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SUPERSINGULAR CURVES WITH SMALL NON-INTEGER
ENDOMORPHISMS

JONATHAN LOVE AND DAN BONEH

ABSTRACT. We introduce a special class of supersingular curves over ]sz , char-
acterized by the existence of non-integer endomorphisms of small degree. A
number of properties of this set is proved. Most notably, we show that when
this set partitions into subsets in such a way that curves within each subset
have small-degree isogenies between them, but curves in distinct subsets have
no small-degree isogenies between them. Despite this, we show that isogenies
between these curves can be computed efficiently, giving a technique for com-
puting isogenies between certain prescribed curves that cannot be reasonably
connected by searching on ¢-isogeny graphs.

1. INTRODUCTION

Given an elliptic curve E over a field F, let End(E) denote the ring of endomor-
phisms of E that are defined over F. The curve E is supersingular if End(E)
is non-abelian; this can only occur if E is defined over F,2 for some prime p [25,
Theorem V.3.1]. While the set of all supersingular curves can be quite complicated,
in this paper we define collections of supersingular curves which are relatively easy
to compute with and to classify.

Definition 1.1. Given M < p, an elliptic curve E over a finite field of charac-
teristic p is M-small (we also say that the j-invariant of E is M-small) if there
exists a € End(E) with dega < M such that o is not multiplication by an integer.
The set of M-small j-invariants of supersingular curves over IF,2 is denoted Sy
(with the prime p being assumed from context).

An M-small curve may be ordinary or supersingular. This paper will focus primarily
on the set of M-small supersingular curves, though some results will hold for any
M-small elliptic curve. Assuming for the rest of this paper that p > 5, a few notable
properties that will be discussed are as follows:

(a) The set of all M-small curves in characteristic p can be generated by finding
roots of Hilbert class polynomials for orders of discriminant O(M) (Propo-
sition 2.3).

(b) If M < g, the set Sy of M-small supersingular curves partitions into
O(M) subsets, each connected by small-degree isogenies, such that there is

no isogeny of degree less than % between distinct subsets (Theorem 1.3).
(¢) The endomorphism rings of M-small supersingular curves, and isogenies
between any two of them, can heuristically be computed in time polynomial

in M and logp (Section 7).
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A number of other properties are discussed in an appendix:

(d) The number of M-small curves up to F,-isomorphism is O(M?/?).

() When M < p, approximately half of all M-small curves appear to be
supersingular (heuristically and experimentally).

(f) When M > %pz/?’ + i, every supersingular curve is M-small.

Let us state point (b) more precisely. Given an elliptic curve E over F2, let
E®) denote its image under the p'" power Frobenius map (z,y) — (zP,y?). If E is
defined over F,, then E = E(®); otherwise we have E = (E®)® and so this map
will swap conjugate pairs of curves.! For j € F,2, let E; be an elliptic curve over
F,» with j-invariant equal to j.

Definition 1.2. Let E and E' be supersingular elliptic curves over Fp2. The dis-
tance from E to E’', denoted d(E,E'’), is the minimum degree of an isogeny
E — E' or E — E'P) defined over F,. We also define d(j,j') = d(E;, E;/) for
supersingular j-invariants j,j' € Fp2.

By basic properties of isogenies (e.g., [25, Chapter III]), log d is a pseudometric on
the set of supersingular curves over F,2, and it descends to a metric on the set of
Galois orbits {E, E(®)}.

Theorem 1.3. Suppose p > 4M?, and let Sy denote the set of M-small supersin-
gular curves. Then there exists a partition

Su=||Tp
D
of Sy into nonempty subsets, indexed by fundamental discriminants —4M < D <
0 which are not congruent to a square mod p. This partition has the following
properties:
(a) If 4,3 are in distinct subsets Tp # Tpr, then
at.5) > 2.
(b) If §, 5" arein the same subset Tp, then there is a chain j = jo, j1,-- - jr = §'
of elements of Tp such that

) ) 4
d(ji-1,Ji) < ;VM

foralli=1,...,r. We can find such a chain with v < 3, or alternatively,
we can find such a chain such that for each i = 1,...,r, there exists an
isogeny B, — E;, or Ej,_ | — E](-f') with prime degree at most %\/M,

See Figure 1 for an illustration of Theorem 1.3. Intuitively, this is saying that the
set of supersingular curves has “isogeny valleys”? indexed by certain fundamental
discriminants; each valley consists of a number of M-small curves that are all linked

IThe map E — E® on supersingular curves is called the “mirror involution” in [1], where the
relationship between conjugate pairs, along with many other structural properties of supersingular
isogeny graphs, is studied in detail.

2Perhaps they should be called “isogeny peaks” because we shall see in Section 5 that they
are very closely related to the volcanic “craters” of ordinary isogeny graphs, as discussed in [29].
However, it feels more natural to associate M-small curves with valleys, both so that we can think
of endomorphism degree as a measure of height, and because they are in practice easier to reach,
as discussed in Section 2.
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FIGURE 1. A graph which illustrates Theorem 1.3. The vertices
are supersingular elliptic curves in characteristic p = 20011, with
conjugate pairs {E, E(p)} identified. The 12-small curves are high-
lighted, and labelled with the smallest degree of a non-integer en-
domorphism. The square vertex is the curve y? = x® + z with
j-invariant 1728. Two curves E, E’ are connected by an edge if
there is an isogeny E — E’ of degree 2 or 3 (the primes less than
%\/ﬁ) The connected components of the M-small subgraph cor-
respond to the sets T for D = —4, -7, —11, —24, —35, —20 (start-
ing from the square and proceeding clockwise). Data computed
using Magma [2], plotted using Mathematica [33].

together by low-degree isogenies, but are very far away from the M-small curves
in other isogeny valleys. The sizes and shapes of these valleys are discussed in
Appendix B.

The fact that the sets Tp are connected by small-degree isogenies (as described
in Theorem 1.3(b)) will not be evident in the f-isogeny graph for any individual
prime /. In fact, if £ is any prime such that one of the sets Tp contains an (M /(?)-
small curve, then there are two curves in Tp such that the degree of any isogeny
between them is either divisible by ¢ or greater than p¢/(4M) (Corollary C.2). So
if we exclude any sufficiently small prime, Theorem 1.3(b) does not hold.

Motivation. We say that a supersingular elliptic curve E over Fp. is “hard” if
it is computationally infeasible to compute its endomorphism ring. A number of
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applications in cryptography (e.g., [12]) need an explicit hard curve E where no
one, including the party who generated the curve, can compute its endomorphism
ring. Currently, there is no known method to generate such a curve.

To illustrate the problem, suppose p = 2 mod 3 and let Fy be the supersingular
curve with j-invariant 0. Let £ be a small prime. One can generate a large number of
supersingular curves by taking a random walk along the graph of degree ¢ isogenies,
starting at Ey. However, every curve E generated this way will have a known
endomorphism ring: the endomorphism ring of F can be computed using the isogeny
path from Ej to E.

Point (a) raises the possibility of using the set of M-small supersingular elliptic
curves, for some polynomial size M, as a candidate set of explicit hard curves. If F
is a typical M-small curve, then point (b) tells us that E could not reasonably be
found by searching from Ey on ¢-isogeny graphs for any small primes £. A priori,
this might suggest that it would be difficult to compute the isogeny path from FEj
to E, and therefore there is hope that the endomorphism ring of E will remain
unknown. However, point (¢) demonstrates that this is likely not the case.

This suggests that a hard curve will not be M-small; by the classification re-
sults of Section 2.1, this rules out roots of low-degree Hilbert class polynomials as
reasonable candidates for hard curves. It remains an open problem to construct a
single explicit hard supersingular curve.

Organization. The content of this paper is as follows. In Section 2, we note
that several known examples of supersingular curves are in fact M-small for very
small values of M, and show that an algorithm due to Broker used to generate
supersingular curves will typically output M-small curves. We will then see how to
generate all such curves by generalizing Broker’s algorithm.

Sections 3—6 are devoted to the proof of Theorem 1.3. This proof depends on
the fact that the endomorphism ring of a supersingular curve is a maximal order in
a quaternion algebra,® so a brief review of some necessary background is given in
Section 3. In Section 4 we lay the groundwork for a proof of Theorem 1.3, and prove
an analogue of Theorem 1.3(a) for quaternion algebras. We discuss the theory of
optimal embeddings of quadratic orders in Section 5, which enables us to prove a
quaternion algebra analogue of Theorem 1.3(b). These two results are translated
into facts about supersingular curves in Section 6, where we finish the proof of
Theorem 1.3.

In Section 7, we discuss an algorithm that finds an isogeny between any two M-
small supersingular curves. Appendix A includes more detail on these algorithms,
and give an example of its performance for p ~ 2256 and M = 100. We include
bounds on the sizes of various sets of M-small curves in Appendix B. Appendix C
depends on the results of Section 5, and shows that certain isogenies of degree /¢
cannot be replaced by short isogenies of degree relatively prime to /.

Acknowledgments. We would like to thank John Voight for fruitful discussion
without which we would not have found the algorithms in Section 7, and Akshay
Venkatesh for pointing us towards the key ideas in Section 5. Thanks also to the
anonymous reviewers for many improvements, including local proofs for Lemma 4.2

3This viewpoint lays the foundation for many prior papers on supersingular isogenies; see for
instance [20], [22], and [15].
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and Lemma 5.4, as well as pointing out a strengthening of Proposition 4.5 that leads
to a better bound in Theorem 1.3.

2. GENERATING M-SMALL CURVES

Most well-known examples of supersingular curves are all M-small for relatively
small values of M. For instance, supersingular curves with a non-trivial automor-
phism are 1-small. This includes the curve y? = 3 4+ x with j-invariant 1728 when
p =3 (mod 4), and the curve y? = 2 + 1 with j-invariant 0 when p =2 (mod 3).

More generally, Broker in [3] proposes a general algorithm for producing a su-
persingular curve over an arbitrary finite field. We will discuss the algorithm here,
and then see in Section 2.1 how to generalize his approach to generate all M-small
curves.

Given an imaginary quadratic field K, a quadratic order O in K is a subring
of K such that the field of fractions of O is equal to K. If Ok is the ring of
integers of K, the only quadratic orders in K are of the form Ok s := Z + fOxk
for some positive integer f, called the conductor of the quadratic order. If D
is the discriminant of K, then d := f?D is the discriminant of Ok ¢ (throughout
this paper, we will use D to refer to fundamental discriminants, and d to refer to
discriminants of arbitrary quadratic orders). Further, any d =0 or 1 (mod 4) can
be written uniquely as d = f2D for f > 1 and a fundamental discriminant D,
so that quadratic orders are uniquely determined by their discriminant. We have
Okt € Ok, if and only if g | f.

Definition 2.1. Let O be a quadratic order. The Hilbert class polynomial
Ho(x) € Z[z] is the monic irreducible polynomial characterized by the following
property:* for j € C, Ho(j) = 0 if and only if j is the j-invariant of an elliptic
curve E over C with End(E) = O.

Broker’s algorithm [3, Algorithm 2.4] proceeds as follows. To construct a super-
singular curve over F,, with p = 1 (mod 4),” one first finds a prime ¢ = 3 (mod 4)

with Legendre symbol (‘7‘1) = —1. One can typically find very small values of ¢

satisfying these constraints. The algorithm proceeds by computing the Hilbert class
polynomial Hp, (z) for K = Q(/—¢), and finding a root of Hp, (z) (mod p) in

F,. The condition (%) = —1 then guarantees that this root is the j-invariant of

a supersingular curve (Proposition 2.3). This algorithm generates M-small curves
for a reasonably small value of M, as the following proposition shows.

Proposition 2.2. The supersingular curves found by Algorithm 2.4 of [3] are
(441)-small. Assuming GRH, they are M-small for M = O(log” p).

Proof. The output of the algorithm is a curve E over IF,, with the following prop-
erty: there exists a curve E over the Hilbert class field of Q(y/—¢q) such that

End(E) =~ O and E is the reduction of E modulo some prime of Op. In par-

Lt Y—1 € Ok is a non-integer endomorphism of E with norm %1. The

reduction map End(E) — End(FE) is a degree-preserving injection [24, Proposition

ticular,

4See for example [10, Proposition 13.2] for proof that such a polynomial exists.
5For p = 2, the curve y? +y = 23 is supersingular, and for p = 3 (mod 4) the curve y? = 3+
is supersingular.
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I1.4.4], so End(E) also contains a non-integer endomorphism of norm T7 proving
that E is (%)—small.

As discussed in the proof of Lemma 2.5 in [3], under GRH we can find ¢ =
O(log2 p) with the desired properties. O

2.1. Classification of M-small curves. A suitable generalization of Broker’s
algorithm [3] can be used to generate the set of all M-small curves. Instead of only
considering roots of the Hilbert class polynomial Hep, (), we will consider the set of
roots of Ho(x) (mod p) for all quadratic orders with discriminant —4M < disc O <

0. This set is the set of j-invariants of M-small curves (Proposition 2.3), and we
can determine whether a j-invariant is supersingular or ordinary by a Legendre
symbol calculation as in [3].

Sutherland gives an algorithm for computing Ho(z) (mod p) in time O(| disc O]**¢)

[30, Theorem 1]. Computing Hp(x) for all quadratic orders of discriminant —4M <

d < 0 can therefore be done in time O(M?*¢).

Proposition 2.3. Let 3 < M < p, let E be an elliptic curve over a finite field
of characteristic p, and let j be the j-invariant of E. Then E is M-small if and
only if Ho(7) = 0 (mod p) for some quadratic order O with discriminant —4M <
disc O < 0. Further, E is supersingular if and only if p does not split in the field
of fractions of O.

Proof. First suppose F is M-small, and take @ € End(F) —Z for which dega < M.
By Deuring’s Lifting Theorem [21, Theorem 13.14], there is an elliptic curve E
defined over a number field L, an endomorphism a of E and a prime p of L, such
that E has good reduction at p, the reduction of E at p is isomorphic over Fp
to F, and that the endomorphism on F induced by « is equal to a. Since the
map End(E) — End(FE) induced by reduction preserves degree [24, Proposition
I1.44], a € End(f‘?) — Z has degree at most M. For some quadratic order O in
an imaginary quadratic field K, we will have End(E) = O [25, Corollary 111.9.4].
Letting d = disc O, we will have a = %\/E for some a,b € Z with b # 0. Then

1d| Nz a+bvd N
= = — | < — | = <
1 NK/Q B) _NO/Z B) dega_M,

implying —4M < discO < 0. By definition of the Hilbert class polynomial, this
implies that the j-invariant j € L of E is a root of the Hilbert class polynomial
Ho(x) € Z[z]. Reducing modulo p, we see that j is a root of Ho(z) (mod p).
Conversely, suppose Ho(j) = 0 (mod p) for some quadratic order O with dis-
criminant —4M < discO < 0. Let L/Q be the splitting field of Ho(z), and let p
be a prime over p in L. Then by considering the reductions mod p of the linear
factors of Hop(x), we can conclude that j is the reduction mod p of some j € L with
Ho(j) = 0. If E is an elliptic curve over L with j-invariant j, then End(E) = O,
and its reduction modulo p is isomorphic over E to E. If d = disc O is congruent
to 0 (mod 4), then the element o := @ € O satisfies Np /z(a) = | <M. Ifd=1

(mod 4), then we have —4M + 1 < d, and the element o := H'T\f € O satisfies

No/z(a) = M‘Tﬂ < M. Since the map End(E) — End(E) induced by reduction is
a degree-preserving injection [24, Proposition I1.4.4], the reduction of & in either
case gives a € End(F) — Z with dega < M, so that E is M-small.
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The fact that E is supersingular if and only if p does not split in the field of
fractions of O is a theorem of Deuring [21, Theorem 13.12]. O

3. MAXIMAL ORDERS OF QUATERNION ALGEBRAS

In order to prove further results about M-small curves which are supersingular,
we will need to review the theory of quaternion algebras. Unless otherwise cited,
all the material in this section can be found in [31].

3.1. Quaternion Algebras and Subfields. There is a quaternion algebra B over
Q, unique up to isomorphism, that ramifies exactly at p and co. For p # 2, we can
take
Qi, j, k) = {w+ i +yj + 2k :i* = —q, 5% = —p,ij = —ji = k}

for an appropriate integer ¢ depending on p (mod 8) (for p =1 (mod 8), this agrees
with the value of ¢ [23, Proposition 5.1].
Given a = w + xi + yj + zk € B, we define:

e its conjugate, @ := w — iz — jy — kz. This satisfies the property that

a=a a+pB=a+p, and af = pa for all o, 3 € B.
e its reduced norm, nrd(a) := aa = w? + g2 + py? + qpz>.
e its reduced trace, trd(«) := a + @ = 2w.

From these definitions, we see that any a € B is the root of a polynomial
z? — trd(a)z + nrd(a)

with rational coefficients; if o ¢ Q this is the minimal polynomial of a. Noting
that trd(a)? — 4nrd(a) < 0, any o ¢ Q generates an imaginary quadratic subfield
Q(a) € B. The following result (a consequence of the Skolem-Noether Theorem)
tells us exactly when two elements of B have the same minimal polynomial.

Theorem 3.1 ([31, Corollary 7.7.3]). Let o, 5 € B— Q. Then o and § satisfy the
same minimal polynomial if and only if there exists v € B* such that v tary = §.

In particular, given any two isomorphic quadratic subfields of B, applying this
theorem to the generators shows that there is an automorphism of B that takes
one subfield onto the other. An imaginary quadratic field K embeds into B if and
only if p does not split in K [31, Proposition 14.6.7], which is equivalent to requiring

that the Legendre symbol (%) is not equal to 1, where D is the discriminant of K.

3.2. Ideals and Orders. An ideal I C B is a subgroup under addition which is
generated by a basis of B considered as a vector space over Q. An order O C B is
an ideal which contains 1 and is closed under multiplication (and is hence a subring
of B). An element o € B with trd(«),nrd(«) € Z is called integral; « is integral
if and only if it is contained in some order of B.

Given an ideal I C B, we can define left and right orders of I,

Or(I):={x € B:zI C I}, Or(I):={x e B: Iz CI}.
We say that [ is a left ideal of O if O (1) = O, and that I is a right ideal of
O if Or(I) = O’. In this scenario we say I links O to O’.
An ideal I that is closed under multiplication is called an integral ideal. An
integral ideal is necessarily contained in its left and right orders, and hence nrd(«) €
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Z for all o in an integral ideal. Given an integral ideal I C B, the reduced norm
of I is defined to be
nrd(f) := ged{nrd(e) | a € I}.
Observe that I C J implies nrd(J) | nrd(7).
An order is maximal if there are no orders properly containing it. Unlike number
fields, for which the ring of integers is the unique maximal order, a quaternion
algebra will typically have many distinct maximal orders.

Given a quadratic order O and a maximal order © C B we say that O is
optimally embedded in O if O =2 9 N K for some subfield K C B.

3.3. The Deuring Correspondence. (See Chapter 42 of [31] for details.)

Let S C F,2 denote the set of j-invariants of supersingular curves. Given j € S,
End(E;) will be isomorphic to a maximal order in B. If j and j? are [F,2-conjugates,
then End(E;) and End(E;») will be isomorphic orders. Aside from this relation,
non-isomorphic curves will always have non-isomorphic endomorphism rings. In
fact, we have a bijection, known as the Deuring correspondence:

S/(j ~ j*) +> {maximal orders of B}/ =

sending j to the endomorphism ring of E;. The degree (resp. trace, resp. dual)
of an endomorphism is equal to the norm (resp. trace, resp. conjugate) of the
corresponding element of B, and composition of endomorphisms corresponds to
multiplication of elements of B. Further, suppose we fix a maximal order ©;
associated to End(E};) for some j. Then we have a one-to-one correspondence

{separable isogenies out of E;}/ = <> {left ideals of O, }.

An isogeny ¢ : E; — E’ will correspond to an ideal I linking O; to some maximal
order O, isomorphic to End(E’) (that is, I is a left O;-ideal and a right O ;/-ideal),
and deg ¢ = nrd(I).

4. DISTANCE BETWEEN MAXIMAL ORDERS

4.1. Definitions for Maximal Orders. In order to use the Deuring correspon-
dence to express Theorem 1.3 in the language of maximal orders, we must have a
notion of M-small and a notion of distance for maximal orders. The first of these
is straightforward.

Definition 4.1. An order © C B is M-small if there exists a € O — Z with
nrd(a) < M.

Then a supersingular curve is M-small if and only if its endomorphism ring is an
M-small maximal order. Our next task is to come up with a definition of distance
between maximal orders that is compatible with Definition 1.1.

Lemma 4.2. If 9,9’ C B are mazximal orders, the following quantities are all
equal:

(a) |O: DN (the index of ONO" in O).

(b) |9 : ONO'| (the index of ONO’ in O).

(c) The smallest reduced norm of an integral ideal linking O to O'.

Proof. We observe that these values are equal if and only if the corresponding
quantities obtained by localizing at each prime are all equal [31, Lemma 9.5.7].
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There is a unique maximal order at the ramified prime p, and so all three of the
local quantities at p are equal to 1.

For ¢ # p, the statement follows from the theory of the Bruhat-Tits Tree [31,
Section 23.5]. Specifically, we have By = M>(Qy). With respect to an appropriate
basis, if we set w = (§9), we will have O, = M(Z) and O} = w °O,w® for
some exponent e [31, Lemma 23.5.14]. Then O,w® = w0} is the linking ideal of
smallest reduced norm, and we can check directly that

|0 : O, NOY =19} : O N OY| = nrd(Oyw®) = £°. O

Definition 4.3. The distance from O to O, d(O,9'), is any of the equivalent
quantities in Lemma 4.2.

Note that logd defines a metric on the set of maximal orders of B. Positive-
definiteness and symmetry follow immediately from definition. If I and J are the
integral ideals of smallest reduced norm linking O to O’ and O’ to O”, respectively,
then I.J is an integral ideal linking O to ©”. Since nrd(I.J) < nrd(I) nrd(J) for any
compatible ideals I and J [31, Example 16.3.6], log d satisfies the triangle inequality.
We can compare distances between elliptic curves and distances between maximal
orders as follows.

Lemma 4.4. Let E and E’ be supersingular curves. Then
d(E,E") = min{d(D,0") | O 2 End(E), O’ = End(E’)}.
Proof. By the Deuring correspondence, both sides are equal to
min{deg¢ | ¢ : E — E" for some E” with End(E") = End(E’)}. O

4.2. Two Key Propositions. Suppose that O and 9’ are each M-small maximal
orders in B. Let « € O —Z and o' € O’ — Z each have reduced norm at most
M. We will show that the distance from O to O’ is small if Q(«) is isomorphic
to Q(a’), and is large otherwise. Precisely, we will prove the following two results,
which are quaternion algebra analogues of results (a) and (b) of Theorem 1.3.

Proposition 4.5. If Q(a) # Q(a), then d(O,0")? > 1£.

Proposition 4.6. If Q(a) = Q(o'), then there exists a sequence of (not necessarily
distinct) mazimal orders

O=90,91,...,0, =29
such that

e the distance between two consecutive terms is at most %\/M, and
e cach O; contains an element with the same minimal polynomial as either
!
a ora.

We can find such a sequence with r < 3, or alternatively we can find such a sequence
such that consecutive orders are linked by an ideal of prime norm at most %\/M.

Proposition 4.6 will be proven in Section 5; we will proceed with a proof of
Proposition 4.5. We begin by quoting a theorem due to Kaneko:

Theorem 4.7. [19, Theorem 2'] Let © C B be a mazimal order. If O and O’
are quadratic orders of imaginary quadratic fields, optimally embedded into O with
distinct images, then disc O disc O’ > 4p. If in addition O and O' have isomorphic
fields of fractions, then disc O disc O’ > p?.
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The proof proceeds by explicitly computing the discriminant of the suborder gen-
erated by O and O’; noting that it must be a multiple of p? gives the desired
inequality. Using this, we can prove our first bound.

Proof of Proposition 4.5. Let
O:=Q)NHL and O :=Q()NO.

both be optimally embedded in 9. Since Q(a) % Q(a’), these are distinct, so
Theorem 4.7 implies that disc O disc O’ > 4p.

Let D denote the discriminant of K = Q(«). Since v € O —Z, and the quadratic
order O must be of the form O =Z + fOgk for some positive integer f, we have

D1
nrd(a) > Ng g (%f\/ﬁ) = fT = zdisc(’).

Letting d = d(9D, 9’)

=19 : O N Y|, we have do/ € O N O’ C O. As above, we
can compute d? nrd(a’) >

1 disc O'. Hence
5 discO"  discO P
~ 4nrd(«) 4nrd(a) — 4M?

d

5. OPTIMAL EMBEDDINGS

Let K be an imaginary quadratic field of discriminant D, and let two maximal
orders 9,9’ of B each admit an optimal embedding of some quadratic order of
K. If these optimally embedded quadratic orders both have small discriminant,
our goal is to construct a sequence of maximal orders from O to O’ such that the
distance between two consecutive orders is small.

To do this, we will need to consider two types of relations between maximal
orders. If two maximal orders have the same quadratic order optimally embedded
in each, we call the relationship between them a “horizontal step”; if one of the
optimally embedded orders is a proper subset of the other, the relationship is called
a “vertical step” .S
Remark 5.1. A fixed embedding K < B defines a unique optimally embedded
quadratic order K N O. However, there is not a unique embedding of K into B
(see Theorem 3.1), so it is possible for multiple distinct quadratic orders of K to all
optimally embed into a single maximal order. Strictly speaking, “horizontal” and
“yertical” steps are not relations between maximal orders, but rather between pairs
of the form (O, O), where O is a quadratic order optimally embedded in a maximal
order £; if we do not specify O, then these relations will not be well-defined.

5.1. Horizontal Steps. First we consider the case in which the same quadratic
order O is optimally embedded in two maximal orders O and O’. For this we will
use a version of the Chevalley-Hasse-Noether Theorem proved by Eichler.

Theorem 5.2 ([14, Satz 7]). Let 9,9’ C B be two mazimal orders, and suppose
O=2KnNO=KnYo'
6The terminology is meant to draw a comparison with isogeny graphs of ordinary elliptic

curves, in which there are horizontal isogenies which preserve the endomorphism ring and vertical
isogenies which change it [29].
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is optimally embedded in each. Then there is an invertible ideal’ a of O such that
Da = ad'.

Using this theorem, we will show that the distance between orders related by a
horizontal step can be bounded in terms of norms of ideals of the common optimally
embedded order O. Recall from Section 2 that we set Ok := Z + fOk, the order
of conductor f in Ok.

Lemma 5.3. Let K be an imaginary quadratic field of discriminant D. Let 9,9’ C
B be mazimal orders, and suppose O := Ok s optimally embeds into each. Then
there exists an automorphism ¢ : B — B such that

A0, 6(0") < 2 £/1D.

Proof. By the Skolem-Noether theorem (Theorem 3.1), there exists v € B such
that
ONK =19y nNK

for some embedding K — B. Since conjugation by - is an automorphism of B,
we can replace O’ with v =19y, so that O N K = O’ N K is identified with the
quadratic order O.

By Theorem 5.2, there exists an invertible ideal a of O such that Da = a’. We
can find an ideal b in the same ideal class as a (so b = ad for some § € K) with
Noyz(b) < %fm by Minkowski’s bound [28, Theorem 5.4]. Then

Ob = 9Dad =ad’d = (b6~ 1) = bep(O'),

where ¢ : B — B is the automorphism ¢(z) := 6~'z§. Hence Ob = bg(9’) is an
ideal linking O to ¢(’). We have

2
nrd(Ob) = ged{nrd(z) | € Ob} < gcd{Np,z(z) | v € b} = Np/z(b) < ;f\/|D\,
which gives the upper bound on d(9, ¢(D")). O

5.2. Vertical Steps. Now we must determine how to step between maximal orders
that have different quadratic orders optimally embedded into each. If a quadratic
order O # Og optimally embeds into a maximal order 9, the following lemma
explicitly constructs a new maximal order with an optimally embedded quadratic
order of smaller conductor.

Lemma 5.4. Let £ be a prime, and 8 € Ok. Let O C B be a mazximal order in
which Z[LB] optimally embeds. Then there exists a mazimal order O’ in which Z[S]
optimally embeds, with d(D,0") = £.

Proof. Consider O, C By, given by completing at ¢. By [31, Proposition 30.5.3],
there are no optimal embeddings of Z[pf] in O, (so the conditions of the lemma
cannot be satisfied if £ = p), and for ¢ # p there is a unique optimal embedding of
Z[¢B] in O, up to conjugation. Explicitly, for £ # p we will have O, = M>(Z,) [31,
Corollary 10.5.5], and if 32 —t3 +n = 0 is the minimal polynomial for 3, then the
embedding K — M>(Q,) defined by

0 —n
wH(l £t>’

"Eichler simply states that there must exist an ideal a of @ with Oa = a®’, but he defines
ideals to be locally principal [14, p. 133] and this implies invertibility.
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induces an optimal embedding of Z[¢8] into Ms(Z,), unique up to conjugation by
GL2(Z,). The maximal order

Y/ v/
0p = (z—fz@ Z;) C M5 (Qy)
4

contains (195 _t">, the image of 3, but does not contain the image of %B.
Now let
O":=9,n ()9,
q#L
This is a maximal order because it is maximal at every prime. For all ¢ # ¢ we
have (~! € Z,, so Ok, embeds into O,, and hence Ok ; optimally embeds into
O’ Finally, since © and 9’ are equal at every prime besides ¢, we have

dO,0) =10: 9N | =[D,:0,ND)| =L 0

Corollary 5.5. Let f be a positive integer, and O C B be a mazimal order in
which Ok ¢ optimally embeds. Then there exists a mazimal order O in which Ok
optimally embeds, with d(O,90) < f.

Proof. Factor f =¥y -} into primes, and set f; = ;11 ---{x (so fo = f and fi =
1). Apply Lemma 5.4 successively, obtaining maximal orders O =: 9, O1,...,0; =
9O, where Ok 5, optimally embeds in ©;. Then

k
<[[d®i-1.0 Hz = 0
=1

5.3. Proof of Proposition 4.6. We are now ready to combine our vertical and
horizontal steps to create a path between two maximal orders © and O’. Let
K >~ Q(«). To begin, take a vertical al step from each of O and O’ using Corollary 5.5:
we obtain maximal orders O and D’ both containing an optimally embedded O,
as well as bounds on d(9,9) and d(9’,9’). Now join O and 9’ by a horizontal
step using Lemma 5.3: this gives us an automorphism ¢ : B — B and a bound on
d(9,¢(9’)). Combining these steps, we obtain a sequence
0,9, 9(9"), $(0") = O’

with bounds on the consecutive distances; we can check that these are all bounded
above by %\/M . Since each of these orders contains an element with the same
minimal polynomial as a or o/, this settles the r < 3 case of the Proposition.

If instead we want all consecutive terms to be linked by ideals of prime norm,
we can break up each step into smaller ones. For the vertical steps, we can factor
the conductor of the optimally embedded orders into primes and take one step for
each prime, as in the proof of Corollary 5.5. For the horizontal step, We can factor
b (from the proof of Lemma 5.3) into prime ideals as p; ---ps. Set D9 = O, and
for each 1 =1,..., s, recursively define

Dz = P, 101 1p2

Then Of is optimally embedded in each £;, and consecutive orders O; 1 and O,
are linked by the ideal O; 1p; = p;O; of norm Ng/g(p;). If we assume b was
chosen to be minimal, none of the p; can be principal, and so they will all have
prime norm. [
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6. PROOF OF THEOREM 1.3

6.1. Existence of Partition. Recall that we defined S C ;> to be the set of all
j-invariants of supersingular curves. For each fundamental discriminant —4M <
D < 0 which is not congruent to a square mod p (that is, for which the Legendre

symbol (%) is equal to —1), set

Tp:={j € S:Q(a) = Q(VD) for some a € End(E;) — Z,dega < M}.

We must prove that the sets Tp are disjoint, nonempty, and that every j € Sys is
in some Tp.

If j € Tp NTpr, then End(E;) contains elements «, o’ generating nonisomorphic
subfields, each with degree at most M Applying Proposition 4.5 to O = O =
End(Ej), we obtain 1 = d(9,9)? > contradicting p > 4M?2. Hence the sets
Tp are all disjoint.

For any —4M < D < 0 with (2) = —1, either a = @ or o = % is an

integral element of & € Q(v/D)—Q, and the norm of a will be respectively = =L < M
or =2 < M (since it must be an integer). By the constraints on D, Q(«) embeds
into B [31, Proposition 14.6.7], and so the integral element « is contained in some
maximal order. By the Deuring correspondence, this order is isomorphic to End(Ej)
for some j € S. Hence there is an embedding ¢ : Z[a] — End(E}), so j is M-small.
Since Q(¢(r)) = Q(v/D), we have j € Tp, and so Tp is nonempty.

Suppose j € Sar, so there exists o € End(E;) — Z with deg(a) < M. Taking
the minimal polynomial 22 — tx + deg(a) of a, deg(a) < M implies —4M < t% —
4deg(a) < 0. Dividing by perfect square factors does not affect these inequalities,
and so the discriminant D of Q(«) must be in the range —4M < D < 0. Since

Q(«) embeds into B and D < p, we must have (%) = —1. Hence j is in Tp for

- 4M2a

some D.

6.2. Distance between Tp and Tp.. Suppose j € Tp and 7' € Tp for D #
D'. For any © = End(F;) and 9’ = End(E; ), we have d(9O,9)? > by
Proposition 4.5. Thus Lemma 4.4 tells us that

- 4M2

d(4,5") = min{d(9, ') | O = End(E;), O’ = End(E;)} > Q\ﬁ
6.3. Distances within Tp. Suppose j,j’ € Tp, and let «, &’ be the correspond-
ing small non-integer endomorphisms with Q(a) = Q(o/) = Q(v/D). By Proposi-
tion 4.6, there exists a chain

El’ld( ) DO,Dl,...,DT %End(Ej/)

with consecutive distances bounded by ;\/M , and each containing an element with
the same minimal polynomial as either o or o’.

Now set jo := j, jr := j’, and for each ¢ = 1,...,r — 1, set j; so that End(E};,) =
;. By Lemma 4.4, for i = 1,...,r we have

d(Ej,_,,Ej,) < d(9;-1,9;) < f

Because each Ej;, has an element with the same minimal polynomial as a or ¢/,
each j; € Tp. This shows that the sequence jg, j1, ..., jr has the desired properties.
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Note that we could have chosen our sequence of maximal orders to have r < 3,
or to have consecutive orders linked by an ideal of prime order. In the first case,
we would have a sequence of j-invariants with » < 3. In the second case, an ideal
linking ©;_1 to ©; with prime norm at most %\/M will correspond by the Deuring
correspondence to an isogeny E;, , — Ej, of prime degree at most %\/M . This
concludes the proof. O

7. ISOGENIES BETWEEN M-SMALL SUPERSINGULAR CURVES

Despite the large distances between M-small curves in distinet subsets Tp (as in
Theorem 1.3), we show that isogenies between them can nonetheless be computed
efficiently (probabilistic polynomial time in M and logp) under certain heuristic
assumptions. To begin with, we recall the following observations, made in other
papers:

(Oi) Given two maximal orders O and ©’, an ideal linking O to O’ with S-
powersmooth norm (S ~ %log p) can be computed efficiently [20, Sections
4.5-4.7].

(Oii) Given a supersingular elliptic curve E with known endomorphism ring
End(E), and a left ideal of End(E) with S-powersmooth norm (S = I log p),
an isogeny out of E corresponding to I under the Deuring correspondence
can be computed efficiently [15, Proposition 4].

(Oiii) Given a maximal order O, a j-invariant such that End(E;) = O can be
computed efficiently [15, Section 7.1].

For each T, we can construct a maximal order O p, and use Observation (Oiii)
to find a j-invariant jp € Tp with known endomorphism ring. Then for D # D', we
can use Observations (Oi) and (Oii) to find a (large degree) isogeny from jp to either
Jpr or j¥, as a composition of many small isogenies. These specified j-invariants
jp will act as “airports”; knowing that each isogeny valley Tp is connected by
small-degree isogenies, we can connect any two M-small supersingular curves by
first finding a path from each to the closest airport, then following the large degree
path between the airports. These algorithms are discussed further in Appendix A.

Isogenies defined over [F,,. Suppose j; and j, are M-small j-invariants in F,,.
Some situations, such as key recovery for the CSIDH protocol [6], require being
able to find an IFp-isogeny E;, — F;,. While our algorithm allows us to construct
an isogeny between these curves, this isogeny will not necessarily be defined over
F,. This is solved by concurrent work of Castryck, Panny, and Vercauteren [7], in
which they provide an algorithm to compute an IFp-isogeny E;, — Ej,, given the
endomorphism rings of E;, and E,;, (which we are able to compute).
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APPENDIX A. COMPUTING ISOGENIES BETWEEN M-SMALL SUPERSINGULAR
CURVES

Let us elaborate on the approach described in Section 7. One subtle issue with
this method comes from the fact that the Deuring correspondence is not one-to-one;
it’s quite possible that for some D, T is actually a disjoint union of two subsets
that are very far apart, one being the set of conjugates of the other. To remedy
this, it suffices to have a single M-small supersingular j-invariant jo € IF,, to route
all paths through. For then if we have a path from jo to j?, we can simply apply
the p** power Frobenius map to this path to obtain a path from jo to j. This
technique will be used in Algorithm 2.

A.1. Assumptions. Recall that 2 = —¢ and j? = —p for some relatively small
value of ¢q. Let K # Q(i) be a quadratic field of discriminant —4M < D < 0.
We will make two assumptions which are unproven but heuristically reasonable.
In Section A.3 we carry out computations that depend on these assumptions for
p ~ 2256 M = 100, and all allowable values of D, showing that in practice these
assumptions seem to be valid.
(Ai) A solution z € L := K(i) to the norm equation N,k (2) = —p can be
computed efficiently, if one exists.®
(Aii) Letw € B satisfy 4w? = D (if D =0 (mod 4)) or 4w?—4w+1 =D (if D=1
(mod 4)). Then if we randomly select integral elements 5 € B, and let n
be the denominator of trd(w/3), it will not take too long before a choice of 8
such that the discriminant of the order Z{w,ng) can be efficiently factored
into primes.’

Lemma A.1. Take assumptions (Ai) and (Aii). Given any fundamental discrimi-
nant —4M < D < 0 with % = —1, a mazimal order of B containing an integral
element a with nrd(a) < M and Q() = Q(v/D) can be computed efficiently.

Proof. For D satisfying the above conditions, there is an embedding of K = Q(v/D)
into B by [31, Proposition 14.6.7]; this implies that B ®¢ K is split [31, Lemma

5.4.7], which implies by Theorem 5.4.6(vi) that there is a solution N (;)/x(2) = —p
for some z € K[i]*. Using assumption (Ai), we can solve for

z:(ac—i-y\/ﬁ)—&—i(z—i—w\/ﬁ), z,y,z,w € Q,
in the norm equation, giving
(z +yVD)? + q(z + wVD)? = —p.
After multiplying through by pg we have
p*q+ (g2 + quV'D)’p+ (z +yV'D)’pg = 0.

8The algorithm for doing so is described in [26, Section 6], and is implemented in Magma [2]
as NormEquation(L, -p). In general, the bottleneck of the algorithm used to solve NL/K(Z) =m
is to factor m into primes of K, but this is easy in our case because p is already an integer prime.

9 Aside from the fact that the discriminant will be divisible by p? (since any order is contained
in a maximal order), we expect it to behave like a “random integer” in some sense, and easily-
factorable integers are not too rare in the range of values that appear to arise in practice.
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Setting v = pi + qzj + xk and § = qwj + yk, we will have trd(y6~1) = 0 and
nrd(y6~') = —D by the proof of Lemma 5.4.7 in [31], so that v/D +— 0~ defines
an embedding Q(v/D) < B.

Take a to be whichever of Q or % is integral (depending on whether D =0
or 1 (mod 4)), considered now as an element of B. Take a random integral element
B € B such that {1, «, 8} is linearly independent. Setting n to be the denominator
of trd(af), Z{a,np) will be an order in B. If the discriminant of this order can
be factored into primes (by assumption (Aii), this can be done after relatively few
tries for 3), we can efficiently compute a maximal order O containing this using
Proposition 4.3.4 of [32]. Noting that o has norm at most M, O is the desired
maximal order. O

A.2. Algorithms for Computing Isogenies. In order to compute isogenies, we
will need to use modular polynomials.

Definition A.2. The n'™® modular polynomial ®,,(x,y) € Z[x] is characterized
by the following property: ®,(j1,72) = 0 if and only if there is a degree n cyclic
isogeny E;, — Ej, (i.e., an isogeny with a cyclic group as its kernel).

Modular polynomials are symmetric in  and y (®,,(z,y) = ®,.(y, z)), and if n is
prime, then the degree of each variable in ®,,(z,y) is n + 1. The largest coefficient
of ®,,(z,y) grows faster than n®" [9], which makes even the storage (let alone the
computation) of modular polynomials very difficult as n grows large; for instance
it takes more than a gigabyte to store the binary representation of ®¢59, and 30
terabytes to store ®g9011 [4, pp. 1201, 1228]. However, it is possible to compute
®,,(z,y) (mod p) directly, without first computing it with integer coefficients; for
instance, an algorithm given by Broker et. al. computes ®y(z,y) (mod p) for £
prime (the only case we will need) in time O(£3%¢) [4, Theorem 1].

Say a fundamental discriminant D is valid if —4M < D < 0 and (%) = —1.

For each valid fundamental discriminant D, let Tp be as in Theorem 1.3 (defined
in Section 6.1). Let Ep be the set of pairs (j,j') € Tp X Tp such that there is an
isogeny j — j' or j — j'P of prime degree at most %\/M; Theorem 1.3 implies that
the graph (Tp, Ep) is connected.

Using these definitions, we can apply Algorithm 1 to compute the sets T, the
edges Ep, and a specified jp € Tp with known endomorphism ring End(E;,).
Proposition 2.3 guarantees that the algorithm correctly builds the set Sjp; of super-
singular M-small curves.

Note that Ho(z) will have degree O(M'/?*¢) (Proposition B.1), and the poly-
nomials ®;(z, j) will have degree ¢ +1 = O(M?'/?). Assuming the conditions under
which each appear in the algorithm, these polynomials will split in Iz, because
their roots will be j-invariants of supersingular curves. Thus, assuming an oracle
for Assumptions (Ai) and (Aii), and an oracle that finds all roots of a polynomial
of degree O(M?'/?*¢) that splits over F,2, Algorithm 1 can be shown to run in time
polynomial in M and log p.

As noted above, if we want to guarantee existence of a path from any M-small
supersingular curve to any other one (and not just to one out of a conjugate pair),
we will need to be able to route isogenies through an M-small supersingular curve
defined over IF,,. Such a curve should typically be fairly easy to find; the following
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Algorithm 1: Precomputing the M-small partition and a selected curve in
each subset.
Input :pand M.
Output: For each valid fundamental discriminant D, output Tp, Ep, a
specified jp € Tp, and a maximal order Op C B isomorphic to
End(E;,).
Compute ®y(z,y) (mod p) for all prime ¢ < %\/M [4, Theorem 1].
Initialize an empty list Sy;.
3 for —4M <d<0,d=0 or1l (mod 4), (g) =-1do
4 Compute Hop(x), where O is the quadratic order of discriminant d [30,
Theorem 1].
Append all j € F2 satisfying Ho(j) = 0 to Sas.
end

N =

or valid fundamental discriminants D do
Compute a maximal order O p that has some a € Op — Z with
nrd(a) < M and Q(a) = Q(v/D) (Lemma A.1).
9 Compute jp € Fj2 such that End(E;,) = Op (Oiii).
10 Initialize queue Qp = (jp) and empty list E,. Set j := jp.
11 while j € Qp do

®» I o «»
=

12 for prime 2 < /¢ < %\/M do
13 for j' € Spr such that ®o(5',5) =0 (mod p) or ®y(5',57) =0
(mod p) do

14 Append ;' to the end of the queue Qp.

15 Append (j,5") to EY,.

16 end

17 end

18 Set j to be the next element of the queue @p. If no such element
exists, break.

19 end

20 Set Tp := Qp U QY.

21 Set ED = U(j,j/)eEb{(jvjl)v (jvj/p)v (jpvj/)v (jpvj/p)}~
22 end

23 For each valid fundamental discriminant D, return Tp, Ep, jp, and Op.

lemma gives us a condition on M under which such a curve will be guaranteed to
exist.

Lemma A.3. Let ¢ = —i?. If M > q, then there exists an M-small supersingular
J-invariant in IFp.

Proof. There is a maximal order O containing {1,1,j, k}, which corresponds by
the Deuring correspondence to some supersingular j-invariant j. Since i € O and
nrd(7) = ¢ < M, j is M-small. Since j € O and Z[j] = Z[\/—p], we have j € F,, [13,
Proposition 2.4]. O

Suppose we have completed Algorithm 1. If we have some jo € SyNF,, then we can
apply Algorithm 2 to compute an isogeny between any two M-small supersingular
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Algorithm 2: Computing isogenies between M-small supersingular curves.

Input : j1,j2 € Sm, jo € S NF,, and the output of Algorithm 1.
Output: An isogeny £, — Ej,, given as a sequence of (-isogenies for primes

L.

1 Find Dy, D1, D5 such that j; € T, for each i.
2 for i € {0,1,2} do // short paths within TD
3 Find a sequence of edges in Ep, connecting j; to jp,.
4 By following these edges, compute an isogeny ¢p, : Ej;, — Ej,, or

op,  E;, — E]“;)
5 end
6 for i € {1,2} do // long paths between TD

Using Op and O p, with Observations (Oi) and (Oii), find an isogeny
i : By = Ejp, or Ui By, — B

8 Let Jp\i denote the dual of ¢p,. Choose a, 5 € {1,p} such that the

composition I'; := qu\i oo gb%o : By, — Ej, is defined.

9 end
10 Return I'y o I'y 1 B, — Ej,.

curves ji1,j2 € Spr. At each step in the algorithm, the isogenies in question may
be recorded as a sequence of ¢-isogenies for relatively small primes ¢ (in particular,
¢ = O(v/M) in step 4 by Theorem 1.3, and £ = O(logp) in step 7 by Observations
(Oi) and (Oii)).

Even if we do not have a j-invariant jo € Sy NFp, a modification of Algorithm
2 can still produce isogenies between M-small supersingular curves. If we obtain

an isogeny E;, — Ej(f ), we may simply compose this isogeny with the p** power

Frobenius Ej(f ) E;,. However, the resulting isogeny will be inseparable, and will
not be expressible as a composition of /-isogenies for small primes /.

A.3. Example. It is worth examining how well Algorithm 1 works in practice; in
particular, line 8 depends on the unproven assumptions (Ai) and (Aii), so we will
focus on the time this step takes.

Let p = 22561297 we can take B defined by i = —7 and j2 = —p. Let M = 100.
There are 62 valid fundamental discriminants D:

—7,—15,-20, —40, —43, —47, —55, —56, —59, =79, —83, —84, —91, =95, . .., —399.

For each of these D, we computed Op as in Algorithm 1, Line 8. To do this for all
valid D took 60 seconds on a generic personal laptop. In each case, we were able
to take § = or 8 = j in Assumption (Aii).

In practice, it seems as though the real bottleneck of Algorithm 1 is the edge-
finding algorithm (lines 11-19); this took 4105 seconds on the same laptop.

APPENDIX B. COUNTING M-SMALL CURVES

We will estimate the size of various sets of M-small curves, starting small and
working up to progressively larger sets.



REFERENCES 21

Proposition B.1. Let O have discriminant —4M < disiO < 0. Let Cp denote
the set of isomorphism classes of elliptic curves E over Iy, such that O optimally
embeds in End(E). Then

|Co| < deg Ho(z) = | CL(O)| = O(M/?+).

Proof. The first inequality follows from Proposition 2.3 by counting roots, and
we have the middle equality deg Ho(z) = | C1(O)| by [10, Proposition 13.2]. Let
O = Ok, let D be the discriminant of K, and h(D) the class number of K. Then

aorswor 11 (- ()}

prime £|f

using the formula for the class number of nonmaximal orders [10, Theorem 7.24].
We can bound this above by h(D)w(f) using the Dedekind ¢ function, defined on

positive integers as
1
= 14+-1.
vw=n T (1+7)

prime £|n

We have ¢(n) = O(nloglogn) [27, Corollary 3.2], and the classical bound h(D) =
O(|D|*/?1og D) (for instance, by Dirichlet’s class number formula [11, §6 (15)] and
bounds of the form |L(1,xp)| = O(log D) [17]). Together these give the bound

| CI(O)] = O(f|D|"/*1log Dloglog f) = O(M'/**+),
using f2|D| = disc O < 4M. O
Proposition B.2. Let D be a fundamental discriminant, and
Tp:={j € S:Q(a) = Q(VD) for some a € End(E;) — Z,dega < M}
be the set from Theorem 1.3 (defined in Section 6.1). Then

Dol =0 <M10g|D|> |
VIDI
The structure of Tp will depend heavily on its relationship to M, as the proof
will illustrate. If D is very small, then many different quadratic orders optimally
embed into endomorphism rings of curves in Tp (N is large), but each quadratic
order embeds in only a couple of these endomorphism rings (h(D) is small). If
D is comparable to M, then there are very few quadratic orders that optimally
embed into endomorphism rings of curves in Tp (N is small), but each quadratic
order optimally embeds into many different endomorphism rings (h(D) is large).

Intuitively, the “isogeny valley” T is deep and narrow for small |D|, but shallow
and wide for large |D|.

Proof. Let K be a field of discriminant D, and let Cp be the set of isomorphism
classes of maximal orders © C B containing an element o with nrd(a) < M and
Q(a) = K. By the Deuring correspondence we have |Tp| < 2|Cp]|, so it suffices to
count Cp.

Suppose a € O has nrd(a) < M and Q(a) =2 K. We have o € ONQ(a) = O ¢
for some conductor f. We must have f?|D|/4 < nrd(a) < M, implying that
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f < |V/AM/|D|] = N. Hence, summing over all possible quadratic orders of K
with conductors in this range, we have

N
|CD|<Z|CIOKf|<h ) e(f)
f=1 f=1

using the proof of Proposition B.1. This value is

h(D) ( 3S|A;| + O(N log N))

by [18, Lemma 2.1]. Applying h(D) = O(|D|*/?1log |D|), we get the desired bound

(To| = O (M1og |DI/+/IDI). 0

Proposition B.3. The number of M-small curves is O(M?3/?).

Proof. Given an M-small order O, let o € O — Z have nrd(a) < M. Then « is
in some quadratic order O, and |disc O|/4 < nrd(«) implies —4M < discO < 0.
For every possible quadratic order, there are at most | C1(O)| isomorphism classes
of maximal orders in which O is optimally embedded, meaning that we obtain an
upper bound for the number of M-small maximal orders by summing | C1(O)| over
all quadratic orders with —4M < disc O < 0.

A quadratic order O is uniquely determined by its discriminant, and there is a
bijection between Cl(Q) and the set of reduced primitive positive-definite binary
quadratic forms of discriminant disc O (Theorem 7.7(ii) and Theorem 2.8 of [10]).
That is, it suffices to bound the number of triples (a, b, c) € Z* with —a <b<a <c
and b > 0 if a = ¢, ged(a,b,c) = 1, and —4M < b — 4ac < 0.

From |b] < a < ¢, we have —4M < b? — dac < —3a?, so a < \/4M/3. Likewise
—4AM < b? —4ac < a® — 4ac implies a < ¢ < % + % Together with —a < b < a we
conclude that there are at most

M
<Z+—a+1)(2a)§2M+1
a

valid pairs (b,c¢) for a given a; summing over the /4M/3 options for a gives
O(M?/?) triples. O

Remark B.4. When M < p, we observe that roughly half of all M-small curves
are supersingular; for instance, with p = 2256 + 297 and M = 100 (the example
discussed in Section A.3), there are 1108 M-small curves, of which 528 (about 0.48
of the total) are supersingular. In Figure 2, we see that the proportion of M-
small curves that are supersingular appears to follow a distribution centered at 0.5;
for 94% of the primes p considered, between 0.4 and 0.6 of M-small curves were
supersingular modulo p.

Heuristically, this follows from the observation that a root of Ho(z) (mod p) is
supersingular if and only if p does not split in the field of fractions of O (Proposition
2.3). For each quadratic order O, the set of primes which split in the field of fractions
of O have density % (Chebotarev’s Density Theorem), so for a set of quadratic orders
with discriminants in a given range, we might expect that p will split in the field
of fractions of about half of them.
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FIGURE 2. A histogram (bins of width 0.01) of the proportion of
100-small curves that are supersingular mod p, as p varies over 1000
consecutive primes 2% < p < 240 4 27201. Discussed in Remark
B.4. Data computed using Magma [2].

This observation clearly fails for M large enough, because there are only finitely
many supersingular curves, but infinitely many ordinary ones. This is because su-
persingular curves have complex multiplication by infinitely many distinct quadratic
orders; that is, even though half (i.e. infinitely many) of the polynomials Hp(x)
(mod p) should have supersingular roots, each individual supersingular j-invariant
will be a root of infinitely many of them. But for small enough values of M, at
most one of these quadratic orders can have —4M < disc O < 0, by Theorem 4.7.
So for M < p, we expect the set roots of Ho(z) (mod p) for —4M < discO < 0
to have similar numbers of ordinary and supersingular curves.

Proposition B.5. All supersingular j-invariants are (%p2/3 + i)-small. The ex-

ponent is the best possible: if 6 < % then for any constant C, there exists a prime
p and a supersingular j-invariant mod p which is not (Cpe)—small.

The sufficiency of % was noted by Elkies [16, Section 4], and Yang showed that no
smaller exponent could be taken [34, Proposition 1.1]. The proof given here roughly
follows each of their approaches. Notice that Elkies’ bound uses the “large-scale”
structure of maximal orders, namely the geometry of the full 4-dimensional lattice,
while Yang’s bound uses the “small-scale” structure, counting embedded quadratic
orders of small discriminant.

Proof. We can embed B into R* as follows:

a+bi + cj+ dk — (a,b\/q,c\/p, d\/qD).

This makes the reduced norm (a + bi + cj + dk) — a® + qb® + pc? + qpd* agree

with the standard Euclidean norm on R*. A maximal order © C B will be a 4-

dimensional lattice of covolume 4§ under this embedding [8, (2.2)]. Projecting O

onto the orthogonal complement of 1 gives a 3-dimensional lattice of covolume %.

By Theorem ILIIL.A of [5], any such lattice must have a nonzero element v with
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length
1/3
o< (Bva) =2
1 vz

An element of O that projected onto v must be of the form g—f—v for some integer k,
because the reduced trace of an integral element is an integer. Hence either v € O
or % +v € 9, and the reduced norm is either %p2/3 or %p2/3 + %. This shows O is
(%pz/?’ + %)—small.

Conversely, we saw that the number of M-small curves is O(M?3/2), by summing
sizes of ideal class groups of embedded quadratic orders (Proposition B.3). So if
0 < 2 then the number of (Cp?)-small curves will be O(p*?/?), with 22 < 1. But the
number of supersingular curves is #5 + O(1) [25, Theorem V.4.1(c)], which grows
faster than the set of (Cp?)-small curves. O

APPENDIX C. PRIME-TO-{ ISOGENIES REPEL LENGTH-{ VERTICAL STEPS

For this appendix, we assume the setup of Sections 3-5.

Recall Lemma 5.4, which states that given any maximal order © with Z[(f]
optimally embedded, there is a maximal order O’ with Z[] optimally embedded
which is distance £ away. If we replace 9’ with an isomorphic order ©”, the
following proposition and corollary show that d(9, ") must be either a multiple
of £ or extremely large. This indicates why we must consider all primes in order to
find a short path in Proposition 4.6 and Theorem 1.3(b).

Proposition C.1. Let £ be a prime, and € Og. Suppose mazximal orders O and
' have Z[LB] and Z[B] optimally embedded, respectively. If d(D,9’) is not divisible

by £, then d(9,90") > gl

Proof. If the optimal embeddings of Z[¢3] and Z[3] were to land in the same subfield
K C B, then |D’: 9N O’ would be divisible by ¢, a contradiction. Hence we must
have O N K 2 Z[(f] and O’ N K’ = Z[F] for distinct (but isomorphic) fields K. let
O :=9NK and O := ON K’ both be optimally embedded in . Since K and K’

are isomorphic but distinct, Theorem 4.7 tells us that disc O disc O’ > p2.
Now ¢8 € O and dB € O, so as in the proof of Proposition 4.5, we can conclude
that ' . , )
2> discO  disc O D

= 42 nrd(B) 4nrd(B) ~ 1602 nrd(3)2 -

Corollary C.2. Let { be a prime, M € Z, and E an (M /¢?)-small supersingular
curve over Fp2. Then there exists an M-small supersingular curve E' over [z
connected to E by an £-isogeny, such that if ¢ : E — E’ is any isogeny with degree
relatively prime to £, then
pl
deg >

Proof. For some imaginary quadratic field K and some 8 € K with norm at most
M/¢?, the quadratic order Z[f3] is optimally embedded in End(E). Modifying the
proof of Lemma 5.4, we can find a maximal order £’ with Z[¢f] optimally embedded,
and such that d(End(FE),9O’) = £. By the Deuring correspondence, we obtain an
M-small curve E’ connected to E by an ¢-isogeny.

Now any isogeny ¢ : E — E’ corresponds to an ideal I linking End(F) to some
maximal order 9” = End(E’). In particular, I must be contained in O N O”, so
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if deg ¢ = nrd(7) is not divisible by ¢, then neither is d(End(FE),O"). Hence, by
Proposition C.1,

_ " p Lﬂ
deg ¢ = nrd(I) > d(End(E), O )Zrnrd(ﬁ) Z4M' O
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