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Abstract

We consider a novel stochastic multi-armed bandit setting, where playing an arm
makes it unavailable for a fixed number of time slots thereafter. This models
situations where reusing an arm too often is undesirable (e.g. making the same
product recommendation repeatedly) or infeasible (e.g. compute job scheduling
on machines). We show that with prior knowledge of the rewards and delays of
all the arms, the problem of optimizing cumulative reward does not admit any
pseudo-polynomial time algorithm (in the number of arms) unless randomized
exponential time hypothesis is false, by mapping to the PINWHEEL scheduling
problem. Subsequently, we show that a simple greedy algorithm that plays the
available arm with the highest reward is asymptotically (1� 1/e) optimal. When
the rewards are unknown, we design a UCB based algorithm which is shown to
have c log T + o(log T ) cumulative regret against the greedy algorithm, leveraging
the free exploration of arms due to the unavailability. Finally, when all the delays
are equal the problem reduces to Combinatorial Semi-bandits providing us with a
lower bound of c0 log T + !(log T ).

1 Introduction

We propose Blocking Bandits a novel stochastic multi armed bandits (MAB) problem where there are
multiple arms with i.i.d. stochastic rewards and, additionally, each arm is blocked for a deterministic
number of rounds. In online systems, such blocking constraints arise naturally when repeating an
action within a time frame may be detrimental, or even be infeasible. In data processing systems, a
resource (e.g. a compute node, a GPU) may become unavailable for a certain amount of time when a
job is allocated to it. The detrimental effect is evident in recommendation systems, where it is highly
unlikely to make an individual attracted to a certain product (e.g. book, movie or song) through
incessant recommendations of it. A resting time between recommendations of identical products can
be effective as it maintains diversity.

Surprisingly, this simple yet powerful extension of stochastic MAB problem remains unexplored
despite the plethora of research surrounding the bandits literature [7, 1, 4, 8, 10] from its onset in [25].
Given the extensive research in this field, it is of no surprise that there are multiple existing ways to
model this phenomenon. However, as we discuss such connections next, we observe that none of
these approaches are direct, resulting in either large regret bounds or huge time complexity or both.

We briefly present the problem. There areK arms, where mean reward µi is the reward andDi is the
delay of arm i, for each i = 1 toK. When arm i is played it is blocked for (Di � 1) time slots and
becomes available on the Di-th time slot after it’s most recent play. The objective is to collect the
maximum reward in a given time horizon T .

Illustrative Example: Consider three arms: arm 1 with delay 1 and mean reward 1/2, arm 2 with
delay 4 and mean reward 1, and arm 3 with delay 4 and mean reward 1. The reward maximization
objective is met when the arms are played cyclically as 31213121 . . . . There are two observations:
First, due to blocking constraints we are forced to play multiple arms over time. Second, we note that
the order in which arms are played is crucial. To illustrate, an alternate schedule 321� 321� . . .
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(‘�’ represents no arm is played) results in strictly less reward compared to the previous one as every
fourth time slot no arm is available.

1.1 Main Contributions

We now present the main contributions of this paper.
1. Formulation: We formulate the blocking Bandits problem where each time an arm is played, it is
blocked for a deterministic amount of time, and thus provides an abstraction for applications such as
recommendations or job scheduling.

2. Computational Hardness: We prove that when the rewards and the delays are known, the
problem of choosing a sequence of available arms to optimize the reward over a time horizon T
is computationally hard (see, Theorem 3.1). Specifically, we prove the offline optimization is as
hard as PINWHEEL Scheduling on dense instances [18, 12, 20, 3], which does not permit any
pseudo-polynomial time algorithm (in the number of arms) unless randomized exponential time
hypothesis [5] is false.

3. Approximation Algorithm: On the positive side, we prove that the Oracle Greedy algorithm
that knows the mean reward of the arms and simply plays the available arm with the highest mean
reward is (1� 1/e�O(1/T ))-optimal (see, Theorem 3.3). The approximation guarantee does not
follow from standard techniques (e.g. sub-modular optimization bounds); instead it is proved by
relating a novel lower bound of the Oracle Greedy algorithm to the LP relaxation based upper bound
on MAXREWARD.

4. Regret Upper Bound for UCB Greedy: We propose the natural UCB Greedy algorithm which
plays the available arm with the highest upper confidence bound. We provide regret upper bounds for
the UCB Greedy as compared to the Oracle Greedy in Theorem 4.1.

Our proof technique is novel in two ways.

(i) In each time slot, the Oracle Greedy and the UCB Greedy algorithm have different sets of available
arms (sample-path wise), as the set of available arms is correlated with the past decisions. We
construct a coupling between the Oracle Greedy and the UCB Greedy algorithm, which enables
us to capture the effect of learning error in UCB Greedy locally in time for each arm, despite the
correlation with past decisions.

(ii) We prove that due to the blocking constraint, there is free exploration in the UCBGreedy algorithm.
As the UCBGreedy algorithm plays the current best arm, it gets blocked, enforcing the play of the next
suboptimal arm—a phenomenon we call free exploration. Free exploration ensures that upto a time
horizon t, certain number of arms, namelyK⇤ (defined below), are played ct amount of time each,
for c > 0, w.h.p. Suppose µi-s are non-decreasing with i. Let K⇤

= min{i :
Pi

j=1 1/Di � 1}, and
�(u, l) = min{µi � µ(i+1) : l  i < u}. Then the regret is upper bounded by O(

K(K�K⇤)
�(K,K⇤) log T ).

Ignoring free exploration the regret bound is O(
K2

�(K,1) log T ), where �(K, 1)  �(K,K⇤
).

5. Regret Lower Bound: We provide regret lower bounds for instances where the Oracle Greedy
algorithm is optimal, and the regret is accumulated only due to learning errors. We consider the
instances where all the delays are equal to K⇤ < K. We show under this setting the Oracle
Greedy algorithm is optimal and the feedback structure of any online algorithm coincides with the
combinatorial semi-bandit feedback [17, 13]. We show that for specific instances the regret admits a
lower bound ⌦(

(K�K⇤)
�(K,K⇤) log T ) in Theorem 4.3.

1.2 Connections to Existing Bandit Frameworks

We now briefly review related work in bandits, highlighting their shortcomings in solving the
stochastic blocking bandits problem.

1. Combinatorial Semi-bandits: The blocking bandit problem is combinatorial in nature as the
decisions of playing one arm changes the set of available arms in the future. Instead of viewing this
problem on a per-time-slot basis, we can group a large block of time-slots together to determine a
schedule of arm pulls and repeat this schedule, thus giving us an asymptotically optimal policy. We can
now use ideas from stochastic Combinatorial semi bandits [13, 24] to learn the rewards by observing
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all the rewards attained in each block. This approach, however, has two shortcomings. First we might
need to consider extremely large blocks of time, specifically of sizeO(exp(lcm(Di : i 2 [K] logK))

(lcm stands for the least common multiple), as an optimal policy may have periodic cycles of that
length. This will require a large computational time as in the online algorithm the schedule will
change depending on the reward estimates. Second, as the set of actions with large blocks is huge,
the regret guarantees of such an approach may scale as O(exp(lcm(Di : i 2 [K] logK) log T ).

2. Budgeted Combinatorial Bandits: There are extensions to the above combinatorial semi bandit
setting where additional global budget constraints are imposed, such as Knapsack constraints [26]—
where an arm can only be played for a pre-specified number of times, and Budget constraints [28]—
where each play of arm has an associated cost and the total expenditure has a budget. However,
these settings cannot handle blocking that are local (per arm) in nature. Further, in [19] the authors
consider adaptive adversaries, which can model our problem. But their approach will lead to a an
approximation guarantee of O(1/ log(T )) over T timeslots.

An interesting recent work, Recharging Bandits [22] studies a system where the rewards of each arm
is a concave and weakly increasing function of the time since the arm is played (i.e. a recharging
time). However, the results therein do not apply as we focus on hard blocking constraints. Another
work on bandits with delay-dependent payoffs [6] is not applicable as the results therein give no
approximation guarantee for our setting.

3. Sleeping Bandits: Yet another bandit setting where the set of available actions change across time
slots is Sleeping Bandits [23]. In this setting, the available action set is the same for all the competing
policies including the optimal one in each time slot. However, in our scenario the set of available
action in a particular time slot is dependent on the actions taken in the past time slots. Therefore,
different policies may have different available action in each time slot. This precludes the application
of ideas presented in Sleeping Bandits, and in sleeping combinatorial bandits [21], to our problem.

4. Online Markov Decision Processes: Finally, we can view this as a general Markov decision
process on the state space S = [D1]⇥ [D2] . . . [DK ], and the action space of arms A = [K], with
mean reward µi for action i. The state space is again exponential inK, leading to huge computational
bottleneck (O(exp(K))) and regret (O(poly(|S|) log T )) for standard approaches in online Markov
decision processes [2, 27, 15].

2 Problem Definition

We consider a multi-armed bandit problem with blocking of arms. We haveK arms. For each i 2 [K],
the i-th arm provides a reward Xi(t) in time slot t � 1, where Xi(t) are i.i.d. random variables
with mean µi and support [0, 1]. Let us order the arms from highest to lowest reward w.l.o.g., s.t.
µ1 � µ2 � · · · � µK . Let �ij = µi � µj for all 1  i < j  K.

Blocking: For all i 2 [K], each arm i is deterministically blocked for (Di � 1) � 0 number of time
slots once it is played. The actions of a player now decide the set of available arms due to blocking.
In the t-th time slot, let us denote the set of available arms as At and the arm pulled by the player as
It 2 At. For each i 2 [K], and t � 1, let the number of timeslots after and including t, the arm i is
blocked as ⌧i,t = (Di +maxt0t{It0 = i}� t). The set of available arms at each time t � is given
as At := At(i1, . . . , it�1) = {i : i 2 [K], ⌧i,t  0}. For a fixed time horizon, T � 1, the set of all
valid actions is given as IT = {it 2 At(i1, . . . , it�1) : t 2 [T ]}.

Optimization: Our objective is to attain the maximum expected cumulative reward. The expected
cumulative reward of a policy IT 2 IT is given as r(IT ) = E[

PT
t=1 Xit(t)] =

P
it2IT

µit . The
offline optimization problem, with the knowledge of delays and mean rewards is stated as below.

MAXREWARD: Solve OPT = max
I02IT

r(I0).

↵-Regret: We now define the ↵-regret of a policy, which is identical to the (↵, 1)-regret defined in
the combinatorial bandits literature [9]. For any ↵ 2 [0, 1], the ↵-regret of a policy is the difference
of expected cumulative reward of an ↵-optimal policy and the expected cumulative reward of that
policy, R↵

T = ↵OPT � E
hPT

t=1 Xit(t)
i
.
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3 Scheduling with Known Rewards

3.1 Hardness of MAXREWARD

The offline algorithm is a periodic scheduling problem with the objective of reward maximization.
In this section, we first prove (Corollary 3.2) that the offline problem does not admit any pseudo
polynomial time algorithm in the number of arms, unless randomized exponential time hypothesis
is false. We show hardness of the MAXREWARD problem by mapping it to the PINWHEEL
SCHEDULING problem [18] as defined below.

PINWHEEL SCHEDULING: Given K arms with delays {ai : i 2 [K]}, the PINWHEEL
SCHEDULING problem is to decide if there exists a schedule (i.e. mapping ⌃ : [T ] ! [K] for any
T � 1) such that for each i 2 [K] in ai consecutive time slots arm i appears at least once.

We call such a schedule, if it exists, a valid schedule. A PINWHEEL SCHEDULING instance with
a valid schedule is a YES instance, otherwise it is a NO instance. A PINWHEEL SCHEDULING
instance is called dense if

PK
i=1 1/ai = 1. Also, note that this problem is also known as Single

Machine Windows Scheduling Problem with Inexact Periods [20].
Theorem 3.1. MAXREWARD is at least as hard as PINWHEEL SCHEDULING on dense instances.

In the proof, which is presented in the supplementary material, we show that given dense instances
of PINWHEEL SCHEDULING there is an instance of MAXREWARD where the optimal value is
strictly larger if the dense instance is an YES instance as compared to a NO instance. The following
corollary provides hardness of MAXREWARD.
Corollary 3.2. The problem MAXREWARD does not admit any pseudo-polynomial algorithm unless
the randomized exponential time hypothesis is false.

Proof. The proof follows from Theorem 3.1 and Theorem 24 in [20]. In [20], the authors shows that
the PINWHEEL SCHEDULING with dense instances do not admit any pseudo-polynomial algorithm
unless the randomized exponential time hypothesis [5] is False.

3.2 (1� 1/e)-Approximation of MAXREWARD

We study the Oracle Greedy algorithm where in each time slot the policy picks the best arm (i.e. the
arm with highest mean reward µi) in the set of available arms. We show in Theorem 3.3 that the
greedy algorithm is (1� 1/e�O(1/T )) optimal1 for the problem for any time-horizon T and any
number of armsK.
Theorem 3.3. The greedy algorithm is asymptotically (1� 1/e) optimal for the MAXREWARD.

Proof Sketch: The proof is presented in the supplementary material. It relies on three steps. Firstly,
we show that using a Linear problem (LP) relaxation it is possible to obtain an upper bound to OPT
in closed form as a function fupper(T, µi, Di, 8i) of µi, Di for all i 2 [K]. In the next step, we show
that the Greedy algorithm can be lower bounded as another function flower(T, µi, Di, 8i) of µi, Di

for all i 2 [K]. The final step is to lower bound the ratio min
µi2[0,1],Di�1,8i

flower(T,µi,Di,8i)
fupper(T,µi,Di,8i) . Our

approach for the final step is to break this non-convex optimization into two steps, firstly optimization
over µis which takes the form of a linear fractional program with a closed form lower bound as a
function of Di, 8i. Secondly, we show that this value can be furthered lower bounded universally
across all Di � 1, 8i, as (1� 1/e�O(1/T )).

3.3 Optimality Gap

We now show that greedy is suboptimal by constructing instances where greedy attains a cumulative
reward (3/4� �) times the optimal reward, for any � > 0. Finally, the greedy algorithm that plays
the available arm with maximum µi/Di is shown to attain 1/K times the optimal reward in certain
instances. We call this algorithm greedy-per-round.

1An algorithm is ↵ optimal for the offline problem if the expected cumulative reward is ↵ times the optimal
expected cumulative reward
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Proposition 3.4. For any ✏ > 0, there exists an instance with 4 arms where the greedy algorithm
achieves (3�✏)

4�2✏ fraction of optimal reward.

Proof. Consider the instance where arm 1 and 2 have reward 1 and delay 3, arm 3 has reward 1�✏ and
delay 1, and arm 4 has reward 0 and delay 0. Also, each arm has only one copy. For any time horizon
T which is a multiple of 4, the greedy algorithm has the repeated schedule ‘1, 2, 3, 4, 1, 2, 3, 4, . . . ’.
Therefore, the reward for greedy is (3 � ✏)T/4. Whereas, the optimal reward of (4 � 2✏)T/4 is
attained by the schedule ‘1, 3, 2, 3, 1, 3, 2, 3, . . . ’. Therefore, the greedy achieves reward (3�✏)

4�2✏ times
the optimal.

Proposition 3.5. For any ✏ > 0, there exists an instance withK arms where the greedy-per-round
algorithm achieves (1+✏)

(K�2) fraction of the optimal reward.

Proof. Consider the instance where the arms 1 to (K � 1) each has reward 1, delay (K � 2). The
K-th arm has reward (1 + ✏)/(K � 2) for ✏ > 0 and delay 0. The greedy-per-round will always
play the K-th arm, as (1 + ✏)/(K � 2) � 1/(K � 2), attaining a reward of (1 + ✏)T/(K � 1)

in T time-slots. Whereas, the optimal algorithm will play the arms 1, 2, . . . , (K � 1) in a round
robin manner attaining a reward of T in T time-slots. Therefore, greedy-per-round can only attain
(K � 2)/(1 + ✏) fraction of the optimal reward.

4 Greedy Scheduling with Unknown Rewards

4.1 UCB Greedy Algorithm

In this section, we present the Upper Confidence Bound Greedy algorithm that operates without the
knowledge of the mean rewards and the delays. The algorithm maintains the upper confidence bound
for the mean reward of each arm, and in each time slot plays the available arm with the highest upper
confidence bound,

⇣
µ̂i +

q
8 log t
ni

⌘
, where for arm i, µ̂i is the estimate of the mean reward and ni

the total number of time arm i has been played. 2

Algorithm 1 Upper Confidence Bound Greedy
1: Initialize: Mean estimate µ̂i = 0 and Count ni = 0, for all i 2 [K]

2: for all t = 1 to T do

3: Play arm it =

(
t, if t  K,

it = argmaxi2At

⇣
µ̂i +

q
8 log t
ni

⌘
, o/w.

4: if it 6= ; then
5: nit  nit + 1

6: µ̂it  

⇣
1�

1
nit

⌘
µ̂it(t) +

1
nit

Xit(t).

4.2 Analysis of UCB Greedy

We now provide an upper bound to the regret of the UCB Greedy algorithm as compared to the Oracle
Greedy algorithm that uses the knowledge of the rewards. Let us recall that, the rewards are sorted
(i.e. µi is non-increasing with i).

Quantities used in Regret Bound. Kg is the worst arm with mean reward strictly greater than 0

played by the Oracle Greedy algorithm. Let H(m) =
P1

n=1 1/n
m,m > 1 (Reimann zeta function).

We define K⇤
✏ = min(K [ {k :

P(k�1)
i=1 1/Dk � 1� ✏}) for any ✏ � 0; andK⇤

:= K⇤
0 .

For each 1  k < k0  K, let �(k, k0) := min{µi � µj : i  k, j � k0 + 1, i < j}.

Further for all i = 1 toKg , and j = (i+ 1) toK⇤
✏ , we define cij =

✓
Dj

�2
ij
+

K
�2

j(j+1)

◆
. We note

8✏ � 0, (1� ✏)min
i

Di  K⇤
✏  min(K, (1� ✏)max

i
Di + 1), Dmin  Kg  min(K,Dmax).

2We believe with some increased complexity in the proof, the constant 8 in UCB can be improved to 2.
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Theorem 4.1. The (1� 1/e)-Regret of UCB Greedy for a time horizon T is upper bounded, for any
✏ > 0, as

KgX

i=1

0

@2H(4)
µi�µK

D4
i

+H(3)K
µi�µK⇤

✏

D3
i

+

K⇤
✏X

j=(i+1)

�ij

Di

cij
✏ log

� cij
✏

�
1

A+

KgX

i=1

KX

j=1+
max(i,K⇤

✏ )

32 log t
�ij

.

Simplified Regret Bound. The regret admits the simplified upper bound for any ✏ > 0,

R(1�1/e)
T  O

✓
1

✏
log

✓
1

✏

◆◆
+

32Kg(K �K⇤
✏ )

mini2[K⇤
✏ ,...,Kg ] �i,i+1

log(T ).

Role of Free Exploration in Regret Bound. Ignoring the free exploration in the system, we can
upper bound the regret as

PKg

i=1

PK
j=(i+1)

32 log(T )
�ij

+ 2H(4)
PKg

i=1
µi�µK

D4
i

. Therefore, by capturing
the free exploration, we are able to significantly improve the regret bound of the UCB Greedy
algorithm when min

i<K⇤
✏

�i(i+1) << min
i<K⇤

✏

�i(K⇤+1).

Proof Sketch of Theorem 4.1. We present parts of the proof here, where the complete proof is deferred
to the supplementary material. While computing the regret, we consider each arm i = 1 to Kg

separately. For each arm i = 1 to Kg, let Ti be the instances where greedy with full information,
henceforth a.k.a. oracle Greedy (OG), plays arm i. Also, let ng(i) = |Ti| be the number of time the
greedy algorithm plays arm i. Let Xg

(t) be the mean reward obtained by OG in time slot t, which
is a deterministic quantity. Recall, we denote the award obtained by UCB Greedy in time slot t as
Xit(t), which is a random variable.

In the blocking bandit model, we end up with free exploration as each arm becomes unavailable
for certain amount of time once it is played. This presents us with opportunity to learn more about
the subsequent arms. However, when the delays, i.e. the Dis, are arbitrary the OG algorithm itself
follows a complicated repeating pattern, which is periodic but with period lcm(Di, i = 1 toKg). We
do not analyze the regret in a period directly, but consider the regret from each arm separately.

To understand our approach to regret bound, let us fix an arm i  Kg. We consider the time slots
divided into blocks of length Di, where each block begins at an instance where OG plays arm i.
In each block, the arm i becomes available at least once for any algorithm, including UCB Greedy
(UCBG); but not necessarily at the beginning as in case of OG. In each such block, if we play arm
less of equal to i when it becomes first available we don’t accumulate any regret when the reward
from arm i is considered in isolation. Instead, if we play arm j � (i+ 1) when arm i becomes first
available we may upper bound the regret as �ij in that block. Let us denote by Pij(t) the probability
that arm j � (i+ 1) is played in the block starting at time t 2 Ti where arm i becomes available first.

Using the previous logic, separately for each arm and using linearity of expectation we arrive at the
following regret bound.

TX

i=1

Xg
(t)� E

"
TX

i=1

Xit(t)

#


KgX

i=1

X

t2Ti

KX

j=(i+1)

Pij(t)�ij . (1)

While bounding the regret in equation 7, in order to account for the combinatorial constraints due to
the unavailability of arms, we phrase it as the following optimization problem (9).

max

KgX

i=1

X

t2Ti

KX

j=(i+1)

Pij(t)�ij (2)

s.t. Pij(t) 
2
t4 + P

⇣
nj(t) 

32 log t
�2

ij
; at = j

⌘ �
1�

2
t4

�
, 8i, j 2 [K], 8t 2 Ti, (3)

nj(t) � cjt� c0j log t, w.p. � (1�K/t3), cj , c
0
j > 0 8j  K⇤

✏ , (4)

The first constraint is standard, whereas the second constraint represent the free exploration in the
system. If any arm i is played ni(t) times upto time t then it is available for (t� ni(t)Di) time slots.
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Among these time slots where arm i is available, UCBG can play

1) arms 1  j  (i�1), at most
(i�1)P
j=1

⇣
t

Dj
+ 1

⌘
times in total, w.p. 1, due to the blocking constraints;

and

2) the arms (i+ 1)  j  K, can be played at most
KP

j=(i+1)

32 log t
�2

ij
many times in total, w.p. at least

(1�K/t3), due to the UCB property and union bound over all arms and time slots upto t.

Therefore, for all i  K we have, w.p. at least (1�K/t3),

ni(t) �
t
Di

0

@1�

(i�1)X

j=1

1
Dj

1

A�
1
Di

0

@
KX

j=(i+1)

32 log t
�2

ij
+ (i� 1)

1

A . (5)

More importantly, w.h.p. for all i  K⇤
✏ we see ni(t) grows linearly with time t. This provides us with

the required upper bound after using the lower bounds for nj(t) for j = 1 to K⇤
✏ , appropriately.

4.3 Easy Instances and Regret Lower Bound

In this section, we show that there are class of instances where Oracle greedy is optimal and provide
regret lower bounds for such a setting.
Definition 4.2. An instance of the blocking bandit is an easy instance if the Oracle Greedy is an
offline optimal algorithm for that instance.

Examples: 1) A class of examples of such easy instances is blocking bandits where all the arms have
equal delay D < K.
2) When the sequences seqi := {i + kDi : k 2 N} for i = 1 to Kg do not collide in any location
(seqi \ seqj = ;, 8i 6= j) and cover the integers 8T � 1, [T ] ✓ [

Kg

i=1seqi ( a.k.a. exact covering
systems [16]) then Oracle Greedy is asymptotically optimal.

Lower Bound: We now provide a lower bound on the regret for easy instances . An algorithm is
consistent iff for any instance of stochastic blocking bandit, the regret upto time T , R1

T = o(T �
) for

all � > 0. We prove the regret lower bound over the class of consistent algorithms for easy instances
of stochastic blocking bandits.

We consider an instance with equal delay D < K, which is an easy instance. In this instance,
the rewards for each arm i = 1 to K⇤ has Bernoulli distribution with mean 1/2; whereas arms
i = (K⇤

+ 1) toK has reward (1/2��). We call this instanceK⇤-Set and prove the following.
Theorem 4.3. For anyK andK⇤ < K and � 2 (0, 1/2) the regret of any consistent algorithm on
the K⇤-Set instance is lower bounded as lim

T!1
R1

T
log T �

(K�K⇤)
� .

The proof of the above theorem makes use of the following lemma which shows that the blocking
bandit instance is equivalent to that of a combinatorial semi-bandit [11], problem on m-sets, for
which regret lower bounds were established in [1].
Lemma 4.4. For any Blocking Bandit instance where Di = D  K for all arms i 2 [K], time
horizon T , and any online algorithm AO, there exists an online algorithm AB which chooses arms
for blocks of D time slots and obtain the same distribution of the cumulative reward as AO.

The proof of the lemma is deferred to the supplementary material.

5 Experimental Evaluation

Synthetic Experiments: We first validate our results on synthetic experiments, where we use
K = 20 arms. The gaps in mean rewards of the arms are fixed with �i(i+1), chosen uniformly at
random (u.a.r.) from [0.01, 0.05] for all i = 1 to 19. We also fix µK = 0. The rewards are distributed
as Bernoulli random variables with mean µi. The delays are fixed either 1) by sampling all delays
u.a.r. from [1, 10] (small delay instances), or 2) u.a.r. from [11, 20] (large delay instances), or 3) by
fixing all the delay to a single value.
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Figure 1: Cumulative regrets scale as logarithmic, constant, and negative linear regret with randomly
initialized delays, in Fig.1a, Fig.1b, and Fig.1c, resp. Fig.1d: Regret vs K⇤ with identical delays.
Once the rewards and the delays are fixed, we run both the oracle greedy and the UCB Greedy
algorithm 250 times to obtain the expected regret (i.e. Reward of Oracle Greedy - Reward of UCB
Greedy) trajectory each with 10k timeslots. For each setting, we repeat this process 50 times for each
experiment to obtain 50 such trajectories. We then plot the median, 75% and 25% points in each
timeslot accorss all these 50 trajectories in Figure 1.

Scaling with Time: We observe three different behaviors. In most of the cases, we observe the regret
scales logarithmically with T (see, Fig. 1a). In the second situation, when K⇤

= Kg the typical
behavior is depicted in Fig. 1b where we observe constant regret (forK⇤

= K the logarithmic part
vanishes in our regret bounds). Finally, there are instances, as shown in Fig.1c, when the regret is
negative and scales linearly with time. Note as the Oracle greedy is suboptimal UCB Greedy can
potentially outperform it and have negative regret. As an example consider the illustrative example in
Section 1. In this example, if due to learning error the UCB greedy plays the sequence ‘121’ then
the UCB Greedy gets latched to the sequence ‘12131213 . . . ’—which is optimal. Such events can
happen with constant probability, resulting in a reward linearly larger than the Oracle Greedy which
plays ‘321� 321� . . . ’. This example explains the instances with linear negative regret.

Scaling with K⇤: In Fig.1d, (where only the median is plotted) we consider the instances with
identical delay equal to K⇤

= 7, 11, 16, 20. We observe that the regret decreases with increasing K⇤,
which is similar to the proved lower bound.
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Figure 2: Regret vs K⇤

in jokes recommendation
with blocking.

Jokes Recommendation Experiment: We perform jokes recommenda-
tion experiment using the Jesters joke dataset [14]. In particular, we con-
sider 70 jokes from the dataset, each joke with at least 15k valid ratings in
range [�10, 10]. We rescale the ratings to [0, 1] using x ! (x+ 10)/20.
In our experiments, when a specific joke is recommended a rating out of
the more than 15k ratings is selected uniformly at random with repetition
and this rating acts as the instantaneous reward. The task is to recom-
mend jokes to maximize the rating over a time horizon, with blocking
constraints for each joke. The delays are chosen randomly similar to
the synthetic experiments. For each experiment, we plot the expected
regret trajectory for 15k time slots, taking expectation over 500 simulated
sample paths. We observe the expected scaling behavior, where the regret scales logarithmically in
time and for largerK⇤ we observe smaller regret.

6 Conclusion

We propose blocking bandits, a novel stochastic multi-armed bandit problem, where each arm is
blocked for a specific number of time slots once it is played. We provide hardness results and
approximation guarantees for the offline version of the problem, showing an online greedy algorithm
provides an (1� 1/e) approximation. We propose UCB Greedy and analyze the regret upper bound
through novel techniques, such as free exploration. For instances on which oracle greedy is optimal
we provide lower bounds on regret. Improving regret bounds using the knowledge of the delays of
the arms is an interesting future direction which we intend to explore. In another direction, providing
better lower bounds through novel constructions (e.g. exact covering systems) can be investigated.
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