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Abstract

We note the significance of hypergraphic planted clique (HPC) detection in the investigation
of computational hardness for a range of tensor problems. We ask if more evidence for the
computational hardness of HPC detection can be developed. In particular, we conjecture
if it is possible to establish the equivalence of the computational hardness between HPC
and PC detection.

1. Introduction

The analysis of tensors has emerged as an active topic in recent years. Numerous datasets
in the form of tensors emerge in various applications, such as collaborative filtering, neu-
roimaging analysis, hyperspectral imaging. In addition, tensor methods have been applied
to many machine learning problems where the observations are not necessarily tensors, such
as additive index models, high-order interaction pursuit, topic and latent variable mod-
els (Anandkumar et al., 2014). Compared with the inference for vectors or matrices, the
tensor problems often possess distinct characteristics that bring significant computational
challenges. As pointed out by the seminal work of Hillar and Lim (2013), extensions of
many matrix concepts such as operator norm, singular values and eigenvalues are possible
but computationally NP-hard. There often exist intrinsic gaps between the computational
barriers and statistical limits in many tensor problems, as observed in tensor completion
(Barak and Moitra, 2016), tensor PCA (Richard and Montanari, 2014; Hopkins et al., 2015;
Wein et al., 2019; Zhang and Xia, 2018; Lesieur et al., 2017; Brennan and Bresler, 2020),
high-order clustering (Luo and Zhang, 2020), etc. The analysis of computational barriers
has attracted enormous attention because of its crucial role in the understanding of the
computational feasibility of a wide range of tensor problems.

In the past decades, several lines of works have been devoted to the analysis of compu-
tational complexity in high-dimensional matrix problems. Such works include the average-
case reduction (Berthet and Rigollet, 2013), analysis of restricted model of computation
(e.g., statistical query Kearns (1998)), analysis of algorithms such as sum-of-squares, belief
propagation, approximate message passing, and analysis of optimization landscape. In par-
ticular, the average-case reduction requires randomized polynomial-time reduction from the
conjectured hard problem in distribution to the target problem up to the conjectured com-
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putational barrier (Brennan et al., 2018). Once the average-case reduction is established,
all hardness results of the conjectured hard problem can be automatically inherited to the
target problem. This provides a one-shot solution to the hardness of the target problem.

It would be ideal to use the same logic and establish the computational barriers for vari-
ous tensor problems rigorously by average-case reduction from commonly raised conjectures,
such as the planted clique (PC) detection or Boolean satisfiability problem (SAT), to the
target tensor problem so that all of the hardness results of these well-studied conjectures
could be naturally inherited. However, this route is often complicated by the multiway
structure of the tensor. To overcome this, an alternative way of average-case reduction from
hypergraphic planted clique (HPC) has been proposed in Zhang and Xia (2018); Luo and
Zhang (2020). HPC has a more natural tensor structure that enables a more straightforward
average-case reduction. A better understanding of the computational hardness relationship
between PC detection and HPC detection can make a significant contribution to our knowl-
edge of the average-case complexity in various tensor problems.

2. Planted Clique Detection and Hypergraphic Planted Clique Detection

A d-hypergraph can be seen as an order-d extension of regular graph. In a d-hypergraph
G = (V(Q), E(Q@)), each hyperedge e € E includes an unordered group of d different vertices
in V. Define G4(N,1/2) as the Erdés-Rényi d-hypergraph with N vertices, where each
hyperedge (i1,...,1q) is independently included in E with probability 1/2. Given a d-
hypergraph G, define its adjacency tensor A = A(G) € ({0, 1}V)®? as

) 1 if (i, ... ia) € B
[i1,id] 0, otherwise.

We define G4(N, 1/2, k) as the hypergraphic planted clique (HPC) model with the clique size
k. To generate G ~ Gy4(N,1/2, k), we sample a random hypergraph from G4(N, 1/2), pick
k vertices uniformly at random from [N], denote them as K, and connect all hyperedges
e if all vertices of e are in K. The hypergraphic planted clique detection (HPC) can be
formulated as the following hypothesis testing problem:

Hg:G~Qd(N,1/2) V.S. H1:G~gd(N,1/2,f<;). (1)
We say a test ¢ solves the HPC detection if lim supy_, ., P, (¢(A) = 1) +Px, (¢(A) =0) =
0, i.e., the sum of type-I, II errors converges to zero.

When d = 2, HPC detection reduces to the well-regard planted clique (PC) detection
problem. The PC detection is statistically solvable if kK > (2 + €)logy N for € > 0 by
searching over all subgraphs of size (2 + €) logy N (Bollobas and Erdés, 1976). However, the
best known polynomial-time algorithm requires x = Q(\/N ) (Dekel et al., 2014; Deshpande
and Montanari, 2015a). It has been widely conjectured that no polynomial-time algorithm
can solve the PC detection when x = o(v/N). This conjecture has been strengthened in
various types of computational models (Jerrum, 1992; Hopkins, 2018; Feldman et al., 2017;
Deshpande and Montanari, 2015b; Meka et al., 2015; Barak et al., 2019; Gamarnik and Zadik,
2019). As a result, the hardness conjecture of PC detection has become a key assumption
in obtaining computational lower bounds for many problems, such as sparse PCA (Berthet
and Rigollet, 2013; Wang et al., 2016), submatrix detection (Ma and Wu, 2015), community
detection (Hajek et al., 2015), etc.
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Compared to PC detection, HPC detection (d > 3) has received far less attention in
literature. Bollobas and Erdds (1976) proved that K¢/ (d! logQ(N))l/(dfl) 31 K¢ s
the size of the largest fully connected subgraph in G ~ G4(N,1/2), which implies the HPC
detection problem can be solved by exhaustive search in super-polynomial time when x >
((d! + €) logy(N )@Y for any e > 0. Zhang and Xia (2018) observed that applying SVD
on the matricization/unfolding of \A solves HPC detection efficiently if x = Q(v/N) but
fails when k = N'/2=¢ for any e > 0. Then they made a version of the following conjecture
indicating that x = Q(+/N) is essential for solving HPC detection in polynomial time.

Conjecture 1 (HPC detection) Suppose d =2 is a fived integer. If
lim sup log /{/logx/ﬁ <1l—7 foranyt >0,
N—o0
for any sequence of polynomial-time tests {¢p}n : G — {0, 1}, liminfn_,o0 Prr, (4(G) = 1) +
Piy, (6(G) = 0) > 172

Recently, Luo and Zhang (2020) provides evidence for HPC detection conjecture by showing
that Metropolis algorithms (Jerrum, 1992) and low-degree polynomial algorithms (Hopkins,

2018) can not solve the problem in polynomial-time when x = O(N%_T) for any 7 > 0.

3. How hard is HPC detection?

We raise the following challenges on the average-case computational hardness of HPC de-
tection.

Challenge 1 Can we establish the sharp limit of k to guarantee that HPC' can be solved by
SVD on the matricization/unfolding of A? Is it possible to develop another polynomial-time
algorithm for HPC that works below this limit?

Such results for PC detection can be implied by Knowles and Yin (2013) and Deshpande
and Montanari (2015a).

Challenge 2 Can we provide more evidence for HPC detection conjecture under more
classes of algorithms, such as statistical query (SQ), sum-of-squares (SOS), belief propa-
gation (BP), approzimate message passing (AMP), etc, in addition to the evidence in Luo
and Zhang (2020)?

Challenge 3 At the threshold level of k = O(N1/2*T) for T > 0, what is relationship between
HPC detection and PC detection in their computational hardness?

First, HPC detection is no harder than PC detection. Given the adjacency tensor A of
hypergraph G, by fixing (d — 2) indices and varying the remaining two, we get an adjacency
matrix A from A which is a PC detection problem. So we can do a randomized polynomial-
time reduction from HPC detection to PC detection without changing the planted clique
size K.

Now Challenge 3 becomes, how easier is HPC detection compared to PC detection? A
one-shot approach to tackle this challenge is to do randomized polynomial-time reduction
from PC to HPC. But this seems to be a very difficult task, upon which we have made several
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failed attempts. If reduction from PC to HPC could be proved, we would be able to arrive
at the conclusion that PC and HPC detection are equivalently hard and all hardness results
established in PC detection can be applied to HPC. The resulting connection between PC
and HPC would enable solutions to a huge class of tensor computational hardness problems
through existing matrix arguments. Such a connection can also provide solid evidence for
the computational hardness assumptions of generalized planted clique problems proposed in
(Brennan and Bresler, 2020), based on which we can establish various computational lower
bounds more easily.
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