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Abstract—A connection is established between the system-
theoretic notion of modal observability, and the indices guaran-
teeing robust signal recovery – denseness and restricted isometry.
Insights are derived for grouping signals to ensure guaranteed
recovery of synchrophasor measurements corrupted with sparse
and spurious anomalies. The propositions on signal grouping are
validated on simulated data from a IEEE test system, as well as
field PMU measurements from a US utility.
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I. INTRODUCTION

The blackouts in the Western Electricity Coordinating Coun-
cil (WECC) in July and August 1996, and northeastern United
States in August 2003 were pivotal in underscoring the need
of wide-area monitoring in large power grids. Since then,
major utilities in North America− BPA, PJM, TVA, and NYPA
among others, have invested extensively in expanding their
network of Phasor Measurement Units (PMUs). PMUs are
high fidelity measurement devices capable of reporting GPS-
time-synchronised voltage and current measurements across
wide geographies at rates much higher than conventional
SCADA systems. This has contributed to better visualization
of system transients and has enhanced situational awareness,
especially in terms of monitoring low frequency electrome-
chanical oscillations [1], [2].

However, the reliability of the algorithms used in monitoring
applications is contingent upon the control center receiving
error-free PMU measurements. Missing data values, spurious
outliers, and corruption from channel noise can compromise
the accuracy of these algorithms [3]. Also, as outlined in [4]
and [5], a dedicated intranet-based communication network in
NASPInet architecture is not immune to cyber attack. These
monitoring algorithms therefore, need a data pre-processor to
detect and filter out bad data from PMU streams. Ideally, the
bad data detection and correction can be done using state
estimators at control centers, but this requires full observability
of the system with PMUs and an accurate knowledge of system
topology. In contrast, considering the present scenario with
a limited number of PMUs in most systems, data recovery
from grossly corrupted measurements has been achieved by
several low-rank matrix completion methods [6]–[10] that
exploit spatio-temporal correlation in data streams.

The challenge however is, this requires a careful grouping
of signals (vis-à-vis PMU locations) to ensure correlation and
low-rankness of the measurement window (i.e. data matrix). To
that end, in this paper, we make propositions about grouping
candidate signals with similar modal signature. As we shall
see later, this translates into higher denseness of the subspace
spanned by the measurement window, thereby, enhancing the
chances of exact data recovery under corruption.

Contributions: In this paper, we draw connections between
the signal-theoretic principles of data recovery and system-
theoretic notion of modal observability to make propositions
on signal selection (or grouping) to guarantee exact data recov-
ery under corruption. We make the following contributions−
first, we show that the denseness of a subspace derived from
a measurement window can be bounded by denseness of the
observability submatrix obtained from the small-signal model
corresponding to the poorly-damped modes in the system
(under the weak assumption that other modes are sufficiently
damped in the window and/or sufficiently unobservable). Sec-
ond, we derive insights into grouping of signals to enhance
the denseness of the observability submatrix to meet the
sufficiency condition for guaranteed exact data recovery [11].
Third, we quantify the perturbation in the denseness values
for small variations in the magnitudes of modal observabilities
within a signal group. And finally, we extend these insights
onto recommendations for grouping signals directly from
PMU data eliminating the need for a small-signal model.

The remaining paper is organised as follows. In Section
II we revisit the sparse optimization-based data recovery
approach in [10], and recall the definitions of restricted isom-
etry constant and denseness coefficient, and the sufficiency
conditions on these to guarantee sparse recovery following
this approach. Next, in Section III we present our contributions
described above followed by supporting case studies in Section
V. Concluding remarks are summarised in Section VI.

II. BACKGROUND

A. Small-signal Model and Modal Observability

The linearized state-space model of a power system can be
described as

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) (1)



where, x(t) ∈ <m×1 , y(t) ∈ <n×1, and u(t) ∈ <p×1 are
respectively the vectors of state, output, and input variables
capturing the perturbations from their respective equilibria.

Assuming A is diagonalizable, consider the transformation
P−1x(t) = x̃(t) where, P is the matrix of right eigenvectors
of A. The equations in (1) can then be re-written as,

˙̃x(t) = P−1APx(t) + P−1Bu(t) = Λx̃(t) + B̃u(t)

y(t) = CPx̃(t) = Ψx̃(t)
(2)

where, Λ ∈ <m×m is the diagonal matrix of the eigenvalues of
A. Henceforth, in this paper, we shall refer to each complex-
conjugate eigenvalue pair of Λ as a mode, and Ψ ∈ <n×m as
the matrix of relative modal observabilities [12] mapping the
extent to which each mode is visible in the output variables.

B. Signal Corruption and Robust Recovery
Next, owing to corruption, let the measurements received at

the control center be different from y(t). We model this as

z(t) = y(t) + e(t) (3)

where, e(t) is the vector of additive signal corruptions. We
assume that the corruptions are limited to only a fraction of
all signals, and therefore, e(t) is a sparse vector with most
entries as zeros.

In this paper, we shall use robust principal component analy-
sis (R-PCA)-based anomaly correction approach from [10] for
recovering the actual measurements from the corrupted obser-
vations z(t). Building on the theory of compressive sensing
[13]–[15], the algorithm in [10] solves a sparse optimization
problem to estimate the signal corruption ê(t), which can then
be subtracted from z(t) to recover ŷ(t). Henceforth, we shall
refer to ŷ(t) as the recovered signal vector at time t. The
recovery framework is summarised below.

First, define a window Y of previously recovered samples
till the latest instant as shown below,

Y =
[

ŷ(t−Nτ) . . . ŷ(t− τ)
]

(4)
where, τ is the reporting interval between two successive PMU
samples. Then, perform singular value decomposition on Y
to extract the singular vectors corresponding to r−dominant
singular values, as follows, Y = ÛΣ̂V̂H . Superscript H
denotes Hermitian of a matrix.

Next, project z(t) onto the space orthogonal to the span of
Û as shown,

γ(t) = Φz(t) = Φ(y(t) + e(t)) = Φe(t) + ν(t) (5)
where, Φ = I−ÛÛH . Ideally, y(t) belongs to the span of Û,
and therefore, the projection ensures that the contribution of
y(t) is nullified. However, due to inherent nonlinearities in the
signals and because of truncating Y to r−dominant singular
values we have a small non-zero term ν(t) in eqn. (5).

Finally, the estimated corruption vector ê(t) is obtained as
the solution of the sparse optimization problem below,

min
e(t)

∥∥e(t)
∥∥

1
s.t.

∥∥γ(t)−Φe(t)
∥∥

2
≤ η (6)

where η is a small thresholding term. The signal can then be
recovered as, ŷ(t) = z(t)− ê(t).

C. Denseness and Guarantees for Exact Signal Recovery

The l1−norm minimization in eqn. (6) is a convex relaxation
of the original non-convex l0−norm minimization that maxi-
mizes the sparsity of ê(t). The l0−norm minimization is NP-
hard, the l1−relaxation on the other hand ensures a solution
in polynomial time. But the l1−minimization is not always
guaranteed to be sparse, implying that, the solution from eqn.
(6) may not be an accurate estimate of corruption. It is shown
in [13] that a sufficiency condition for guaranteeing exact
recovery of signals with s−sparse corruptions (i.e. ensuring
equivalence of l0 and l1−minimizations) is to ensure that
the s−restricted isometry constant δs(Φ) is below a desired
threshold. Cai et-al in [11] established this threshold to be
0.307, which will be considered in this paper.

One way to interpret the restricted isometry constant δs(Φ)
is in terms of denseness κs(Û) of the subspace spanned by
the singular vectors in Û. Denseness coefficient κs [16] for
any matrix Y is defined as,

κs(Y) = κs(range(Y)) = max
|T |≤s

∥∥∥(IT )H basis(Y)
∥∥∥

2
(7)

Maximum value that κs can attain is 1. Lower the value of
κs, higher is the denseness of the range space.

As derived in [16], for a basis matrix Û,

δs(Φ) = δs(I− ÛÛH) = κs(Û)2 (8)

Therefore, attaining the sufficiency condition

δs(Φ) < 0.307 =⇒ κs(Y) = κs(Û) < 0.554 = κ∗ (9)

For different choices of signals− both the size of the set and
the individual constituents, the singular vectors spanning Y
would change, and so would the denseness coefficient κs(Y).
Thus motivated, we develop analytical insights on to grouping
signals to reduce κs(Y) below κ∗, where possible.

III. SIGNAL GROUPING: INSIGHTS & RECOMMENDATIONS

Lemma 1. κs(Y) ≤ κs(Ψ) = max|T |≤s
∥∥(IT )H ΨΨ†

∥∥
2

Proof. Referring to eqns. (2) and (4),

Y = Ψ
[

x̃(t−Nτ) . . . x̃(t− τ)
] ∆

= ΨX̃ (10)

Therefore, range(Y) ⊆ range(Ψ) =⇒ κs(Y) ≤ κs(Ψ).
Equality is attained when X̃ is full row rank.

Next, let ÛΨ be the matrix of singular vectors spanning the
range of Ψ. Therefore, following the definition of denseness

κs(Ψ) = max
|T |≤s

∥∥∥(IT )H ÛΨ

∥∥∥
2

= max
|T |≤s

∥∥∥(IT )H ÛΨÛH
Ψ

∥∥∥
2

(11)
Moreover, the range-spaces of ÛΨ and Ψ being same, the

orthogonal projection matrices onto this space can be equated
as follows ÛΨÛH

Ψ = ΨΨ†, where Ψ† = (ΨHΨ)−1ΨH .
Substituting this in eqn.(11) we get,

κs(Ψ) = max
|T |≤s

∥∥∥(IT )H ÛΨÛH
Ψ

∥∥∥
2

= max
|T |≤s

∥∥∥(IT )H ΨΨ†
∥∥∥

2



Corollary: Consider a data window Y exhibiting oscillatory
response due to k poorly-damped modes. Under the weak
assumption that the rest of the modes are sufficiently damped
and/or sufficiently unobservable in the data window, we can
write κs(Y) ≤ κs(Ψ̂) where, Ψ̂ =

[
Ψ̂1 Ψ̂2 · · · Ψ̂k

]
is the submatrix of Ψ containing the complex conjugate
column-pairs corresponding to the poorly-damped modes of
interest, implying each Ψ̂j =

[
ψψψj ψψψj

]
for j = 1, 2, . . . , k.

It can be shown that, for a r−rank Ψ̂, the minimum value
that κ1(Ψ̂) can achieve is

√
r
n . Therefore, the minimum value

of κ1(Ψ̂) is achieved when signals are selected in way such
that corresponding Ψ̂ has rank 1. To that end, we present
lemmas 2 and 3 for a unimodal case.

Lemma 2. For a unimodal case, if the complex entries in ψψψ1

have same phase angle then, rank(Ψ̂) is 1.

Proof. Let ψψψ1 =
[
|ψ11| θ . . . |ψ1i| θ . . . |ψ1n| θ

]T
and

therefore, ψψψ1 =
[
|ψ11| −θ . . . |ψ1i| −θ . . . |ψ1n| −θ

]T
.

Next, we perform Gram-Schmidt orthonormalization to find
the bases spanning the columns of Ψ̂1. Let the orthonormal
bases be û1 and û2, such that, û1 = u1

‖u1‖2
= ψψψ1

‖ψψψ1‖2
, and

û2 = u2

‖u2‖2
where, u2 = ψψψ1 −

〈ψψψ1,ψψψ1〉
〈ψψψ1,ψψψ1〉ψψψ1. Since 〈ψψψ1,ψψψ1〉 =

‖ψψψ1‖22 −2θ, we can express any ith entry of u2 as,

u2i = |ψ1i| −θ −
‖ψψψ1‖22 −2θ

‖ψψψ1‖22
|ψ1i| θ = 0 (12)

This implies û2 = 0, and therefore, rank(Ψ̂) is 1.
Corollary: The rank 1 property ensures that κ1(Ψ̂) = κ1(ψψψ1).
This simplifies the problem as the analysis now reduces to
calculating the denseness of a column vector.

Lemma 3. For a unimodal case, the minimum value of κ1(Ψ̂)
is attained when signals are selected from a coherent group
with minimum variance in the magnitudes of relative modal
observabilities.

Proof. Signals selected from a single coherent group oscillate
in unison, and hence, it can be inferred that their modal
observabilities have same phase. Therefore, following Lemma
2, rank(Ψ̂) is 1.

Next, let {e1, . . . ei, . . . en} be the set of standard basis
vectors. The denseness κ1 can then be calculated as,

κ1(Ψ̂) = max
i

∥∥∥eHi basis(Ψ̂)
∥∥∥

2
= max

i

∥∥∥eHi û1

∥∥∥
2

=‖û1‖∞

=
‖ψψψ1‖∞
‖ψψψ1‖2

=
|ψ1i|max√∑n
i=1 |ψ1i|2

≥ 1√
n

(13)
The minimum value 1√

n
is attained when |ψ1i| s are equal.

However, this being too ideal a scenario, we next investigate
how the denseness coefficient κ1 changes with variation in the
magnitudes of modal observabilities, especially in for of an
large magnitude outlier in the observability vector.

For this, we divide the signal set into two groups− (1)
the signal with index imax having the highest magnitude of

observability |ψ1i|max, and (2) the remaining n − 1 signals
with observability magnitudes |ψ1i|-s dispersed with mean µ
and standard deviation σ. Since |ψ1i|max ≥ |ψ1i| ∀ i, it can
be expressed as |ψ1i|max = µ + ρσ for some ρ ≥ 1. The
parameter ρ controls the extent to which the signal with the
highest observability magnitude deviates from the remaining.

Therefore,
n∑
i=1

|ψ1i|2 = |ψ1i|2max +
n∑

i=1, i 6=imax

|ψ1i|2

= (µ+ ρσ)2 + (n− 1)(µ2 + σ2)
(14)

Substituting this in (13), κ1(Ψ̂) =
1√

1 + (n−1)(µ2+σ2)
(µ+ρσ)2

(15)
Eqn. (15) shows that κ1(Ψ̂) is a decreasing function of n, and
an increasing function of ρ. Therefore, a signal with very large
|ψ1i| compared to the rest (i.e. large ρ), although attractive for
oscillation monitoring, might increase κ1(Ψ̂) undesirably.

Recommendations: Based on Lemmas 1 − 3, for a domi-
nantly unimodal scenario, the following recommendations for
signal grouping are made to ensure κ1(Y) < κ∗ : (a) variation
in magnitudes and angles of modal observabilities should be
minimized, (b) large outliers with high observability should
be avoided, and (c) while adhering to (a) and (b), the number
of signals in the group should be increased where possible.

Next, considering the recommendations above, let signals
be grouped with variance in |ψ1i| minimized, such that we
can assume µ

σ >> 1 and ρ in the neighborhood of 1. Under
these conditions, we can approximate eqn. (15) as follows.

κ1(Ψ̂) = κ1(ψψψ1) =
ρ+ µ

σ√
(ρ+ µ

σ )2 + (n− 1)(1 + µ2

σ2 )

≈
ρ+ µ

σ√
nµσ

=
1√
n

(
1 +

ρσ

µ

) (16)

Eqn. (16) shows that for sets sufficiently dense, κ1 increases
linearly with ρ and σ from its minimum (and ideal) value 1√

n
.

Remarks: Building on the notion that a signal with multiple
modes can be decomposed into its constituent frequencies,
the recommendations above can be extended for enhancing
denseness for each mode, to ensure overall signal denseness.

IV. CASE STUDIES

A. Case I: Grouping Signals based on Small-Signal Model

We consider Kundur’s 2−area 4−machine system [12] with
slight modification as shown in Fig 1. The system exhibits
a poorly-damped 0.63-Hz inter-area mode under nominal
condition. In this study, we consider two groups of voltage
angle signals, with their relative modal observabilities listed
in Tables I and II.

G1 G3

G4G2

TCSC

1

2

3

4

5

6
7 8 9

10
11

Fig. 1: 2−area 4−machine test system with TCSC



TABLE I: SIGNALS AND RELATIVE MODAL OBSERVABILITIES

signals θ1 − θ3 θ4 − θ3 θ10 − θ3 θ11 − θ3
|ψ1i| 9.462 1.085 1.611 0.635
∠ψ1i ∠−84.32◦ ∠−84.16◦ ∠−84.26◦ ∠−84.18◦

TABLE II: SIGNALS AND RELATIVE MODAL OBSERVABILITIES

signals θ1 − θ3 θ2 − θ3 θ5 − θ3 θ6 − θ3
|ψ1i| 9.462 8.588 8.951 8.079
∠ψ1i ∠−84.32◦ ∠−84.36◦ ∠−84.35◦ ∠−84.39◦

As seen from Tables I and II, the signals are grouped
considering ψ1i-s in same phase. However, for the group in
Table I there is a large variation in |ψ1i|-s, with signal θ1−θ3

clearly an outlier. As expected from our deductions in Section
III, this leads to poor denseness: κ1(Y) = 0.975 > κ∗.
Therefore, when signal ∆(θ1 − θ3) is corrupted by injecting
a signal component with negative damping, recovery is not
guaranteed. As seen in Fig. 2 (a) the reconstructed signal traces
the corruption.

In contrast, for the signal group in Table II, κ1(Y) =
0.538 < κ∗. This guarantees exact recovery of ∆(θ1 − θ3),
as is evident from the plots in Fig. 2 (b). Also, the linear
approximation derived in eqn. (16), 1√

n

(
1+ ρσ

µ

)
= 0.553 gives

a reasonable estimate of κ1(Y) in guaranteeing recovery.

Fig. 2: Recovery of ∆(θ1 − θ3) for signal groupings in Tables I and II

B. Case II: Grouping Signals from Field PMU Measurements

We consider detrended bus voltage magnitude signals |V1|
to |V40|, from 40 different PMU locations in New York Power
Authority (NYPA). Denseness calculation on the entire data set
yields κ1(Y) = 0.549, just enough to guarantee recovery of 1
in 40 signals. This ratio being abysmally low, our objective is
to selectively group signals from this set using our proposed
recommendations to improve corruption resilience.

We consider a 50 s window of archived data (assume previ-
ously recovered, and therefore, trusted) and perform spectral
decomposition on each of the 40 signals. We observe two
frequencies within the signal set− 0.25 Hz and 0.06 Hz. Next,
with |V1| as reference we compute the output-to-output transfer
function, and the relative modeshapes for all 40 signals at the
mentioned frequencies− 0.25 Hz and 0.06 Hz, as described
in [17]. Since the output-to-output transfer functions were
computed with respect to a fixed reference, modeshapes thus
obtained are equivalent to relative modal observabilities. Next,
going by our propositions, we group signals having similar
phase and magnitude of relative modal observabilities for each
of the two frequency components. To do so, we use k−means
clustering [18] on the signal set using the 2× 1 feature vector
of complex-valued relative observabilites.

TABLE III: SIGNAL SETS I AND II

signal set I |V6|, |V15|, |V19|, |V20|, |V21|, |V26|, |V27|, |V28|
signal set II |V4|, |V7|, |V11|, |V13|, |V16|, |V17|, |V22|, |V24|

Two such clusters− signal sets I and II, obtained for k = 10
are listed in Table III. Figures 3 (a) and 4 (a) show the time-
domain plots of all 8 signals in each cluster, along with power
spectral density (PSD) plots of one representative signal from
each cluster in Figs 3 (b) and 4 (b). Clearly, signals in set I
exhibit unimodal oscillations of 0.25 Hz, while those in set II
indicate presence of both 0.25 Hz and 0.06 Hz oscillations.

TABLE IV: DENSENESS VALUES FOR SIGNAL SETS I AND II

groups κ1(Y) κ1(Ψ̂) κ2(Y) κ2(Ψ̂)

signal set I 0.3806 0.4109 0.5382 0.5530

signal set II 0.3752 0.3804 0.5275 0.5363

The denseness coefficients1 κ1 and κ2 corresponding to
1−sparse and 2−sparse recoveries for these signal sets are
listed in Table IV. It can be seen that for both the signal
sets, κ2(Y) < κ2(Ψ̂). This validates our claim in lemma 1.
Further, in both cases, κ2(Ψ̂) < κ∗, which guarantees exact
recovery upto 2 of 8 signals in each group. This is a significant
improvement from 1 in 40.

Fig. 3: Plots for (a) signal set I with (b) PSD, and (c)-(d) 2−sparse recovery

Table V shows the denseness coefficients2 of set II for each
constituent frequency component, obtained corresponding to
each complex-conjugate column pair Ψ̂j of Ψ =

[
Ψ̂1Ψ̂2

]
.

As is seen, for each frequency component, the sufficiency

TABLE V: SET II: FREQUENCY-WISE DENSENESS2 AND BOUNDS

freq. κ1(Ψ̂i)
1√
n

(
1 + ρiσi

µi

)
κ2(Ψ̂i)

√
2
n

(
1 + ρiσi

µi

)
0.25 Hz 0.3794 0.3842 0.5259 0.5433

0.06 Hz 0.3884 0.3953 0.5438 0.5590
1 computed on singular vectors capturing 95% or more variance in data
2 Ideally, κs(Ψ̂) ≥ κs(Ψ̂j) ∀ j ≤ k, when computed on all k singular
vectors. Here, mode-wise variance minimization results in 1st singular

vector capturing 97% variance. κs(Ψ̂) thus computed, appears slightly
less than some κs(Ψ̂j)-s due to numerical approximations in truncation.



condition for 2−sparse recovery is attained. Moreover, it is
seen that the bound on κ1 derived in Section III, and extended
to κ2 using the identity κs <

√
sκ1 [16], is sufficiently tight.

Fig. 4: Plots for (a) signal set II with (b) PSD, and (c)-(d) 2−sparse recovery

To validate our claim on resilience, we next corrupt signals
|V6| and |V27| from set I, and |V7| and |V22| from set II. In
signals |V6| and |V7|, we inject an additive signal component
with negative damping, while in signals |V22| and |V27| we
replace the actual signal value with random spurious outliers.
Corruption is introduced in 200 consecutive samples starting
at t = 68 s, as shown in Figs 3 (c)-(d) and 4 (c)-(d). Recovery
is performed independently for each set with subspace derived
from its constituent signals. It can be observed that the
recovery is exact as the reconstructed signal tracks the original.

Further, to underscore the importance of our propositions
in grouping signals, we arbitrarily form signal set III taking 4
signals each from from sets I and II, as shown in Table VI. As
before, we corrupt signals |V7| and |V22|. For this group, the
denseness values obtained are: κ1(Y) = 0.709 and κ2(Y) =
0.995, each of which is greater than κ∗. Therefore, recovery of
signals is not guaranteed. This is evident from the erroneous
reconstruction plots in Figs. 5 (a)-(b).

TABLE VI: SIGNAL SET III

signal set III |V15|, |V20|, |V21|, |V27|, |V4|, |V11|, |V17|, |V22|

Fig. 5: Incorrect recovery of 2 corrupted signals from signal set III.

V. CONCLUSION

Insights were derived and recommendations were made
for grouping signals to enhance denseness of a set – both
considering availability of small-signal model, and in absence

thereof. It was shown that denseness of a set increased when
signals were grouped with observabilities in same phase and
variation in magnitudes minimized, for each poorly-damped
mode. Further, it was shown that for a signal set sufficiently
dense, the denseness coefficient increased linearly with in-
crease in relative magnitude of the largest observability.
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