

Learning Human Objectives by Evaluating Hypothetical Behavior

straints, and focuses on ensuring that the agent never visits

unsafe states during policy optimization (Dalal et al., 2018;

Garcıa & Fernández, 2015).

3. Learning Rewards from User Feedback on

Hypothetical Behavior

We formulate the reward modeling problem as follows. We

assume access to a training environment that follows a

Markov Decision Process (MDP; Sutton & Barto, 2018)

with unknown state transition dynamics T , unknown initial

state distribution S train
0 , and an unknown reward function R

that can be evaluated on specific inputs by querying the user.

We learn a model of the reward function R̂ by querying the

user for reward signals. At test time, we train an RL agent

with the learned reward function R̂ in a new environment

with the same dynamics T , but a potentially different initial

state distribution S test
0 . The goal is for the agent to perform

well in the test environment with respect to the true reward

function R.

Our approach to this problem is outlined in Figure 1, and can

be split into three steps. In step (1) we use off-policy data

to train a generative model pφ(τ) that can be used to evalu-

ate the likelihood of a trajectory τ = (s0, a0, s1, a1, ..., sT).
This model enables us to synthesize hypothetical trajecto-

ries that can be shown to the user. In step (2) we produce

synthetic trajectories, which consist of sequences of state

transitions (s, a, s′), that seek out different kinds of hypo-

theticals. We ask the user to label each transition with a

scalar reward R(s, a, s′), and fit a reward model R̂(s, a, s′)
using standard supervised learning techniques.3 In step (3)

we use standard RL methods to train an agent using the

learned rewards. Since we typically learn a forward dynam-

ics model as part of the generative model in step (1), we find

that model-based RL is a good fit for training the agent in

step (3).

3.1. Learning a Generative Model of Trajectories

In order to synthesize hypothetical outcomes that may be

unlikely to occur in the training environment, we cannot

simply take actions in the training environment and collect

the resulting trajectories, as is done in prior work. Instead,

we resort to training a generative model of trajectories, so

that we can more efficiently sample unusual behaviors using

the model.

In step (1) we collect off-policy data by interacting with

the training environment in an unsupervised fashion; i.e.,

without the user in the loop. To simplify our experiments,

3In principle, other methods, such as pairwise compar-
isons (Wirth et al., 2017) or implicit feedback (Anonymous, 2020),
could also be used to label the synthetic trajectories with user
rewards.

we sample trajectories τ by following random policies that

explore a wide variety of states.4 We use the observed

trajectories to train a likelihood model,

pφ(τ) ∝ pφ(s0)

T−1
∏

t=0

pφ(st+1|st, at), (1)

where pφ(s0) models the initial state distribution,

pφ(st+1|st, at) models the forward dynamics, and φ are

the model parameters (e.g., neural network weights). We

train the model pφ using maximum-likelihood estimation,

given the sampled trajectories. As described in the next

section, the likelihood model is helpful for regularizing the

synthetic trajectories shown to the user.

In environments with high-dimensional, continuous states,

such as images, we also train a state encoder fφ : S → Z
and decoder f−1

φ : Z → S, where S = R
n, Z = R

d, and

d << n. As described in Section 3.4, embedding states in

a low-dimensional latent space Z is helpful for trajectory

optimization. In our experiments, we train fφ and f−1
φ

using the variational auto-encoder method (VAE; Kingma

& Welling, 2013).

3.2. Representing the Reward Model as a Classifier

Our goal is to learn a model R̂ of the user’s reward function.

In step (2) we represent R̂ by classifying state transitions as

good, unsafe, or neutral – similar to Cui & Niekum (2018)

– and assigning a known, constant reward to each of these

three categories:

R̂(s, a, s′) =
∑

c∈{good,unsafe,neutral}

pθ(c|s, a, s
′)Rc, (2)

where pθ(c|s, a, s
′) = 1

m

∑m

i=1 pθi
(c|s, a, s′) is the mean

of an ensemble of m classifiers {pθi
}mi=1, and θi are the

weights of the i-th neural network in the ensemble. Rc

is the constant reward for any state transition in class c,

where Runsafe ≤ Rneutral ≤ Rgood. Modeling the reward

function as a classifier simplifies our experiments and makes

it easier for the user to provide labels. In principle, our

method can also work with other architectures, such as

a more straightforward regression model R̂ = Rθ. As

described in Section 3.3, we use an ensemble method to

model uncertainty.

3.3. Designing Objectives for Informative Queries

Our approach to reward modeling involves asking the user

to label trajectories with reward signals. In step (2) we

synthesize query trajectories to elicit user labels that are

informative for learning the reward model.

4In principle, safe expert demonstrations could be used instead
of random trajectories. We used random trajectories to simplify
our experiments. See Section 3.6 for further discussion.

Learning Human Objectives by Evaluating Hypothetical Behavior

To generate a useful query, we synthesize a trajectory τ

that maximizes an acquisition function (AF) denoted by

J(τ). The AF evaluates how useful it would be to elicit

reward labels for τ , then update the reward model given the

newly-labeled data. Since we do not assume knowledge

of the test environment where the agent is deployed, we

cannot optimize the ideal AF: the value of information (VOI;

Savage, 1954), defined as the gain in performance of an

agent that optimizes the updated reward model in the test

environment. Prior work on active learning tackles this

problem by optimizing proxies for VOI (Settles, 2009). We

use AFs adapted from prior work, as well as novel AFs that

are particularly useful for reward modeling.

In this work, we use four AFs that are easy to optimize for

neural network reward models. The first AF Ju(τ) maxi-

mizes reward model uncertainty, eliciting user labels for be-

haviors that are likely to change the updated reward model’s

outputs. Ju is a proxy for VOI, since improving the agent

requires improving the predicted rewards. The second AF

J+(τ) maximizes predicted rewards, surfacing behaviors

for which the reward model might be incorrectly predict-

ing high rewards. J+ is another useful heuristic for reward

modeling, since preventing reward hacking improves agent

performance. The third AF J−(τ) minimizes predicted re-

wards, adding unsafe behaviors to the training data. While

we do not consider J− to be a proxy for VOI, we find it

helpful empirically for training neural network reward mod-

els, since it helps to balance the number of unsafe states (vs.

neutral or good states) in the training data. The fourth AF

Jn(τ) maximizes the novelty of training data, encouraging

uniform coverage of the space of behaviors regardless of

their predicted reward. Jn is a naı̈ve proxy for VOI, but

tends to be helpful in practice due to the difficulty of esti-

mating the uncertainty of neural network reward models for

Ju.

Maximizing uncertainty. The first AF Ju(τ) implements

one of the simplest query selection strategies from the ac-

tive learning literature: uncertainty sampling (Lewis & Gale,

1994). The idea is to elicit labels for examples that the model

is least certain how to label, and thus reduce model uncer-

tainty. To do so, we train an ensemble of neural network

reward models, and generate trajectories that maximize the

disagreement between ensemble members. Following Lak-

shminarayanan et al. (2017), we measure ensemble disagree-

ment using the average KL-divergence between the output

of a single ensemble member and the ensemble mean,

Ju(τ) =
1

|τ |

∑

(s,a,s′)∈τ

1

m

m
∑

i=1

DKL(pθi
(c|s, a, s′)

‖ pθ(c|s, a, s
′)), (3)

where pθ is the reward classifier defined in Section 3.2. Al-

though more sophisticated methods of modeling uncertainty

in neural networks exist (Gal, 2016), we find that ensemble

disagreement works well in practice.5

Maximizing reward. The second AF J+(τ) is intended

to detect examples of false positives, or ‘reward hacking’:

behaviors for which the reward model incorrectly outputs

high reward (Amodei et al., 2016; Christiano et al., 2017).

The idea is to show the user what the reward model predicts

to be good behavior, with the expectation that some of these

behaviors are actually suboptimal, and will be labeled as

such by the user. To do so, we simply synthesize trajectories

that maximize J+(τ) =
∑

(s,a,s′)∈τ R̂(s, a, s
′).

Minimizing reward. The third AF J−(τ) is intended to

augment the training data with more examples of unsafe

states than would normally be encountered, e.g., by a reward-

maximizing agent acting in the training environment. The

idea is to show the user what the reward model considers

to be unsafe behavior, with the expectation that the past

training data may not contain egregiously unsafe behaviors,

and that it would be helpful for the user to confirm whether

the model has captured the correct notion of unsafe states.

To do so, we produce trajectories that maximize J−(τ) =
−J+(τ).

Maximizing novelty. The fourth AF Jn(τ) is intended to

produce novel trajectories that differ from those already in

the training data, regardless of their predicted reward; akin

to prior work on geometric AFs (Sener & Savarese, 2018).

This is especially helpful early during training, when uncer-

tainty estimates are not accurate, and the reward model has

not yet captured interesting notions of reward-maximizing

and reward-minimizing behavior. To do so, we produce

trajectories τ that maximize the distance between τ and

previously-labeled trajectories τ ′ ∈ D,

Jn(τ) =
1

|D|

∑

τ ′∈D

d(τ, τ ′). (4)

In this work, we use a distance function that computes the

Euclidean distance between state embeddings,

d(τ, τ ′) =
1

|τ ||τ ′|

∑

s∈τ,s′∈τ ′

−e−‖fφ(st)−fφ(s′
t
)‖2 , (5)

where fφ is the state encoder trained in step (1).

For the sake of simplicity, we synthesize a separate trajec-

tory for each of the AFs Ju, J+, J−, and Jn. In principle,

multiple AFs could be combined to form hybrid AFs. For

example, optimizing J ′(τ) = J+(τ) + Jn(τ) could yield

trajectories that simultaneously maximize rewards and nov-

elty.

5We did not compare to other ensemble-based approximations,
such as mutual information (Houlsby et al., 2011).

Learning Human Objectives by Evaluating Hypothetical Behavior

Algorithm 1 Reward Query Synthesis

via Trajectory Optimization (ReQueST)

1: Require λ, pφ
2: Initialize D ← ∅
3: while θ not converged do
4: for J ∈ {Ju, J+, J−, Jn} do
5: τquery ← maxτ J(τ) + λ log pφ(τ)
6: for (s, a, s′) ∈ τquery do
7: c← c ∼ puser(c|s, a, s

′) {Query the user}
8: D ← D ∪ {(s, a, s′, c)}
9: end for

10: end for
11: for i ∈ {1, 2, ...,m} do
12: θi ← argmaxθi

∑
(s,a,s′,c)∈D

log pθi
(c|s, a, s′)

13: end for
14: end while
15: Return reward model R̂ {Defined via θ in Equation 2}

3.4. Query Synthesis via Trajectory Optimization

We synthesize a query trajectory τquery by solving the opti-

mization problem,

τquery = max
z0,a0,z1,...,zT

J(τ) + λ log pφ(τ), (6)

where zt is the embedding of state st in the latent

space of the encoder f trained in step (1), τ =
(f−1(z0), a0, f

−1(z1), a1, ..., f
−1(zT)) is the decoded tra-

jectory, J is the acquisition function (Section 3.3), λ ∈ R≥0

is a regularization constant, and pφ is the generative model

of trajectories (Section 3.1). In this work, we assume pφ(τ)
is differentiable, and optimize τquery using Adam (Kingma

& Ba, 2014).6 Optimizing low-dimensional, latent states z

instead of high-dimensional, raw states s reduces computa-

tional requirements, and regularizes the optimized states to

be more realistic.7

The regularization constant λ from Equation 6 controls the

trade-off between how realistic τquery is and how aggres-

sively it maximizes the AF. Setting λ = 0 can result in

query trajectories that are incomprehensible to the user and

unlikely to be seen in the test environment, while setting λ to

a high value can constrain the query trajectories from seek-

ing interesting hypotheticals. The experiments in Section

4.5 analyze this trade-off in further detail.

Our reward modeling algorithm is summarized in Algorithm

1. Given a generative model of trajectories pφ(τ), it gen-

6Our method can be extended to settings where pφ(τ) is not
differentiable, by using a gradient-free optimization method to
synthesize τquery. This can be helpful, e.g., when using a non-
differentiable simulator to model the environment.

7Our approach to query synthesis draws inspiration from direct
collocation methods in the trajectory optimization literature (Betts,
2010), feature visualization methods in the neural network inter-
pretability literature (Olah et al., 2017), and prior work on active
learning with deep generative models (Huijser & van Gemert,
2017).

erates one query trajectory τquery for each of the four AFs,

asks the user to label the states in the query trajectories,

retrains the reward model ensemble {θi}
m
i=1 on the updated

training data D using maximum-likelihood estimation,8 and

repeats this process until the user is satisfied with the out-

puts of the reward model. The ablation study in Section 4.6

analyzes the effect of using different subsets of the four AFs

to generate queries.

3.5. Deploying a Model-Based RL Agent

Given the learned reward model R̂, the agent can, in prin-

ciple, be trained using any RL algorithm in step (3). In

practice, since our method learns a forward dynamics model

in step (1), we find that model-based RL is a good fit for

training the agent in step (3). In this work, we deploy an

agent πmpc that combines planning with model-predictive

control (MPC):

πmpc(a|s) =1

[

a = argmax
a0

max
a1,...,aH

R̂(s, a0)

+ R̂(Eφ[s1|s, a0], a1) + ...

+R̂(Eφ[sH |s, a0, a1, ..., aH−1], aH)
]

, (7)

where the future states Eφ[st|s, a0, a1, ..., at−1] are pre-

dicted using the forward dynamics model pφ trained in step

(1), H is the planning horizon, and R̂ is the reward model

trained in step (2). We solve the optimization problem in

the right-hand side using Adam (Kingma & Ba, 2014).

3.6. Safe Exploration

One of the benefits of our method is that, since it learns

from synthetic trajectories instead of real trajectories, it only

has to imagine visiting unsafe states, instead of actually

visiting them. Although unsafe states may be visited during

unsupervised exploration of the environment for training the

generative model in step (1), the same generative model can

be reused to learn reward models for any number of future

tasks. Hence, the cost of visiting a fixed number of unsafe

states in step (1) can be amortized across a large number of

tasks in step (2). We could also train the generative model

on other types of off-policy data instead, including safe

expert demonstrations and examples of past failures.

Another benefit of our method is that, as part of the data

collection process in step (2), the user gets to observe query

trajectories that reveal what the reward model has learned.

Thus, the user can choose to stop providing feedback when

they are satisfied with the reward model’s notions of reward-

8Note that, in line 12 of Algorithm 1, we train each ensemble
member on all of the dataD, instead of a random subset of the data
(i.e., bootstrapping). As in Lakshminarayanan et al. (2017), we
find that simply training each reward network θi using a different
random seed works well in practice for modeling uncertainty.

Learning Human Objectives by Evaluating Hypothetical Behavior

and trap. The novelty-maximizing queries get pushed to the

corners of the environment. This is helpful for determining

that the goal and trap are relatively small and circular, and

do not bleed into the corners of map.

In Car Racing (Figure 14 in the appendix), the reward-

maximizing queries show the car driving down the road and

making a turn. The reward-minimizing queries show the

car going off-road as quickly as possible. The uncertainty-

maximizing queries show the car driving to the edge of the

road and slowing down. The novelty-maximizing queries

show the car staying still, which makes sense since the train-

ing data tends to contain mostly trajectories of the car in

motion.

5. Discussion

Summary. We contribute the ReQueST algorithm for learn-

ing a reward model from user feedback on hypothetical

behavior. The key idea is to automatically generate hy-

potheticals that efficiently determine the user’s objectives.

Simulated experiments on MNIST, state-based 2D naviga-

tion, and image-based Car Racing show that our method

produces accurate reward models that transfer well to new

environments and require fewer queries to the user, com-

pared to baseline methods adapted from prior work. Our

method detects reward hacking before the agent is deployed,

and safely learns about unsafe states. Through a hyper-

parameter sweep, we find that our method can trade off

between producing realistic vs. informative queries, and

that the optimal trade-off varies across domains. Through

an ablation study, we find that the usefulness of each of

the four acquisition functions we propose for optimizing

queries depends on the domain and the amount of training

data collected. Our experiments broadly illustrate how mod-

els of the environment can be used to improve the way we

learn models of task rewards.

Limitations and future work. The main practical limita-

tion of our method is that it requires a generative model of

initial states and a forward dynamics model, which can be

difficult to learn from purely off-policy data in complex, vi-

sual environments. One direction for future work is relaxing

this assumption; e.g., by incrementally training a genera-

tive model on on-policy data collected from an RL agent in

the training environment (Kaiser et al., 2019; Hafner et al.,

2019). Another direction is to address the safety concerns

of training on unsupervised interactions by using safe expert

demonstrations instead (as discussed in Section 3.6).

Our method assumes the user can label agent behaviors with

rewards. For complex tasks that involve extremely long-

term decision-making and high-dimensional state spaces,

such as managing public transit systems or sequential drug

treatments, the user may not be able to meaningfully eval-

uate the performance of the agent. To address this issue,

one could implement ReQueST inside a framework that en-

ables users to evaluate complex behaviors, such as recursive

reward modeling (Leike et al., 2018) or iterated amplifica-

tion (Christiano et al., 2018).

Acknowledgments

Thanks to Gabriella Bensinyor, Tim Genewein, Ramana

Kumar, Tom McGrath, Victoria Krakovna, Tom Everitt, Zac

Kenton, Richard Ngo, Miljan Martic, Adam Gleave, and

Eric Langlois for useful suggestions and feedback. Thanks

in particular to Gabriella Bensinyor, who proposed the name

and acronym of our method: reward query synthesis via tra-

jectory optimization, or ReQueST. This work was supported

in part by an NVIDIA Graduate Fellowship.

References

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-

man, J., and Mané, D. Concrete problems in AI safety.

arXiv preprint arXiv:1606.06565, 2016.

Anonymous. Deep reinforcement learning with implicit hu-

man feedback. In Submitted to International Conference

on Learning Representations, 2020. URL https://

openreview.net/forum?id=rJgDT04twH. Un-

der review.

Betts, J. T. Practical methods for optimal control and esti-

mation using nonlinear programming. 2010.

Bıyık, E. and Sadigh, D. Batch active preference-

based learning of reward functions. arXiv preprint

arXiv:1810.04303, 2018.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym.

arXiv preprint arXiv:1606.01540, 2016.

Brown, D. S., Cui, Y., and Niekum, S. Risk-aware active

inverse reinforcement learning. In Conference on Robot

Learning (CoRL), 2018.

Christiano, P., Shlegeris, B., and Amodei, D. Supervis-

ing strong learners by amplifying weak experts. arXiv

preprint arXiv:1810.08575, 2018.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,

S., and Amodei, D. Deep reinforcement learning from

human preferences. In Neural Information Processing

Systems, 2017.

Cui, Y. and Niekum, S. Active reward learning from cri-

tiques. In International Conference on Robotics and

Automation, 2018.

Learning Human Objectives by Evaluating Hypothetical Behavior

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru,

C., and Tassa, Y. Safe exploration in continuous action

spaces. arXiv preprint arXiv:1801.08757, 2018.

Daniel, C., Viering, M., Metz, J., Kroemer, O., and Peters,

J. Active reward learning. In Robotics: Science and

Systems, 2014.

Foot, P. The problem of abortion and the doctrine of double

effect. 1967.

Gal, Y. Uncertainty in deep learning. PhD thesis, 2016.

Garcıa, J. and Fernández, F. A comprehensive survey on safe

reinforcement learning. Journal of Machine Learning

Research, 2015.

Ha, D. and Schmidhuber, J. Recurrent world models facili-

tate policy evolution. In Neural Information Processing

Systems, 2018.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J.,

and Dragan, A. D. Inverse reward design. In Neural

Information Processing Systems, 2017.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,

Lee, H., and Davidson, J. Learning latent dynamics

for planning from pixels. International Conference on

Machine Learning, 2019.

Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M.

Bayesian active learning for classification and preference

learning. arXiv preprint arXiv:1112.5745, 2011.

Huijser, M. and van Gemert, J. C. Active decision bound-

ary annotation with deep generative models. In IEEE

International Conference on Computer Vision, 2017.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and

Amodei, D. Reward learning from human preferences

and demonstrations in Atari. In Neural Information Pro-

cessing Systems, 2018.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-

bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-

kowski, P., Levine, S., et al. Model-based reinforcement

learning for Atari. arXiv preprint arXiv:1903.00374,

2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple

and scalable predictive uncertainty estimation using deep

ensembles. In Neural Information Processing Systems,

2017.

LeCun, Y. The MNIST database of handwritten digits, 1998.

URL http://yann.lecun.com/exdb/mnist/.

Leike, J., Krueger, D., Everitt, T., Martic, M., Maini, V., and

Legg, S. Scalable agent alignment via reward modeling:

a research direction. arXiv preprint arXiv:1811.07871,

2018.

Lewis, D. D. and Gale, W. A. A sequential algorithm for

training text classifiers. In SIGIR Conference on Research

and Development in Information Retrieval, 1994.

MacGlashan, J., Ho, M. K., Loftin, R., Peng, B., Wang, G.,

Roberts, D. L., Taylor, M. E., and Littman, M. L. Interac-

tive learning from policy-dependent human feedback. In

International Conference on Machine Learning, 2017.

Mindermann, S., Shah, R., Gleave, A., and Hadfield-

Menell, D. Active inverse reward design. arXiv preprint

arXiv:1809.03060, 2018.

Olah, C., Mordvintsev, A., and Schubert, L. Feature visual-

ization. Distill, 2017.

Prakash, B., Khatwani, M., Waytowich, N., and Mohsenin,

T. Improving safety in reinforcement learning using

model-based architectures and human intervention. In

Florida Artificial Intelligence Research Society Confer-

ence, 2019.

Premack, D. and Woodruff, G. Does the chimpanzee have a

theory of mind? Behavioral and Brain Sciences, 1978.

Reddy, S., Dragan, A. D., and Levine, S. Shared autonomy

via deep reinforcement learning. In Robotics: Science

and Systems, 2018.

Ross, S., Gordon, G., and Bagnell, D. A reduction of

imitation learning and structured prediction to no-regret

online learning. In Conference on Artificial Intelligence

and Statistics (AISTATS), 2011.

Russell, S. J. Learning agents for uncertain environments.

In Conference on Learning Theory (COLT), 1998.

Sadigh, D., Dragan, A. D., Sastry, S., and Seshia, S. A.

Active preference-based learning of reward functions. In

Robotics: Science and Systems, 2017.

Saunders, W., Sastry, G., Stuhlmueller, A., and Evans, O.

Trial without error: Towards safe reinforcement learning

via human intervention. In International Conference on

Autonomous Agents and MultiAgent Systems, 2018.

Savage, L. J. The foundations of statistics. John Wiley &

Sons, 1954.

Sener, O. and Savarese, S. Active learning for convolutional

neural networks: A core-set approach. International

Conference on Learning Representations, 2018.

Learning Human Objectives by Evaluating Hypothetical Behavior

Settles, B. Active learning literature survey. Technical

report, 2009.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An

introduction. 2018.

Warnell, G., Waytowich, N., Lawhern, V., and Stone,

P. Deep TAMER: Interactive agent shaping in high-

dimensional state spaces. In AAAI Conference on Ar-

tificial Intelligence, 2018.

Wirth, C., Akrour, R., Neumann, G., and Fürnkranz, J. A

survey of preference-based reinforcement learning meth-

ods. Journal of Machine Learning Research, 2017.

Learning Human Objectives by Evaluating Hypothetical Behavior

A. Appendix

A.1. Implementation Details

Shooting vs. collocation. We use the notation λ = ∞ to

denote solving the optimization problem in Equation 6 with

a shooting method instead of a collocation method. The

shooting method optimizes (z0, a0, a1, ..., aT−1), and rep-

resents zt+1 = Eφ[zt+1|z0, a0, a1, ..., at] using the forward

dynamics model pφ learned in step (1).

MNIST classification. We simulate the user in line 7 of

Algorithm 1 as an expert, k-nearest neighbors classifier

puser(a|s) trained on all labeled data. We only generate

queries using the AFs Jn and Ju in line 4 of Algorithm 1,

since J+ and J− are not useful for single-step classifica-

tion. We replace pθi
(c|s, a, s′) with pθi

(a|s) in Equation

3 and line 12 of Algorithm 1. We represent pθ(a|s) in

Equation 2 using a feedforward neural network with two

fully-connected hidden layers containing 256 hidden units

each, and m = 4 separate networks in the ensemble. The

MPC agent in Equation 7 reduces to πmpc(a|s) = pθ(a|s).
The Gaussian prior distribution of the VAE yields the likeli-

hood model, pφ(s0) ∝ exp (‖fφ(s0)‖
2
2). The state inputs

to the reward model are the latent embeddings produced by

fφ, instead of the raw pixel inputs. We set λ = 0.1 when

synthesizing queries with the AF Ju, and λ = 0.01 when

synthesizing queries with the AF Jn.

State-based 2D navigation. To encourage the agent

to avoid the trap, the reward constants are asymmetric:

Rgood = 1, Runsafe = −10, and Rneutral = 0. Since the

states are already low-dimensional, we simply use the iden-

tity function for the state encoder and decoder. We represent

pθ(c|s, a, s
′) in Equation 2 using a feedforward neural net-

work with two fully-connected hidden layers containing 32

hidden units each, and m = 4 separate networks in the en-

semble. We hard-code a Gaussian forward dynamics model,

p(st+1|st, at) = N (st+1; st + at, σ
2). Each episode lasts

at most 1000 steps, and the maximum speed is restricted to

‖a‖2≤ 0.01. In Equation 7, we use a planning horizon of

H = 500. In Equation 6, we use a query trajectory length

of T = 1; i.e., the query consists of one state transition from

the hard-coded initial state s0 to a synthesized next state s1.

We set λ = 0 when synthesizing queries for any of the four

AFs.

Car Racing. To encourage the agent to drive without being

overly conservative, the reward constants are asymmetric:

Rgood = 10, Runsafe = −1, and Rneutral = 0. We repre-

sent pθ(c|s, a, s
′) in Equation 2 using a feedforward neural

network with two fully-connected hidden layers containing

256 hidden units each, and m = 4 separate networks in the

ensemble. We train a generative model using the unsuper-

vised approach in Ha & Schmidhuber (2018), which learns a

VAE state encoder and decoder with a 32-dimensional latent

space, a recurrent dynamics model with a 256-dimensional

latent space, and a mixture density network with 5 compo-

nents that predicts stochastic transitions. Since the environ-

ment is partially observable, we represent the state input to

the reward model by concatenating the VAE latent embed-

ding with the RNN latent embedding. Each episode lasts

at most 1000 timesteps. In Equation 7, we use a planning

horizon ofH = 50. In Equation 6, we use a query trajectory

length of T = 50. We set λ = ∞ when synthesizing queries

for any of the four AFs.

In the high-dimensional Car Racing environment, we

find that optimizing Equation 6 leads to incomprehen-

sible query trajectories τquery, even for high values of

the regularization constant λ. To address this issue,

we modify the method in two ways that provide addi-

tional regularization. First, instead of optimizing the

initial state s0 in τquery, we set it to some real state

sampled from the training environment during step

(1). Second, instead of optimizing (z0, a0, z1, ..., zT),
where τ = (f−1(z0), a0, f

−1(z1), a1, ..., f
−1(zT)),

we optimize (z0, a0,m0, a1,m1, ..., aT−1,mT−1),
where τ = (f−1(z0), a0, f

−1(MDN(z0, a0,m0)), a1,

..., f−1(MDN(zT−1, aT−1,mT−1))). The function

MDN(zt, at,mt) denotes using the mixture coefficients

mt to compute the expected next state, instead of using

the mixture coefficients ψ(zt, at) predicted by the mixture

density network. Thus, the likelihood regularization term

becomes log pφ(τ) =
∑T−1

t=0 H(mt, ψ(zt, at)), where H

is the cross-entropy. This representation of the trajectory τ

is easier to optimize, and results in more comprehensible

queries.

