Reliable Distributed Clustering with
Redundant Data Assignment

Venkata Gandikota

College of Information and Computer Sciences College of Information and Computer Sciences
University of Massachusetts, Amherst, MA

University of Massachusetts, Amherst, MA
gandikota.venkata@ gmail.com

Abstract—In this paper, we present distributed generalized
clustering algorithms that can handle large scale data across
multiple machines in spite of straggling or unreliable machines.
We propose a novel data assignment scheme that enables
us to obtain global information about the entire data even
when some machines fail to respond with the results of the
assigned local computations. The assignment scheme leads to
distributed algorithms with good approximation guarantees
for a variety of clustering and dimensionality reduction problems.

I. INTRODUCTION

Clustering is one of the most basic unsupervised learning
tools developed to infer informative patterns in data. Given a
set of data points in R?, the goal in clustering problems is to
find a smaller number of points, namely cluster centers, that
form a good representation of the entire dataset. The quality of
the clusters is usually measured using a cost function, which
is the sum of the distances of the individual points to their
closest cluster center.

With the constantly growing size of datasets in various
domains, centralized clustering algorithms are no longer desir-
able and/or feasible, which highlights a need to design efficient
distributed algorithms for the clustering task. In a distributed
setting, we assume that a collection of data points P is too
large to fit in the memory of a single server. Therefore, we
employ a setup with s compute nodes and one coordinator
server. In this setup, the most natural approach is to partition
the data point in P into s subsets { P}, ..., Ps} C P and assign
each of these parts to a different compute node. These nodes
then perform local computation on the data points assigned
to them and communicate their results to the coordinator. The
coordinator then combines all the local computation received
from the compute nodes and outputs the final clustering. Here,
we note that the overall computation of clustering may poten-
tially involve multiple rounds of communications between the
compute nodes and the coordinator. This natural approach for
distributed clustering has received significant attention from
the research community. Interestingly, it is possible to obtain
a clustering in the distributed setup that has its cost bounded
by a constant multiple of the cost of clustering achievable by
a centralized algorithm (see [1]-[3] and references therein).

In this paper, we aim to address the issue of stragglers
that arises in the context of large scale distributed computing

978-1-7281-6432-8/20/$31.00 ©2020 IEEE

2574

Arya Mazumdar Ankit Singh Rawat
Google Research
New York, NY

arya@cs.umass.edu ankitsrawat @ google.com

systems, especially the ones running on the so-called cloud.
The stragglers correspond to those compute nodes that take
significantly more time than expected (or fail) to complete
and deliver the computation assigned to them. Various system-
related issues lead to this behavior, including unexpected back-
ground tasks such as software updates being performed on the
compute nodes, power outages, and congested communication
networks in the computing setup. Some simple approaches
used to handle stragglers include ignoring them and relying
on asynchronous methods. The loss of information arising
due to the straggler nodes can be traded for efficiency for
specific tasks such as computing distributed gradients [4]-[6].
However, with the existing methods for unsupervised learning
tasks such as clustering or dimensionality reduction, ignoring
the stragglers can lead to extremely poor quality solutions.

Alternatively, one can distribute data to the compute nodes
in a redundant manner such that the information obtained
from the non-straggler nodes is sufficient to compute the
desired function on the entire dataset. Following this approach,
multiple coding based solutions (mainly focusing on the linear
computation and first-order methods for optimization) have
been recently proposed (e.g., see [4]-[10]).

This paper focuses on the relatively unexplored area of
designing straggler-resilient unsupervised learning methods for
distributed computing setups. We study a general class of
distributed clustering problems in the presence of stragglers.
In particular, we consider the k-medians clustering prob-
lem (cf. Section III-B) and the subspace clustering problem
(cf. Section III-C). Note that the subspace clustering problem
covers both the k-means and the principal component analysis
(PCA) problems as special cases. The proposed Straggler-
resilient clustering methods in this paper rely on a redundant
data distribution scheme that allows us to compute provably
good-quality cluster centers even in the presence of a large
number of straggling nodes (cf. Section III-A and III-D). In
Section IV, we empirically evaluate our proposed solution for
k-median clustering and demonstrate its utility.

II. BACKGROUND

In this section, we first provide the necessary background on
the clustering problems studied in the paper. We then formally
state the main objective of this work.

ISIT 2020

A. Distributed clustering

Given a dataset with n points P = {pi,...,p,} C RY,
distributed among s compute nodes, the goal in distributed
clustering problems is to find a set of k cluster centers C' =
{c1,...,ck} C R that closely represent the entire dataset.
The quality of these centers (and the associated clusters) is
usually measured by a cost function cost(P,C'). Two of the
most prevalent cost functions for clustering are the k-median
and the k-means functions, which are defined as follows.

1) k-median: cost(P,C) =3, d(pi, O),

2) k-means: cost(P,C) = Zie[n] d*(p;, C),
where, d(x,y) denotes the Euclidean distance between two
points x,y € R? and d(x,C) := mineecd(x,c). We
denote the cluster associated with the center ¢ € C' by
cluster(c, P) := {x € P : ¢ = argmingec d(x,c’)}. For
any o > 1, the set of cluster centers C, is called an «-
approximate solution to the clustering problem if the cost of
clustering P with C, cost(P, C), is at most « times the optimal
(minimum) clustering cost with k-centers.

In certain applications, the dataset P is weighted with an
associated non-negative weight function w : P — R. The k-
means cost for such a weighted dataset (P,w) is defined as
cost(P, Cw) = 3, w(Pi) d*(p;,C). The k-median cost
for (P,w) is analogously defined.

We also consider a general class of ¢s-error fitting problems
known as the (r, k)-subspace clustering problem.

Definition 1 ((r, k)-subspace clustering). Given a dataset
P C R? find a set of k-subspaces (linear or affine) L =
{L;}k_,, each of dimension r, that minimizes cost(P, L) :=
>y minger d*(pi, L).

Note that for » = 0, this is exactly the k-means problem
described above. Another special case, when k£ = 1, is known
as principal component analysis (PCA). If we consider the
matrix M € R"*4, with the data points in P as its rows, it
is well-known that the desired subspace is spanned by the top
r-right singular vectors of M.

B. Coresets and clustering

In a distributed computing setup, where ¢-th compute node
stores a partial dataset P; C P, one way to perform distributed
clustering is to have each node communicate a summary of its
local data to the coordinator. An approximate solution to the
clustering problem can then be computed from the combined
summary received from all the compute nodes. This summary,
called a coreset, is essentially a weighted set of points that
approximately represents the original set of points in P.

Definition 2 (e-coreset). For 0 < € < %, an e-coreset

for a dataset P with respect to a cost function cost(-,-)
is a weighted dataset S with an associated weight function
w : S — R such that, for any set of centers C, we have

(1 —¢€) cost(P,C) < cost(S,C,w) < (1+¢) cost(P,C).

The next results shows the utility of a coreset for clustering.

Theorem 1 ([11]). Let (S, w) be an e-coreset for a dataset P
with respect to the cost function cost(-,-). Any a-approximate
solution to the clustering problem on input S, is an o1+ 3e)-
approximate solution to the clustering problem on P.

C. Straggler-resilient distributed clustering

The main objective of this paper is to design the distributed
clustering methods that are robust to the presence of straggling
nodes. Since the straggling nodes are unable to communicate
the information about their local data, the distributed clustering
method may miss valuable structures in the dataset resulting
from this information loss. This can potentially lead to clus-
tering solutions with poor quality (as verified in Section IV).

Given the prevalence of the stragglers in modern distributed
computing systems, it is natural to desire clustering methods
that generate provably good clustering solutions despite the
presence of stragglers. Let OPT be the cost of the best
clustering solution for the underlying dataset. In this paper,
we explore the following question: Given a dataset P and
distributed computing setup with s compute nodes where at
most t nodes may behave as stragglers, can we design a
clustering method that generates a solution with the cost at
most c¢ - OPT, for a small approximation factor ¢ > 1?

In this paper, we affirmatively answer this question for the
k-median clustering and the (r,k)-subspace clustering. Our
proposed solutions add on to the growing literature on strag-
gler mitigation via coded computation, which has primarily
focused on the supervised learning tasks so far.

III. MAIN RESULTS

We propose to systematically modify the initial data as-
signment to the compute nodes in order to mitigate the effect
of stragglers. In particular, we employ redundancy in the
assignment process and map every vector in the dataset P to
multiple compute nodes. This way each vector affects the local
computation performed at multiple compute nodes, which
allows us to obtain final clusters at the coordinator server by
taking into account the contribution of most of the vectors in
P even when some of the compute nodes behave as stragglers.

We first introduce the assignment schemes with straggler-
resilience property. This property enables us to combine
local computations from non-straggling compute nodes at the
coordinator while preserving most of the relevant information
present in the dataset P for the underlying clustering task.
Subsequently, we utilize such an assignment scheme to ob-
tain good-quality solutions to the k-medians and the (r,k)-
subspace clustering problem in Section III-B and Section III-C,
respectively. Finally, in Section III-D, we propose a random-
ized construction of an assignment scheme with the desired
straggler-resilience property.

A. Straggler-resilient data assignment

Let the compute nodes in the system be indexed by the set
[s] := {1,...,s}. Furthermore let p € P be assigned to the
compute nodes indexed by the set A, C [s]. We can alter-
natively represent the overall data assignment A = {Ap}pep

2575

by an assignment matrix A € {0,1}°*", where the n columns
and the s rows of A are associated with distinct points in P
and distinct compute nodes, respectively. In particular, the j-th
column of A, which corresponds to the data point p;, is an
indicator of Ay, ie., A;; = 1if and only if i € Ap,;. For
any i € [s], we denote the set of data points allocated to the
i-th compute node by P, = {p € P:i € Ap}.

Let R C [s] denote the set of non-straggling compute nodes.
We assume that [R| > s — t, where ¢ < s denotes an upper
bound on the number of stragglers in the system. Let Ag €
{0,1}RI*" denote the submatrix of A with only the rows
corresponding to the non-straggling compute nodes (indexed
by R). For any such set of non-stragglers R, we require that
the assignment matrix A satisfies the following property.

Property 1 (Straggler-resilience property). Let § > 0 be a
given constant. For every R C [s] with |R| > s—t, there exists

a recovery vector, b = (b1,...,bjg|) € RIRI b; > 0Vi € [n],
such that
bTAr = (a1,...,a,), where,1 < a; <14+0Vjen]. (1)

Remark 2. The straggler-resilience property is closely re-
lated to the gradient coding introduced in [5]. However, two
key points distinguish our work from the gradient coding
work. First, the recovery vector b is restricted to have only
non-negative coordinates. Second, and more importantly, the
utilization of the redundant data assignment in this work
(cf. Lemma 1) differs from that of gradient coding in [5] where
gradient coding is used to recover the full-gradient.

The following result, which is based on the combinatorial
characterization for the assignment scheme enforced by Prop-
erty 1, enables us to combine the information received from
non-stragglers to generate close to optimal clustering solutions.

Lemma 1. Let P C R? be a dataset distributed across s
compute nodes using an assignment matrix A that satisfies
Property 1. Let R denote the set of non-straggler nodes. For
any § > 0, let b € RIRl be the recovery vector corresponding
to R. Then, for any set of k centers C C R%, and any weight
function w : P — R,

cost(P,C,w) < Z b; cost(P;, C,w) < (1+6)cost(P, C,w).
i€R
Equipped with Lemma 1, we are now in the position to
describe our solutions for the straggler-resilient clustering.

B. Straggler-resilient distributed k-median

We distributed the dataset P among the s compute nodes
using an assignment matrix that satisfies Property 1. Each
compute node sends a set of (weighted) k-medians centers of
their local datasets which when combined at the coordinator
gives a summary for the entire dataset. Thus, the weighted
k-median clustering on this summary at the coordinator gives
a good quality clustering solution for the entire dataset P.
Algorithm 1 provides a detailed description of this approach.

Algorithm 1 Straggler-resilient distributed k-medians

1: Input: A collection of n vectors P C R%.

2: Allocate P to s workers according to A with Property 1.

3: For each i € [s], construct Y;, the k-median centers in P;.
Define function w; : ¥; — R as w;(c) := |cluster(c, F;)|,
for every c € Y.

4: Collect {Y;};cr from the non-straggling nodes.

5: Let Y := U;erY;. Using b from (1), define w : ¥ = R
such that'w(c) = b; - w;(c) for all c € Y; and i € R.

6: Return C, the k-median cluster centers of Y.

Before assessing the quality of C on the entire dataset P,
we show that for any set of k centers C, the cost incurred by
the weighted dataset Y is close to the cost incurred by P.

Lemma 2. For any set of k-centers C C R¢

cost(P,C) — Z bicost(P;, Y;)
i€R
< cost(Y, C,w) < 2(1 4+ d)cost(P,C).

The following result quantifies the quality of the clustering
solution returned by Algorithm 1 on the entire dataset P.

Theorem 3. Let C* be the optimal set of k-median centers
for the dataset P. Then, cost(P,C) < 3(1 + §)cost(P, C*).

Proof. Using the lower bound from Lemma 2 with C' = C,

cost (P, 6’) < cost(Y, 6, w) + Z b;cost(P;,Y;)
i€ER

(1)
< cost(Y,C*, w) + > bicost(P;, C*)
IER

(i1)
< 2(1 4 6)cost(P,C*) + (1 4 0)cost(P, C™),

where (i) follows from the fact that C and Y; are the optimal
set of centers for the weighted dataset (Y, w) and the partial
dataset P;, respectively. For (i), we utilize the upper bound
in Lemma 2 and Lemma 1 (with C' = C*).]

In Algorithm 1, each compute node sends clustering solution
on its local data using which the coordinator is able to
construct a good summary of the entire dataset P despite
the presence of the stragglers. This summary is sufficient to
generate a good quality k-median clustering solution on P.
In Section III-C, we show that if each compute node sends
more information in the form of a coreset of its local data,
the accumulated information at the coordinator is sufficient to
solve the more general problem of (r, k)-subspace clustering
in a straggler-resilient manner.

C. Straggler-resilient distributed (r, k)-subspace clustering

In this subsection, we utilize our redundant data assignment
with straggler-resilient property to combine local coresets
received from the non-straggling nodes to obtain a global
coreset for the entire dataset, which further enables us to

UIf for some 41 # i3 -+ # iy, C € Y;; NYi, ---NYj,, then we define
w(e) = biy - wiy (€) + biy - wiy () -+ + by, - wi, (€).

2576

perform distributed (r, k)-subspace clustering in a straggler-
resilient manner. In particular, we propose two approaches to
perform subspace clustering, which rely on the coresets [12]
and the relaxed coresets [11], [13], respectively.

1) Distributed (v, k)-subspace clustering using coresets:
Here, we propose a distributed (r, k)-subspace clustering al-
gorithm that used the existing coreset constructions from the
literature in a black-box manner. Each compute node sends a
coreset of its partial data which when re-weighted according
to Lemma 3 gives us a coreset for the entire dataset even
in presence of stragglers. Given this global coreset, we can
then construct a solution to the underlying (r, k)-subspace
clustering problem at the coordinator (cf. Theorem 1). The
complete description of this approach is given in Algorithm 2.

Algorithm 2 Straggler-resilient (r, k)-subspace clustering

Input: A collection of n vectors P C RY.

Allocate P to s workers according to A with Property 1.
For each i € [s], find a d-coreset (S;, w;) for P;.

Collect {S;}icr at the coordinator.

Let S = U;erS;. For every i € R, scale the weights of
the coreset points received from ¢-th node by b; (cf. (1))
i.e., w(c) = bw;(c) Ve € S;.

6: Return C, the set of r-subspaces that is an «-approximate
solution to the (r, k)-subspace clustering on input (S, w).

A

Before we analyze the quality of 6, the solution returned
by Algorithm 2, we present the following result that shows the
utility of an assignment scheme with Property 1 to construct
a global coreset for the entire dataset from the coresets of the
partial datasets in a straggler-resilient manner.

Lemma 3. Let P C RY be distributed according to A with
Property 1. Let b € RI®l be the recovery vector for the set
of non-straggler nodes R C [s]. For any i € R, let S; be an
e-coreset for the local dataset P; with weight function w; :
P, — R with respect to the cost function cost(-,-). Then,
S := UjerS; with the weight function w : S — R defined as
w(c) = w;(c) - b; for all ¢ € S; is a 2(e + §)-coreset for P.

Since each S; is a d-coreset for .S;, it follows from Lemma 3
that S is a 4d-coreset for P. This allows us to quantify the
quality of C' as a solution to the underlying problem of (r, k)-
subspace clustering on P.

Theorem 4. Let OPT be the cost of the optimal (r,k)-
subspace_clustering solution for P. Then, we have that
cost(P,C) < a(1+ 85) - OPT.

Proof. Let C* be the optimal (r, k)-subspace clustering solu-
tion for P, i.e., cost(P, C*) = OPT. Since S is a 4d-coreset,
we have

(7) (i1)
cost(P,C) 2 cos(tl(f,z;)w) <

(i)
< QMCOS‘L(R C*) < a(l1 + 80)OPT,

a _Otm)cost(S7 C*,w)

where (i) and (ii¢) follow from Definition 2; and (i¢) follows

from the fact that the coordinator performs an a-approximate
subspace clustering on (S, w). O

Coreset constructions for various clustering algorithms with
squared ¢y error was considered by [12], [14]-[21]. How-
ever, the size of such constructed coresets depends on the
ambient dimension d which makes them prohibitive for high-
dimensional datasets. Interestingly, Feldman et al. [11] and
Balcan et al. [13] show that one could construct smaller sized
relaxed coresets (of size independent of both n and d) for
the 7-PCA problem. Further, they use these relaxed coresets
for approximate-PCA to solve the class of (r, k)-subspace
clustering problems. Below we show that, by utilizing a
redundant assignment scheme with Property 1, the distributed
approximate PCA and hence, (r, k)-subspace clustering algo-
rithms of [11], [13] can be made straggler resilient.

2) Straggler-resilient PCA using relaxed coresets: In this
section, we use P to denote both the set of n data points and
the n X d matrix with n points in P as its rows. We use the
set and matrix notation interchangeably through this section.

The goal in PCA is to find the linear r-dimensional subspace
L, that best fits the data. It is well-known that the subspace
spanned by the top r right singular vectors of P gives an
optimal solution to the PCA problem. The main question
addressed by Feldman et al. [11] is to find an approximate
solution to PCA in a distributed setting by constructing relaxed
coresets for the local data. In Algorithm 3, we adapt the
distributed PCA algorithm of [11] to obtain a straggler-resilient
distributed PCA algorithm.

Algorithm 3 Straggler-resilient distributed 7-PCA

1: Input: An n X d matrix P

2: Allocate P to s workers according A with Property 1.

3: Let P; denote the sub-matrix of P contained at node 7.
Compute the SVD P; = Ul-El-ViT.

4: For ry = r+1r/§ — 1, define Egrl) to be the matrix that
contains first r; diagonal entries of 3;, and 0 othewise.

5. Send §; = SV

6: Stack the S;’s received from non-stragglers to construct
Y = [Silier and define w(y) =b;, fory € S;.

7: Let S :AUEVT.

8: Return L = r-PCA(S, w).

The following result from [11] shows that each S; in
Algorithm 3 is a relaxed d-coreset of P;. Note the additive
A; term which is not present in the original definition of a
coreset (cf. Definition 2).

Lemma 4 ([11]). For any i € [s], let P, denote the rows
of Ul-zg"”v;T. Then, for any r-dimensional linear subspace
L C RY, there exists A; = A;(P;, P;) > 0 such that

cost(P;, L) < cost(P;, L) + A; < (1 + 8)cost(P;, L).

Note that, for each ¢ € [s], only the first r; rows of S;
in Algorithm 3 are non-zero; as a result, each local relaxed
coreset consists of r; vectors. Next, we show an equivalent of
Lemma 1 for relaxed coresets.

2577

Fig. 1: Ground-truth. Fig. 2: No redundancy.

Lemma 5. Let A :=). 5 b;A;. Then, for any r-dimensional
linear subspace L C R4,

cost(P, L) < cost(Y, L,w) + A < (1 + 40)cost(P, L).

Now, Lemma 5 along with Lemma 4 enable us to guarantee
that the solution obtained from Algorithm 3 is close to the
optimal for the distributed PCA problem.

Theorem 5. Let L* be the optimal solution to r-PCA on P.
Then, cost(P, L) < (1 + 40)cost(P, L*).

Proof. Note that A is independent of the choice of L. Thus,
~_ (9 ~
cost(P, L) < cost(Y, L,w) + A

(@) ()
< cost(Y, L™, w) + A < (1 4 40)cost(P, L),

where (i) and (iii) follow from Lemma 5; and (77) follows as
L is the optimal solution to the 7-PCA problem on Y. O

D. Construction of assignment matrix

Finally, we present a randomized construction of the as-
signment matrix that satisfies Property 1. For the construction,
we assume a random straggler model, where every compute
node behaves as a straggler independently with probability
pt. Therefore, we receive the local computation from each
compute node with probability 1 — p;.

Consider the following random ensemble of assignment
matrices such that for some ¢ (to be chosen later) the (i, j)-th
entry of the assignment matrix is defined as

_J 1 with probability p, = f, 2
"7 10 with probability 1 — p,.

We show that for an appropriate choice of ¢, and hence p,,

the random matrix A satisfies Property 1 with high probability.

Theorem 6. For any § >20, the randomized assignment matrix
(cf: (2)) with £ = 6(2;6) . logi%%") satisfies Property 1 with

probability at least 1 — % under the random straggler model.

The two parameters of importance when constructing an
assignment matrix are the load per machine and the fraction
of stragglers that can be tolerated. Increasing the redundancy
makes the assignment matrix robust to more stragglers while at
the same time, increases the computational load on individual
compute nodes. For s = O(n), our construction assigns
O(logn) data points to each compute node and is resilient
to a constant fraction of random stragglers.

Fig. 3: p, =0.1. Fig. 4: p, = 0.2.

IV. EXPERIMENTS

In this section, we demonstrate the performance of our
straggler-resilient distributed k-medians algorithm and com-
pare it with non-redundant data assignment scheme. We con-
sider the synthetic Gaussian data-set [22] with n = 5000
two-dimensional points. The points are distributed on s = 10
compute nodes, ¢ = 3 of which are randomly chosen to be
stragglers. The results are presented in Figures 1-4.

Figures 1 shows the ground truth £ = 15-median clustering,
using the centroids provided in the data-set. Figures 2 shows
the results obtained by ignoring the local computations from
the straggler nodes. We use Algorithm 1 without any redundant
data assignment. The 5000 data points are randomly parti-
tioned among 10 compute nodes. Each non-straggler compute
node sends its local k-median centers to the coordinator. The
coordinator then runs a k-median algorithm on the accumu-
lated k(s — t) centers obtained from the non-stragglers. As
evident from the comparison between Figure 1 and Figure 2,
such a scheme can output a set of poor quality k-centers.

Figure 3 shows the result of Algorithm 1. The assignment
matrix is chosen randomly (see Section III-D for details) with
each p, := Pr[A; ; = 1] = 0.1. Such an assignment matrix
assigns 500 data points to each compute node in expectation,
leading to a non-redundant data assignment. Figure 4 shows
the effect of increasing p, to 0.2, and hence the redundancy in
the data assignment step. Each compute node now gets about
1000 data points. Note that the results of Figure 4 are very
close to the ground truth clustering shown in Figure 1.

V. CONCLUSION AND FUTURE DIRECTIONS

It is an interesting direction to explore the tradeoff between
the communication and the approximation factor achieved by
the clustering method. In the k-median algorithm described
above, each compute node returns a set of k-centers to achieve
an approximation factor of about 3. Whereas, in Algorithm 2,
the compute nodes send the coresets of their local data
which can then be combined to construct a global coreset
for the entire data. While, the quality of the obtained centers
improves, it increases the communication cost between the
compute nodes and the coordinator since a coreset would
contain more than %k points.

Another natural question that we are currently exploring
is using data distribution techniques to design distributed
algorithms that are robust to byzantine adversaries.

2578

[1]

[2

—

[4]

[5

=

[6

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data
streams. In Proceedings of the 41st Annual Symposium on Foundations
of Computer Science (FOCS), pages 359-366, 2000.

P. Awasthi, M. F. Balcan, and C. White. General and robust
communication-efficient algorithms for distributed clustering. CoRR,
abs/1703.00830, 2017.

G. Malkomes, M. J. Kusner, W. Chen, K. Q. Weinberger, and B. Mose-
ley. Fast distributed k-center clustering with outliers on massive data. In
Proceedings of the Annual Conference on Neural Information Processing
Systems (NIPS), pages 10631071, 2015.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran.
Speeding up distributed machine learning using codes. IEEE Transac-
tions on Information Theory, 64(3):1514-1529, March 2018.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis. Gradient
coding: Avoiding stragglers in distributed learning. In Proceedings of the
34th International Conference on International Conference on Machine
Learning (ICML), pages 3368-3376, 2017.

S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar. Slow and stale
gradients can win the race: Error-runtime trade-offs in distributed sgd.
In Proc. of the AISTATS, pages 803-812, 2018.

Zachary Charles, Dimitris Papailiopoulos, and Jordan Ellenberg. Ap-
proximate gradient coding via sparse random graphs. arXiv preprint
arXiv:1711.06771, 2017.

C. Karakus, Y. Sun, S. Diggavi, and W. Yin. Straggler mitigation

in distributed optimization through data encoding. In Proceedings of

the 26th International Conference on Neural Information Processing
Systems (NIPS), pages 5440-5448, 2017.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding. In Proceedings of 2018 IEEE International Symposium on
Information Theory (ISIT), pages 2022-2026, June 2018.

S. Dutta, V. Cadambe, and P. Grover. Short-dot: Computing large linear
transforms distributedly using coded short dot products. In Proceedings
of the 26th International Conference on Neural Information Processing
Systems (NIPS), pages 2100-2108, 2016.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data
into tiny data: Constant-size coresets for k-means, pca and projective
clustering. In Proceedings of the Twenty-fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1434-1453, 2013.
Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and
k-median clustering. In Proceedings of the thirty-sixth annual ACM
Symposium on Theory of Computing, pages 291-300. ACM, 2004.
Maria-Florina Balcan, Vandana Kanchanapally, Yingyu Liang, and
David Woodruft. Improved distributed principal component analysis. In
Proceedings of the 27th International Conference on Neural Information
Processing Systems (NIPS), pages 3113-3121, 2014.

Sariel Har-Peled. No, coreset, no cry. In International Conference on
Foundations of Software Technology and Theoretical Computer Science,
pages 324-335. Springer, 2004.

Michael Edwards and Kasturi Varadarajan. No coreset, no cry: Ii. In
International Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 107-115. Springer, 2005.

Gereon Frahling and Christian Sohler. Coresets in dynamic geometric
data streams. In Proceedings of the thirty-seventh annual ACM Sympo-
sium on Theory of Computing, pages 209-217. ACM, 2005.

Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and
k-means clustering. Discrete & Computational Geometry, 37(1):3-19,
2007.

Ke Chen. On coresets for k-median and k-means clustering in metric and
euclidean spaces and their applications. SIAM Journal on Computing,
39(3):923-947, 2009.

Michael Langberg and Leonard J Schulman. Universal e-approximators
for integrals. In Proceedings of the twenty-first annual ACM-SIAM
Symposium on Discrete Algorithms, pages 598-607. SIAM, 2010.

Dan Feldman and Michael Langberg. A unified framework for approxi-
mating and clustering data. In Proceedings of the forty-third annual ACM
Symposium on Theory of Computing, pages 569-578. ACM, 2011.
Kasturi Varadarajan and Xin Xiao. A near-linear algorithm for pro-
jective clustering integer points. In Proceedings of the twenty-third
annual ACM-SIAM Symposium on Discrete Algorithms, pages 1329—
1342. SIAM, 2012.

[22] P. Frinti and O. Virmajoki. Iterative shrinking method for clustering
problems. Pattern Recognition, 39(5):761-765, 2006.

2579

