1912.05652v1 [cs.CY] 5 Dec 2019

arxiv

Learning Human Objectives by Evaluating Hypothetical Behavior

Siddharth Reddy!* AncaD.Dragan'! Sergey Levine' Shane Legg? Jan Leike

Abstract

We seek to align agent behavior with a user’s ob-
jectives in a reinforcement learning setting with
unknown dynamics, an unknown reward function,
and unknown unsafe states. The user knows the
rewards and unsafe states, but querying the user is
expensive. To address this challenge, we propose
an algorithm that safely and interactively learns a
model of the user’s reward function. We start with
a generative model of initial states and a forward
dynamics model trained on off-policy data. Our
method uses these models to synthesize hypothet-
ical behaviors, asks the user to label the behaviors
with rewards, and trains a neural network to pre-
dict the rewards. The key idea is to actively syn-
thesize the hypothetical behaviors from scratch
by maximizing tractable proxies for the value of
information, without interacting with the environ-
ment. We call this method reward query synthesis
via trajectory optimization (ReQueST). We eval-
uate ReQueST with simulated users on a state-
based 2D navigation task and the image-based
Car Racing video game. The results show that
ReQueST significantly outperforms prior meth-
ods in learning reward models that transfer to
new environments with different initial state dis-
tributions. Moreover, ReQueST safely trains the
reward model to detect unsafe states, and corrects
reward hacking before deploying the agent.

1. Introduction

Users typically specify objectives for reinforcement learn-
ing (RL) agents through scalar-valued reward functions (Sut-
ton & Barto, 2018). While users can easily define re-
ward functions for tasks like playing games of Go or Star-
Craft, users may struggle to describe practical tasks like
driving cars or controlling robotic arms in terms of re-

"University of California, Berkeley DeepMind. Correspon-
dence to: Siddharth Reddy <sgr@berkeley.edu>, Jan Leike
<leike@google.com>. “Work done during an internship at Deep-
Mind. Code, data, and videos at https://sites.google.
com/berkeley.edu/request.

Generative model Hypothetical behavior
P SSO) fy=nep S i
p(s'ls; a) e
RL agent Reward model User

feedback
B 8%

Figure 1. Our method learns a reward model from user feedback on
hypothetical behaviors, then deploys a model-based reinforcement
learning agent that optimizes the learned rewards.

wards (Hadfield-Menell et al., 2017). Understanding user
objectives in these settings can be challenging — not only
for machines, but also for humans modeling each other and
introspecting on themselves (Premack & Woodruff, 1978).

For example, consider the trolley problem (Foot, 1967): if
you were the train conductor in Figure 1, presented with the
choice of either allowing multiple people to come to harm
by letting the train continue on its current track, or harming
one person by diverting the train, what would you do? The
answer depends on whether your value system leans toward
consequentialism or deontological ethics — a distinction
that may not be captured by a reward function designed
to evaluate common situations, in which ethical dilemmas
like the trolley problem rarely occur. In complex domains,
the user may not be able to anticipate all possible agent
behaviors and specify a reward function that accurately
describes user preferences over those behaviors.

‘We address this problem by actively synthesizing hypothet-
ical behaviors from scratch, and asking the user to label
them with rewards. Figure 1 describes our algorithm: using
a generative model of initial states and a forward dynamics
model trained on off-policy data, we synthesize hypothetical
behaviors, ask the user to label the behaviors with rewards,
and train a neural network to predict the rewards. We repeat
this process until the reward model converges, then deploy
a model-based RL agent that optimizes the learned rewards.

The key idea in this paper is synthesizing informative hy-

Learning Human Objectives by Evaluating Hypothetical Behavior

potheticals (illustrated in Figure 2). Ideally, we would gen-
erate these hypotheticals by optimizing the value of infor-
mation (VOI; Savage, 1954), but the VOI is intractable
for real-world domains with high-dimensional, continuous
states.! Instead, we use trajectory optimization to produce
four types of hypotheticals that improve the reward model in
different ways: behaviors that (1) maximize reward model
uncertainty,” to elicit labels that are likely to change the
updated reward model’s outputs; (2) maximize predicted
rewards, to detect and correct reward hacking; (3) mini-
mize predicted rewards, to safely explore unsafe states; or
(4) maximize novelty of trajectories regardless of predicted
rewards, to improve the diversity of the training data. To
ensure that the hypothetical trajectories remain comprehen-
sible to the user and resemble realistic behaviors, we use a
generative model of initial states and a forward dynamics
model for regularization. We call this method reward query
synthesis via trajectory optimization (ReQueST).

Our primary contribution is ReQueST: an algorithm that
synthesizes hypothetical behaviors in order to safely and effi-
ciently train neural network reward models in environments
with high-dimensional, continuous states. We evaluate Re-
QueST with simulated users in three domains: MNIST clas-
sification (LeCun, 1998), a state-based 2D navigation task,
and the image-based Car Racing video game in the Ope-
nAl Gym (Brockman et al., 2016). Our experiments show
that ReQueST learns robust reward models that transfer to
new environments with different initial state distributions,
achieving at least 2x better final performance than baselines
adapted from prior work (e.g., see Figure 4). In the naviga-
tion task, ReQueST safely learns to classify 100% of unsafe
states as unsafe and deploys an agent that never visits unsafe
states, while the baselines fail to learn about even one unsafe
state and deploy agents with a failure rate of 75%.

2. Related Work

In this work, we align agent behavior with a user’s objec-
tives by learning a model of the user’s reward function and
training the agent via RL (Russell, 1998; Leike et al., 2018).
The idea behind modeling the user’s reward function — as
opposed to the user’s policy (Ross et al., 2011), value func-
tion (Warnell et al., 2018; Reddy et al., 2018), or advantage
function (MacGlashan et al., 2017) —is to acquire a compact,
transferable representation of the user’s objectives; not just
in the training environment, but also in new environments
with different dynamics or initial states.

The closest prior work is on active learning methods for

The VOI is intractable because it requires computing an ex-
pectation over all possible trajectories, conditioned on the optimal
policy for the updated reward model. See Section 3.3 for details.

2We measure uncertainty using the disagreement between an
ensemble of reward models. See Section 3.3 for details.

o O o
0 O
5 o
5]
=
o 0]
o
: O
3t

o

T%lu_\ Deontologist’s
v v v &)1\ ert v reward function
people on current track
= Training environment
Q stay

= Labeled scenarios = Synthetic queries
W Divert

Figure 2. Our method automatically synthesizes hypotheticals like
the trolley problem. Consider a training environment in which
the following two states are common: either one of the tracks
is empty, or there are fewer people on the current track than the
other track. In these states, the consequentialist and deontologist
reward functions agree. After asking the user to label these states,
we are not able to determine which of the two is the true reward
function, since both are consistent with the training data. Our
method queries the user for labels at states where the value of
information is highest: states where there are more people on the
current track than the other track, but there are still some people
on the other track. By eliciting user labels at these unlikely-but-
informative states, we learn a reward model that more accurately
captures the user’s objectives.

learning rewards from pairwise comparisons (Sadigh et al.,
2017; Biyik & Sadigh, 2018; Wirth et al., 2017), cri-
tiques (Cui & Niekum, 2018), demonstrations (Ibarz et al.,
2018; Brown et al., 2018), designs (Mindermann et al.,
2018), and numerical feedback (Daniel et al., 2014). Re-
QueST differs in three key ways: it produces query trajecto-
ries using a generative model, in a way that enables trading
off between producing realistic vs. informative queries;
it optimizes queries not only to reduce model uncertainty,
but also to detect reward hacking and safely explore un-
safe states; and it scales to learning neural network reward
models that operate on high-dimensional, continuous state
spaces.

ReQueST shares ideas with prior work (Saunders et al.,
2018; Prakash et al., 2019) on learning to detect unsafe
behaviors by initially seeking out catastrophes, selectively
querying the user, and using model-based RL. ReQueST
differs primarily in that it learns a complete task specifi-
cation, not just an unsafe state detector. ReQueST is also
complementary to prior work on safe exploration, which
typically assumes a known reward function and side con-

Learning Human Objectives by Evaluating Hypothetical Behavior

straints, and focuses on ensuring that the agent never visits
unsafe states during policy optimization (Dalal et al., 2018;
Garcia & Fernandez, 2015).

3. Learning Rewards from User Feedback on
Hypothetical Behavior

We formulate the reward modeling problem as follows. We
assume access to a training environment that follows a
Markov Decision Process (MDP; Sutton & Barto, 2018)
with unknown state transition dynamics 7, unknown initial
state distribution Sgai“, and an unknown reward function R
that can be evaluated on specific inputs by querying the user.
We learn a model of the reward function R by querying the
user for reward signals. At test time, we train an RL agent
with the learned reward function R in a new environment
with the same dynamics 7, but a potentially different initial
state distribution S§™. The goal is for the agent to perform
well in the test environment with respect to the true reward
function R.

Our approach to this problem is outlined in Figure 1, and can
be split into three steps. In step (1) we use off-policy data
to train a generative model pg(7) that can be used to evalu-
ate the likelihood of a trajectory 7 = (sg, ag, $1,a1, ..., ST).
This model enables us to synthesize hypothetical trajecto-
ries that can be shown to the user. In step (2) we produce
synthetic trajectories, which consist of sequences of state
transitions (s, a, s’), that seek out different kinds of hypo-
theticals. We ask the user to label each transition with a
scalar reward R(s, a, s'), and fit a reward model R(s, a, s')
using standard supervised learning techniques.® In step (3)
we use standard RL methods to train an agent using the
learned rewards. Since we typically learn a forward dynam-
ics model as part of the generative model in step (1), we find
that model-based RL is a good fit for training the agent in
step (3).

3.1. Learning a Generative Model of Trajectories

In order to synthesize hypothetical outcomes that may be
unlikely to occur in the training environment, we cannot
simply take actions in the training environment and collect
the resulting trajectories, as is done in prior work. Instead,
we resort to training a generative model of trajectories, so
that we can more efficiently sample unusual behaviors using
the model.

In step (1) we collect off-policy data by interacting with
the training environment in an unsupervised fashion; i.e.,
without the user in the loop. To simplify our experiments,

3In principle, other methods, such as pairwise compar-
isons (Wirth et al., 2017) or implicit feedback (Anonymous, 2020),
could also be used to label the synthetic trajectories with user
rewards.

we sample trajectories 7 by following random policies that
explore a wide variety of states.* We use the observed
trajectories to train a likelihood model,

T-1

po(r) < po(s0) [[Polsearlsna). (1
t=0

where pg(sp) models the initial state distribution,
D (St+1|5t, ar) models the forward dynamics, and ¢ are
the model parameters (e.g., neural network weights). We
train the model py using maximum-likelihood estimation,
given the sampled trajectories. As described in the next
section, the likelihood model is helpful for regularizing the
synthetic trajectories shown to the user.

In environments with high-dimensional, continuous states,
such as images, we also train a state encoder f4 : S = Z
and decoder f(;l : Z — S, where S = R", Z = R%, and
d << n. As described in Section 3.4, embedding states in
a low-dimensional latent space Z is helpful for trajectory
optimization. In our experiments, we train fe and fg !
using the variational auto-encoder method (VAE; Kingma
& Welling, 2013).

3.2. Representing the Reward Model as a Classifier

Our goal is to learn a model R of the user’s reward function.
In step (2) we represent R by classifying state transitions as
good, unsafe, or neutral — similar to Cui & Niekum (2018)
— and assigning a known, constant reward to each of these
three categories:

R(s,a,s') = Z

ce{good,unsafe,neutral }

pelcls,a,s")Re, (2)

where pg(c|s,a,s’) = =37 pg,(c|s,a, s') is the mean
of an ensemble of m classifiers {pg, }!",, and 0, are the
weights of the i-th neural network in the ensemble. R,
is the constant reward for any state transition in class c,
where Rypsate < Rneural < Reood- Modeling the reward
function as a classifier simplifies our experiments and makes
it easier for the user to provide labels. In principle, our
method can also work with other architectures, such as
a more straightforward regression model R = Rg. As
described in Section 3.3, we use an ensemble method to

model uncertainty.

3.3. Designing Objectives for Informative Queries

Our approach to reward modeling involves asking the user
to label trajectories with reward signals. In step (2) we
synthesize query trajectories to elicit user labels that are
informative for learning the reward model.

*In principle, safe expert demonstrations could be used instead
of random trajectories. We used random trajectories to simplify
our experiments. See Section 3.6 for further discussion.

Learning Human Objectives by Evaluating Hypothetical Behavior

To generate a useful query, we synthesize a trajectory 7
that maximizes an acquisition function (AF) denoted by
J(T). The AF evaluates how useful it would be to elicit
reward labels for 7, then update the reward model given the
newly-labeled data. Since we do not assume knowledge
of the test environment where the agent is deployed, we
cannot optimize the ideal AF: the value of information (VOI;
Savage, 1954), defined as the gain in performance of an
agent that optimizes the updated reward model in the test
environment. Prior work on active learning tackles this
problem by optimizing proxies for VOI (Settles, 2009). We
use AFs adapted from prior work, as well as novel AFs that
are particularly useful for reward modeling.

In this work, we use four AFs that are easy to optimize for
neural network reward models. The first AF .J,,(7) maxi-
mizes reward model uncertainty, eliciting user labels for be-
haviors that are likely to change the updated reward model’s
outputs. J,, is a proxy for VOI, since improving the agent
requires improving the predicted rewards. The second AF
J4(7) maximizes predicted rewards, surfacing behaviors
for which the reward model might be incorrectly predict-
ing high rewards. .J is another useful heuristic for reward
modeling, since preventing reward hacking improves agent
performance. The third AF J_(7) minimizes predicted re-
wards, adding unsafe behaviors to the training data. While
we do not consider J_ to be a proxy for VOI, we find it
helpful empirically for training neural network reward mod-
els, since it helps to balance the number of unsafe states (vs.
neutral or good states) in the training data. The fourth AF
Jn(7) maximizes the novelty of training data, encouraging
uniform coverage of the space of behaviors regardless of
their predicted reward. J, is a naive proxy for VOI, but
tends to be helpful in practice due to the difficulty of esti-
mating the uncertainty of neural network reward models for
Ju.

Maximizing uncertainty. The first AF J,,(7) implements
one of the simplest query selection strategies from the ac-
tive learning literature: uncertainty sampling (Lewis & Gale,
1994). The idea is to elicit labels for examples that the model
is least certain how to label, and thus reduce model uncer-
tainty. To do so, we train an ensemble of neural network
reward models, and generate trajectories that maximize the
disagreement between ensemble members. Following Lak-
shminarayanan et al. (2017), we measure ensemble disagree-
ment using the average KL-divergence between the output
of a single ensemble member and the ensemble mean,

1 1 &
Ju(T) = H Z % ZDKL(pGi(C|S7a’) S,)

(s,a,s")eT =1
H pg(C‘S, a, 8/))3 3

where pg is the reward classifier defined in Section 3.2. Al-
though more sophisticated methods of modeling uncertainty

in neural networks exist (Gal, 2016), we find that ensemble
disagreement works well in practice.’

Maximizing reward. The second AF J, (7) is intended
to detect examples of false positives, or ‘reward hacking’:
behaviors for which the reward model incorrectly outputs
high reward (Amodei et al., 2016; Christiano et al., 2017).
The idea is to show the user what the reward model predicts
to be good behavior, with the expectation that some of these
behaviors are actually suboptimal, and will be labeled as
such by the user. To do so, we simply synthesize trajectories

that maximize J (1) = >_(, , o)er L2(s,a,8).

Minimizing reward. The third AF J_(7) is intended to
augment the training data with more examples of unsafe
states than would normally be encountered, e.g., by a reward-
maximizing agent acting in the training environment. The
idea is to show the user what the reward model considers
to be unsafe behavior, with the expectation that the past
training data may not contain egregiously unsafe behaviors,
and that it would be helpful for the user to confirm whether
the model has captured the correct notion of unsafe states.
To do so, we produce trajectories that maximize J_ (1) =

—J (7).

Maximizing novelty. The fourth AF .J,,(7) is intended to
produce novel trajectories that differ from those already in
the training data, regardless of their predicted reward; akin
to prior work on geometric AFs (Sener & Savarese, 2018).
This is especially helpful early during training, when uncer-
tainty estimates are not accurate, and the reward model has
not yet captured interesting notions of reward-maximizing
and reward-minimizing behavior. To do so, we produce
trajectories 7 that maximize the distance between 7 and
previously-labeled trajectories 7/ € D,

Ju(T) = %' > d(r, 7). 4)

T'eD

In this work, we use a distance function that computes the
Euclidean distance between state embeddings,

1 S e laen-telDlls (s

A=

seT,s'et’!

where fg is the state encoder trained in step (1).

For the sake of simplicity, we synthesize a separate trajec-
tory for each of the AFs J,, J;, J_, and J,. In principle,
multiple AFs could be combined to form hybrid AFs. For
example, optimizing J'(7) = J;(7) 4+ J,(7) could yield
trajectories that simultaneously maximize rewards and nov-
elty.

SWe did not compare to other ensemble-based approximations,
such as mutual information (Houlsby et al., 2011).

Learning Human Objectives by Evaluating Hypothetical Behavior

Algorithm 1 Reward Query Synthesis
via Trajectory Optimization (ReQueST)
1: Require A, pg
2: Initialize D «+ ()
3: while 6 not converged do
4: for J € {Ju,Jy,J_,Jn} do
5: Tquery <— max, J(7) + Alogpg(T)
6
7
8

for (s,a,s’) € Tquery do
¢+ ¢ ~ puser(c|s, a, s") {Query the user}
: D+ DU{(s,a,5,c)
9: end for

10: end for

11: forie {1,2,..,m}do

12: 0; < argmaxg, 3., , o ,ep 08 Pe, (c]s, a,s")
13: end for

14: end while R
15: Return reward model R {Defined via € in Equation 2}

3.4. Query Synthesis via Trajectory Optimization

We synthesize a query trajectory Tquery by solving the opti-
mization problem,

max
20,0021, +,RT

Tquery — J(T) +A log Po (T)7 (6)
where z; is the embedding of state s; in the latent
space of the encoder f trained in step (1), 7 =
(fY(20), a0, f1(21),a1, ..., f~1(z7)) is the decoded tra-
jectory, J is the acquisition function (Section 3.3), A € Rxg
is a regularization constant, and p is the generative model
of trajectories (Section 3.1). In this work, we assume pg (7)
is differentiable, and optimize Tquery using Adam (Kingma
& Ba, 2014).° Optimizing low-dimensional, latent states z
instead of high-dimensional, raw states s reduces computa-
tional requirements, and regularizes the optimized states to
be more realistic.’

The regularization constant A from Equation 6 controls the
trade-off between how realistic Tguery is and how aggres-
sively it maximizes the AF. Setting A = 0 can result in
query trajectories that are incomprehensible to the user and
unlikely to be seen in the test environment, while setting A to
a high value can constrain the query trajectories from seek-
ing interesting hypotheticals. The experiments in Section
4.5 analyze this trade-off in further detail.

Our reward modeling algorithm is summarized in Algorithm
1. Given a generative model of trajectories pg(7), it gen-

®QOur method can be extended to settings where pg (7) is not
differentiable, by using a gradient-free optimization method to
synthesize Tquery. This can be helpful, e.g., when using a non-
differentiable simulator to model the environment.

"Our approach to query synthesis draws inspiration from direct
collocation methods in the trajectory optimization literature (Betts,
2010), feature visualization methods in the neural network inter-
pretability literature (Olah et al., 2017), and prior work on active
learning with deep generative models (Huijser & van Gemert,
2017).

erates one query trajectory Tquery for each of the four AFs,
asks the user to label the states in the query trajectories,
retrains the reward model ensemble {6;}!™ , on the updated
training data D using maximum-likelihood estimation,® and
repeats this process until the user is satisfied with the out-
puts of the reward model. The ablation study in Section 4.6
analyzes the effect of using different subsets of the four AFs
to generate queries.

3.5. Deploying a Model-Based RL Agent

Given the learned reward model R, the agent can, in prin-
ciple, be trained using any RL algorithm in step (3). In
practice, since our method learns a forward dynamics model
in step (1), we find that model-based RL is a good fit for
training the agent in step (3). In this work, we deploy an
agent e that combines planning with model-predictive
control (MPC):

Tmpe(@|s) =1 |a = argmax o max R(s, ap)
.

+ R(E¢[sl|s,ao], ay) + ...

+R(E¢[5H|S, ag, a1, -y A1, aH)} . (D

where the future states Eg[s|s, ao, a1, ..., a;—1] are pre-
dicted using the forward dynamics model pg trained in step
(1), H is the planning horizon, and R is the reward model
trained in step (2). We solve the optimization problem in
the right-hand side using Adam (Kingma & Ba, 2014).

3.6. Safe Exploration

One of the benefits of our method is that, since it learns
from synthetic trajectories instead of real trajectories, it only
has to imagine visiting unsafe states, instead of actually
visiting them. Although unsafe states may be visited during
unsupervised exploration of the environment for training the
generative model in step (1), the same generative model can
be reused to learn reward models for any number of future
tasks. Hence, the cost of visiting a fixed number of unsafe
states in step (1) can be amortized across a large number of
tasks in step (2). We could also train the generative model
on other types of off-policy data instead, including safe
expert demonstrations and examples of past failures.

Another benefit of our method is that, as part of the data
collection process in step (2), the user gets to observe query
trajectories that reveal what the reward model has learned.
Thus, the user can choose to stop providing feedback when
they are satisfied with the reward model’s notions of reward-

8Note that, in line 12 of Algorithm 1, we train each ensemble
member on all of the data D, instead of a random subset of the data
(i.e., bootstrapping). As in Lakshminarayanan et al. (2017), we
find that simply training each reward network 6; using a different
random seed works well in practice for modeling uncertainty.

Learning Human Objectives by Evaluating Hypothetical Behavior

maximizing and reward-minimizing behaviors; and when
they see that uncertainty-maximizing queries are genuinely
ambiguous, instead of merely uncertain to the model while
being easy for the user to judge. This provides a safer
alternative to debugging a reward model by immediately de-
ploying the agent and observing its behavior without directly
inspecting the reward model beforehand.

4. Experimental Evaluation

We seek to answer the following questions. Q1: Does syn-
thesizing hypothetical trajectories elicit more informative
labels than rolling out a policy in the training environment?
Q2: Can our method detect and correct reward hacking?
Q3: Can our method safely learn about unsafe states? Q4:
Do the proposed AFs improve upon random sampling from
the generative model? QS5: How does the regularization
constant A control the trade-off between realistic and infor-
mative queries? Q6: How much do each of the four AFs
contribute to performance?

To answer these questions under ideal assumptions, we run
experiments in three domains — MNIST (LeCun, 1998),
state-based 2D navigation (Figure 3), and image-based Car
Racing from the OpenAl Gym (Brockman et al., 2016) —
with simulated users that label trajectories using a ground-
truth reward function. In each domain, we setup a training
environment with initial state distribution sgai", and a test
environment with initial state distribution S(‘f“, as described
in Section 3. In many real-world settings, the user can help
initialize the reward model by providing a small number
of (suboptimal) demonstrations and labeling them with re-
wards. Hence, we initialize the training data D in line 2 of
Algorithm 1 with a small set of labeled, suboptimal, user
demonstrations collected in the training environment.

MNIST classification. This domain enables us to focus on
testing the active learning component of our method, since
the standard digit classification task does not involve sequen-
tial decision-making. Here, the initial state sq € R28%28
is a grayscale image of a handwritten digit, and the action
a € {0,1,...,9} is a discrete classification. When we gen-
erate queries, we synthesize an image sg, and ask the simu-
lated user to label it with an action a. The initial state distri-
bution of the training environment S puts a probability of
1 on sampling s € {5,6,7,8,9}, and a probability of 0 on
sampling sp € {0,1,2,3,4}. We intentionally introduce a
significant shift in the state distribution between the training
and test environments, by setting the initial state distribution
of the test environment S to the complement of ST4"; i.e.,
putting a probability of 1 on sampling sg € {0, 1,2, 3,4},
and a probability of 0 on sampling so € {5,6,7,8,9}. This
mismatch is intended to test the robustness of the learned
classifier; i.e., how well it performs under distribution shift.
We train a state encoder fg and decoder f,, in step (1) by

1.0 —
-
'l
0.8 : :
1.0 - i; :
------ 0.6 " N Wk
0.8 20, g ¢
{ \ Sse, Py ¢
| | 0.4 28)
0.6 M A » b’. 0 s
0.2 i .
0.4 2T .
{ 4 0.0
; 00 02 04 06 08 1.0

® Demonstration @ Max. Uncertainty
@® Max. Reward Max. Novelty
1.0 @ Min. Reward

0.2 j ____

Figure 3. Left: The 2D navigation task, where the agent navigates
to the goal region (green) in the lower left while avoiding the trap
region (red) in the upper right. The agent starts in the lower left
corner in the training environment, and starts in the upper right
corner in the test environment. Right: Examples of hypothetical
states synthesized throughout learning, illustrating the qualitative
differences in the behaviors targeted by each AF.

training a VAE with an 8-dimensional latent space Z = R®
on all the images in the MNIST training set.’

State-based 2D navigation. This domain enables us to
focus on the challenges of sequential decision-making, with-
out dealing with high-dimensional states. Here, the state
s € R? is the agent’s position, and the action a € R? is
a velocity vector. The task requires navigating to a tar-
get region, while avoiding a trap region. The simulated
user labels a state transition (s, a, s’) with category ¢ €
{good, unsafe, neutral }, by looking at the state s’, and iden-
tifying whether it is inside the goal region (good), inside the
trap region (unsafe), or outside both regions (neutral). The
initial state distribution of the training environment S§*" is
a delta function at the origin: p(sg) = 1[sp = (0,0)]. We
intentionally introduce a significant shift in the state distribu-
tion between the training and test environments, by setting
the initial state distribution of the test environment S§*' to
a delta function at the opposite corner of the unit square:
p(so) = 1[so = (1,1)]. As in MNIST, this mismatch is
intended to test the generalization of reward models. The
task is harder to complete in the test environment, since the
agent starts closer to the trap, and must navigate around the
trap to reach the goal (Figure 3).

Image-based Car Racing. This domain enables us to test
whether our method scales to learning sequential tasks with
high-dimensional states. Here, the state s € RO4x64x3 g
an RGB image with a top-down view of the car (Figure 13

’Note that this differs from the random sampling method for
collecting off-policy data described in Section 3.1. Though the ini-
tial state distribution of the training environment is a uniform distri-
bution over {5, 6,7, 8,9}, we train the generative model on all the
digits {0, 1,2, ...,9}. This simplifies our experiments, and enables
ReQueST to synthesize hypothetical digits from {0, 1,2, 3, 4}.

Learning Human Objectives by Evaluating Hypothetical Behavior

2D Navigation

Car Racing

2000

1500

Reward

1000

0 5000 10000 15000 20000 25000

Number of Queries
= Offline Reward Model
= Offline Classifier
= Random Policy (Baseline)
Random Digits from Training Env. (Baseline)

ReQueST (Ours) ReQueST (Ours)

N MNIST
L 1.0fccsencsncnnnnnnnnas
7 =
[c
2os “os8
< 3
o
gos ‘206
3 3
204 x 0.4
5
2 v 0.2
-.*S 0.2 é
&
a 0.0
200 0 100 200
o 0 500 1000 1500

- Random Policy (Baseline)
Random Traj's from Training Env. (Baseline)
Reward-Maximizing Traj's from Training Env. (Baseline)

300 400

Number of Queries

Number of Queries

-+ Offline Reward Model
= Random Policy (Baseline)
== Demonstrations (Baseline)
Random Trajectories (Baseline)
Reward-Maximizing Trajectories (Baseline)
ReQueST (Ours)

Figure 4. Experiments that address Q1 — does synthesizing hypothetical trajectories elicit more informative labels than rolling out a policy
in the training environment? — by comparing our method, which uses synthetic trajectories, to baselines that only use real trajectories
generated in the training environment. The results on MNIST, 2D navigation, and Car Racing show that our method (orange) significantly
outperforms the baselines (blue and gray), which never succeed in 2D navigation. The x-axis represents the number of queries to the user,
where each query elicits a label for a single state transition (s, a, s’). The shaded areas show standard error over three random seeds.

in the appendix), and the action a € R? controls steering,
gas, and brake. The simulated user labels a state transi-
tion (s, a, s') with category ¢ € {good, unsafe, neutral}, by
looking at the state s’, and identifying whether it shows the
car driving onto a new patch of road (good), off-road (un-
safe), or in a previously-visited road patch (neutral). Here,
we set the same initial state distribution for the training
and test environments, since the reward modeling problem
is challenging even when the initial state distributions are
identical. We train a generative model in step (1) using the
unsupervised approach in Ha & Schmidhuber (2018), which
trains a VAE that compresses images, a recurrent dynamics
model that predicts state transitions under partial observabil-
ity, and a mixture density network that predicts stochastic
transitions.

Section A.1 in the appendix discusses the setup of each
domain, including the methods used to train the generative
model in step (1), in further detail.

4.1. Robustness Compared to Baselines

Our first experiment tests whether our method can learn a
reward model that is robust enough to perform well in the
test environment, and tracks how many queries to the user it
takes to learn an accurate reward model.

Manipulated factors. To answer Q1, we compare our
method to a baseline that, instead of generating hypothetical
trajectories for the user to label, generates trajectories by
rolling out a policy that optimizes the current reward model
in the training environment — an approach adapted from
prior work (Christiano et al., 2017). The baseline gener-
ates Tquery 1n line 5 of Algorithm 1 by rolling out the MPC
policy in Equation 7, instead of solving the optimization

problem in Equation 6. To test how generating queries using
a reward-maximizing policy compares to using a policy that
does not depend on the reward model, we also evaluate a
simpler baseline that generates query trajectories using a
uniform random policy, instead of the MPC policy.

Dependent measures. We measure performance in MNIST
using the agent’s classification accuracy in the test environ-
ment; in 2D navigation, the agent’s success rate at reaching
the goal while avoiding the trap in the test environment;
and in Car Racing, the agent’s true reward, which gives a
bonus for driving onto new patches of road, and penalizes
going off-road.!” We establish a lower bound on perfor-
mance using a uniform random policy, and an upper bound
by deploying an MPC agent equipped with a reward model
trained on a large, offline dataset of 100 expert trajectories
and 100 random trajectories containing balanced classes of
good, unsafe, and neutral state transitions.

Analysis. The results in Figure 4 show that our method
produces reward models that transfer to the test environ-
ment better than the baselines. Our method also learns to
outperform the suboptimal demonstrations used to initialize
the reward model (Figure 10 in the appendix).

In MNIST, our method performs substantially better than the
baseline, which samples queries sy from the initial state dis-
tribution of the training environment. The reason is simple:
the initial state distribution of the test environment differs
significantly from that of the training environment. Since
our method is not restricted to sampling from the training
environment, it performs better than the baseline.

0We also measure performance in the training environment,
without state distribution shift. See Figure 11 in the appendix for
details.

Learning Human Objectives by Evaluating Hypothetical Behavior

2D Navigation

° o o
I o ©

False Positive Rate

o
N

0 100 200 300 400
Number of Queries

= Offline Reward Model
Random Traj's from Training Env. (Baseline)
Reward-Maximizing Traj's from Training Env. (Baseline)
ReQueST (Ours)

Figure 5. Experiments that address Q2 — can our method detect and
correct reward hacking? — by comparing our method, which uses
synthetic trajectories, to baselines that only use real trajectories
generated in the training environment. The results on 2D naviga-
tion show that our method (orange) significantly outperforms the
baselines (blue and gray). The x-axis represents the number of
queries to the user, where each query elicits a label for a single
state transition (s, a, s’). The shaded areas show standard error
over three random seeds.

In 2D navigation, our method substantially outperforms both
baselines, which never succeed in the test environment. This
is unsurprising, since the training environment is set up in
such a way that, because the agent starts out in the lower left
corner, they rarely visit the trap region in the upper right by
simply taking actions — whether reward-maximizing actions
(as in the first baseline), or uniform random actions (as in
the second baseline). Hence, when a reward model trained
by the baselines is transferred to the test environment, it is
not aware of the trap, so the agent tends to get caught in the
trap on its way to the goal. Our method, however, is not
restricted to feasible trajectories in the training environment,
and can potentially query the label for any position in the
environment — including the trap (see Figure 3). Hence,
our method learns a reward model that is aware of the trap,
which enables the agent to navigate around it in the test
environment.

In Car Racing, our method outperforms both baselines. This
is mostly due to the fact that the baselines tend to generate
queries that are not diverse and rarely visit unsafe states, so
the resulting reward models are not able to accurately distin-
guish between good, unsafe, and neutral states. Our method,
on the other hand, explicitly seeks out a wide variety of
states by maximizing the four AFs, which leads to more
diverse training data, and a more accurate reward model.

4.2. Detecting Reward Hacking

One of the benefits of our method is that it can detect and
correct reward hacking before deploying the agent, using
reward-maximizing synthetic queries. In the next experi-
ment, we test this claim.

Manipulated factors. We replicate the experimental setup
in Section 4.1 for 2D navigation, including the same base-
lines.

Dependent measures. We measure performance using the
false positive rate of the reward model: the fraction of neu-
tral or unsafe states incorrectly classified as good, evaluated
on the offline dataset of trajectories described in Section 4.1.
A reward model that outputs false positives is susceptible to
reward hacking, since a reward-maximizing agent can game
the reward model into emitting high rewards by visiting
incorrectly classified states.

Analysis. The results in Figure 5 show that our method
drives down the false positive rate in 2D navigation: the
learned reward model rarely incorrectly classifies an unsafe
or neutral state as a good state. As a result, the deployed
agent actually performs the desired task (center plot in Fig-
ure 4), instead of seeking false positives. As discussed in
Section 4.3 and illustrated in the right-most plot of Figure 6,
the baselines learn a reward model that incorrectly extrapo-
lates that continuing up and to the right past the goal region
is good behavior.

For a concrete example of reward-maximizing synthetic
queries that detect reward hacking, consider the reward-
maximizing queries in the upper right corner of Figure 3,
which are analyzed in Section 4.6.

4.3. Safe Exploration

One of the benefits of our method is that it can learn a reward
model that accurately detects unsafe states, without having
to visit unsafe states during the training process. In the next
experiment, we test this claim.

Manipulated factors. We replicate the experimental setup
in Section 4.1 for 2D navigation, including the same base-
lines.

Dependent measures. We measure performance using the
true negative rate of the reward model: the fraction of unsafe
states correctly classified as unsafe, evaluated on the offline
dataset of trajectories described in Section 4.1. We also use
the crash rate of the deployed agent: the rate at which it gets
caught in the trap region.

Analysis. The results in Figure 6 show that our method
learns a reward model that classifies all unsafe states as
unsafe, without visiting unsafe states during training (second
and third figure from left); in fact, without visiting any states

Learning Human Objectives by Evaluating Hypothetical Behavior

2D Navigation

——

2D Navigation

-
o

=

o

o

o
o
@

o

o
o
o

o

=
o
S

o

N
o
N

Crash Rate in Test Env.
True Negative Rate

o
o

o
o

50 100 150 200 250
Number of Queries 0 100 200 300 400
Number of Queries

++ Offline Reward Model
++ Random Policy (Baseline)
Random Traj's from Training Env. (Baseline)
Reward-Maximizing Tra]'s from Training Env. (Baseline)
ReQueST (Ours)

-+ Offline Reward Model
Random Traj's from Training Env. (Baseline)
Reward-Maximizing Traj's from Training Env. (Baseline)
ReQueST (Ours)

Predicted Reward (Ours) Predicted Reward (Baseline)

0 0
-2 -2
-4 -4
-6 -6
-8 -8
-10 -10

Figure 6. Experiments that address Q3 — can our method safely learn about unsafe states? — by comparing our method, which uses
synthetic trajectories, to baselines that only use real trajectories generated in the training environment. The results on 2D navigation show
that our method (orange) significantly outperforms the baselines (blue and gray). The x-axis represents the number of queries to the user,
where each query elicits a label for a single state transition (s, a, s"). The shaded areas show standard error over three random seeds. The
heat maps represent the reward models learned by our method (left) and by the baselines (right).

MNIST 1.00 2D Navigation Car Racing
s 1 M. | [T
g 20095 e 2000
1500
E § 0.90 B
9 c g
8 5085 % 1000
g g i /w
© =2
2 L 0.80 500
) b
3 So.75 ' B
0 100 200 300 400 500 0.70 0 2000 4000 6000 8000
Number of Queries 0 100 200 300 400 500 Number of Queries

Number of Queries

- Offline Classifier

- Random Policy (Baseline)
Random Samples from VAE Prior (Baseline)
ReQueST (Ours)

= Offline Reward Model
Uniform Random Traj's (Baseline)
ReQueST (Ours)

- Offline Reward Model

- Random Policy (Baseline)
Random Trajectories from Dynamics Model (Baseline)
ReQueST (Ours)

Figure 7. Experiments that address Q4 — do the proposed AFs improve upon random sampling from the generative model? — by comparing
our method, which synthesizes trajectories by optimizing AFs, to a baseline that ignores the AFs and randomly samples from the generative
model. The results on MNIST, 2D navigation, and Car Racing show that our method (orange) significantly outperforms the baseline (blue)
in Car Racing, and learns faster in MNIST and 2D navigation. The x-axis represents the number of queries to the user, where each query
elicits a label for a single state transition (s, a, s’). The shaded areas show standard error over three random seeds.

at all, since the queries are synthetic. This enables the agent

to avoid crashing during deployment (first figure from left).

The baselines differ from our method in that they actually
have to visit unsafe states in order to query the user for
labels at those states. Since the baselines tend to not visit
unsafe states during training, they do not learn about unsafe
states (second and fourth figure from left), and the agent

frequently crashes during deployment (first figure from left).

4.4. Query Efficiency Compared to Baselines

The previous experiment compared to baselines that are
restricted to generating query trajectories by taking actions
in the training environment. In this experiment, we lift this
restriction on the baselines: instead of taking actions in the
training environment, the baselines can make use of the
generative model trained in step (1).

Manipulated factors. To answer Q4, we compare our
method to a baseline that randomly samples trajectories

from the generative model pg — using uniform random ac-
tions in Car Racing, samples from the VAE prior in MNIST,
and uniform positions across the map in 2D navigation.

Dependent measures. We measure performance in MNIST
using the reward model’s predicted log-likelihood of the
ground-truth user labels in the test environment; in 2D nav-
igation, the reward model’s classification accuracy on an
offline dataset containing states sampled uniformly through-
out the environment; and in Car Racing, the true reward
collected by an MPC agent that optimizes the learned re-
ward, where the true reward gives a bonus for driving onto
new patches of road, and penalizes going off-road.

Analysis. The results in Figure 7 show that our method,
which optimizes trajectories using various AFs, requires
fewer queries to the user than the baseline, which randomly
samples trajectories. This suggests that our four AFs guide
query synthesis toward informative trajectories. These re-
sults, and the results from Section 4.1, suggest that our

Learning Human Objectives by Evaluating Hypothetical Behavior

Regularization Constant A

= Offline Reward Model
= Random Policy (Baseline)
ReQueST (Ours)

= Offline Classifier
ReQueST (Ours)

N MNIST 2D Navigation Car Racing
S 1.0 -0 ceeerncranacnnennnrannanasannsnansannaa| [Freestecsesessaseesseacssescanssassasnanas
I H 2000
0.96 --- [=
e Y08
£ A
3 0.94 E 06 o 1500
E - ©
3 3 5
2092 z 0.4 & 1000
[=4 n
5 80.2
§0.90 S 500
£ @ 0.0 T s
= .
80.88 0.0 © 00 001 01 10 100 =
o 0 1072 107! 10° Regularization Constant A Regularization Constant A

- Offline Reward Model
= Random Policy (Baseline)
ReQueST (Ours)

Figure 8. Experiments that address Q5 — how does the regularization constant A control the trade-off between realistic and informative
queries? — by evaluating our method with different values of A\, which controls the trade-off between producing realistic trajectories
(higher \) and informative trajectories (lower). The results on MNIST, 2D navigation, and Car Racing show that, while intermediate
and low values of A work best for MNIST and 2D navigation respectively, a high value of A = oo works best for Car Racing. The x-axis
is log-scaled. The error bars show standard error over three random seeds, which is negligible in the results for 2D navigation.

method benefits not only from using a generative model
instead of the default training environment, but also from
optimizing the AFs instead of randomly sampling from the
generative model.

4.5. Effect of Regularization Constant \

One of the core features of our method is that, in Equa-
tion 6, it can trade off between producing realistic queries
that maximize the regularization term log pg(7), and pro-
ducing informative queries that maximize the AF J(7). In
this experiment, we examine how the regularization con-
stant A controls this trade-off, and how the trade-off affects
performance.!!

Manipulated factors. To answer Q5, we sweep different
values of the regularization constant A. At one extreme, we
constrain the query trajectories Tquery to be feasible under
the generative model, by setting the next states z;; to be
the next states predicted by the dynamics model instead of
free variables — we label this setting as A = oo for con-
venience (see Section A.1 in the appendix for details). At
the other extreme, we set A = 0, which allows Tgery to be
infeasible under the model. Note that, even when A = 0,
the optimized trajectory Tquery is still regularized by the fact
that it is optimized in the latent space of the state encoder f,
instead of, e.g., raw pixel space.

Dependent measures. We measure performance as in Sec-
tion 4.1.

Analysis. The results in Figure 8 show that the usefulness

""Note that the scale of the optimal A may depend on the scale
of the AF. In our experiments, we find that the same value of A
generally works well for all four AFs. See Section A.1 in the
appendix for details.

of generating unrealistic trajectories depends on the domain.
In MNIST, producing unrealistic images by decreasing A
can improve performance, although an intermediate value
works best. In 2D navigation, setting A to a low value
is critical for learning the task. Note that we only tested
A = 0 and A = oo in this domain, since we intentionally
setup the training and test environments as a sanity check,
where A = 0 should perform best, and A = oo should
not succeed. In Car Racing, constraining the queries to be
feasible (A = oo) performs best.

There is a trade-off between being informative (by maxi-
mizing the AF) and staying on the distribution of states in
the training environment (by maximizing likelihood). In do-
mains like Car Racing — where the training and test environ-
ments have similar state distributions, and off-distribution
queries can be difficult for the user to interpret and label
— it makes sense to trade off being informative for staying
on-distribution. In domains like MNIST and 2D navigation,
where we intentionally create a significant shift in the state
distribution between the training and test environments, it
makes more sense to trade off staying on-distribution for
being informative.

Visualizing synthesized queries. Figure 14 in the appendix
shows examples of Car Racing query trajectories Tquery Op-
timized with either A = 0 or A = oo. Unsurprisingly, the
A = 0 queries appear less realistic, but clearly maximize the
AF better than their A\ = oo counterparts.

4.6. Acquisition Function Ablation Study

We propose four AFs intended to produce different types
of hypotheticals. In this experiment, we investigate the
contribution of each type of query to the performance of the
overall method.

Learning Human Objectives by Evaluating Hypothetical Behavior

2D Navigation

Car Racing

-
=)
[y
=}
S

°

©
o
©
v

o o
N o

°
EY
o
©
o

Classification Accuracy
o
o
o

e
n

Classification Accuracy in Test Env.

0 200 400 600 800 1000 1200 0.80

2000

1500 S
-

1000

Reward

500

0 5000 10000 15000 20000 25000

Number of Queries 0 100 200

= Offline Classifier
All Acquisition Functions
All - Max. Uncertainty
All - Max. Novelty

= Offline Reward Model
All Acquisition Functions
All - Max. Uncertainty

300 400
Number of Queries

Number of Queries

= Offline Reward Model

= Random Policy (Baseline)
All Acquisition Functions
All - Max. Uncertainty

All - Max. Novelty
All - Max. Reward
All - Min. Reward

All - Max. Novelty
All - Max. Reward
All - Min. Reward

Figure 9. Experiments that address Q6 — how much do each of the four AFs contribute to performance? — by comparing our method
to ablated variants that drop each AF, one at a time, from the set of four AFs in line 4 of Algorithm 1. The results on MNIST, 2D
navigation, and Car Racing show that our method (orange) generally outperforms its ablated variants (blue, gray, red, and pink), although
the usefulness of each AF depends on the domain and amount of training data.. The x-axis represents the number of queries to the user,
where each query elicits a label for a single state transition (s, a, s'). The shaded areas show standard error over three random seeds.

Manipulated factors. To answer Q6, we conduct an abla-
tion study, in which we drop out each the four AFs, one by
one, from line 4 in Algorithm 1, and measure the perfor-
mance of only generating queries using the remaining three
AFs. We also visualize the queries generated by each of the
four AFs, to illustrate their qualitative properties.

Dependent measures. We measure performance as in Sec-
tion 4.4.

Analysis. The results in Figure 9 show that the usefulness of
each AF depends on the domain and the amount of training
data collected.

In MNIST, dropping J,, hurts performance, suggesting that
uncertainty-maximizing queries elicit useful labels. Drop-
ping J,, also hurts performance when the number of queries
is small, but actually improves performance if enough
queries have already been collected. Novelty-maximizing
queries tend to be repetitive in practice: although they are
distant from the training data in terms of Equation 5, they
are visually similar to the existing training data in that they
appear to be the same digits. Hence, while they are helpful
at first, they hurt query efficiency later in training.

In 2D navigation, dropping J,, hurts performance, while
dropping any of the other AFs individually does not
hurt performance. These results suggest that uncertainty-
maximizing queries can be useful, in domains like MNIST
and 2D navigation, where uncertainty can be modeled and
estimated accurately.

In Car Racing, dropping J_ hurts the most. Reward-
minimizing queries elicit labels for unsafe states, which
are rare in the training environment unless you explicitly
seek them out. Hence, this type of query performs the de-
sired function of augmenting the training data with more

examples of unsafe states, thereby making the reward model
better at detecting unsafe states.

Visualizing synthesized queries. Figure 3 and Figures 12
and 14 in the appendix illustrate examples of queries gener-
ated by each of the four AFs.

In MNIST (Figure 12 in the appendix), the uncertainty-
maximizing queries are digits that appear ambiguous but
coherent, while the novelty-maximizing queries tend to clus-
ter around a small subset of the digits and appear grainy.

In 2D navigation (Figure 3), the demonstrations contain
mostly neutral states en route to the goal, and a few good
states at the goal. If we were to train on only the demon-
strations, the reward model would be unaware of the trap.
Initially, the queries, which we restrict to just one state tran-
sition from the initial state sg to a synthesized next state
s1, are relatively uniform. The first reward-maximizing
queries are in the upper right corner, which makes sense:
the demonstrations contain neutral states in the lower left,
and good states farther up and to the right inside the goal
region, so the reward model extrapolates that continuing up
and to the right, past the goal region, is good behavior. The
reward model, at this stage, is susceptible to reward hack-
ing — a problem that gets addressed when the user labels
the reward-maximizing queries in the upper right corner as
neutral.

After a few more queries, the reward-maximizing queries
start to cluster inside the goal region, and the reward-
minimizing queries cluster inside the trap. This is helpful
early during training, for identifying the locations of the
goal and trap. The uncertainty-maximizing queries cluster
around the boundaries of the goal and the trap, since that is
where model uncertainty is highest. This is helpful for refin-
ing the reward model’s knowledge of the shapes of the goal

Learning Human Objectives by Evaluating Hypothetical Behavior

and trap. The novelty-maximizing queries get pushed to the
corners of the environment. This is helpful for determining
that the goal and trap are relatively small and circular, and
do not bleed into the corners of map.

In Car Racing (Figure 14 in the appendix), the reward-
maximizing queries show the car driving down the road and
making a turn. The reward-minimizing queries show the
car going off-road as quickly as possible. The uncertainty-
maximizing queries show the car driving to the edge of the
road and slowing down. The novelty-maximizing queries
show the car staying still, which makes sense since the train-
ing data tends to contain mostly trajectories of the car in
motion.

5. Discussion

Summary. We contribute the ReQueST algorithm for learn-
ing a reward model from user feedback on hypothetical
behavior. The key idea is to automatically generate hy-
potheticals that efficiently determine the user’s objectives.
Simulated experiments on MNIST, state-based 2D naviga-
tion, and image-based Car Racing show that our method
produces accurate reward models that transfer well to new
environments and require fewer queries to the user, com-
pared to baseline methods adapted from prior work. Our
method detects reward hacking before the agent is deployed,
and safely learns about unsafe states. Through a hyper-
parameter sweep, we find that our method can trade off
between producing realistic vs. informative queries, and
that the optimal trade-off varies across domains. Through
an ablation study, we find that the usefulness of each of
the four acquisition functions we propose for optimizing
queries depends on the domain and the amount of training
data collected. Our experiments broadly illustrate how mod-
els of the environment can be used to improve the way we
learn models of task rewards.

Limitations and future work. The main practical limita-
tion of our method is that it requires a generative model of
initial states and a forward dynamics model, which can be
difficult to learn from purely off-policy data in complex, vi-
sual environments. One direction for future work is relaxing
this assumption; e.g., by incrementally training a genera-
tive model on on-policy data collected from an RL agent in
the training environment (Kaiser et al., 2019; Hafner et al.,
2019). Another direction is to address the safety concerns
of training on unsupervised interactions by using safe expert
demonstrations instead (as discussed in Section 3.6).

Our method assumes the user can label agent behaviors with
rewards. For complex tasks that involve extremely long-
term decision-making and high-dimensional state spaces,
such as managing public transit systems or sequential drug
treatments, the user may not be able to meaningfully eval-

uate the performance of the agent. To address this issue,
one could implement ReQueST inside a framework that en-
ables users to evaluate complex behaviors, such as recursive
reward modeling (Leike et al., 2018) or iterated amplifica-
tion (Christiano et al., 2018).

Acknowledgments

Thanks to Gabriella Bensinyor, Tim Genewein, Ramana
Kumar, Tom McGrath, Victoria Krakovna, Tom Everitt, Zac
Kenton, Richard Ngo, Miljan Martic, Adam Gleave, and
Eric Langlois for useful suggestions and feedback. Thanks
in particular to Gabriella Bensinyor, who proposed the name
and acronym of our method: reward query synthesis via tra-
jectory optimization, or ReQueST. This work was supported
in part by an NVIDIA Graduate Fellowship.

References

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete problems in Al safety.
arXiv preprint arXiv:1606.06565, 2016.

Anonymous. Deep reinforcement learning with implicit hu-
man feedback. In Submitted to International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=rJgDT04twH. Un-
der review.

Betts, J. T. Practical methods for optimal control and esti-
mation using nonlinear programming. 2010.

Biyik, E. and Sadigh, D. Batch active preference-
based learning of reward functions. arXiv preprint
arXiv:1810.04303, 2018.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAl Gym.
arXiv preprint arXiv:1606.01540, 2016.

Brown, D. S., Cui, Y., and Niekum, S. Risk-aware active
inverse reinforcement learning. In Conference on Robot
Learning (CoRL), 2018.

Christiano, P., Shlegeris, B., and Amodei, D. Supervis-
ing strong learners by amplifying weak experts. arXiv
preprint arXiv:1810.08575, 2018.

Christiano, P. F,, Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In Neural Information Processing
Systems, 2017.

Cui, Y. and Niekum, S. Active reward learning from cri-
tiques. In International Conference on Robotics and
Automation, 2018.

Learning Human Objectives by Evaluating Hypothetical Behavior

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru,
C., and Tassa, Y. Safe exploration in continuous action
spaces. arXiv preprint arXiv:1801.08757, 2018.

Daniel, C., Viering, M., Metz, J., Kroemer, O., and Peters,
J. Active reward learning. In Robotics: Science and
Systems, 2014.

Foot, P. The problem of abortion and the doctrine of double
effect. 1967.

Gal, Y. Uncertainty in deep learning. PhD thesis, 2016.

Garcia, J. and Fernandez, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning
Research, 2015.

Ha, D. and Schmidhuber, J. Recurrent world models facili-
tate policy evolution. In Neural Information Processing
Systems, 2018.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J.,
and Dragan, A. D. Inverse reward design. In Neural
Information Processing Systems, 2017.

Hafner, D., Lillicrap, T., Fischer, 1., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics
for planning from pixels. International Conference on
Machine Learning, 2019.

Houlsby, N., Huszér, F., Ghahramani, Z., and Lengyel, M.
Bayesian active learning for classification and preference
learning. arXiv preprint arXiv:1112.5745,2011.

Huijser, M. and van Gemert, J. C. Active decision bound-
ary annotation with deep generative models. In /IEEE
International Conference on Computer Vision, 2017.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences
and demonstrations in Atari. In Neural Information Pro-
cessing Systems, 2018.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforcement
learning for Atari. arXiv preprint arXiv:1903.00374,
2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114,2013.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep

ensembles. In Neural Information Processing Systems,
2017.

LeCun, Y. The MNIST database of handwritten digits, 1998.
URL http://yann.lecun.com/exdb/mnist/.

Leike, J., Krueger, D., Everitt, T., Martic, M., Maini, V., and
Legg, S. Scalable agent alignment via reward modeling:
a research direction. arXiv preprint arXiv:1811.07871,
2018.

Lewis, D. D. and Gale, W. A. A sequential algorithm for
training text classifiers. In SIGIR Conference on Research
and Development in Information Retrieval, 1994.

MacGlashan, J., Ho, M. K., Loftin, R., Peng, B., Wang, G.,
Roberts, D. L., Taylor, M. E., and Littman, M. L. Interac-
tive learning from policy-dependent human feedback. In
International Conference on Machine Learning, 2017.

Mindermann, S., Shah, R., Gleave, A., and Hadfield-
Menell, D. Active inverse reward design. arXiv preprint
arXiv:1809.03060, 2018.

Olah, C., Mordvintsev, A., and Schubert, L. Feature visual-
ization. Distill, 2017.

Prakash, B., Khatwani, M., Waytowich, N., and Mohsenin,
T. Improving safety in reinforcement learning using
model-based architectures and human intervention. In
Florida Artificial Intelligence Research Society Confer-
ence, 2019.

Premack, D. and Woodruff, G. Does the chimpanzee have a
theory of mind? Behavioral and Brain Sciences, 1978.

Reddy, S., Dragan, A. D., and Levine, S. Shared autonomy
via deep reinforcement learning. In Robotics: Science
and Systems, 2018.

Ross, S., Gordon, G., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret
online learning. In Conference on Artificial Intelligence
and Statistics (AISTATS), 2011.

Russell, S. J. Learning agents for uncertain environments.
In Conference on Learning Theory (COLT), 1998.

Sadigh, D., Dragan, A. D., Sastry, S., and Seshia, S. A.
Active preference-based learning of reward functions. In
Robotics: Science and Systems, 2017.

Saunders, W., Sastry, G., Stuhlmueller, A., and Evans, O.
Trial without error: Towards safe reinforcement learning
via human intervention. In International Conference on
Autonomous Agents and MultiAgent Systems, 2018.

Savage, L. J. The foundations of statistics. John Wiley &
Sons, 1954.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. International
Conference on Learning Representations, 2018.

Learning Human Objectives by Evaluating Hypothetical Behavior

Settles, B. Active learning literature survey. Technical
report, 2009.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. 2018.

Warnell, G., Waytowich, N., Lawhern, V., and Stone,
P. Deep TAMER: Interactive agent shaping in high-
dimensional state spaces. In AAAI Conference on Ar-
tificial Intelligence, 2018.

Wirth, C., Akrour, R., Neumann, G., and Fiirnkranz, J. A
survey of preference-based reinforcement learning meth-
ods. Journal of Machine Learning Research, 2017.

Learning Human Objectives by Evaluating Hypothetical Behavior

A. Appendix
A.1. Implementation Details

Shooting vs. collocation. We use the notation A = oo to
denote solving the optimization problem in Equation 6 with
a shooting method instead of a collocation method. The
shooting method optimizes (2o, ag, a1, ..., ar—1), and rep-
resents zy 11 = Eg[2:41|20, ao, a1, ..., a;] using the forward
dynamics model py learned in step (1).

MNIST classification. We simulate the user in line 7 of
Algorithm 1 as an expert, k-nearest neighbors classifier
Puser(@]s) trained on all labeled data. We only generate
queries using the AFs J,, and J,, in line 4 of Algorithm 1,
since J4 and J_ are not useful for single-step classifica-
tion. We replace pg, (c|s, a, s") with pg, (a|s) in Equation
3 and line 12 of Algorithm 1. We represent pg(a|s) in
Equation 2 using a feedforward neural network with two
fully-connected hidden layers containing 256 hidden units
each, and m = 4 separate networks in the ensemble. The
MPC agent in Equation 7 reduces to mmpc(a|s) = pg(als).
The Gaussian prior distribution of the VAE yields the likeli-
hood model, py(s0) o< exp (|| f(s0)]|3). The state inputs
to the reward model are the latent embeddings produced by
f, instead of the raw pixel inputs. We set A = 0.1 when
synthesizing queries with the AF J,,, and A = 0.01 when
synthesizing queries with the AF J,,.

State-based 2D navigation. To encourage the agent
to avoid the trap, the reward constants are asymmetric:
Roood = 1, Rynsate = —10, and Rpeyrar = 0. Since the
states are already low-dimensional, we simply use the iden-
tity function for the state encoder and decoder. We represent
pe(cls, a, s’) in Equation 2 using a feedforward neural net-
work with two fully-connected hidden layers containing 32
hidden units each, and m = 4 separate networks in the en-
semble. We hard-code a Gaussian forward dynamics model,
p(sty1lst,at) = N(s¢41; 8¢ + at, 0%). Each episode lasts
at most 1000 steps, and the maximum speed is restricted to
|a]|2< 0.01. In Equation 7, we use a planning horizon of
H = 500. In Equation 6, we use a query trajectory length
of T' = 1; i.e., the query consists of one state transition from
the hard-coded initial state sy to a synthesized next state s;.
We set A = 0 when synthesizing queries for any of the four
AFs.

Car Racing. To encourage the agent to drive without being
overly conservative, the reward constants are asymmetric:
Roood = 10, Rupsare = —1, and Ryeupar = 0. We repre-
sent pg(cls, a, s’) in Equation 2 using a feedforward neural
network with two fully-connected hidden layers containing
256 hidden units each, and m = 4 separate networks in the
ensemble. We train a generative model using the unsuper-
vised approach in Ha & Schmidhuber (2018), which learns a
VAE state encoder and decoder with a 32-dimensional latent

space, a recurrent dynamics model with a 256-dimensional
latent space, and a mixture density network with 5 compo-
nents that predicts stochastic transitions. Since the environ-
ment is partially observable, we represent the state input to
the reward model by concatenating the VAE latent embed-
ding with the RNN latent embedding. Each episode lasts
at most 1000 timesteps. In Equation 7, we use a planning
horizon of H = 50. In Equation 6, we use a query trajectory
length of " = 50. We set A = oo when synthesizing queries
for any of the four AFs.

In the high-dimensional Car Racing environment, we
find that optimizing Equation 6 leads to incomprehen-
sible query trajectories Tguery, e€ven for high values of
the regularization constant A\. To address this issue,
we modify the method in two ways that provide addi-
tional regularization. First, instead of optimizing the
initial state sg in Tquery, W€ set it to some real state
sampled from the training environment during step
(1). Second, instead of optimizing (2o, ag, 21, ..., 2T),

where T = (f_1(20)5a07f_1(zl)7a17"'af_l(ZT))a
we Optimize (ZOaClOam07afl7m1a"'7aT—13mT—1)7
where 7 = (f71(20)7a07fﬁl(MDN(zoaGOamO))val’

s fTHMDN(27_1,a7_1,m7_1))). The function
MDN(z¢, at, m¢) denotes using the mixture coefficients
my to compute the expected next state, instead of using
the mixture coefficients 1 (z;, a;) predicted by the mixture
density network. Thus, the likelihood regularization term
becomes log py(7) = ZtT;()l H(my,¥(z,a¢)), where H
is the cross-entropy. This representation of the trajectory 7
is easier to optimize, and results in more comprehensible
queries.

Learning Human Objectives by Evaluating Hypothetical Behavior

2D Navigation

>
5 0
()]
C
c
©
|_
£
<
+
()]
G e o o o e
3 1074
el
8
9]
]
E ...
F 0 100 200 300 400
Number of Queries
== == Offline Reward Model
Random Policy (Baseline)
= == Demonstrations (Baseline)
ReQueST (Ours)
Car Racing
2000
1500 1
2
©
5 1000
o
500 T wi o o o
0_

10000 15000 20000 25000
Number of Queries

0 5000

= Offline Reward Model
Random Policy (Baseline)
= = Demonstrations (Baseline)
ReQueST (Ours)

Figure 10. Our method initializes the reward model with subopti-
mal user demonstrations, in line 2 of Algorithm 1. The experiments
in Section 4.1 show that our method learns a reward model that
enables the agent to outperform the suboptimal demonstrator. In
2D navigation (top), the agent gets to the goal faster than the
demonstrator, even in the training environment — the demonstrator
takes a tortuous path to the goal, while the agent goes straight to
the goal. In Car Racing (bottom), the agent drives faster and visits
more new road patches than the cautious, slow demonstrator. We
do not include results for MNIST, since it does not make sense to
initialize the classifier with incorrect labels in this domain.

2D Navigation

=
o

54
©

<
~

Success Rate in Training Env.
<)
[o2]

o
o
<)

50 100 150 200 250
Number of Queries

= Offline Reward Model

- Random Policy (Baseline)
Random Traj's from Training Env. (Baseline)
Reward-Maximizing Traj's from Training Env. (Baseline)
ReQueST (Ours)

Classification Accuracy in Training Env.

500 1000 1500
Number of Queries

o

=== Offline Classifier
Random Policy (Baseline)
Random Digits from Training Env. (Baseline)
ReQueST (Ours)

Figure 11. Our method performs worse than or comparably to the
baselines in Section 4.1, when the reward model is evaluated in the
training environment instead of the test environment. Since there is
no state distribution shift in this setting, training on real trajectories
from the training environment (baselines) is more effective than
training on hypothetical trajectories synthesized using our method
(ReQueST). We do not include results for Car Racing, since the
test environment is already identical to the training environment in
this domain.

Learning Human Objectives by Evaluating Hypothetical Behavior

LUWNPES~RBNQ 0O NODV e Q vy
SN MNMPNANSNSNLNOYN O YD ~eW
FXPFEENSNSSNSNNH"HOLRaAa Oow @O
RE S NN AYWYNNPIcaXA L

LCAUNNALN-“LELUSSTNMDOODD v
SN A USNEAES N DU R eSO Yo

LA NS WLV PR S 2 P e . B
SRR OPRNCWRN LD evy @ FN
WNNPNNASN YL LU= N ~DI
LNXARAN 2 PNAYRPY Ao Y PO

Figure 12. Examples of MNIST queries that optimize different
AFs, illustrating the qualitative differences in the hypotheticals

targeted by each AF. Top 10 rows: uncertainty-maximizing queries.
Bottom 10 rows: novelty-maximizing queries. The uncertainty-
maximizing queries are digits that appear ambiguous but coherent,

while the novelty-maximizing queries tend to cluster around a
small subset of the digits and appear grainy.

Figure 13. A screenshot of the image-based Car Racing video
game in the OpenAl Gym.

Learning Human Objectives by Evaluating Hypothetical Behavior

>
I
o

\

Time

Figure 14. Examples of Car Racing queries that optimize different AFs with different settings of the regularization constant), illustrating
the qualitative differences in the hypotheticals targeted by each AF, and the trade-off between producing realistic (A = co) vs. informative
(A = 0) queries. When A = oo, the reward-maximizing query shows the car driving down the road and making a turn; the reward-
minimizing query shows the car going off-road as quickly as possible; the uncertainty-maximizing query shows the car driving to
the edge of the road and slowing down; and the novelty-maximizing query shows the car staying still, which makes sense since the
training data tends to contain mostly trajectories of the car in motion. When A = 0, most of the behaviors are qualitatively similar
to their A = oo counterparts, but less realistic and more aggressively optimizing the AF — only the novelty-maximizing query is
qualitatively different, in that it seeks the boundaries of the map (the white void) instead of staying still. Full videos available at
https://sites.google.com/berkeley.edu/request.

