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ABSTRACT 
 
Thermal comfort is a significant factor in the indoor building environment because it influences 
both human productivity and health. A currently popular method for predicting thermal comfort 
levels, the Predicted Mean Vote (PMV) and Predicted Percent Dissatisfied (PPD) model, 
unfortunately, has certain limitations. Consequently, the development of a better method for 
making accurate predictions (especially for individuals) is needed. Our goal was to develop a 
tool to predict individual thermal comfort preferences and automatically control the heating, 
ventilation, and air conditioning (HVAC) systems. This study adopted a series of human-
subject experiments to collect essential data.  
 
All collected data was analyzed by adopting different machine learning algorithms. The 
machine learning algorithms predicted individual thermal comfort levels and thermal 
sensations, based on facial skin temperatures of participants in the experiments. These 
predictions were input data for the HVAC system control model, and results supported the 
potential for using facial skin temperatures to predict thermal comfort and thermal sensation 
levels. Moreover, this tool provided automatic control of the HVAC systems that can help 
improve the indoor environment of a building. 
 
INTRODUCTION 
 
Although thermal comfort is a significant factor in an indoor building environment, the topic  
has not received sufficient attention because energy savings have previously been considered 
more important (Kubba 2012) Recent developments in architecture and systems design have 
made the reduction of energy consumption possible, and more attention has been directed 
toward the indoor environment. (Homod et al. 2012)The popular method for thermal comfort 
control is the PMV-PPD model, but that model has obvious limitations in making thermal 
comfort predictions (De Dear et al. 2013). First, it does not consider the changes in indoor 
environment that follow any change in the outdoor environment, but simply regards the indoor 
environment as stable. Another limitation of the PMV-PPD model is that it only includes the 
environmental parameters except clothing and metabolic rate (ASHRAE 2010). By ignoring 
personal parameters, such as body mass index, gender, age, and regional differences, the 
predictions are not as accurate. An accurate prediction for individual thermal comfort is 
necessary for improving the indoor environment and the productivity of its occupants. Our goal 
was to develop a prediction model for individual thermal comfort that could contribute to 
improvement of the indoor environment. The main prediction parameter was facial skin 
temperature, and the first objective was to investigate the relationship between facial skin 
temperature and thermal comfort. Moreover, an exploration of the influence of air temperature 



on thermal comfort was necessary in order to promote adjustment to a building’s indoor 
environment. Thus, the objective of this research was to develop a machine learning model that 
could be authenticated as a viable prediction process. 
 
METHODS 
 
There were four stages in this research: data collection experiments, data analysis, prediction 
model validation, and prediction model application. The experiments were conducted in an 
environmental chamber located in the basement of Watt Hall at the University of Southern 
California. (Fig.1) The experiment thermal environment was controlled by an independent 
heating and cooling system. Data collection was divided into two parts. The first one is for 
environment data collection, the second one is for human parameters collection. Sensors were 
used to collect facial skin temperature, air temperature, heart rate, and carbon dioxide level data. 
Meanwhile, the thermal comfort and thermal sensation levels were collected by survey. 
 

 
Figure 1. Environment chamber 

 
The subjects in the experiments were volunteers recruited at the University of Southern 
California through the website. The plan was to test 20 subjects. In the early stage of the 
research, 5 subjects’ experiment finished in the environment chamber. All of them are graduate 
students and the age range was narrow. The average age is 24. And there were 3 females and 2 
males. They were required to wear long pants and short shirts to maintain the same clothing 
insulation rate. The experiment, that was divided into six temperature settings (Fig.2), lasted 
for 2 hours. To improve the accuracy of the experiments, the first 15 minutes were “adaption 
time” for the subjects. During that period, the subjects completed the first part of a survey, while 
wearing devices (Fig.3). The adaption time was meaningful to the subjects as it helped acquaint 
them with the experiment environment and become familiar with the experimental process. The 
first thermal comfort survey was given following the adaption time, and at the end of each 
temperature setting (each lasted for 15 minutes). The temperature changes in the experiment 
ranged from 20 ℃ to 32 ℃. The temperature changing steps ranged from 2 ℃ to 4 ℃. Moreover, 
temperature changes were randomly controlled, rather than having sequential changes, in order 
to identify the relation between facial skin temperature and the thermal comfort level in a static 
rather than a dynamic condition. 
 



 
Figure 2. Experimental process 

 

 
Figure 3. A subject in the experiment 

 
Machine learning technology is a tool to achieve the automatic control of HVAC systems. The 
basic logic of the thermal comfort prediction is a classification model based on the data 
characteristics and tasks of the model. There were four classification algorithms chosen for this 
research: decision tree, logistic regression, random forest, and gradient boosting. The data 
collection software was Labview and the data analysis software was Python. 
 
RESULTS 
 
The data was collected every 5 seconds in the experiment. Nearly 1,000 data sets were collected 
for each subject during the experiment, and during the pre-processing step, data sets collected 
during an unstable indoor air temperature period were eliminated. The data for subject A were 
taken as an example of the data analysis process. Different facial points had different skin 
temperatures (Fig.4), with the forehead having the highest temperature and the cheek having 
the lowest temperature.  



 
Figure 4. Facial skin temperature range  

 
Air temperature was an important factor in thermal comfort evaluation (Metzmacher et al. 2018). 
The facial skin temperature had almost the same changing pattern as the air temperature which 
was measured at 1.1 meters. (Fig.5) 
 

 
Figure 5. Facial Skin Temperature and Air Temperature Changing Patterns 

 
The data analysis platform was Python. The basic prediction step divided the data set into two 
parts, with 75% of the data being used for training the machine learning algorithm and 25% of 
the data being used for testing the performance of the algorithm. The first step defined the 
importance of different facial parts in the thermal comfort and thermal sensation prediction. 
(Fig.6) The algorithm was Gradient Boosting. Feature importance represented the impact of 
different facial parts on the accuracy of predictions. Cheek right is the most important facial 
point for both thermal comfort and thermal sensation predictions. 
 
 



 
Figure 6. Feature importance of thermal comfort and thermal sensation prediction 

 
To obtain a better analysis of the evaluations of thermal conditions, Decision Tree, Logistic 
Regression, Random Forest, and Gradient Boosting were compared in the analysis process 
(Fig.7). The input features were facial skin temperature, right cheek, left cheek, right side of 
forehead, left side of forehead, and chin. The output features were thermal comfort and thermal 
sensations. The output features were divided into three classes. For the thermal comfort 
prediction, the outputs were -1 (uncomfortable), 0 (neutral), 1 (comfortable). The outputs of the 
thermal sensation predictions were -1 (cold), 0 (neutral), 1 (comfortable). All algorithms had 
good prediction accuracy for the thermal sensation. For the thermal comfort prediction, the 
Logistic Regression did not perform well with an accuracy of only 78.1%. Others had good 
prediction accuracy up to 90%. The Random Forest classification model had the best 
performance for both predictions. 
 

 
Figure 7. Thermal comfort and thermal sensation prediction accuracy 

 
The thermal perceptions varied from different people. Each subject had an independent 
prediction model, and the analyzed process was the same with subject A. The data of five 
subjects were summarized. (Fig.8 and Fig.9) Random Forest was the best algorithm for subject 
A and subject B, while Gradient Boosting was the best algorithm for subject C and subject D. 



When the appropriate algorithm was chosen, the prediction accuracy for both thermal comfort 
and thermal sensation for each subject could be more than 90%. 
 

 
Figure 8 Thermal sensation prediction accuracy 

 

 
Figure 9. Thermal comfort prediction accuracy 

 
DISCUSSION 
 
The research used machine learning algorithm made predictions for thermal sensation and 
thermal comfort by using facial skin temperatures. Results showed various prediction accuracy 
and different suitable algorithms because the thermal condition preferences of individuals were 
different. The data-driven approach performed well on thermal condition predictions. It was 
necessary to select a suitable algorithm to help ensure accurate predictions. Individual facial 
parts played a variety of roles in the prediction process, illustrating the future potential for the 
application of prediction models. Moreover, the reasonable prediction accuracy obtained 
supports the possibility for automatic HVAC control systems based on facial skin temperatures.  
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CONCLUSION 
 
The machine learning model is a good strategy for a HVAC control system. Facial skin 
temperatures can accurately portray thermal conditions, but thermal preferences vary for 
different individuals. Various facial parts have different skin temperatures even when the 
thermal conditions are the same. Based on results of our, the Random Forest and Gradient 
Boosting machine learning algorithms are suitable for predictions concerning thermal comfort 
and thermal sensations. The overall prediction accuracy ranged from 86.6% to 100%. However, 
there are limitations to this research. On the one hand, the accuracy for the surface sensor 
limited prediction accuracy and reliability. On the other hand, the data from validation 
experiments are necessary for the machine learning model.  
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