on a grid into a general lower126

bound on the optimal stretch for planar graphs.127

3 One direct implication of the NP-hardness proof is that approximating the maximum stretch to a
multiplicative factor better than 2 is also NP-hard.
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I Theorem 3. There is a deterministic, polynomial-time algorithm that computes a retraction128

of a planar graph to a cycle with optimal stretch.129

Unfortunately, our techniques rely heavily on the planarity of the graph, and do not130

appear to generalize to arbitrary graphs. While we leave the question of obtaining a better131

approximation for general graphs open, we provide a more sophisticated linear programming132

formulation that captures the Sperner lower bound on general graphs as a possible route to133

attack the problem.134

We also study natural special cases and generalizations of the problem, all of which are135

presented in the full version of our paper [18]. First, we consider a geometric setting, where136

a set of points in the Euclidean plane has to be retracted to a uniform cycle of anchors. By a137

uniform cycle of anchors we mean a set of anchors which are distributed uniformly on a circle138

in the plane. We obtain a constant approximation algorithm for this problem, by building on139

our planar graph algorithm. We next consider retraction of a graph of bounded treewidth to140

an arbitrary subgraph, and obtain a polynomial-time exact algorithm. Finally, we apply the141

lower bound argument of [24] for 0-extension to show that a general variant of the problem142

that seeks a retraction of an arbitrary weighted graph G to a metric over a subset of the143

vertices of G is hard to approximate to within a factor of Ω(log1/4−ε n) for any ε > 0.144

1.2 Related work145

List homomorphisms and constraint satisfaction. The graph retraction problem is146

a special case of the list homomorphism problem introduced by Feder and Hell [13], who147

established conditions under which the problem is NP-complete. Given graphs G,H, and148

L(v) ⊂ V (H) for each v ∈ V (G), a list homomorphism of G to H with respect to L is a149

homomorphism f : G→ H with f(v) ∈ L(v) for each v ∈ V (G).150

Several special cases of graph retraction and variants of list homomorphism have been151

subsequently studied (e.g., [12, 21, 36, 37]). These studies have established and exploited the152

rich connections between list homomorphism and Constraint Satisfaction Problems (CSPs).153

Though approximation algorithms for CSPs and related problems such as Label Cover have154

been extensively studied, the objective pursued there is that of maximizing the number of155

constraints that are satisfied. For our graph retraction problem, this would correspond to156

maximizing the number of edges that have stretch below a certain threshold. Our notion157

of approximation in graph retraction, however, is the least factor by which the stretch158

constraints need to be relaxed so that all edges are satisfied.159

0-extension, minimum bandwidth, and low-distortion embeddings. From an ap-160

proximation algorithms standpoint, the graph retraction problem is closely related to the161

0-extension and minimum bandwidth problems [14, 4, 15, 35, 9, 32]. In the 0-extension prob-162

lem, one seeks to minimize the average stretch, which can be solved to an O(log k/ log log k)163

approximation using a natural LP relaxation [6, 11]. In contrast, we give polynomial in-164

tegrality gaps for the graph retraction problem. In the minimum bandwidth problem, the165

objective is to find an embedding to a line that minimizes maximum stretch, but the con-166

straint is that the map must be isomorphic rather than that the anchor vertices must be167

fixed. In a seminal result [14], Feige designed the first polylogarithmic-approximation using168

a novel concept of volume-respecting embeddings. A slightly improved approximation was169

achieved in [10] by combining Feige’s approach with another bandwidth algorithm based on170

semidefinite-programming [4]. Interestingly, the minimum bandwidth problem is NP-hard171

even for (guest) trees, while graph retraction to (host) trees is solvable in polynomial time.172

Conversely, the bandwidth problem is solvable in time O(nb) for bandwidth b graphs [16],173
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while graph retraction to a cycle is NP-complete even when the host cycle has only four174

vertices. Nevertheless, it is conceivable that volume-respecting embeddings, in combination175

with random projection, could lead to effective approximation algorithms for graph retraction176

to a cycle in a manner similar to what was achieved for VLSI layout on the plane [35].177

Also related are the well-studied variants of linear and circular arrangements, but their178

objective functions are average stretch, as opposed to maximum stretch. Finally, another179

related area is that of low-distortion embeddings (e.g., [23]), where recent work has considered180

embedding one specific n-point metric to another n-point metric [26, 28, 2] similar to the181

graph retraction problem. But low-distortion embeddings typically require non-contracting182

isomorphic maps, which distinguishes them significantly from the graph retraction problem.183

A related recent work studies low-distortion contractions of graphs [3]. Specifically, the184

goal is to determine a maximum number of edge contractions of a given graph G such that185

for every pair of vertices, the distance between corresponding vertices in the contracted186

graph is at least a given affine function of the distance in G. Several upper bounds and187

hardness of approximations are presented in [3] for many special cases and problem variants.188

While graph retraction and contraction problems share the notion of mapping to a subgraph,189

the problems are considerably different; for instance, in the graph retraction problem the190

subgraph H is part of the input, and the objective is to minimize the maximum stretch.191

2 Retracting an arbitrary graph to a cycle192

In this section, we study the problem of retracting an arbitrary graph to a cycle over a193

subset of vertices of the graph. Let G denote the guest graph over a set V of n vertices, with194

shortest path distance function dG. Let H denote the host cycle with shortest path distance195

function dH over a subset A ⊆ V of k anchors.196

Arguably, the simplest lower bound on the optimal stretch is the distance-based bound197

`(G,H) = maxu,v∈A dH(u, v)/dG(u, v), since every retraction places a path of length dG(u, v)198

in G on a path of length at least dH(u, v) in H.199

We now present our algorithm (Algorithm 1), which achieves a stretch of min{k/2, `(G,H)
√
n}.200

Here, we give a high level overview of the algorithm. The first step of algorithm is to embed201

the input graph G into a grid of size k/4× k/4 subject to some constraints. The second step202

is to find the largest empty sub-grid D such that no point is mapped inside of D and center203

of D is within a desirable distance from center of grid M . And final step is to project the204

points in grid M to its boundary with respect to center of sub-grid D.205

We now show how to implement the first step of Algorithm 1. Our goal is to embed each206

vertex u ∈ G to some point g(u) in a k/4× k/4 grid such that for every u, v, we have the207

following inequality, where d∞(a, b) denotes the L∞ distance between a and b. (That is, for208

two points (x1, y1) and (x2, y2), d∞((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}.)209

d∞(g(u), g(v)) ≤ `(G,H)dG(u, v) (1)210

Additionally, we require that H is embedded to the boundary of the grid, such that adjacent211

anchors lie on adjacent grid points.212

I Lemma 4. For every G, we can find an embedding g satisfying inequality 1.213

Proof. We incrementally construct the embedding g. Initially, we place the anchors on the214

boundary of the grid so that the boundary is isometric to dH . (This can be done since H is215

a cycle.) Since d∞(g(u), g(v)) ≤ dH(u, v) and dH(u, v) ≤ `(G,H)dG(u, v), inequality 1 holds216

for all anchors u and v in H.217

ICALP 2019



65:6 Retracting Graphs to Cycles

Algorithm 1 Algorithm for retracting an arbitrary graph to a cycle
Input: Graph G, host cycle H
Output: Embedding function f

Embedding in a grid: Determine embedding g from G into a k/4 × k/4 grid M

such that H is embedded one-to-one to the boundary of M and for every u, v ∈ V ,
d∞(g(u), g(v)) ≤ `(G,H)dG(u, v).
Find largest hole: Find the largest square sub-grid D of M such that (a) its center c is
at L∞ distance at most k/16 from the center of M and (b) there is no vertex u in G for
which g(u) is in the interior of D.
Projection embedding: For all v in G:
1. R(v)← ray originating from the center of D and passing through g(v).
2. f(v)← the anchor on the boundary of grid M nearest in the clockwise direction to the

intersection of R(v) with the boundary of M .
return f

We next inductively embed the remaining vertices of G. Suppose we need to embed218

vertex vi, and vertices U = v1, . . . , vi−1 have already been embedded. Assume inductively219

that the embedding of the vertices of U satisfies inequality 1 for the vertices in U .220

Let B∞(g(u), r) denote the L∞ ball around g(u) with radius r (note that these balls221

are axis-aligned squares). Let x be any point in
⋂
u∈U B∞(g(u), `(G,H)dG(u, vi)). If we222

set g(vi) = x, then inequality 1 holds for all points in U ∪ {vi}. We now show that this223

intersection is nonempty (it is straightforward to find an element in the intersection). The224

set of axis aligned squares has Helly number4 2; therefore it is enough to show that for every225

u, u′ ∈ U , B∞(g(u), `(G,H)dG(u, vi)) and B∞(g(u′), `(G,H)dG(u′, vi)) intersect. Otherwise,226

d∞(g(u), g(u′)) > `(G,H)(dG(u, vi) + dG(u′, vi)) ≥ `(G,H)dG(u, u′).227
228

This contradicts our induction hypothesis that the set of vertices in U satisfies inequality 1,229

and completes the proof of the lemma. J230

In the following lemma, we analyze the projection embedding step of the algorithm.231

I Lemma 5. Suppose r is the side length of the largest empty square D inside M . Then for232

any vertices u and v in G, dH(f(u), f(v)) is at most 1 + (10
√

2k/r)d∞(g(u), g(v)).233

Proof. For any point x, let π(x) denote the intersection of the boundary of M and the ray234

from the center c of D passing through x. Note that for any vertex v in G, f(v) is the anchor235

in H nearest in clockwise direction to π(g(v)). We show that for any x, y ∈M , the distance236

between π(x) and π(y) along the boundary of M is at most (10
√

2k/r)d∞(x, y).237

We first argue that it is sufficient to establish the preceding claim for points on the238

boundary of D, at the loss of a factor of
√

2. Let x and y be two arbitrary points in M but239

not in the interior of D. Let x′ (resp., y′) denote the intersection of R(x) (resp., R(y)) and240

the boundary of D. From elementary geometry, it follows that d(x′, y′) ≤ d(x, y), where d241

is the Euclidean distance; since d∞(x, y) ≥ d(x, y)/
√

2 and d∞(x′, y′) ≤ d(x′, y′), we obtain242

d∞(x′, y′) ≤
√

2d∞(x, y). Since π(x) = π(x′) and π(y) = π(y′), establishing the above243

statement for x′ and y′ implies the same for x and y, up to a factor of
√

2.244

4 A family of sets has Helly number h if any minimal subfamily with an empty intersection has h or fewer
sets in it.
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(a) Points x and y are on the
same side of square D, and
points π(x) and π(y) are on
one side of boundary ofM par-
allel to segment xy.

(b) Points x and y are on the
same side of square D, and
points π(x) and π(y) are on
one side of boundary of M or-
thogonal to segment xy.

(c) General case where Points
x and y (resp. points π(x)
and π(y)) are anywhere on the
boundary of D (resp. on the
boundary of M)

Figure 1 Embedding of points inside the grid M to its boundary using an empty square D.
Referred to in the proof of Lemma 5.

Consider points x and y on the boundary of D. We consider three cases. In the first245

two cases, x and y are on the same side of D. In the first case (Figure 1a), π(x) and π(y)246

are on the same side of the boundary of M and segment π(x)π(y) is parallel to segment247

xy; then, by similarity of triangle formed by c, x, and y and the one formed by c, π(x) and248

π(y), we obtain that the distance between π(x) and π(y) is at most 3kd∞(x, y)/(16r). In249

the second case (Figure 1b), π(x) and π(y) are on same side of the boundary of M , and250

segment π(x)π(y) is orthogonal to segment xy. In this case, w.l.o.g. assume that π(y) is251

closer to center c than π(x) with respect to d∞ distance. Let point z be a point on segment252

cπ(x) such that segments xy and π(y)z are parallel. From center c extend a line parallel to253

segment xy until it hits the side of M on which π(x) and π(y) are. Let w be the intersection.254

Using elementary geometry and similarity argument, we have the following:255

|π(x)π(y)|
|zπ(y)|

= |π(x)w|
|cw|

≤ k/4
k/16 = 4 and zπ(y)

xy
= π(y)w

r
≤ k

4r256

We thus obtain |π(x)π(y)|
|xy| ≤ k/r. For the third case (Figure 1c), we observe that d∞(x, y) is257

at least half the shortest path between x and y that lies within the boundary of D. This258

latter shortest path consists of at most five segments, each residing completely on one side of259

the boundary of D. We apply the argument of the first and second case to each of these260

segments to obtain that the distance between π(x) and π(y) is at most 10kd∞(x, y)/r.261

To complete the proof, we note that distance between anchor nearest (clockwise) to π(x)262

and anchor nearest (clockwise) to π(y) is at most one plus the distance between π(x) and263

π(y). Therefore, the dH(f(u), f(v)) is at most 1 + 10
√

2kd∞(g(u), g(v))/r. J264

I Theorem 6. Algorithm 1 computes a retraction of G to the cycle H with stretch at most265

the minimum of k/2 and O(
√
n) times the optimal stretch.266

Proof. By Lemma 4, the embedding g satisfies inequality 1 for every u and v in G. By a267

straightforward averaging argument, there exists a square of side length k/(8
√
n) whose268

center is at L∞ distance at most k/16 from the center of M and which does not contain g(u)269

for any u in V . By Lemma 5, the projection embedding ensures that for any u and v in V ,270

ICALP 2019
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dH(f(u), f(v)) is at most 1 +O(
√
n)`(G,H)dG(u, v). Since the distance in H cannot exceed271

k/2, the claim of the theorem follows. J272

The Sperner bottleneck. Unfortunately, we cannot improve on the approximation ratio273

in Theorem 6 using only the distance-based lower bound. Consider the following instance:274

the guest graph G is the
√
n×
√
n grid, and the host H is the cycle of G formed by the 4

√
n275

vertices on the outer boundary of G. It is easy to see that the distance-based lower bound276

has a value of 2 on this instance. On the other hand, using Sperner’s Lemma from topology,277

we show that a stretch of o(
√
n) is ruled out:278

I Lemma 7. The optimal stretch achievable for an n-vertex grid is at least 2
√
n/3.279

Proof. Suppose we triangulate the grid by adding northwest-to-southeast diagonals in each280

cell of the grid. Consider the following coloring of the boundary H with 3 colors. Divide H281

into three segments, each consisting of a contiguous sequence of at least b4
√
n/3c vertices; all282

vertices in the first, second, and third segment are colored red, green, and blue, respectively.283

Let f be any retraction from G to H. Let cf denote the following coloring for G \H: the284

color of u is the color of f(u). By Sperner’s Lemma [34], there exists a tri-chromatic triangle.285

This implies that there are two vertices within distance at most two in G that are at least286

4
√
n/3 apart in the retraction f , resulting in a stretch of at least 2

√
n/3. J287

Note that k = Θ(
√
n) in this instance, so the above lemma also rules out an o(k) approximation288

using the distance-based lower bound. A natural approach to improving the approximation289

factor is to use an LP or SDP relaxation for the problem. Indeed, the so-called earthmover290

LP used for the closely related 0-extension problem [24, 7] can be easily adapted to our291

minimum stretch retraction problem. Similarly, SDP relaxations previously used for minimum292

bandwidth and related problems [4, 33] can also be adapted to our problem. However, these293

convex relaxations also have an integrality gap of Ω(
√
n) for precisely the same reason: they294

capture the distance-based lower bound but not the one from Sperner’s lemma on the grid295

(see the full version of the paper [18] for a detailed discussion of these LP/SDP relaxations296

and integrality gaps).297

In spite of these gaps, we show that the grid is not a particularly challenging instance of298

the problem. In fact, in the next section, we give an exact algorithm for retraction in planar299

graphs, of which the grid is an example. Retraction of planar graphs to cycles has been300

considered in the past, and non-constructive characterizations of stretch-1 embeddings were301

known [30]. Our constructive result, while using planarity extensively, suggests that there302

might be a general technique for addressing the Sperner bottleneck described above. Indeed,303

we give a candidate LP relaxation (in the full version of the paper [18]) that captures the304

Sperner bound on the grid. Rounding this LP to obtain a better approximation ratio, or305

showing an integrality gap for it, is an interesting open question.306

3 Retracting a planar graph to a cycle307

The main result of this section is the following theorem.308

I Theorem 8. Let G be a planar graph and H a cycle of G. Then there is a polynomial309

time algorithm that finds a retraction from G to H with optimal stretch.310

We begin by presenting some useful definitions and elementary claims in Section 3.1. We311

then present an overview of our algorithm in Section 3.2. Finally, we present the algorithm312

and its analysis in Section 3.3, leading to the proof of Theorem 8.313
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3.1 Preliminaries314

We begin with a simple lemma that reduces the problem of finding a minimum-stretch315

retraction to the problem of finding a stretch-1 retraction, in polynomial time. Formally,316

suppose we have an algorithm A that, given graphs G and H either finds a stretch-1 retraction317

from G to H , or proves that no such retraction exists. Then, we can use this algorithm to find318

the minimum stretch embedding of G into H, using Lemma 9 below, whose straightforward319

proof is deferred to the full paper [18]. Let Gk be the graph where we replace each edge320

e ∈ G, e 6∈ H with a path of k edges. Clearly, Gk can be computed in polynomial time.321

I Lemma 9. G can be retracted to H with stretch k if and only if Gk can be retracted in H322

with stretch-1.323

The following lemma, proved in [18], implies that degree-1 vertices can be eliminated.324

I Lemma 10. Without loss of generality, we can assume G is 2-vertex connected.325

Lemmas 9 and 10 apply to general graphs. In the rest of this subsection, we focus our326

attention on planar graphs. We note that all the transformations in Lemmas 9 and 10327

preserve planarity of the graph. In 2-connected planar graph, every face of a plane embedding328

is bordered by a simple cycle. Finally, we can assume that there is a planar embedding329

of G with H bordering the outer face. If this is not the case, G \H contains at least two330

connected components, which can each be retracted independently.331

Next, we give some definitions related to planar graphs. We call G triangulated if it is332

maximally planar, i.e., adding any edge results in a graph that is not planar. Equivalently, G333

is triangulated if every face of a plane embedding (including the outer face) of G has 3 edges.334

We will make use of the Jordan curve theorem, which says that any closed loop partitions the335

plane into an inner and outer region (see e.g. [1]). In particular, this implies that any curve336

crossing from the inner to the outer region intersects the loop. For some cycle C in G and a337

plane embedding of G, we denote the subset of R2 surrounded by C as RC (including the338

intersection with C itself). We say that R ⊂ R2 is inside cycle C of G for a plane embedding339

if R ⊆ RC . If R is inside C, we also say that C surrounds R. In a slight abuse of notation,340

we say C surrounds subgraph G′ of G for some fixed plane embedding, if C surrounds the341

subset of R2 on which G′ is drawn in the plane embedding.342

3.2 Overview of our algorithm343

Consider some plane embedding of graph G such that H is the subgraph of G bordering G’s344

outer face. We give a polynomial-time algorithm that finds a stretch-1 retraction from G to345

H or proves that none exists. Using Lemma 9, this immediately yields an algorithm that346

finds a minimum stretch retraction from G to H.347

Fix a planar embedding of G, let H be defined as above, and let F be a bounded face of348

G. A key component of our algorithm is to find a suitable set of curves connecting F to H.349

Our aim is to find a set of k = |V (H)| curves in R2 such that the following hold.350

Each curve begins at a distinct vertex of F and ends at a distinct vertex of H.351

The curves do not intersect each other.352

A curve that intersects an edge of G either contains the edge, or intersects the edge only353

at its vertices.354

Each curve lies totally in RH \ F .355

We call curves with these properties valid with respect to F . We argue that the curves356

partition RH \ F (up to their boundaries being duplicated) into a set of regions. Each of357
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F

H

(a) A graph G. The outer
cycle H and the face F are
shown in bold.

F

H

(b) Non-intersecting curves
partition the region contained
in H but not in F .

`1

`2

u

v

(c) Vertices on `1 are mapped
to u, and vertices on `2 are
mapped to v. All other ver-
tices in the region are mapped
arbitrarily to u or v.

Figure 2 Using non-intersecting curves to find an embedding from face F to H.

these regions is defined by the subset of R2 surrounded by the closed loop made up of two of358

the aforementioned curves, a single edge of H, and a path on the boundary of F .359

Given a face F and a set of curves valid with respect to F , we can give a stretch-1360

retraction from G to H. In essence, the curves partition the graph into regions such that all361

vertices in a particular region map to one of two end-points of a particular edge of H. See362

Figure 2 for an illustration.363

Of course, it is not obvious that a valid set of curves exists for a given face, and, if it364

does, how to compute it. We show that if the graph has a stretch-1 retraction, then there is365

some face F with k valid curves, and that we can efficiently compute them. Our algorithm366

(Algorithm 2) iterates over all faces in the graph, in each case finding the maximum number367

of valid curves it can with respect to that face. The number of valid curves we can find is368

the length of the shortest cycle surrounding F . If the shortest cycle C surrounding F has369

length `, then it is impossible to find more than ` valid curves with respect to F : By the370

Jordan curve theorem, each curve must intersect C, and by the definition, valid curves do371

not intersect each other and can intersect C only at its vertices. Our construction of the372

valid curves shows that this is tight (i.e. we can always find ` curves). We show that if a373

stretch-1 retraction exists, then there is some face for which ` = k. Algorithm 2 gives an374

outline of the algorithm.375

Algorithm 2 Outline for finding a stretch-1 retraction, or proving that none exists.
1: for inner face F in G do
2: Compute maximum number of valid curves between F and H p1, . . . , p`
3: if ` = k then
4: Compute stretch-1 retraction from G to H using p1, . . . , pk
5: end if
6: end for
7: If no retraction was computed, report no stretch-1 retraction exists

3.3 Algorithm and analysis376

This section gives the details of various components of Algorithm 2, and provides a proof of377

correctness. The following is an outline of the rest of the section:378
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1. Lemma 12 shows how to compute a stretch-1 retraction using the k valid curves in line 4379

of Algorithm 2.380

2. Next, Lemma 13 shows that if a stretch-1 retraction exists, there must be some face F in381

the graph such that the smallest cycle surrounding F has length k.382

3. Finally, Lemma 15 gives a construction of largest set of valid curves for a given face F383

from line 2, and shows that the number of curves computed equals the length of the384

smallest cycle surrounding F .385

We begin by showing in Lemma 11 a somewhat obvious fact: A set of valid curves386

partition RH \F , and each region of the partition contains a single edge of H . We then show387

in Lemma 12 that this partition can be used to produce a stretch-1 embedding. See Figure 2388

for pictorial presentation of these two lemmas.389

I Lemma 11. Let {p1, · · · , pk} be a set of curves that are valid with respect to F . Let Z390

denote the set of faces of H ∪ F ∪
⋃
i pi excluding the outer face and F . Then, each face391

f ∈ Z is bordered by exactly 1 edge of H, and every vertex of G \
⋃
i pi is in a unique face of392

Z.393

Proof. Consider the faces of H ∪ F ∪
⋃
i pi. H and F still define faces since the paths pi fall394

in RH \F . Let (u, v) be an edge of H, and consider X = pi ∪ (u, v)∪ pj ∪ pF (i, j) where pi is395

the path containing u, pj is the path containing v, and pF (i, j) is the path on the boundary396

of F between the vertices where i and j meet F such that F is not contained in X. If pi and397

pj are both degenerate (i.e., each is empty), then (u, v) = pF (i, j). Otherwise X is a simple398

cycle. We claim that X defines a face. In particular, we show that the path pF (i, j) contains399

no other vertex of path pz for all z 6= i, j. Suppose it does and let w be that vertex. Let w′400

be the vertex adjacent to w on pz. Then w′ ∈ RH \ F , and so w′ ∈ X. The other end of401

path pz, call it vertex y, is in H, but y 6= u, v. By the Jordan curve theorem, pz \ w must402

cross X. Since the graph is planar, pz \ w must contain a vertex of F,H, pi, or pj . Any of403

these outcomes leads to a contradiction. J404

I Lemma 12. Given a non-outer face F and a set {p1, p2, . . . , pk} of curves that are valid405

with respect to F , we can construct a stretch-1 retraction from G to H in polynomial time.406

Proof. Let Z be as defined in Lemma 11. For each vertex w on pi, map w to the unique407

vertex v ∈ H∩pi. Otherwise, map w to u or v, where (u, v) is the unique edge of H contained408

in the same face of Z as w. Fix a face f of Z. Let (u, v) be the unique edge of H contained409

in f . Any edge (x, y) contained in f also has x, y ∈ f , and so x and y are each mapped to410

either u or v. Thus, this retraction to H has stretch 1. J411

As mentioned earlier, we will show that our construction produces ` valid curves for face412

F , where ` is the minimum length cycle surrounding F . So we must show that if a stretch-1413

retraction exists, there is some F such that every cycle surrounding F has length at least k.414

I Lemma 13. Fix a plane embedding of G where H defines the outer face of the embedding415

and suppose there is a stretch-1 retraction G to H. Then there exists a non-outer face F416

such that every cycle surrounding F has length at least k.417

Proof. We prove a related claim that implies the statement in the lemma. Fix some stretch-1418

retraction of G to H . Then there exists a non-outer face F such that for every cycle C in the419

set of cycles surrounding F , and for each vertex v ∈ H , there is some vertex of C mapped to420

v. This implies that each of these cycles has length at least k, since the statement says that421

vertices of C are mapped to k vertices of H.422
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The claim is very similar to Sperner’s lemma, and the proof is similar as well. Let423

φ : V (G) → V (H) denote the retraction. We associate a score with each cycle C of the424

graph: Order the vertices of the cycle in clockwise order, denoted v1, v2, . . . , vj , vj+1 = v1.425

Consider the sequence φ(v1), . . . , φ(vj), φ(vj+1). Let the score of C be 0 to start. For each426

pair φ(vi), φ(vi+1), we have: either φ(vi) = φ(vi+1), or φ(vi) and φ(vi+1) are adjacent in H.427

If φ(vi+1) is clockwise of φ(vi) (i.e. if they are in the same order as on C), add 1 to the score428

of C. If they are in counterclockwise order, subtract 1. If they are the same vertex, the score429

remains the same. If φ(v1), . . . , φ(vj) does not contain every vertex on the outer cycle, the430

score of C must be 0, since each edge along the path φ(v1), . . . , φ(vj+1) is traversed exactly431

the same number of times in each direction. On the other hand, a cycle with a non-zero432

score must have a score that is divisible by k.433

Next, we claim that the score of cycle C is the same as the sum of the scores of the cycles434

defining the faces contained in C. To see this, consider the total contribution to the scores of435

these cycles from any fixed edge. If the edge is not in cycle C, it is a member of exactly 2436

faces contained in C, and contributes either 0 to both faces, or −1 to one and 1 to the other.437

Edges in C are each a member of just one face surrounded by C. Therefore, the score of438

cycle C is the same as the sum of scores of its surrounded faces. Since the score of cycle H439

is k, there must be some face f that has non-zero score.440

Finally, we show that there is some face with nonzero score such that every cycle441

surrounding the face also has nonzero score. Suppose this is not the case. Then, every face442

with a non-zero score is surrounded by a cycle with score 0, which implies that the sum of443

all scores of faces with non-zero scores is 0. This is a contradiction, since it implies that the444

sum of scores of all internal faces in the graph is 0. J445

We complete the section by giving a construction of the largest set of valid curves with446

respect to some face F , and show that the number of curves equals the length of the shortest447

cycle surrounding F . Our curves will be disjoint paths in a supergraph G∆(F ) of G. It is448

necessary to relate the maximum number of disjoint paths to the length of the shortest cycle449

surrounding F . The following lemma, proved in full paper [18], establishes this connection.450

We believe this lemma should be known, but cannot find it in the relevant literature.451

I Lemma 14. Let G be a triangulated graph. The graph induced by any minimum s-t vertex452

cut is the shortest simple cycle separating s and t.453

If G was already triangulated, we could compute a set of vertex disjoint paths from F454

to H (note that a set of vertex disjoint paths yields a set of valid curves). By Menger’s455

theorem and Lemma 14, we would find ` paths, where ` is the shortest cycle surrounding F .456

G may not be triangulated, so instead we could first triangulate G and then compute the457

paths. However, the number of paths we find in this case is the length of the shortest cycle458

surrounding F in the triangulation of G, which may be smaller than `. We prevent this from459

happening by producing a triangulation that adds vertices as well as edges.460

I Lemma 15. Fix a planar embedding of G with H as the outer face, and let F be other461

face. Then we can compute ` valid curves in polynomial time, where ` is the length of the462

shortest cycle surrounding F .463

Proof. We build a triangulated graph G∆(F ) from the planar embedding of G. First, add464

vertices and edges to every face of G, excluding the outer face and F . We do this such that465

(1) every face except F and the outer face is a triangle, and (2) the distance between any466

u, v ∈ G is preserved. From each face with more than 3 edges, we create one new face that467

has one fewer edge. One step of this iterative construction is shown in Figure 3.468
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(a) Some face F ′ with y>3
edges.

(b) Add a new cycle C with
y−1 edges inside F ′ along with
connecting edges.

(c) Add stars in the newly
created faces, except the one
formed by C. Distances
between vertices of the ori-
ginal face are preserved.

Figure 3 Iteratively triangulate faces.

Note that distances are preserved inductively, and we make progress by reducing the size469

of some face. The graph we produce has 3 edges bordering each face, except for the outer470

face and F . In all, the number of vertices and edges added to each face of G is polynomial471

in the number of edges bordering the face.472

Finally, we add vertices s and t, and edges from s to each vertex of F and from t to each473

vertex of C. The resulting graph is triangulated, and we call this graph G∆(F ).474

At this point, we can find the maximum set of vertex disjoint paths between s and t in475

G∆(F ), by setting vertex capacities to 1 and computing a max flow between s and t. Because476

we have preserved distances between vertices of G in our construction of G∆(F ), the length477

of the minimum cycle surrounding F must be `. Therefore, the number of disjoint paths we478

find must also be `. Finally, we claim that this set of disjoint paths from F to H in G∆(F )479

is a set of valid curves for G. This is because G is a subgraph of G∆(F ), and therefore the480

criteria for valid curves are still met after removing the vertices and edges of G∆(F ) \G. J481

We conclude by tying together the pieces of the section to show we proved Theorem 8.482

Proof of Theorem 8. Fix a face F . By Lemma 14, we determine the set of ` disjoint paths483

from F to H where the surrounding minimum cycle is of length `. By Lemma 13, there is a484

stretch-1 retraction only if there exists a face F whose surrounding min-cycle is of length485

k. So if there is no stretch-1 retraction, we find < k disjoint paths for all faces, and our486

algorithm returns “no”. Otherwise, there exists a face F for which the surrounding min-cycle487

is of length k, and this gives a set of k valid paths. Then, by Lemma 12, the retraction that488

we construct has stretch 1. J489

4 Open problems490

Our work leaves several interesting directions for further research. First, we would like to491

determine improved upper and/or lower bounds on the best approximation factor achievable492

for retracting a general graph to a cycle. Second, we would like to explore extending our493

approach for planar graphs (Section 3) and Euclidean metrics (details in the full paper [18])494

to more general graphs and high-dimensional metrics. Another open problem is that of495

finding approximation algorithms for retracting a general guest graph to an arbitrary host496

graph over a subset of anchor vertices, for which we present a hardness result in the full497

paper [18].498
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