2004.04136v3 [cs.LG] 7 Jul 2020

arxiv

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Aravind Srinivas* ! Michael Laskin*! Pieter Abbeel !

Abstract

We present CURL: Contrastive Unsupervised
Representations for Reinforcement Learning.
CURL extracts high-level features from raw pix-
els using contrastive learning and performs off-
policy control on top of the extracted features.
CURL outperforms prior pixel-based methods,
both model-based and model-free, on complex
tasks in the DeepMind Control Suite and Atari
Games showing 1.9x and 1.2x performance gains
at the 100K environment and interaction steps
benchmarks respectively. On the DeepMind Con-
trol Suite, CURL is the first image-based algo-
rithm to nearly match the sample-efficiency of
methods that use state-based features. Our code
is open-sourced and available at https://www.
github.com/MishalLaskin/curl.

1. Introduction

Developing agents that can perform complex control tasks
from high dimensional observations such as pixels has been
possible by combining the expressive power of deep neural
networks with the long-term credit assignment power of re-
inforcement learning algorithms. Notable successes include
learning to play a diverse set of video games from raw pixels
(Mnih et al., 2015), continuous control tasks such as con-
trolling a simulated car from a dashboard camera (Lillicrap
et al., 2015) and subsequent algorithmic developments and
applications to agents that successfully navigate mazes and
solve complex tasks from first-person camera observations
(Jaderberg et al., 2016; Espeholt et al., 2018; Jaderberg et al.,
2019); and robots that successfully grasp objects in the real
world (Kalashnikov et al., 2018).

However, it has been empirically observed that reinforce-
ment learning from high dimensional observations such as
raw pixels is sample-inefficient (Lake et al., 2017; Kaiser

“Equal contribution 'University of California, Berkeley, BAIR.
Correspondence to: Aravind Srinivas, Michael Laskin <ar-
avind_srinivas, mlaskin@berkeley.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Encoder Momentum Encoder
k = fy(0p)
=fo(0,) o
=0y 0, = b+ (1 - m)e,
q
< N\

Reinforcement .
. Contrastive Loss
Learning

Figure 1. Contrastive ~ Unsupervised Representations for
Reinforcement Learning (CURL) combines instance contrastive
learning and reinforcement learning. CURL trains a visual
representation encoder by ensuring that the embeddings of
data-augmented versions o4 and oy, of observation o match using
a contrastive loss. The guery observations o, are treated as the
anchor while the key observations o contain the positive and
negatives, all constructed from the minibatch sampled for the RL
update. The keys are encoded with a momentum averaged version
of the query encoder. The RL policy and (or) value function are
built on top of the query encoder which is jointly trained with the
contrastive and reinforcement learning objectives. CURL is a
generic framework that can be plugged into any RL algorithm that
relies on learning representations from high dimensional images.

et al., 2019). Moreover, it is widely accepted that learning
policies from physical state based features is significantly
more sample-efficient than learning from pixels (Tassa et al.,
2018). In principle, if the state information is present in the
pixel data, then we should be able to learn representations
that extract the relevant state information. For this reason,
it may be possible to learn from pixels as fast as from state
given the right representation.

From a practical standpoint, although high rendering speeds
in simulated environments enable RL agents to solve com-
plex tasks within reasonable wall clock time, learning in
the real world means that agents are bound to work within
the limitations of physics. Kalashnikov et al. (2018) needed
a farm of robotic arms that collected large scale robot in-

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

teraction data over several months to develop their robot
grasp value functions and policies. The data-efficiency of
the whole pipeline thus has significant room for improve-
ment. Similarly, in simulated worlds which are limited by
rendering speeds in the absence of GPU accelerators, data
efficiency is extremely crucial to have a fast experimental
turnover and iteration. Therefore, improving the sample
efficiency of reinforcement learning (RL) methods that op-
erate from high dimensional observations is of paramount
importance to RL research both in simulation and the real
world and allows for faster progress towards the broader
goal of developing intelligent autonomous agents.

A number of approaches have been proposed in the literature
to address the sample inefficiency of deep RL algorithms.
Broadly, they can be classified into two streams of research,
though not mutually exclusive: (i) Auxiliary tasks on the
agent’s sensory observations; (ii) World models that predict
the future. While the former class of methods use auxiliary
self-supervision tasks to accelerate the learning progress of
model-free RL methods (Jaderberg et al., 2016; Mirowski
et al., 2016), the latter class of methods build explicit pre-
dictive models of the world and use those models to plan
through or collect fictitious rollouts for model-free meth-
ods to learn from (Sutton, 1990; Ha & Schmidhuber, 2018;
Kaiser et al., 2019; Schrittwieser et al., 2019).

Our work falls into the first class of models, which use aux-
iliary tasks to improve sample efficiency. Our hypothesis
is simple: If an agent learns a useful semantic representa-
tion from high dimensional observations, control algorithms
built on top of those representations should be significantly
more data-efficient. Self-supervised representation learning
has seen dramatic progress in the last couple of years with
huge advances in masked language modeling (Devlin et al.,
2018) and contrastive learning (Hénaff et al., 2019; He et al.,
2019a; Chen et al., 2020) for language and vision respec-
tively. The representations uncovered by these objectives
improve the performance of any supervised learning system
especially in scenarios where the amount of labeled data
available for the downstream task is really low.

We take inspiration from the contrastive pre-training suc-
cesses in computer vision. However, there are a couple
of key differences: (i) There is no giant unlabeled dataset
of millions of images available beforehand - the dataset is
collected online from the agent’s interactions and changes
dynamically with the agent’s experience; (ii) The agent has
to perform unsupervised and reinforcement learning simulta-
neously as opposed to fine-tuning a pre-trained network for
a specific downstream task. These two differences introduce
a different challenge: How can we use contrastive learning
for improving agents that can learn to control effectively
and efficiently from online interactions?

To address this challenge, we propose CURL - Contrastive

Uunsupervised Representations for Reinforcement
Learning. CURL uses a form of contrastive learning
that maximizes agreement between augmented versions
of the same observation, where each observation is a
stack of temporally sequential frames. We show that
CURL significantly improves sample-efficiency over prior
pixel-based methods by performing contrastive learning
simultaneously with an off-policy RL algorithm. CURL
coupled with the Soft-Actor-Critic (SAC) (Haarnoja et al.,
2018) results in 1.9x median higher performance over
Dreamer, a prior state-of-the-art algorithm on DMControl
environments, benchmarked at 100k environment steps and
matches the performance of state-based SAC on the majority
of 16 environments tested, a first for pixel-based methods.
In the Atari setting benchmarked at 100k interaction steps,
we show that CURL coupled with a data-efficient version
of Rainbow DQN (van Hasselt et al., 2019) results in 1.2x
median higher performance over prior methods such as
SimPLe (Kaiser et al., 2019), improving upon Efficient
Rainbow (van Hasselt et al., 2019) on 19 out of 26 Atari
games, surpassing human efficiency on two games.

While contrastive learning in aid of model-free RL has
been studied in the past by van den Oord et al. (2018) us-
ing Contrastive Predictive Coding (CPC), the results were
mixed with marginal gains in a few DMLab (Espeholt et al.,
2018) environments. CURL is the first model to show
substantial data-efficiency gains from using a contrastive
self-supervised learning objective for model-free RL agents
across a multitude of pixel based continuous and discrete
control tasks in DMControl and Atari.

We prioritize designing a simple and easily reproducible
pipeline. While the promise of auxiliary tasks and learn-
ing world models for RL agents has been demonstrated in
prior work, there’s an added layer of complexity when in-
troducing components like modeling the future in a latent
space (van den Oord et al., 2018; Ha & Schmidhuber, 2018).
CURL is designed to add minimal overhead in terms of
architecture and model learning. The contrastive learning
objective in CURL operates with the same latent space and
architecture typically used for model-free RL and seam-
lessly integrates with the training pipeline without the need
to introduce multiple additional hyperparameters.

Our paper makes the following key contributions: We
present CURL, a simple framework that integrates con-
trastive learning with model-free RL with minimal changes
to the architecture and training pipeline. Using 16 complex
control tasks from the DeepMind control (DMControl) suite
and 26 Atari games, we empirically show that contrastive
learning combined with model-free RL outperforms the
prior state-of-the-art by 1.9x on DMControl and 1.2x on
Atari compared across leading prior pixel-based methods.
CURL is also the first algorithm across both model-based

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

and model-free methods that operates purely from pixels,
and nearly matches the performance and sample-efficiency
of a SAC algorithm trained from the state based features on
the DMControl suite. Finally, our design is simple and does
not require any custom architectural choices or hyperparam-
eters which is crucial for reproducible end-to-end training.
Through these strong empirical results, we demonstrate
that a contrastive objective is the preferred self-supervised
auxiliary task for achieving sample-efficiency compared to
reconstruction based methods, and enables model-free meth-
ods to outperform state-of-the-art model-based methods in
terms of data-efficiency.

2. Related Work

Self-Supervised Learning: Self-Supervised Learning is
aimed at learning rich representations of high dimensional
unlabeled data to be useful for a wide variety of tasks. The
fields of natural language processing and computer vision
have seen dramatic advances in self-supervised methods
such as BERT (Devlin et al., 2018), CPC, MoCo, SimCLR
(Hénaff et al., 2019; He et al., 2019a; Chen et al., 2020).

Contrastive Learning: Contrastive Learning is a frame-
work to learn representations that obey similarity constraints
in a dataset typically organized by similar and dissimilar
pairs. This is often best understood as performing a dic-
tionary lookup task wherein the positive and negatives rep-
resent a set of keys with respect to a query (or an anchor).
A simple instantiation of contrastive learning is Instance
Discrimination (Wu et al., 2018) wherein a query and key
are positive pairs if they are data-augmentations of the same
instance (example, image) and negative otherwise. A key
challenge in contrastive learning is the choice of negatives
which can decide the quality of the underlying representa-
tions learned. The loss functions used to contrast could be
among several choices such as InfoNCE (van den Oord et al.,
2018), Triplet (Wang & Gupta, 2015), Siamese (Chopra
et al., 2005) and so forth.

Self-Supervised Learning for RL: Auxiliary tasks such as
predicting the future conditioned on the past observation(s)
and action(s) (Jaderberg et al., 2016; Shelhamer et al., 2016;
van den Oord et al., 2018; Schmidhuber, 1990) are a few
representative examples of using auxiliary tasks to improve
the sample-efficiency of model-free RL algorithms. The
future prediction is either done in a pixel space (Jaderberg
et al., 2016) or latent space (van den Oord et al., 2018). The
sample-efficiency gains from reconstruction-based auxiliary
losses have been benchmarked in Jaderberg et al. (2016);
Higgins et al. (2017); Yarats et al. (2019). Contrastive learn-
ing has been used to extract reward signals in the latent
space (Sermanet et al., 2018; Dwibedi et al., 2018; Warde-
Farley et al., 2018); and study representation learning on
Atari games by Anand et al. (2019).

World Models for sample-efficiency: While joint learning
of an auxiliary unsupervised task with model-free RL is
one way to improve the sample-efficiency of agents, there
has also been another line of research that has tried to learn
world models of the environment and use them to sample
rollouts and plan. An early instantiation of the generic prin-
ciple was put forth by Sutton (1990) in Dyna where fictitious
samples rolled out from a learned world model are used in
addition to the agent’s experience for sample-efficient learn-
ing. Planning through a learned world model (Srinivas et al.,
2018) is another way to improve sample-efficiency. While
Jaderberg et al. (2016); van den Oord et al. (2018); Lee et al.
(2019) also learn pixel and latent space forward models, the
models are learned to shape the latent representations, and
there is no explicit Dyna or planning. Planning through
learned world models has been successfully demonstrated
in Ha & Schmidhuber (2018); Hafner et al. (2018; 2019).
Kaiser et al. (2019) introduce SimPLe which implements
Dyna with expressive deep neural networks for the world
model for sample-efficiency on Atari games.

Sample-efficient RL for image-based control: CURL en-
compasses the areas of self-supervision, contrastive learn-
ing and using auxiliary tasks for sample-efficient RL. We
benchmark for sample-efficiency on the DMControl suite
(Tassa et al., 2018) and Atari Games benchmarks (Bellemare
et al., 2013). The DMControl suite has been used widely by
Yarats et al. (2019), Hafner et al. (2018), Hafner et al. (2019)
and Lee et al. (2019) for benchmarking sample-efficiency
for image based continuous control methods. As for Atari,
Kaiser et al. (2019) propose to use the 100k interaction steps
benchmark for sample-efficiency which has been adopted
in Kielak (2020); van Hasselt et al. (2019). The Rainbow
DQN (Hessel et al., 2017) was originally proposed for max-
imum sample-efficiency on the Atari benchmark and in
recent times has been adapted to a version known as Data-
Efficient Rainbow (van Hasselt et al., 2019) with competi-
tive performance to SimPLe without learning world models.
We benchmark extensively against both model-based and
model-free algorithms in our experiments. For the DM-
Control experiments, we compare our method to Dreamer,
PlaNet, SLAC, SAC+AE whereas for Atari experiments we
compare to SimPLe, Rainbow, and OverTrained Rainbow
(OTRainbow) and Efficient Rainbow (Eff. Rainbow).

3. Background

CURL is a general framework for combining contrastive
learning with RL. In principle, one could use any RL algo-
rithm in the CURL pipeline, be it on-policy or off-policy. We
use the widely adopted Soft Actor Critic (SAC) (Haarnoja
et al., 2018) for continuous control benchmarks (DM Con-
trol) and Rainbow DQN (Hessel et al., 2017; van Hasselt
et al., 2019) for discrete control benchmarks (Atari). Below,
we review SAC, Rainbow DQN and Contrastive Learning.

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

@ay buffer

Observation

_ o

S—

Reinforcement

Learning

N
)

Contrastive
Unsupervised
Learning

-

Query

Figure 2. CURL Architecture: A batch of transitions is sampled from the replay buffer. Observations are then data-augmented twice to
form guery and key observations, which are then encoded with the query encoder and key encoders, respectively. The queries are passed
to the RL algorithm while query-key pairs are passed to the contrastive learning objective. During the gradient update step, only the query
encoder is updated. The key encoder weights are the moving average (EMA) of the query weights similar to MoCo (He et al., 2019a).

3.1. Soft Actor Critic

SAC is an off-policy RL algorithm that optimizes a stochas-
tic policy for maximizing the expected trajectory returns.
Like other state-of-the-art end-to-end RL algorithms, SAC
is effective when solving tasks from state observations but
fails to learn efficient policies from pixels. SAC is an actor-
critic method that learns a policy 7, and critics @y, and
Q4,. The parameters ¢; are learned by minimizing the
Bellman error:

L(6:,B) = Einis |(Qs,(0,0) = (r +7(1 =)T))’
)

where ¢ = (0, a,0’,r,d) is a tuple with observation o, action
a, reward r and done signal d, B is the replay buffer, and 7
is the target, defined as:

T = <m1112 Q3,(0',a") —alog ’/Tw(a,|0/)>)

=1,

In the target equation (2), Q7 denotes the exponential mov-
ing average (EMA) of the parameters of Q)4,. Using the
EMA has empirically shown to improve training stability in
off-policy RL algorithms. The parameter « is a positive en-
tropy coefficient that determines the priority of the entropy
maximization over value function optimization.

While the critic is given by @4, , the actor samples actions
from policy 7, and is trained by maximizing the expected
return of its actions as in:

L) =Equr [Q7(0,a) — alog Ty (alo)] 3)

where actions are sampled stochastically from the policy
ay(0,€) ~ tanh (py(0) + oy (0) ©) and § ~ N(0,1) is
a standard normalized noise vector.

3.2. Rainbow

Rainbow DQN (Hessel et al., 2017) is best summarized as
multiple improvements on top of the original Nature DQN
(Mnih et al., 2015) applied together. Specifically, Deep Q
Network (DQN) (Mnih et al., 2015) combines the off-policy
algorithm Q-Learning with a convolutional neural network
as the function approximator to map raw pixels to action
value functions. Since then, multiple improvements have
been proposed such as Double Q Learning (Van Hasselt
et al., 2016), Dueling Network Architectures (Wang et al.,
2015), Prioritized Experience Replay (Schaul et al., 2015),
and Noisy Networks (Fortunato et al., 2017). Addition-
ally, distributional reinforcement learning (Bellemare et al.,
2017) proposed the technique of predicting a distribution
over possible value function bins through the C51 Algo-
rithm. Rainbow DQN combines all of the above techniques
into a single off-policy algorithm for state-of-the-art sample
efficiency on Atari benchmarks. Additionally, Rainbow also
makes use of multi-step returns (Sutton et al., 1998). van
Hasselt et al. (2019) propose a data-efficient version of the
Rainbow which can be summarized as an improved configu-
ration of hyperparameters that is optimized for performance
benchmarked at 100K interaction steps.

3.3. Contrastive Learning

A key component of CURL is the ability to learn rich rep-
resentations of high dimensional data using contrastive un-
supervised learning. Contrastive learning (Hadsell et al.,
2006; LeCun et al., 2006; van den Oord et al., 2018; Wu
etal., 2018; He et al., 2019a) can be understood as learning
a differentiable dictionary look-up task. Given a query ¢ and
keys K = {ko, k1, ... } and an explicitly known partition of
K (with respect to ¢) P(K) = ({ky}, K\ {k4}), the goal
of contrastive learning is to ensure that ¢ matches with k.
relatively more than any of the keys in K\ {k}. ¢, K, k4,

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

and K\ {k. } are also referred to as anchor, targets, positive,
negatives respectively in the parlance of contrastive learning
(van den Oord et al., 2018; He et al., 2019a). Similarities
between the anchor and targets are best modeled with dot
products (qu) (Wu et al., 2018; He et al., 2019a) or bilin-
ear products (¢"Wk) (van den Oord et al., 2018; Hénaff
et al., 2019) though other forms like euclidean distances are
also common (Schroff et al., 2015; Wang & Gupta, 2015).
To learn embeddings that respect these similarity relations,
van den Oord et al. (2018) propose the InfoNCE loss:

exp(q" Wky)

L, =log
! exp(qT W) + S5 exp(¢TWk)

4)

The loss 4 can be interpreted as the log-loss of a K-way
softmax classifier whose label is k. .

4. CURL Implementation

CURL minimally modifies a base RL algorithm by training
the contrastive objective as an auxiliary loss during the batch
update. In our experiments, we train CURL alongside two
model-free RL algorithms — SAC for DMControl experi-
ments and Rainbow DQN (data-efficient version) for Atari
experiments. To specify a contrastive learning objective,
we need to define (i) the discrimination objective (ii) the
transformation for generating query-key observations (iii)
the embedding procedure for transforming observations into
queries and keys and (iv) the inner product used as a similar-
ity measure between the query-key pairs in the contrastive
loss. The exact specification these aspects largely determine
the quality of the learned representations.

We first summarize the CURL architecture, and then cover
each architectural choice in detail.

4.1. Architectural Overview

CURL uses instance discrimination with similarities to Sim-
CLR (Chen et al., 2020), MoCo (He et al., 2019a) and CPC
(Hénaff et al., 2019). Most Deep RL architectures oper-
ate with a stack of temporally consecutive frames as input
(Hessel et al., 2017). Therefore, instance discrimination is
performed across the frame stacks as opposed to single im-
age instances. We use a momentum encoding procedure for
targets similar to MoCo (He et al., 2019b) which we found
to be better performing for RL. Finally, for the InfoNCE
score function, we use a bi-linear inner product similar to
CPC (van den Oord et al., 2018) which we found to work
better than unit norm vector products used in MoCo and
SimCLR. Ablations for both the encoder and the similarity
measure choices are shown in Figure 5. The contrastive rep-
resentation is trained jointly with the RL algorithm, and the
latent code receives gradients from both the contrastive ob-

jective and the Q-function. An overview of the architecture
is shown in in Figure 2.

4.2. Discrimination Objective

A key component of contrastive representation learning is
the choice of positives and negative samples relative to an
anchor (Bachman et al., 2019; Tian et al., 2019; Hénaff
etal., 2019; He et al., 2019a; Chen et al., 2020). Contrastive
Predictive Coding (CPC) based pipelines (Hénaff et al.,
2019; van den Oord et al., 2018) use groups of image patches
separated by a carefully chosen spatial offset for anchors
and positives while the negatives come from other patches
within the image and from other images.

While patches are a powerful way to incorporate spatial
and instance discrimination together, they introduce extra
hyperparameters and architectural design choices which
may be hard to adapt for a new problem. SimCLR (Chen
et al., 2020) and MoCo (He et al., 2019a) opt for a simpler
design where there is no patch extraction.

Discriminating transformed image instances as opposed to
image-patches within the same image optimizes a simpler
instance discrimination objective (Wu et al., 2018) with
the InfoNCE loss and requires minimal architectural adjust-
ments (He et al., 2019b; Chen et al., 2020). It is preferable to
pick a simpler discrimination objective in the RL setting for
two reasons. First, considering the brittleness of reinforce-
ment learning algorithms (Henderson et al., 2018), complex
discrimination may destabilize the RL objective. Second,
since RL algorithms are trained on dynamically generated
datasets, a complex discrimination objective may signifi-
cantly increase the wall-clock training time. CURL there-
fore uses instance discrimination rather than patch discrimi-
nation. One could view contrastive instance discrimination
setups like SimCLR and MoCo as maximizing mutual infor-
mation between an image and its augmented version. The
reader is encouraged to refer to van den Oord et al. (2018);
Hjelm et al. (2018); Tschannen et al. (2019) for connections
between contrastive learning and mutual information.

4.3. Query-Key Pair Generation

Similar to instance discrimination in the image setting (He
et al., 2019b; Chen et al., 2020), the anchor and positive
observations are two different augmentations of the same
image while negatives come from other images. CURL pri-
marily relies on the random crop data augmentation, where a
random square patch is cropped from the original rendering.

A significant difference between RL and computer vision
settings is that an instance ingested by a model-free RL al-
gorithm that operates from pixels is not just a single image
but a stack of frames (Mnih et al., 2015). For example, one
typically feeds in a stack of 4 frames in Atari experiments

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

and a stack of 3 frames in DMControl. This way, perform-
ing instance discrimination on frame stacks allows CURL
to learn both spatial and temporal discriminative features.
For details regarding the extent to which CURL captures
temporal features, see Appendix E.

We apply the random augmentations across the batch but
consistently across each stack of frames to retain informa-
tion about the temporal structure of the observation. The
augmentation procedure is shown in Figure 3. For more
details, refer to Appendix A.

Anchor
Input ‘
«y
\ Positive

100 x 100

Figure 3. Visually illustrating the process of generating an anchor
and its positive using stochastic random crops. Our aspect ratio
for cropping is 0.84, i.e, we crop a 84 x 84 image from a 100 x
100 simulation-rendered image. Applying the same random crop
coordinates across all frames in the stack ensures time-consistent
spatial jittering.

4.4. Similarity Measure

Another determining factor in the discrimination objective
is the inner product used to measure agreement between
query-key pairs. CURL employs the bi-linear inner-product
sim(q, k) = ¢ Wk, where W is a learned parameter ma-
trix. We found this similarity measure to outperform the
normalized dot-product (see Figure 5 in Appendix A) used
in recent state-of-the-art contrastive learning methods in
computer vision like MoCo and SimCLR.

4.5. Target Encoding with Momentum

The motivation for using contrastive learning in CURL is
to train encoders that map from high dimensional pixels to
more semantic latents. InfoNCE is an unsupervised loss
that learns encoders f, and f;, mapping the raw anchors
(query) x4 and targets (keys) x, into latents ¢ = f,(z4) and
k = fr(xx), on which we apply the similarity dot products.
It is common to share the same encoder between the anchor
and target mappings, that is, to have f, = fi (van den Oord
et al., 2018; Hénaff et al., 2019).

From the perspective of viewing contrastive learning as
building differentiable dictionary lookups over high dimen-
sional entities, increasing the size of the dictionary and
enriching the set of negatives is helpful in learning rich

representations. He et al. (2019a) propose momentum con-
trast (MoCo), which uses the exponentially moving aver-
age (momentum averaged) version of the query encoder
fq for encoding the keys in K. Given f, parametrized by
0, and fj, parametrized by 6, MoCo performs the update
0 = mby + (1 — m)6, and encodes any target z, using
SG(fx(x)) [SG : Stop Gradient].

CURL couples frame-stack instance discrimination with mo-
mentum encoding for the targets during contrastive learning,
and RL is performed on top of the encoder features.

4.6. Differences Between CURL and Prior Contrastive
Methods in RL

van den Oord et al. (2018) use Contastive Predictive Coding
(CPC) as an auxiliary task wherein an LSTM operates on
a latent space of a convolutional encoder; and both the
CPC and A2C (Mnih et al., 2015) objectives are jointly
optimized. CURL avoids using pipelines that predict the
future in a latent space such as van den Oord et al. (2018);
Hafner et al. (2019). In CURL, we opt for a simple instance
discrimination style contrastive auxiliary task.

4.7. CURL Contrastive Learning Pseudocode
(PyTorch-like)

f_qg, f_k: encoder networks for anchor

(query) and target (keys) respectively.

loader: minibatch sampler from ReplayBuffer
B-batch_size, C-channels, H,W-spatial_dims

x : shape : [B, C, H, W]

C = ¢ » num_frames; c=3 (R/G/B) or 1 (gray)
m: momentum, e.g. 0.95

z_dim: latent dimension

f_k.params = f_qg.params

W

= rand(z_dim,
for x in loader:

z_dim) # bilinear product.
load minibatch from buffer

X_g = aug(x) # random augmentation

x_k = aug(x) # different random augmentation
z_q = f_qg.forward(x_qg)

z_k = f_k.forward (x_k)

z_k = z_k.detach() # stop gradient

proj_k = matmul (W, z_k.T) # bilinear product
logits = matmul (z_g, proj_k) # B x B

subtract max from logits for stability
logits = logits - max(logits, axis=1)

labels = arange (logits.shape[0])
loss = CrossEntropyLoss (logits,
loss.backward()
update (f_g.params)
update (W) # Adam
f_k.params = m*xf_k.params+ (1l-m)+xf_qg.params

labels)

Adam

5. Experiments
5.1. Evaluation

We measure the data-efficiency and performance of our
method and baselines at 100k and 500k environment steps
on DMControl and 100k interaction steps (400k environ-
ment steps with action repeat of 4) on Atari, which we will
henceforth refer to as DM Control100k, DM Control500k
and Ataril00k for clarity. While Ataril00k benchmark has

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

been common practice when investigating data-efficiency
on Atari (Kaiser et al., 2019; van Hasselt et al., 2019; Kielak,
2020), the DMControl benchmark was set at 500k environ-
ment steps because state-based RL approaches asymptotic
performance on many environments at this point, and 100k
steps to measure the speed of initial learning. A broader
motivation is that while RL algorithms can achieve super-
human performance on Atari games, they are still far less
efficient than a human learner. Training for 100-500k envi-
ronment steps corresponds to a few hours of human time.

We evaluate (i) sample-efficiency by measuring how many
steps it takes the best performing baselines to match CURL
performance at a fixed T' (100k or 500k) steps and (ii) per-
formance by measuring the ratio of the episode returns
achieved by CURL versus the best performing baseline at T’
steps. To be explicit, when we say data or sample-efficiency
we’re referring to (i) and when we say performance we’re
referring to (ii).

5.2. Environments

Our primary goal for CURL is sample-efficient control from
pixels that is broadly applicable across a range of environ-
ments. We benchmark the performance of CURL for both
discrete and continuous control environments. Specifically,
we focus on DMControl suite for continuous control tasks
and the Atari Games benchmark for discrete control tasks
with inputs being raw pixels rendered by the environments.

DeepMind Control: Recently, there have been a number
of papers that have benchmarked for sample efficiency on
challenging visual continuous control tasks belonging to the
DMControl suite (Tassa et al., 2018) where the agent oper-
ates purely from pixels. The reason for operating in these
environments is multi fold: (i) they present a reasonably
challenging and diverse set of tasks; (ii) sample-efficiency
of pure model-free RL algorithms operating from pixels
on these benchmarks is poor; (iii) multiple recent efforts
to improve the sample efficiency of both model-free and
model-based methods on these benchmarks thereby giving
us sufficient baselines to compare against; (iv) performance
on the DM control suite is relevant to robot learning in real
world benchmarks.

We run experiments on sixteen environments from DM-
Control to examine the performance of CURL on pixels
relative to SAC with access to the ground truth state, shown
in Figure 7. For more extensive benchmarking, we compare
CURL to five leading pixel-based methods across the the
six environments presented in Yarats et al. (2019): ball-in-
cup, finger-spin, reacher-easy, cheetah-run, walker-walk,
cartpole-swingup for benchmarking.

Atari: Similar to DMControl sample-efficiency bench-
marks, there have been a number of recent papers that

have benchmarked for sample-efficiency on the Atari 2600
Games. Kaiser et al. (2019) proposed comparing various
algorithms in terms of performance achieved within 100K
timesteps (400K frames, frame skip of 4) of interaction with
the environments (games). The method proposed by Kaiser
et al. (2019) called SimPLe is a model-based RL algorithm.
SimPLe is compared to a random agent, model-free Rain-
bow DQN (Hessel et al., 2017) and human performance for
the same amount of interaction time. Recently, van Hasselt
et al. (2019) and Kielak (2020) proposed data-efficient ver-
sions of Rainbow DQN which are competitive with SimPLe
on the same benchmark. Given that the same benchmark
has been established in multiple recent papers and that there
is a human baseline to compare to, we benchmark CURL
on all the 26 Atari Games (Table 2).

5.3. Baselines for benchmarking sample efficiency

DMControl baselines: We present a number of baselines
for continuous control within the DMControl suite: (i) SAC-
AE (Yarats et al., 2019) where the authors attempt to use
a $-VAE (Higgins et al., 2017), VAE (Kingma & Welling,
2013) and a regualrized autoencoder Vincent et al. (2008);
Ghosh et al. (2019) jointly with SAC; (ii) SLAC (Lee et al.,
2019) which learns a latent space world model on top of
VAE features Ha & Schmidhuber (2018) and builds value
functions on top; (iii) PlaNet and (iv) Dreamer (Hafner
et al., 2018; 2019) both of which learn a latent space world
model and explicitly plan through it; (v) Pixel SAC: Vanilla
SAC operating purely from pixels (Haarnoja et al., 2018).
These baselines are competitive methods for benchmarking
control from pixels. In addition to these, we also present the
baseline State-SAC where the assumption is that the agent
has access to low level state based features and does not
operate from pixels. This baseline acts as an oracle in that
it approximates the upper bound of how sample-efficient a
pixel-based agent can get in these environments.

Atari baselines: For benchmarking performance on Atari,
we compare CURL to (i) SimPLe (Kaiser et al., 2019),
the top performing model-based method in terms of data-
efficiency on Atari and (ii) Rainbow DQN (Hessel et al.,
2017), a top-performing model-free baseline for Atari, (iii)
OTRainbow (Kielak, 2020) which is an OverTrained ver-
sion of Rainbow for data-efficiency, (iv) Efficient Rainbow
(van Hasselt et al., 2019) which is a modification of Rain-
bow hyperparameters for data-efficiency, (v) Random Agent
(Kaiser et al., 2019), (vi) Human Performance (Kaiser et al.,
2019; van Hasselt et al., 2019). All the baselines and our
method are evaluated for performance after 100K interac-
tion steps (400K frames with a frame skip of 4) which cor-
responds to roughly two hours of gameplay. These bench-
marks help us understand how the state-of-the-art pixel
based RL algorithms compare in terms of sample efficiency
and also to human efficiency. Note: Scores for SimPLe

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Table 1. Scores achieved by CURL (mean & standard deviation for 10 seeds) and baselines on DMControl500k and 1DMControl100k.
CURL achieves state-of-the-art performance on the majority (5 out of 6) environments benchmarked on DMControl500k. These
environments were selected based on availability of data from baseline methods (we run CURL experiments on 16 environments in total
and show results in Figure 7). The baselines are PlaNet (Hafner et al., 2018), Dreamer (Hafner et al., 2019), SAC+AE (Yarats et al., 2019),
SLAC (Lee et al., 2019), pixel-based SAC and state-based SAC (Haarnoja et al., 2018). SLAC results were reported with one and three
gradient updates per agent step, which we refer to as SLACv1 and SLACv?2 respectively. We compare to SLACv1 since all other baselines
and CURL only make one gradient update per agent step. We also ran CURL with three gradient updates per step and compare results to

SLACV2 in Table 5.

500K STEP SCORES CURL PLANET DREAMER SAC+AE SLACvV1 PIXEL SAC STATE SAC
FINGER, SPIN 926 =45 561 284 796+ 183 884+ 128 673 £92 179 £ 166 923 £ 21
CARTPOLE, SWINGUP 841 + 45 475 + 71 762 + 27 735 + 63 - 419 4+ 40 848 £ 15
REACHER, EASY 929 +44 210+390 793 4+164 627 £58 - 145 £ 30 923 + 24
CHEETAH, RUN 518 +28 305+131 5704253 550434 640 =19 197 &£ 15 795 £+ 30
WALKER, WALK 902 + 43 351 £58 897 + 49 847 + 48 842 + 51 42 + 12 948 + 54
BALL IN CUP, CATCH 959 27 460 =380 879 £ 87 7944 58 852 £ 71 312+ 63 974 £ 33
100K STEP SCORES

FINGER, SPIN 767 + 56 136 =216 341 £70 740 =64 693 £ 141 179 £+ 66 811446
CARTPOLE, SWINGUP 582+146 297+39 326427 31111 - 419440 835+22
REACHER, EASY 538+233 20450 3144155 274414 - 145+30 746125
CHEETAH, RUN 299 +48 138+88 2354 137 267124 319+56 197415 61618
WALKER, WALK 403+24 224448 277+12 394422 361+73 42+12 891482
BALL IN CUP, CATCH 769 + 43 00 246 + 174 391+ 82 512 £ 110 312+ 63 746491

Table 2. Scores achieved by CURL (coupled with Eff. Rainbow) and baselines on Atari benchmarked at 100k time-steps (Ataril00k).
CURL achieves state-of-the-art performance on 7 out of 26 environments. Our baselines are SimPLe (Kaiser et al., 2019), OverTrained
Rainbow (OTRainbow) (Kielak, 2020), Data-Efficient Rainbow (Eff. Rainbow) (van Hasselt et al., 2019), Rainbow (Hessel et al., 2017),
Random Agent and Human Performance (Human). We see that CURL implemented on top of Eff. Rainbow improves over Eff. Rainbow
on 19 out of 26 games. We also run CURL with 20 random seeds given that this benchmark is susceptible to high variance across multiple
runs. We also see that CURL achieves superhuman performance on JamesBond and Krull.

GAME HuMAN RANDOM RAINBOW SIMPLE OTRAINBOW EFF. RAINBOW CURL
ALIEN 7127.7 227.8 318.7 616.9 824.7 739.9 558.2
AMIDAR 1719.5 5.8 32.5 88.0 82.8 188.6 142.1
ASSAULT 742.0 222.4 231 527.2 351.9 431.2 600.6
ASTERIX 8503.3 210.0 243.6 1128.3 628.5 470.8 734.5
BANK HEIST 753.1 14.2 15.55 34.2 182.1 51.0 131.6
BATTLE ZONE 37187.5 2360.0 2360.0 5184.4 4060.6 10124.6 14870.0
BOXING 12.1 0.1 -24.8 9.1 2.5 0.2 1.2
BREAKOUT 30.5 1.7 1.2 16.4 9.84 1.9 4.9
CHOPPER COMMAND 7387.8 811.0 120.0 1246.9 1033.33 861.8 1058.5
CRAZY_CLIMBER 35829.4 10780.5 2254.5 62583.6 21327.8 16185.3 12146.5
DEMON_ATTACK 1971.0 152.1 163.6 208.1 711.8 508.0 817.6
FREEWAY 29.6 0.0 0.0 20.3 25.0 27.9 26.7
FROSTBITE 4334.7 65.2 60.2 254.7 231.6 866.8 1181.3
GOPHER 2412.5 257.6 431.2 771.0 778.0 349.5 669.3
HERO 30826.4 1027.0 487 2656.6 6458.8 6857.0 6279.3
JAMESBOND 302.8 29.0 47.4 125.3 112.3 301.6 471.0
KANGAROO 3035.0 52.0 0.0 323.1 605.4 779.3 872.5
KRULL 2665.5 1598.0 1468 4539.9 3277.9 2851.5 4229.6
KUNG_FU_MASTER 22736.3 258.5 0. 17257.2 5722.2 14346.1 14307.8
MS_PACMAN 6951.6 307.3 67 1480.0 941.9 1204.1 1465.5
PONG 14.6 -20.7 -20.6 12.8 1.3 -19.3 -16.5
PRIVATE EYE 69571.3 24.9 0 58.3 100.0 97.8 218.4
QBERT 13455.0 163.9 123.46 1288.8 509.3 1152.9 1042.4
ROAD_RUNNER 7845.0 11.5 1588.46 5640.6 2696.7 9600.0 5661.0
SEAQUEST 42054.7 68.4 131.69 683.3 286.92 354.1 384.5
Upr_N_DOWN 11693.2 533.4 504.6 3350.3 2847.6 2877.4 2955.2

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

and Human baselines have been reported differently in prior
work (Kielak, 2020; van Hasselt et al., 2019). To be rig-
orous, we take the best reported score for each individual
game reported in prior work.

6. Results
6.1. DM Control

Sample-efficiency results for DMControl experiments are
shown in Table 1 and in Figures 4, 6, and 7. Below are the
key findings:

(i) CURL is the state-of-the-art image-based RL algo-
rithm on the majority (5 out of 6) DMControl environ-
ments that we benchmark on for sample-efficiency against
existing pixel-based baselines. On DMControl100k, CURL
achieves 1.9x higher median performance than Dreamer
(Hafner et al., 2019), a leading model-based method, and is
4.5x more data-efficient shown in Figure 6.

(ii) CURL operating purely from pixels nearly matches
(and sometimes surpasses) the sample efficiency of SAC
operating from state on the majority of 16 DMControl
environments tested shown in Figure 7 and matches the me-
dian state-based score on DM Control500k shown in Figure
4. This is a first for any image-based RL algorithm, be it
model-based, model-free, with or without auxiliary tasks.

(iii) CURL solves (converges close to optimal score of 1000)
on the majority of 16 DMControl experiments within S00k
steps. It also matches the state-based median score across
the 6 extensively benchmarked environments in this regime.

6.2. Atari

Results for Atari1l00k are shown in Table 2. Below are the
key findings:

(i) CURL achieves a median human-normalized score
(HNS) of 17.5% while SimPLe and Efficient Rainbow DQN
achieve 14.4% and 16.1% respectively. The mean HNS is
38.1%, 44.3%, and 28.5% for CURL, SimPLe, and Efficient
Rainbow DQN respectively.

(ii) CURL improves on top of Efficient Rainbow on 19
out of 26 Atari games. Averaged across 26 games, CURL
improves on top of Efficient Rainbow by 1.3x, while the me-
dian performance improvement over SimPLE and Efficient
Rainbow are 1.2x and 1.1x respectively.

(iii) CURL surpasses human performance on two games
JamesBond (1.6 HNS), Krull (2.5 HNS).

7. Ablation Studies

In Appendix E, we present the results of ablation studies
carried out to answer the following questions: (i) Does

Median Scores on DMControl100k and DMControl500k

1000 mmm 500k env steps
mmm 100k env steps

923 914
795
77
2 767 745
560
437 .
0 351
296
188
137 133 I
: il i

State SAC CURL Dreamer SLACvV1 SAC+AE PlaNet Pixel SAC

Evaluation Score
o
S
3

IS
S

N
S
3

Figure 4. Performance of CURL coupled to SAC averaged across
10 seeds relative to SLACv1, PlaNet, Pixel SAC and State SAC
baselines. At the 500k benchmark CURL matches the median
score of state-based SAC. At 100k environment steps CURL
achieves a 1.9x higher median score than Dreamer. For a direct
comparison, we only compute the median across the 6 environ-
ments in 1 (4 for SLAC) and show learning curves for CURL
across 16 DMControl experiments in 7.

CURL learn only visual features or does it also capture
temporal dynamics of the environment? (ii) How well does
the RL policy perform if CURL representations are learned
solely with the contrastive objective and no signal from RL?
(iii)) Why does CURL match state-based RL performance
on some DMControl environments but not on others?

8. Conclusion

In this work, we proposed CURL, a contrastive unsupervised
representation learning method for RL, that achieves state-
of-the-art data-efficiency on pixel-based RL tasks across a
diverse set of benchmark environments. CURL is the first
model-free RL pipeline accelerated by contrastive learning
with minimal architectural changes to demonstrate state-of-
the-art performance on complex tasks so far dominated by
approaches that have relied on learning world models and
(or) decoder-based objectives. We hope that progress like
CURL enables avenues for real-world deployment of RL in
areas like robotics where data-efficiency is paramount.

9. Acknowledgements

This research is supported in part by DARPA through the
Learning with Less Labels (LwLL) Program and by ONR
through PECASE N000141612723. We also thank Zak
Stone and Google TFRC for cloud credits; Danijar Hafner,
Alex Lee, and Denis Yarats for sharing data for baselines;
and Lerrel Pinto, Adam Stooke, Will Whitney, and Ankesh
Anand for insightful discussions.

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

References

Anand, A., Racah, E., Ozair, S., Bengio, Y., C6té, M.-
A., and Hjelm, R. D. Unsupervised state representation
learning in atari. In Advances in Neural Information
Processing Systems, pp. 8766-8779, 2019.

Bachman, P., Hjelm, R. D., and Buchwalter, W. Learning
representations by maximizing mutual information across
views. In Advances in Neural Information Processing
Systems, pp. 15509-15519, 2019.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-
tional perspective on reinforcement learning. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 449-458. IMLR. org, 2017.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations, 2020.

Chopra, S., Hadsell, R., and LeCun, Y. Learning a sim-
ilarity metric discriminatively, with application to face
verification. In 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05),
volume 1, pp. 539-546. IEEE, 2005.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
daugment: Practical automated data augmentation with a
reduced search space, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dwibedi, D., Tompson, J., Lynch, C., and Sermanet, P.
Learning actionable representations from visual observa-
tions. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1577-1584.
IEEE, 2018.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
L., et al. Impala: Scalable distributed deep-rl with impor-
tance weighted actor-learner architectures. arXiv preprint
arXiv:1802.01561, 2018.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, 1.,
Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin,
0., et al. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295, 2017.

Ghosh, P., Sajjadi, M. S. M., Vergari, A., Black, M., and
Schlkopf, B. From variational to deterministic autoen-
coders, 2019.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hadsell, R., Chopra, S., and LeCun, Y. Dimensionality
reduction by learning an invariant mapping. In 2006
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 2, pp. 1735—
1742. IEEE, 2006.

Hafner, D., Lillicrap, T., Fischer, L., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

Hafner, D, Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. arXiv preprint arXiv:1911.05722,2019a.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. 2019b.

Hénaff, O. J., Srinivas, A., De Fauw, J., Razavi, A., Doersch,
C., Eslami, S., and van den Oord, A. Data-efficient image
recognition with contrastive predictive coding. arXiv
preprint arXiv:1905.09272, 2019.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that
matters. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep
reinforcement learning, 2017.

Higgins, 1., Pal, A., Rusu, A., Matthey, L., Burgess, C.,
Pritzel, A., Botvinick, M., Blundell, C., and Lerchner,
A. Darla: Improving zero-shot transfer in reinforcement
learning. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 1480-1490.
JMLR. org, 2017.

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal,
K., Bachman, P., Trischler, A., and Bengio, Y. Learning
deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:1808.06670,
2018.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforce-
ment learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L.,
Lever, G., Castaneda, A. G., Beattie, C., Rabinowitz,
N. C., Morcos, A. S., Ruderman, A., et al. Human-level
performance in 3d multiplayer games with population-
based reinforcement learning. Science, 364(6443):859—
865, 2019.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374,
2019.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., et al. Qt-opt: Scalable deep reinforcement
learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293, 2018.

Kielak, K. Do recent advancements in model-based deep
reinforcement learning really improve data efficiency?,
2020.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kostrikov, L., Yarats, D., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. arXiv preprint arXiv:2004.13649, 2020.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,
K. Q. (eds.), Advances in Neural Information Process-
ing Systems 25, pp. 1097-1105. Curran Associates, Inc.,
2012.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and brain sciences, 40, 2017.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learning with augmented data.
arXiv preprint arXiv:2004.14990, 2020.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang,
F. A tutorial on energy-based learning. 2006.

Lee, A. X., Nagabandi, A., Abbeel, P., and Levine,
S. Stochastic latent actor-critic: Deep reinforcement
learning with a latent variable model. arXiv preprint
arXiv:1907.00953, 2019.

Lillicrap, T. P, Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard,
A. J., Banino, A., Denil, M., Goroshin, R., Sifre, L.,
Kavukcuoglu, K., et al. Learning to navigate in complex
environments. arXiv preprint arXiv:1611.03673, 2016.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529-533, 2015.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

Schmidhuber, J. Making the world differentiable: On us-
ing fully recurrent self-supervised neural networks for
dynamic reinforcement learning and planning in non-
stationary environments. Technical Report FKI-126-90,
TUM, 1990.

Schrittwieser, J., Antonoglou, 1., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and
shogi by planning with a learned model. arXiv preprint
arXiv:1911.08265, 2019.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 815-823, 2015.

Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E.,
Schaal, S., Levine, S., and Brain, G. Time-contrastive
networks: Self-supervised learning from video. In 2018

IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 1134-1141. 1IEEE, 2018.

Shelhamer, E., Mahmoudieh, P., Argus, M., and Darrell, T.
Loss is its own reward: Self-supervision for reinforce-
ment learning. arXiv preprint arXiv:1612.07307, 2016.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn,
C. Universal planning networks. arXiv preprint
arXiv:1804.00645, 2018.

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Sutton, R. S. Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic pro-
gramming. In Machine learning proceedings 1990, pp.
216-224. Elsevier, 1990.

Sutton, R. S. et al. Introduction to reinforcement learning,
volume 135. 1998.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Computer
Vision and Pattern Recognition (CVPR), 2015. URL
http://arxiv.org/abs/1409.4842.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Tian, Y., Krishnan, D., and Isola, P. Contrastive multiview
coding. arXiv preprint arXiv:1906.05849, 2019.

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S.,
and Lucic, M. On mutual information maximization for
representation learning. arXiv preprint arXiv:1907.13625,
2019.

van den Oord, A., Li, Y., and Vinyals, O. Representa-
tion learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double g-learning. In Thirtieth AAAI
conference on artificial intelligence, 2016.

van Hasselt, H. P., Hessel, M., and Aslanides, J. When to
use parametric models in reinforcement learning? In
Advances in Neural Information Processing Systems, pp.
14322-14333, 2019.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096-1103, 2008.

Wang, X. and Gupta, A. Unsupervised learning of visual
representations using videos. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2794—

2802, 2015.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanc-
tot, M., and De Freitas, N. Dueling network architec-
tures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581, 2015.

Warde-Farley, D., Van de Wiele, T., Kulkarni, T., Ionescu,
C., Hansen, S., and Mnih, V. Unsupervised control
through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Wu, Z., Xiong, Y., Yu, S., and Lin, D. Unsupervised feature
learning via non-parametric instance-level discrimination.
arXiv preprint arXiv:1805.01978, 2018.

Yarats, D., Zhang, A., Kostrikov, 1., Amos, B., Pineau, J.,
and Fergus, R. Improving sample efficiency in model-
free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

A. Implementation Details

Below, we explain the implementation details for CURL
in the DMControl setting. Specifically, we use the SAC
algorithm as the RL objective coupled with CURL and build
on top of the publicly released implementation from Yarats
et al. (2019). We present in detail the hyperparameters
for the architecture and optimization. We do not use any
extra hyperparameter for balancing the contrastive loss and
the reinforcement learning losses. Both the objectives are
weighed equally in the gradient updates.

Table 3. Hyperparameters used for DMControl CURL experiments.
Most hyperparameters values are unchanged across environments
with the exception for action repeat, learning rate, and batch size.

Hyperparameter Value
Random crop True
Observation rendering (100, 100)
Observation downsampling (84, 84)
Replay buffer size 100000
Initial steps 1000
Stacked frames 3

Action repeat

Hidden units (MLP)
Evaluation episodes
Optimizer

(Br,B2) = (fo, mp, Qo)
(B1,82) = (@)

Learning rate (fo, 7y, Qs)

Learning rate (o)
Batch Size

Q function EMA 7
Critic target update freq
Convolutional layers
Number of filters
Non-linearity
Encoder EMA T
Latent dimension
Discount ~

Initial temperature

2 finger, spin; walker, walk
8 cartpole, swingup
4 otherwise

1024

10

Adam

(.9,.999)

(.5,.999)

2e — 4 cheetah, run
le — 3 otherwise
le—4

512 (cheetah), 128 (rest)
0.01

2

4

32

ReLU

0.05

50

.99

0.1

Architecture: We use an encoder architecture that is simi-
lar to (Yarats et al., 2019), which we sketch in PyTorch-like
pseuodocode below. The actor and critic both use the same
encoder to embed image observations. A full list of hyper-
parameters is displayed in Table 3.

For contrastive learning, CURL utilizes momentum for the
key encoder (He et al., 2019b) and a bi-linear inner prod-
uct as the similarity measure (van den Oord et al., 2018).
Performance curves ablating these two architectural choices
are shown in Figure 5.

Encoding keys
with / without EMA

Using bilinear vs.
cosine similarity

600 600

Score

200 200
EMA bilinear

No EMA cosine

0 1 2 0 1 2

Environment Steps (Millions) Environment Steps (Millions)

Figure 5. Performance on cheetah-run environment ablated two-
ways: (left) using the query encoder or exponentially moving
average of the query encoder for encoding keys (right) using the
bi-linear inner product as in (van den Oord et al., 2018) or the
cosine inner product as in He et al. (2019b); Chen et al. (2020)

Pseudo-code for the architecture is provided below:

def encode (x,z_dim) :
nmnon
ConvNet encoder
args:
B-batch_size, C-channels
H,W-spatial_dims

x : shape : [B, C, H, W]
C = 3 % num_frames; 3 - R/G/B
z_dim: latent dimension

nnn

x = x / 255.

c: channels, f: filters

k: kernel, s: stride

z = Conv2d(c=x.shapel[l], £=32, k=3, s=2)1) (
X)

z = RelLU(z)

for _ in range(num_layers - 1):
z = Conv2d((c=32, f=32, k=3, s=1)) (z)
z = RelLU(z)

z = flatten(z)

in: input dim, out: output_dim, h:
hiddens

mlp (in=z.size (), out=z_dim,h=1024)
LayerNorm(z)
tanh (z)

N
o

Terminology: A common point of confusion is the mean-
ing “training steps.” We use the term environment steps to
denote the amount of times the simulator environment is
stepped through and interaction steps to denote the number
of times the agent steps through its policy. The terms action
repeat or frame skip refer to the number of times an action

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

is repeated when it’s drawn from the agent’s policy. For
example, if action repeat is set to 4, then 100k interaction
steps is equivalent to 400k environment steps.

Batch Updates: After initializing the replay buffer with
observations extracted by a random agent, we sample a
batch of observations, compute the CURL objectives, and
step through the optimizer. Note that since queries and keys
are generated by data-augmenting an observation, we can
generate arbitrarily many keys to increase the contrastive
batch size without sampling any additional observations.

Shared Representations: The objective of performing con-
trastive learning together with RL is to ensure that the shared
encoder learns rich features that facilitate sample efficient
control. There is a subtle coincidental connection between
MoCo and off-policy RL. Both the frameworks adopt the
usage of a momentum averaged (EMA) version of the un-
derlying model. In MoCo, the EMA encoder is used for
encoding the keys (targets) while in off-policy RL, the EMA
version of the Q-networks are used as targets in the Bellman
error (Mnih et al., 2015; Haarnoja et al., 2018). Thanks to
this connection, CURL shares the convolutional encoder,
momentum coefficient and EMA update between contrastive
and reinforcement learning updates for the shared parame-
ters. The MLP part of the critic that operates on top of these
convolutional features has a separate momentum coefficient
and update decoupled from the image encoder parameters.

Balancing Contrastive and RL Updates: While past work
has learned hyperparameters to balance the auxiliary loss co-
efficient or learning rate relative to the RL objective (Jader-
berg et al., 2016; Yarats et al., 2019), CURL does not need
any such adjustments. We use both the contrastive and RL
objectives together with equal weight and learning rate. This
simplifies the training process compared to other methods,
such as training a VAE jointly (Hafner et al., 2018; 2019;
Lee et al., 2019), that require careful tuning of coefficients
for representation learning.

Differences in Data Collection between Computer Vi-
sion and RL Settings: There are two key differences be-
tween contrastive learning in the computer vision and RL
settings because of their different goals. Unsupervised fea-
ture learning methods built for downstream vision tasks like
image classification assume a setting where there is a large
static dataset of unlabeled images. On the other hand, in RL,
the dataset changes over time to account for the agent’s new
experiences. Secondly, the size of the memory bank of la-
beled images and dataset of unlabeled ones in vision-based
settings are 65K and 1M (or 1B) respectively. The goal in
vision-based methods is to learn from millions of unlabeled
images. On the other hand, the goal in CURL is to develop
sample-efficient RL algorithms. For example, to be able to
solve a task within 100K timesteps (approximately 2 hours
in real-time), an agent can only ingest 100K image frames.

Therefore, unlike MoCo, CURL does not use a memory
bank for contrastive learning. Instead, the negatives are
constructed on the fly for every minibatch sampled from the
agent’s replay buffer for an RL update similar to SimCLR.
The exact implementation is provided as a PyTorch-like
code snippet in 4.7.

Data Augmentation:

Random crop data augmentation has been crucial for the per-
formance of deep learning based computer vision systems in
object recognition, detection and segmentation (Krizhevsky
et al., 2012; Szegedy et al., 2015; Cubuk et al., 2019; Chen
et al., 2020). However, similar augmentation methods have
not seen much adoption in the field of RL even though
several benchmarks use raw pixels as inputs to the model.

CURL adopts the random crop data augmentation as the
stochastic data augmentation applied to a frame stack. To
make it easier for the model to correlate spatio-temporal
patterns in the input, we apply the same random crop (in
terms of box coordinates) across all four frames in the stack
as opposed to extracting different random crop positions
from each frame in the stack. Further, unlike in computer
vision systems where the aspect ratio for random crop is
allowed to be as low as 0.08, we preserve much of the spatial
information as possible and use a constant aspect ratio of
0.84 between the original and cropped. In our experiments,
data augmented samples for CURL are formed by cropping
84 x 84 frames from an input frame of 100 x 100.

DMControl: We render observations at 100 x 100 and
randomly crop 84 x 84 frames. For evaluation, we render
observations at 100 x 100 and center crop to 84 x 84 pixels.
We found that implementing random crop efficiently was
extremely important to the success of the algorithm. We
provide pseudocode below:

from skimage import view_as_windows
import numpy as np

def random_crop (imgs, out):
wun
Vectorized random crop
args:
imgs: shape (B,C,H,W)
out: output size (e.g. 84)

nnn

n: batch size.
n = imgs.shape[0]

img_size = imgs.shape[-1] # e.g. 100
crop_max = img_size - out
imgs = np.transpose (imgs, (0, 2, 3, 1))

crop_max, n)

wl = np.random.randint (O,
= crop_max, n)

hl np.random.randint (0,

creates all sliding window

combinations of size (out)
windows = view_as_windows (
imgs, (1, out, out, 1))[..., O0,:,:, O]

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

selects a random window

for each batch element

cropped = windows|[np.arange(n), wl, hl]
return cropped

B. Ataril00k Implementation Details

The flexibility of CURL allows us to apply it to discrete
control setting with minimal modifications. Similar to our
rationale for picking SAC as the baseline RL algorithm to
couple CURL with (for continuous control), we pick the
data-efficient version of Rainbow DQN (Efficient Rainbow)
(van Hasselt et al., 2019) for Ataril00K which performs
competitively with an older version of SimPLe (most re-
cent version has improved numbers). In order to understand
specifically what the gains from CURL are without any
other changes, we adopt the exact same hyperparameters
specified in the paper (van Hasselt et al., 2019) (including
a modified convolutional encoder that uses larger kernel
size and stride of 5). We present the details in Table 4.
Similar to DMControl, the contrastive objective and the
RL objective are weighted equally for learning (except for
Pong, Freeway, Boxing and PrivateEye for which we used a
coefficient of 0.05 for the momentum contastive loss. On
a large majority (22 out of 26) of the games, we do not
use this adjustment. While it is standard practice to use
the same hyperparameters for all games in Atari, papers
proposing auxiliary losses have adopted a different practice
of using game specific coefficients (Jaderberg et al., 2016).).
We use the Efficient Rainbow codebase from https:
//github.com/Kaixhin/Rainbow which has a re-
produced version of van Hasselt et al. (2019). We evaluate
with 20 random seeds and report the mean score for each
game given the high variance nature of the Ataril00k steps
benchmark. We restrict ourselves to using grayscale render-
ings of image observations and use random crop of frame
stack as data augmentation.

C. Benchmarking Data Efficiency

Tables 1 and 2 show the episode returns of DMControl 100k,
DMControl500k, and Atari100k across CURL and a number
of pixel-based baselines. CURL outperforms all baseline
pixel-based methods across experiments on both DMCon-
trol100k and DMControl500k. On Ataril00k experiments,
CURL coupled with Eff Rainbow outperforms the baseline
on the majority of games tested (19 out of 26 games).

D. Further Investigation of Data-Efficiency in
Contrastive RL

To further benchmark CURL’s sample-efficiency, we com-
pare it to state-based SAC on a total of 16 DMControl envi-
ronments. Shown in Figure 7, CURL matches state-based

Table 4. Hyperparameters used for Ataril00K CURL experiments.
Hyperparameters are unchanged across games.

Hyperparameter Value
Random crop True

Image size (84,84)
Data Augmentation Random Crop (Train)
Replay buffer size 100000
Training frames 400000
Training steps 100000
Frame skip 4

Stacked frames 4

Action repeat 4

Replay period every 1

Q network: channels 32, 64

Q network: filter size 5Xb,5x5
Q network: stride 5,5

Q network: hidden units 256
Momentum (EMA for CURL) 7 0.001
Non-linearity ReLU
Reward Clipping [-1,1]
Multi step return 20
Minimum replay size for sampling 1600

Max frames per episode 108K
Update Distributional Double Q
Target Network Update Period every 2000 updates
Support-of-Q-distribution 51 bins
Discount y 0.99

Batch Size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: 51 0.9
Optimizer: 52 0.999
Optimizer € 0.000015
Max gradient norm 10
Exploration Noisy Nets
Noisy nets parameter 0.1

Priority exponent 0.5

Priority correction 04—1
Hardware CPU

data-efficiency on most of the environments, but lags behind
state-based SAC on more challenging environments.

E. Ablations

E.1. Learning Temporal Dynamics

To gain insight as to whether CURL learns temporal dy-
namics across the stacked frames, we also train a variant
of CURL where the discriminants are individual frames as
opposed to stacked ones. This can be done by sampling
stacked frames from the replay buffer but only using the
first frame to update the contrastive loss:

f g (B,C,H,W), C=9.
f k

_ql:,:3,...1 #
_k[:,:3,...]

X
X

During the actor-critic update, frames in the batch are en-

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

cartpole bal. sparse
reacher hard
cartpole bal.
cartpole swing.
finger spin
reacher easy
walker stand
cup catch
finger turn easy
walker walk
cheetah run
finger turn hard

hopper stand

hopper hop
pendulum swing

cartpole swing. sparse

|
|
.0

0 0.2 0.4 0.6 0.8 1.0

Environment Steps (Millions)

Figure 6. The number of steps it takes a prior leading pixel-based
method, Dreamer, to achieve the same score that CURL achieves
at 100k training steps (clipped at 1M steps). On average, CURL is
4.5x more data-efficient. We chose Dreamer because the authors
(Hafner et al., 2019) report performance for all of the above en-
vironments while other baselines like SLAC and SAC+AE only
benchmark on 4 and 6 environments, respectively. For further
comparison of CURL with these methods, the reader is referred to
Table 1 and Figure 4.

coded individually into latent codes, which are then concate-
nated before being passed to a dense network.

x: (B,C,H,W), C=9.

z1l = encode (x[:,:3,...1)

z2 = encode (x[:,3:6,...])
z3 = encode(x[:,6:9,...])

z = torch.cat([zl,z2,23],-1)

Encoding each frame indiviudally ensures that the con-
trastive objective only has access to visual discriminants.
Comparing the visual and spatiotemporal variants of CURL
in Figure 8 shows that the variant trained on stacked frames
outperforms the visual-only version in most environments.
The only exceptions are reacher and ball-in-cup environ-
ments. Indeed, in those environments the visual signal is
strong enough to solve the task optimally, whereas in other
environments, such as walker and cheetah, where balance
or coordination is required, visual information alone is in-
sufficient.

ball_in_cup, catch
1000 1000

cartpole, balance cartpole, balance_sparse

1000

cartpole, swingup

750 800 750 750

500 500 500

600

j
E

°
IS

250 250 250

400

E
=

0 0 0
2 4 2

°

2 4
cartpole, swingup_sparse cheetah, run finger, spin finger, turn_easy

1000 1000 1000 1000

750 750 750

500 500 500

250 250 250

:
h
E

°

0

°

5 2 4 1 2
finger, turn_hard hopper, hop hopper, stand
1000 200 1000 1000

2
pendulum, swingup

N

Episode Score

750 750 750

500 500 500

250 250 250

5
E,
:

2 4
reacher, easy
1000 1000

°

2 4
reacher, hard

2 4
walker, stand
1000 1000

°

2 4
walker, walk

750 800 750

500 00 500

250 400 250

"
.

200
2 4 0 2 4

~
°
°

Environment Steps (Millions)

CURL State SAC

Figure 7. CURL compared to state-based SAC run for 3 seeds on
each of 16 selected DMControl environments. For the 6 environ-
ments in 4, CURL performance is averaged over 10 seeds.

E.2. Increasing Gradient Updates per Agent Step

Although most baselines we benchmark against use one
gradient update per agent step, it was recently empirically
shown that increasing the ratio of gradients per step im-
proves data-efficiency in RL (Kielak, 2020). This finding
is also supported by SLAC (Lee et al., 2019), where results
are shown with a ratio of 1:1 (SLACv1) and 3:1 (SLACv2).
We

Table 5. Scores achieved by CURL and SLAC when run with a
3:1 ratio of gradient updates per agent step on DMControl500k
and DMControl100k. CURL achieves state-of-the-art performance
on the majority (3 out of 4) environments on DMControl500k.
Performance of both algorithms is improved relative to the 1:1 ratio
reported for all baselines in Table 1 but at the cost of significant
compute and wall-clock time overhead.

DMCONTROL500K CURL SLACV2
FINGER, SPIN 923 + 50 884 +£98
WALKER, WALK 911 + 35 891 £ 60
CHEETAH, RUN 545 £+ 39 791 + 37
BALL IN CUP, CATCH 948 + 21 885 + 154
DMCONTROL100K CURL SLACvV2
FINGER, SPIN 741+ 118 728 £212
WALKER, WALK 428 + 59 513 £ 41
CHEETAH, RUN 314 £ 46 438 + 76
BALL IN CUP, CATCH 899 + 47 837 + 147

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Finger, spin Cartpole, swingup Reacher, easy

1000 1000

750([o 750 (750 Nﬁ
500 /" s00 ’ 500 /

o
0 02 04 06 08 10 00 08 16 24 32 40 00 04 08 12 16 20
Cheetah, run Walker, walk Ball in cup, catch

19

8

8
1]
8
3

1000

750 750 7 -

500 //J"//;ri/;’/' 500 / 500 /

e iaamnoncianca-

Evaluation Scores
o

250 |[250 |f 250
|/ y

0
00 04 08 12 16 20

0 o
00 04 08 12 16 20 00 04 08 12 16 20

Environment Steps (Millions)

W= CURL CURL === DaPG
(stacked frames) (individual frames) (1¢8 steps)

Figure 8. CURL with temporal and visual discrimination (red)
compared to CURL with only visual discrimination (green). In
most settings, the variant with temporal variant outperforms the
purely visual variant of CURL. The two exceptions are reacher
and ball in cup environments, suggesting that learning dynamics
is not necessary for those two environments. Note that the walker
environment was run with action repeat of 4, whereas walker walk
in the main results Table 1 and Figure 7 was run with action repeat
of 2.

E.3. Decoupling Representation Learning from
Reinforcement Learning

Typically, Deep RL representations depend almost entirely
on the reward function specific to a task. However, hand-
crafted representations such as the proprioceptive state are
independent of the reward function. It is much more de-
sirable to learn reward-agnostic representations, so that the
same representation can be re-used across different RL tasks.
We test whether CURL can learn such representations by
comparing CURL to a variant where the critic gradients
are backpropagated through the critic and contrastive dense
feedforward networks but stopped before reaching the con-
volutional neural network (CNN) part of the encoder.

Scores displayed in Figure 9 show that for many environ-
ments, the detached CNN representations are sufficient to
learn an optimal policy. The major exception is the chee-
tah environment, where the detached representation signifi-
cantly under-performs. Though promising, we leave further
exploration of task-agnostic representations for future work.

E.4. Predicting State from Pixels

Despite improved sample-efficiency on most DMControl
tasks, there is still a visible gap between the performance of
SAC on state and SAC with CURL in some environments.
Since CURL learns representations by performing instance

Finger, spin
1000 — 1000

Cartpole, swingup Reacher, easy

750 f/ = 750 ;‘K = ~

0
00 02 04 06 08 10 00 08 16 24 32 40 00 04 08 12 16 20

Cheetah, run

Walker, walk

Ball in cup, catch

750 /

250
0 JNA

7

Evaluation Scores

o2 v
04 08 12 16 20 00 04 08 12 16 20

Environment Steps (Millions)

4
00 04 08 12 16 20 0.0

= CURL CURL (detached) SAC+AE (detached)

Random features = = D4PG (Le8 steps)

Figure 9. CURL where the CNN part of the encoder receives gra-
dients from both the contrastive loss and critic (red) compared to
CURL with the convolutional part of the encoder trained only with
the contrastive objective (green). The detached encoder variant is
able to learn representations that enable near-optimal learning on
most environments, except for cheetah. As in Figure 8, the walker
environment was run with action repeat of 4.

discrimination across stacks of three frames, it’s possible
that the reason for degraded sample-efficiency on more chal-
lenging tasks is due to partial-observability of the ground
truth state.

To test this hypothesis, we perform supervised regression
(X,Y) from pixels X to the proprioceptive state Y, where
each data point z € X is a stack of three consecutive frames
and y € Y is the corresponding state extracted from the
simulator. We find that the error in predicting the state
from pixels correlates with the policy performance of pixel-
based methods. Test-time error rates displayed in Figure
10 show that environments that CURL solves as efficiently
as state-based SAC have low error-rates in predicting the
state from stacks of pixels. The prediction error increases
for more challenging environments, such as cheetah-run and
walker-walk. Finally, the error is highest for environments
where current pixel-based methods, CURL included, make
no progress at all (Tassa et al., 2018), such as humanoid and
swimmer.

This investigation suggests that degraded policy perfor-
mance on challenging tasks may result from the lack of
requisite information about the underlying state in the pixel
data used for learning representations. We leave further
investigation for future work.

E.5. CURL + Efficient Rainbow Atari runs

We report the scores (Tables 6 and 7) for 20 seeds across the
26 Atari games in the Ataril00k benchmark for CURL cou-

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Joint Positions /
Velocities

Joint Angles /
Angular Velocities

0.0 0.00

reacher-easy
walker-walk
humanoid-run
finger-spin
cheetah-run
swimmer-swimmer6

Figure 10. Test-time mean squared error for predicting the proprio-
ceptive state from pixels on a number of DMControl environments.
In DMControl, environments fall into two groups - where the state
corresponds to either (a) positions and velocities of the robot joints
or (b) the joint angles and angular velocities.

pled with Efficient Rainbow. The variance across multiple
seeds is considerably high in this benchmark. Therefore, we
report the scores for each of the seeds along with the mean
and standard deviation for each game.

F. Document changelog

This document tracks the progress and changes of CURL.
In order to help readers be aware of and understand the
changes, here is a brief summary:

v1 Initial version.

v2 Minor changes to DMControl to account for frame skip
factor when evaluating data-efficiency of CURL and base-
lines. Changed action repeat for the Walker-walk task from
4 to 2 to match baseline implementations.

v3 ICML 2020 Camera Ready. For our Atari experiments,
we moved to the https://github.com/Kaixhin/
Rainbow codebase for easy and clean benchmarking that
directly builds on top of Efficient Rainbow without other
changes. We also run 20 seeds as opposed to 3 seeds earlier
given the high variance nature of the benchmark.

G. Connection to work on data
augmentations

Recently, there have been two papers published on
using data augmentations for reinforcement learning,
RAD (Laskin et al., 2020) and DrQ (Kostrikov et al., 2020).
These two papers present the version of CURL without
an auxiliary contrastive loss but rather directly feeding in
the augmented views of the image observations to the un-
derlying value / policy network(s). Both RAD and DrQ
present results on both continuous and discrete control envi-
ronments, surpassing the results presented in CURL on both

the DMControl and Atari benchmarks. Plenty of researchers
have opined in public forums whether the results in RAD
and DrQ make CURL irrelevant if the objective is to use
data augmentations for data-efficient reinforcement learning.
We believe that answering this question needs more nuance
and present our opinions below:

1. If one has access to a rich stream of rewards from the
underlying environment and is interested in optimzing the
performance in terms of average reward, RAD and DrQ
are likely to work better than CURL. The reason for this is
simply that RAD and DrQ directly optimize for the objec-
tive one cares about, while CURL introduces an additional
auxiliary consistency objective.

2. If one does not have access to a rich stream of rewards and
is interested in learning good latent spaces in a task agnostic
manner that can allow for data-efficient controllers across
multiple tasks, CURL is the only option since the contrastive
objective in CURL is reward independent. Our ablation
on the detached encoder with the CURL objective present
evidence that one could build simple MLPs on top of the
CURL features without fine-tuning the underlying encoder
and still be data-efficient on many of the DMControl tasks.

3. Future work in data-efficient reinforcement learning,
particularly for real world settings, is likely to require ap-
proaches that do not rely on reward functions. In such sce-
narios, CURL is likely to be the more preferred approach.
Further, one could potentially use CURL in a scenario
where unsupervised pre-training without reward functions
is initially performed before fine-tuning to the RL objective
across multiple tasks.

Given the above reasons, there isn’t a straightforward an-
swer as to which is the better algorithm and the answer really
depends on what the researcher / practioner wants to solve.
We also emphasize that CURL was the first approach that
used data augmentations effectively to significantly improve
the data-efficiency of model-free reinforcement learning
methods with very simple changes and showed improve-
ment over relatively more complex model-based methods.
The augmentations and results in CURL inspired future
work in the form of RAD and DrQ. We hope that the anal-
ysis and results presented in CURL encourage researchers
to employ data augmentations, contrastive losses and un-
supervised pre-training for future reinforcement learning
research.

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Pacman | Frostbite | Asterix | KungFuMaster | Kangaroo | Gopher | RoadRunner | JamesBond | BattleZone | Seaquest | Assault| Krull | Qbert
1287 2292 850 8470 600 1036 2820 305 18100 322 634.2 | 3404.3 | 1020
1608 1046 525 10870 2280 574 3190 265 18200 236 696.8 | 2443.5 | 650
1466 1209 655 10920 1940 540 7840 335 26800 352 655.2 | 6791.4 | 830
1430 255 565 7730 1140 618 12060 145 21300 386 443 | 3022.5 | 902.5
1114 426 715 17525 520 534 8340 565 7900 458 546 | 3892.2 |3957.5
1083 2280 715 3560 600 596 6920 565 8100 224 564.9 | 3505.5 | 772.5
2301 259 770 10940 600 502 2230 350 12000 282 514.4 | 2564.1 | 782.5
1128 335 980 23420 900 998 4250 365 16500 339 516.6 | 4079.7 | 727.5
1184 1409 665 15160 600 950 1570 140 23900 526 661.5 | 2376.4 | 705
1510 258 610 15370 730 544 6300 425 19900 436 664.5 | 4161.8 | 757.5
2343 335 905 22260 600 796 3100 315 10000 272 529 | 3311.1 | 647.5
1063 1062 800 17320 880 522 1060 335 11200 428 4452 | 2517.3 | 562.5
2040 1542 675 31820 220 392 6050 735 9700 358 573.3 | 3764.7 | 2425
1195 1102 795 23360 920 780 11810 950 23500 533 531.3 [10150.2|1112.5
1343 2461 585 27460 600 792 4630 520 10500 968 663.6 | 2883.6 | 527.5
1354 257 865 7770 2300 454 2530 755 18100 314 795.3 | 5123.7 | 472.5
1925 513 730 8820 320 564 6840 750 9000 378 633 | 3652.5| 610
1228 1826 680 2980 600 522 6580 795 8900 168 674.1 | 2376.4 | 697.5
1099 1889 965 10100 600 496 10720 450 10700 242 604.8 | 11745 |1847.5
1608 2869 640 10300 500 1176 4380 355 13100 467 665.7 | 2826 | 840
1465.5 | 1181.3 | 734.5 14307.8 872.5 | 669.3 5661 471 14870 384.5 | 600.6 | 4229.6 |1042.4
397.5 | 856.2 | 129.8 7919.3 600.1 220.6 3289.3 226.2 5964.3 170.2 89.5 | 2540.6 | 828.4

Table 6. CURL implemented on top of Efficient Rainbow - Scores reported for 20 random seeds for each of the above games, with the last
two rows being the mean and standard deviation across the runs.

UpNDown | Hero |CrazyClimber | ChopperComm. | DemonAttack | Amidar | Alien | BankHeist | Breakout | Freeway | Pong | PrivateEye | Boxing
3529 |8747.5 19090 560 611.5 150.9 | 616 95 3.6 292 |-19.3 100 -0.5
772 3026 8290 1530 707.5 131.2 | 923 184 5 254 |-16.9 100 -11.4
5972 7146 12160 1390 843.5 141.5 | 467 75 32 27.6 | -12 100 4
2793 7686 8920 1100 330.5 133.7 | 441 232 5.1 28.6 |-19.6 100 3.6
3546 7335 11360 500 759 157.1 | 716 187 29 228 |-17.8| 13574 6.2
4552 7325 4110 990 940 125.4 | 453 367 6.3 29.6 |-18.9 100 5
2972 |7275.5 9460 780 1136 183.2 | 273 186 59 233 |-15.9 0 -1.7
2865 3115 20630 1180 758 153.6 | 540 68 2.6 27.6 |-15.2 100 0.1
3098 7424 6780 1380 772.5 127.8 | 499 60 59 26.1 |-18.7 100 35
1953 7475 13570 970 820 1494 | 475 123 4.3 28.3 |-133 100 -0.5
1467 3135 11890 1200 784 125.7 | 553 72 32 21.8 |-17.2] 1510 -22.1
2912 |5060.5 9160 1130 1080 130.4 | 446 53 4.8 21.8 |-20.1 100 -1.8
4123 4409 10960 1380 847 133 | 533 68 6.3 289 |-16.5 100 1.6
2334 6979 17360 1230 771.5 140.5 | 968 36 7.3 282 |-14.9 100 3.6
2605 4159 8930 1350 907.5 133.8 | 499 53 4.8 283 |-19.3 100 -17.6
2432 7560 11510 1080 1095.5 191.8 | 523 105 3.7 26.8 |-15.6 0 21.7
3826 8587 22690 1210 700 115.5 | 616 276 6.6 275 | -21 100 2
3052 |4683.5 8120 840 803.5 164 | 475 69 5.5 26.5 |-10.5 0 59
3131 7317 13500 730 818 131.7 | 525 50 43 26.8 |-13.3 100 18.7
1169 7141 14440 640 866 122.4 | 622 273 6.2 28.6 |-13.1 100 3.7
29552 6279.3 12146.5 1058.5 817.6 142.1 |558.2| 131.6 49 26.7 |-16.5] 2184 1.2
1181.1 |1871.5 4765.6 299.1 176.6 20.0 [160.3| 944 14 24 29 417.9 10.0

Table 7. CURL implemented on top of Efficient Rainbow - Scores reported for 20 random seeds for each of the above games, with the last
two rows being the mean and standard deviation across the runs.

