

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

teraction data over several months to develop their robot

grasp value functions and policies. The data-efficiency of

the whole pipeline thus has significant room for improve-

ment. Similarly, in simulated worlds which are limited by

rendering speeds in the absence of GPU accelerators, data

efficiency is extremely crucial to have a fast experimental

turnover and iteration. Therefore, improving the sample

efficiency of reinforcement learning (RL) methods that op-

erate from high dimensional observations is of paramount

importance to RL research both in simulation and the real

world and allows for faster progress towards the broader

goal of developing intelligent autonomous agents.

A number of approaches have been proposed in the literature

to address the sample inefficiency of deep RL algorithms.

Broadly, they can be classified into two streams of research,

though not mutually exclusive: (i) Auxiliary tasks on the

agent’s sensory observations; (ii) World models that predict

the future. While the former class of methods use auxiliary

self-supervision tasks to accelerate the learning progress of

model-free RL methods (Jaderberg et al., 2016; Mirowski

et al., 2016), the latter class of methods build explicit pre-

dictive models of the world and use those models to plan

through or collect fictitious rollouts for model-free meth-

ods to learn from (Sutton, 1990; Ha & Schmidhuber, 2018;

Kaiser et al., 2019; Schrittwieser et al., 2019).

Our work falls into the first class of models, which use aux-

iliary tasks to improve sample efficiency. Our hypothesis

is simple: If an agent learns a useful semantic representa-

tion from high dimensional observations, control algorithms

built on top of those representations should be significantly

more data-efficient. Self-supervised representation learning

has seen dramatic progress in the last couple of years with

huge advances in masked language modeling (Devlin et al.,

2018) and contrastive learning (Hénaff et al., 2019; He et al.,

2019a; Chen et al., 2020) for language and vision respec-

tively. The representations uncovered by these objectives

improve the performance of any supervised learning system

especially in scenarios where the amount of labeled data

available for the downstream task is really low.

We take inspiration from the contrastive pre-training suc-

cesses in computer vision. However, there are a couple

of key differences: (i) There is no giant unlabeled dataset

of millions of images available beforehand - the dataset is

collected online from the agent’s interactions and changes

dynamically with the agent’s experience; (ii) The agent has

to perform unsupervised and reinforcement learning simulta-

neously as opposed to fine-tuning a pre-trained network for

a specific downstream task. These two differences introduce

a different challenge: How can we use contrastive learning

for improving agents that can learn to control effectively

and efficiently from online interactions?

To address this challenge, we propose CURL - Contrastive

Uunsupervised Representations for Reinforcement

Learning. CURL uses a form of contrastive learning

that maximizes agreement between augmented versions

of the same observation, where each observation is a

stack of temporally sequential frames. We show that

CURL significantly improves sample-efficiency over prior

pixel-based methods by performing contrastive learning

simultaneously with an off-policy RL algorithm. CURL

coupled with the Soft-Actor-Critic (SAC) (Haarnoja et al.,

2018) results in 1.9x median higher performance over

Dreamer, a prior state-of-the-art algorithm on DMControl

environments, benchmarked at 100k environment steps and

matches the performance of state-based SAC on the majority

of 16 environments tested, a first for pixel-based methods.

In the Atari setting benchmarked at 100k interaction steps,

we show that CURL coupled with a data-efficient version

of Rainbow DQN (van Hasselt et al., 2019) results in 1.2x

median higher performance over prior methods such as

SimPLe (Kaiser et al., 2019), improving upon Efficient

Rainbow (van Hasselt et al., 2019) on 19 out of 26 Atari

games, surpassing human efficiency on two games.

While contrastive learning in aid of model-free RL has

been studied in the past by van den Oord et al. (2018) us-

ing Contrastive Predictive Coding (CPC), the results were

mixed with marginal gains in a few DMLab (Espeholt et al.,

2018) environments. CURL is the first model to show

substantial data-efficiency gains from using a contrastive

self-supervised learning objective for model-free RL agents

across a multitude of pixel based continuous and discrete

control tasks in DMControl and Atari.

We prioritize designing a simple and easily reproducible

pipeline. While the promise of auxiliary tasks and learn-

ing world models for RL agents has been demonstrated in

prior work, there’s an added layer of complexity when in-

troducing components like modeling the future in a latent

space (van den Oord et al., 2018; Ha & Schmidhuber, 2018).

CURL is designed to add minimal overhead in terms of

architecture and model learning. The contrastive learning

objective in CURL operates with the same latent space and

architecture typically used for model-free RL and seam-

lessly integrates with the training pipeline without the need

to introduce multiple additional hyperparameters.

Our paper makes the following key contributions: We

present CURL, a simple framework that integrates con-

trastive learning with model-free RL with minimal changes

to the architecture and training pipeline. Using 16 complex

control tasks from the DeepMind control (DMControl) suite

and 26 Atari games, we empirically show that contrastive

learning combined with model-free RL outperforms the

prior state-of-the-art by 1.9x on DMControl and 1.2x on

Atari compared across leading prior pixel-based methods.

CURL is also the first algorithm across both model-based

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

and model-free methods that operates purely from pixels,

and nearly matches the performance and sample-efficiency

of a SAC algorithm trained from the state based features on

the DMControl suite. Finally, our design is simple and does

not require any custom architectural choices or hyperparam-

eters which is crucial for reproducible end-to-end training.

Through these strong empirical results, we demonstrate

that a contrastive objective is the preferred self-supervised

auxiliary task for achieving sample-efficiency compared to

reconstruction based methods, and enables model-free meth-

ods to outperform state-of-the-art model-based methods in

terms of data-efficiency.

2. Related Work

Self-Supervised Learning: Self-Supervised Learning is

aimed at learning rich representations of high dimensional

unlabeled data to be useful for a wide variety of tasks. The

fields of natural language processing and computer vision

have seen dramatic advances in self-supervised methods

such as BERT (Devlin et al., 2018), CPC, MoCo, SimCLR

(Hénaff et al., 2019; He et al., 2019a; Chen et al., 2020).

Contrastive Learning: Contrastive Learning is a frame-

work to learn representations that obey similarity constraints

in a dataset typically organized by similar and dissimilar

pairs. This is often best understood as performing a dic-

tionary lookup task wherein the positive and negatives rep-

resent a set of keys with respect to a query (or an anchor).

A simple instantiation of contrastive learning is Instance

Discrimination (Wu et al., 2018) wherein a query and key

are positive pairs if they are data-augmentations of the same

instance (example, image) and negative otherwise. A key

challenge in contrastive learning is the choice of negatives

which can decide the quality of the underlying representa-

tions learned. The loss functions used to contrast could be

among several choices such as InfoNCE (van den Oord et al.,

2018), Triplet (Wang & Gupta, 2015), Siamese (Chopra

et al., 2005) and so forth.

Self-Supervised Learning for RL: Auxiliary tasks such as

predicting the future conditioned on the past observation(s)

and action(s) (Jaderberg et al., 2016; Shelhamer et al., 2016;

van den Oord et al., 2018; Schmidhuber, 1990) are a few

representative examples of using auxiliary tasks to improve

the sample-efficiency of model-free RL algorithms. The

future prediction is either done in a pixel space (Jaderberg

et al., 2016) or latent space (van den Oord et al., 2018). The

sample-efficiency gains from reconstruction-based auxiliary

losses have been benchmarked in Jaderberg et al. (2016);

Higgins et al. (2017); Yarats et al. (2019). Contrastive learn-

ing has been used to extract reward signals in the latent

space (Sermanet et al., 2018; Dwibedi et al., 2018; Warde-

Farley et al., 2018); and study representation learning on

Atari games by Anand et al. (2019).

World Models for sample-efficiency: While joint learning

of an auxiliary unsupervised task with model-free RL is

one way to improve the sample-efficiency of agents, there

has also been another line of research that has tried to learn

world models of the environment and use them to sample

rollouts and plan. An early instantiation of the generic prin-

ciple was put forth by Sutton (1990) in Dyna where fictitious

samples rolled out from a learned world model are used in

addition to the agent’s experience for sample-efficient learn-

ing. Planning through a learned world model (Srinivas et al.,

2018) is another way to improve sample-efficiency. While

Jaderberg et al. (2016); van den Oord et al. (2018); Lee et al.

(2019) also learn pixel and latent space forward models, the

models are learned to shape the latent representations, and

there is no explicit Dyna or planning. Planning through

learned world models has been successfully demonstrated

in Ha & Schmidhuber (2018); Hafner et al. (2018; 2019).

Kaiser et al. (2019) introduce SimPLe which implements

Dyna with expressive deep neural networks for the world

model for sample-efficiency on Atari games.

Sample-efficient RL for image-based control: CURL en-

compasses the areas of self-supervision, contrastive learn-

ing and using auxiliary tasks for sample-efficient RL. We

benchmark for sample-efficiency on the DMControl suite

(Tassa et al., 2018) and Atari Games benchmarks (Bellemare

et al., 2013). The DMControl suite has been used widely by

Yarats et al. (2019), Hafner et al. (2018), Hafner et al. (2019)

and Lee et al. (2019) for benchmarking sample-efficiency

for image based continuous control methods. As for Atari,

Kaiser et al. (2019) propose to use the 100k interaction steps

benchmark for sample-efficiency which has been adopted

in Kielak (2020); van Hasselt et al. (2019). The Rainbow

DQN (Hessel et al., 2017) was originally proposed for max-

imum sample-efficiency on the Atari benchmark and in

recent times has been adapted to a version known as Data-

Efficient Rainbow (van Hasselt et al., 2019) with competi-

tive performance to SimPLe without learning world models.

We benchmark extensively against both model-based and

model-free algorithms in our experiments. For the DM-

Control experiments, we compare our method to Dreamer,

PlaNet, SLAC, SAC+AE whereas for Atari experiments we

compare to SimPLe, Rainbow, and OverTrained Rainbow

(OTRainbow) and Efficient Rainbow (Eff. Rainbow).

3. Background

CURL is a general framework for combining contrastive

learning with RL. In principle, one could use any RL algo-

rithm in the CURL pipeline, be it on-policy or off-policy. We

use the widely adopted Soft Actor Critic (SAC) (Haarnoja

et al., 2018) for continuous control benchmarks (DM Con-

trol) and Rainbow DQN (Hessel et al., 2017; van Hasselt

et al., 2019) for discrete control benchmarks (Atari). Below,

we review SAC, Rainbow DQN and Contrastive Learning.

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

and K\{k+} are also referred to as anchor, targets, positive,

negatives respectively in the parlance of contrastive learning

(van den Oord et al., 2018; He et al., 2019a). Similarities

between the anchor and targets are best modeled with dot

products (qT k) (Wu et al., 2018; He et al., 2019a) or bilin-

ear products (qTWk) (van den Oord et al., 2018; Hénaff

et al., 2019) though other forms like euclidean distances are

also common (Schroff et al., 2015; Wang & Gupta, 2015).

To learn embeddings that respect these similarity relations,

van den Oord et al. (2018) propose the InfoNCE loss:

Lq = log
exp(qTWk+)

exp(qTWk+) +
∑K−1

i=0
exp(qTWki)

(4)

The loss 4 can be interpreted as the log-loss of a K-way

softmax classifier whose label is k+.

4. CURL Implementation

CURL minimally modifies a base RL algorithm by training

the contrastive objective as an auxiliary loss during the batch

update. In our experiments, we train CURL alongside two

model-free RL algorithms — SAC for DMControl experi-

ments and Rainbow DQN (data-efficient version) for Atari

experiments. To specify a contrastive learning objective,

we need to define (i) the discrimination objective (ii) the

transformation for generating query-key observations (iii)

the embedding procedure for transforming observations into

queries and keys and (iv) the inner product used as a similar-

ity measure between the query-key pairs in the contrastive

loss. The exact specification these aspects largely determine

the quality of the learned representations.

We first summarize the CURL architecture, and then cover

each architectural choice in detail.

4.1. Architectural Overview

CURL uses instance discrimination with similarities to Sim-

CLR (Chen et al., 2020), MoCo (He et al., 2019a) and CPC

(Hénaff et al., 2019). Most Deep RL architectures oper-

ate with a stack of temporally consecutive frames as input

(Hessel et al., 2017). Therefore, instance discrimination is

performed across the frame stacks as opposed to single im-

age instances. We use a momentum encoding procedure for

targets similar to MoCo (He et al., 2019b) which we found

to be better performing for RL. Finally, for the InfoNCE

score function, we use a bi-linear inner product similar to

CPC (van den Oord et al., 2018) which we found to work

better than unit norm vector products used in MoCo and

SimCLR. Ablations for both the encoder and the similarity

measure choices are shown in Figure 5. The contrastive rep-

resentation is trained jointly with the RL algorithm, and the

latent code receives gradients from both the contrastive ob-

jective and the Q-function. An overview of the architecture

is shown in in Figure 2.

4.2. Discrimination Objective

A key component of contrastive representation learning is

the choice of positives and negative samples relative to an

anchor (Bachman et al., 2019; Tian et al., 2019; Hénaff

et al., 2019; He et al., 2019a; Chen et al., 2020). Contrastive

Predictive Coding (CPC) based pipelines (Hénaff et al.,

2019; van den Oord et al., 2018) use groups of image patches

separated by a carefully chosen spatial offset for anchors

and positives while the negatives come from other patches

within the image and from other images.

While patches are a powerful way to incorporate spatial

and instance discrimination together, they introduce extra

hyperparameters and architectural design choices which

may be hard to adapt for a new problem. SimCLR (Chen

et al., 2020) and MoCo (He et al., 2019a) opt for a simpler

design where there is no patch extraction.

Discriminating transformed image instances as opposed to

image-patches within the same image optimizes a simpler

instance discrimination objective (Wu et al., 2018) with

the InfoNCE loss and requires minimal architectural adjust-

ments (He et al., 2019b; Chen et al., 2020). It is preferable to

pick a simpler discrimination objective in the RL setting for

two reasons. First, considering the brittleness of reinforce-

ment learning algorithms (Henderson et al., 2018), complex

discrimination may destabilize the RL objective. Second,

since RL algorithms are trained on dynamically generated

datasets, a complex discrimination objective may signifi-

cantly increase the wall-clock training time. CURL there-

fore uses instance discrimination rather than patch discrimi-

nation. One could view contrastive instance discrimination

setups like SimCLR and MoCo as maximizing mutual infor-

mation between an image and its augmented version. The

reader is encouraged to refer to van den Oord et al. (2018);

Hjelm et al. (2018); Tschannen et al. (2019) for connections

between contrastive learning and mutual information.

4.3. Query-Key Pair Generation

Similar to instance discrimination in the image setting (He

et al., 2019b; Chen et al., 2020), the anchor and positive

observations are two different augmentations of the same

image while negatives come from other images. CURL pri-

marily relies on the random crop data augmentation, where a

random square patch is cropped from the original rendering.

A significant difference between RL and computer vision

settings is that an instance ingested by a model-free RL al-

gorithm that operates from pixels is not just a single image

but a stack of frames (Mnih et al., 2015). For example, one

typically feeds in a stack of 4 frames in Atari experiments

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

been common practice when investigating data-efficiency

on Atari (Kaiser et al., 2019; van Hasselt et al., 2019; Kielak,

2020), the DMControl benchmark was set at 500k environ-

ment steps because state-based RL approaches asymptotic

performance on many environments at this point, and 100k

steps to measure the speed of initial learning. A broader

motivation is that while RL algorithms can achieve super-

human performance on Atari games, they are still far less

efficient than a human learner. Training for 100-500k envi-

ronment steps corresponds to a few hours of human time.

We evaluate (i) sample-efficiency by measuring how many

steps it takes the best performing baselines to match CURL

performance at a fixed T (100k or 500k) steps and (ii) per-

formance by measuring the ratio of the episode returns

achieved by CURL versus the best performing baseline at T

steps. To be explicit, when we say data or sample-efficiency

we’re referring to (i) and when we say performance we’re

referring to (ii).

5.2. Environments

Our primary goal for CURL is sample-efficient control from

pixels that is broadly applicable across a range of environ-

ments. We benchmark the performance of CURL for both

discrete and continuous control environments. Specifically,

we focus on DMControl suite for continuous control tasks

and the Atari Games benchmark for discrete control tasks

with inputs being raw pixels rendered by the environments.

DeepMind Control: Recently, there have been a number

of papers that have benchmarked for sample efficiency on

challenging visual continuous control tasks belonging to the

DMControl suite (Tassa et al., 2018) where the agent oper-

ates purely from pixels. The reason for operating in these

environments is multi fold: (i) they present a reasonably

challenging and diverse set of tasks; (ii) sample-efficiency

of pure model-free RL algorithms operating from pixels

on these benchmarks is poor; (iii) multiple recent efforts

to improve the sample efficiency of both model-free and

model-based methods on these benchmarks thereby giving

us sufficient baselines to compare against; (iv) performance

on the DM control suite is relevant to robot learning in real

world benchmarks.

We run experiments on sixteen environments from DM-

Control to examine the performance of CURL on pixels

relative to SAC with access to the ground truth state, shown

in Figure 7. For more extensive benchmarking, we compare

CURL to five leading pixel-based methods across the the

six environments presented in Yarats et al. (2019): ball-in-

cup, finger-spin, reacher-easy, cheetah-run, walker-walk,

cartpole-swingup for benchmarking.

Atari: Similar to DMControl sample-efficiency bench-

marks, there have been a number of recent papers that

have benchmarked for sample-efficiency on the Atari 2600

Games. Kaiser et al. (2019) proposed comparing various

algorithms in terms of performance achieved within 100K

timesteps (400K frames, frame skip of 4) of interaction with

the environments (games). The method proposed by Kaiser

et al. (2019) called SimPLe is a model-based RL algorithm.

SimPLe is compared to a random agent, model-free Rain-

bow DQN (Hessel et al., 2017) and human performance for

the same amount of interaction time. Recently, van Hasselt

et al. (2019) and Kielak (2020) proposed data-efficient ver-

sions of Rainbow DQN which are competitive with SimPLe

on the same benchmark. Given that the same benchmark

has been established in multiple recent papers and that there

is a human baseline to compare to, we benchmark CURL

on all the 26 Atari Games (Table 2).

5.3. Baselines for benchmarking sample efficiency

DMControl baselines: We present a number of baselines

for continuous control within the DMControl suite: (i) SAC-

AE (Yarats et al., 2019) where the authors attempt to use

a β-VAE (Higgins et al., 2017), VAE (Kingma & Welling,

2013) and a regualrized autoencoder Vincent et al. (2008);

Ghosh et al. (2019) jointly with SAC; (ii) SLAC (Lee et al.,

2019) which learns a latent space world model on top of

VAE features Ha & Schmidhuber (2018) and builds value

functions on top; (iii) PlaNet and (iv) Dreamer (Hafner

et al., 2018; 2019) both of which learn a latent space world

model and explicitly plan through it; (v) Pixel SAC: Vanilla

SAC operating purely from pixels (Haarnoja et al., 2018).

These baselines are competitive methods for benchmarking

control from pixels. In addition to these, we also present the

baseline State-SAC where the assumption is that the agent

has access to low level state based features and does not

operate from pixels. This baseline acts as an oracle in that

it approximates the upper bound of how sample-efficient a

pixel-based agent can get in these environments.

Atari baselines: For benchmarking performance on Atari,

we compare CURL to (i) SimPLe (Kaiser et al., 2019),

the top performing model-based method in terms of data-

efficiency on Atari and (ii) Rainbow DQN (Hessel et al.,

2017), a top-performing model-free baseline for Atari, (iii)

OTRainbow (Kielak, 2020) which is an OverTrained ver-

sion of Rainbow for data-efficiency, (iv) Efficient Rainbow

(van Hasselt et al., 2019) which is a modification of Rain-

bow hyperparameters for data-efficiency, (v) Random Agent

(Kaiser et al., 2019), (vi) Human Performance (Kaiser et al.,

2019; van Hasselt et al., 2019). All the baselines and our

method are evaluated for performance after 100K interac-

tion steps (400K frames with a frame skip of 4) which cor-

responds to roughly two hours of gameplay. These bench-

marks help us understand how the state-of-the-art pixel

based RL algorithms compare in terms of sample efficiency

and also to human efficiency. Note: Scores for SimPLe

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Table 1. Scores achieved by CURL (mean & standard deviation for 10 seeds) and baselines on DMControl500k and 1DMControl100k.

CURL achieves state-of-the-art performance on the majority (5 out of 6) environments benchmarked on DMControl500k. These

environments were selected based on availability of data from baseline methods (we run CURL experiments on 16 environments in total

and show results in Figure 7). The baselines are PlaNet (Hafner et al., 2018), Dreamer (Hafner et al., 2019), SAC+AE (Yarats et al., 2019),

SLAC (Lee et al., 2019), pixel-based SAC and state-based SAC (Haarnoja et al., 2018). SLAC results were reported with one and three

gradient updates per agent step, which we refer to as SLACv1 and SLACv2 respectively. We compare to SLACv1 since all other baselines

and CURL only make one gradient update per agent step. We also ran CURL with three gradient updates per step and compare results to

SLACv2 in Table 5.

500K STEP SCORES CURL PLANET DREAMER SAC+AE SLACV1 PIXEL SAC STATE SAC

FINGER, SPIN 926 ± 45 561 ± 284 796 ± 183 884 ± 128 673 ± 92 179 ± 166 923 ± 21
CARTPOLE, SWINGUP 841 ± 45 475 ± 71 762 ± 27 735 ± 63 - 419 ± 40 848 ± 15
REACHER, EASY 929 ± 44 210 ± 390 793 ± 164 627 ± 58 - 145 ± 30 923 ± 24
CHEETAH, RUN 518 ± 28 305 ± 131 570 ± 253 550 ± 34 640 ± 19 197 ± 15 795 ± 30
WALKER, WALK 902 ± 43 351 ± 58 897 ± 49 847 ± 48 842 ± 51 42 ± 12 948 ± 54
BALL IN CUP, CATCH 959 ± 27 460 ± 380 879 ± 87 794± 58 852 ± 71 312± 63 974 ± 33

100K STEP SCORES

FINGER, SPIN 767 ± 56 136 ± 216 341 ± 70 740 ± 64 693 ± 141 179 ± 66 811±46
CARTPOLE, SWINGUP 582±146 297±39 326±27 311±11 - 419±40 835±22
REACHER, EASY 538±233 20±50 314±155 274±14 - 145±30 746±25
CHEETAH, RUN 299 ±48 138±88 235± 137 267±24 319±56 197±15 616±18
WALKER, WALK 403±24 224±48 277±12 394±22 361±73 42±12 891±82
BALL IN CUP, CATCH 769 ± 43 0 ± 0 246 ± 174 391± 82 512 ± 110 312± 63 746±91

Table 2. Scores achieved by CURL (coupled with Eff. Rainbow) and baselines on Atari benchmarked at 100k time-steps (Atari100k).

CURL achieves state-of-the-art performance on 7 out of 26 environments. Our baselines are SimPLe (Kaiser et al., 2019), OverTrained

Rainbow (OTRainbow) (Kielak, 2020), Data-Efficient Rainbow (Eff. Rainbow) (van Hasselt et al., 2019), Rainbow (Hessel et al., 2017),

Random Agent and Human Performance (Human). We see that CURL implemented on top of Eff. Rainbow improves over Eff. Rainbow

on 19 out of 26 games. We also run CURL with 20 random seeds given that this benchmark is susceptible to high variance across multiple

runs. We also see that CURL achieves superhuman performance on JamesBond and Krull.

GAME HUMAN RANDOM RAINBOW SIMPLE OTRAINBOW EFF. RAINBOW CURL

ALIEN 7127.7 227.8 318.7 616.9 824.7 739.9 558.2
AMIDAR 1719.5 5.8 32.5 88.0 82.8 188.6 142.1
ASSAULT 742.0 222.4 231 527.2 351.9 431.2 600.6
ASTERIX 8503.3 210.0 243.6 1128.3 628.5 470.8 734.5
BANK HEIST 753.1 14.2 15.55 34.2 182.1 51.0 131.6
BATTLE ZONE 37187.5 2360.0 2360.0 5184.4 4060.6 10124.6 14870.0
BOXING 12.1 0.1 -24.8 9.1 2.5 0.2 1.2
BREAKOUT 30.5 1.7 1.2 16.4 9.84 1.9 4.9
CHOPPER COMMAND 7387.8 811.0 120.0 1246.9 1033.33 861.8 1058.5
CRAZY CLIMBER 35829.4 10780.5 2254.5 62583.6 21327.8 16185.3 12146.5
DEMON ATTACK 1971.0 152.1 163.6 208.1 711.8 508.0 817.6
FREEWAY 29.6 0.0 0.0 20.3 25.0 27.9 26.7
FROSTBITE 4334.7 65.2 60.2 254.7 231.6 866.8 1181.3
GOPHER 2412.5 257.6 431.2 771.0 778.0 349.5 669.3
HERO 30826.4 1027.0 487 2656.6 6458.8 6857.0 6279.3
JAMESBOND 302.8 29.0 47.4 125.3 112.3 301.6 471.0
KANGAROO 3035.0 52.0 0.0 323.1 605.4 779.3 872.5
KRULL 2665.5 1598.0 1468 4539.9 3277.9 2851.5 4229.6
KUNG FU MASTER 22736.3 258.5 0. 17257.2 5722.2 14346.1 14307.8
MS PACMAN 6951.6 307.3 67 1480.0 941.9 1204.1 1465.5
PONG 14.6 -20.7 -20.6 12.8 1.3 -19.3 -16.5
PRIVATE EYE 69571.3 24.9 0 58.3 100.0 97.8 218.4
QBERT 13455.0 163.9 123.46 1288.8 509.3 1152.9 1042.4
ROAD RUNNER 7845.0 11.5 1588.46 5640.6 2696.7 9600.0 5661.0
SEAQUEST 42054.7 68.4 131.69 683.3 286.92 354.1 384.5
UP N DOWN 11693.2 533.4 504.6 3350.3 2847.6 2877.4 2955.2

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

References

Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.-

A., and Hjelm, R. D. Unsupervised state representation

learning in atari. In Advances in Neural Information

Processing Systems, pp. 8766–8779, 2019.

Bachman, P., Hjelm, R. D., and Buchwalter, W. Learning

representations by maximizing mutual information across

views. In Advances in Neural Information Processing

Systems, pp. 15509–15519, 2019.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

The arcade learning environment: An evaluation plat-

form for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

Bellemare, M. G., Dabney, W., and Munos, R. A distribu-

tional perspective on reinforcement learning. In Proceed-

ings of the 34th International Conference on Machine

Learning-Volume 70, pp. 449–458. JMLR. org, 2017.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A

simple framework for contrastive learning of visual rep-

resentations, 2020.

Chopra, S., Hadsell, R., and LeCun, Y. Learning a sim-

ilarity metric discriminatively, with application to face

verification. In 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05),

volume 1, pp. 539–546. IEEE, 2005.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-

daugment: Practical automated data augmentation with a

reduced search space, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:

Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:1810.04805,

2018.

Dwibedi, D., Tompson, J., Lynch, C., and Sermanet, P.

Learning actionable representations from visual observa-

tions. In 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 1577–1584.

IEEE, 2018.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,

V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,

I., et al. Impala: Scalable distributed deep-rl with impor-

tance weighted actor-learner architectures. arXiv preprint

arXiv:1802.01561, 2018.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I.,

Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin,

O., et al. Noisy networks for exploration. arXiv preprint

arXiv:1706.10295, 2017.

Ghosh, P., Sajjadi, M. S. M., Vergari, A., Black, M., and

Schlkopf, B. From variational to deterministic autoen-

coders, 2019.

Ha, D. and Schmidhuber, J. World models. arXiv preprint

arXiv:1803.10122, 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,

S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,

et al. Soft actor-critic algorithms and applications. arXiv

preprint arXiv:1812.05905, 2018.

Hadsell, R., Chopra, S., and LeCun, Y. Dimensionality

reduction by learning an invariant mapping. In 2006

IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’06), volume 2, pp. 1735–

1742. IEEE, 2006.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,

Lee, H., and Davidson, J. Learning latent dynamics for

planning from pixels. arXiv preprint arXiv:1811.04551,

2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to

control: Learning behaviors by latent imagination. arXiv

preprint arXiv:1912.01603, 2019.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-

mentum contrast for unsupervised visual representation

learning. arXiv preprint arXiv:1911.05722, 2019a.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-

mentum contrast for unsupervised visual representation

learning. 2019b.

Hénaff, O. J., Srinivas, A., De Fauw, J., Razavi, A., Doersch,

C., Eslami, S., and van den Oord, A. Data-efficient image

recognition with contrastive predictive coding. arXiv

preprint arXiv:1905.09272, 2019.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,

D., and Meger, D. Deep reinforcement learning that

matters. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-

vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and

Silver, D. Rainbow: Combining improvements in deep

reinforcement learning, 2017.

Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C.,

Pritzel, A., Botvinick, M., Blundell, C., and Lerchner,

A. Darla: Improving zero-shot transfer in reinforcement

learning. In Proceedings of the 34th International Con-

ference on Machine Learning-Volume 70, pp. 1480–1490.

JMLR. org, 2017.

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal,

K., Bachman, P., Trischler, A., and Bengio, Y. Learning

deep representations by mutual information estimation

and maximization. arXiv preprint arXiv:1808.06670,

2018.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,

Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforce-

ment learning with unsupervised auxiliary tasks. arXiv

preprint arXiv:1611.05397, 2016.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L.,

Lever, G., Castaneda, A. G., Beattie, C., Rabinowitz,

N. C., Morcos, A. S., Ruderman, A., et al. Human-level

performance in 3d multiplayer games with population-

based reinforcement learning. Science, 364(6443):859–

865, 2019.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-

bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-

kowski, P., Levine, S., et al. Model-based reinforce-

ment learning for atari. arXiv preprint arXiv:1903.00374,

2019.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,

A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,

Vanhoucke, V., et al. Qt-opt: Scalable deep reinforcement

learning for vision-based robotic manipulation. arXiv

preprint arXiv:1806.10293, 2018.

Kielak, K. Do recent advancements in model-based deep

reinforcement learning really improve data efficiency?,

2020.

Kingma, D. P. and Welling, M. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013.

Kostrikov, I., Yarats, D., and Fergus, R. Image augmentation

is all you need: Regularizing deep reinforcement learning

from pixels. arXiv preprint arXiv:2004.13649, 2020.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet

classification with deep convolutional neural networks. In

Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,

K. Q. (eds.), Advances in Neural Information Process-

ing Systems 25, pp. 1097–1105. Curran Associates, Inc.,

2012.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-

man, S. J. Building machines that learn and think like

people. Behavioral and brain sciences, 40, 2017.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and

Srinivas, A. Reinforcement learning with augmented data.

arXiv preprint arXiv:2004.14990, 2020.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang,

F. A tutorial on energy-based learning. 2006.

Lee, A. X., Nagabandi, A., Abbeel, P., and Levine,

S. Stochastic latent actor-critic: Deep reinforcement

learning with a latent variable model. arXiv preprint

arXiv:1907.00953, 2019.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,

T., Tassa, Y., Silver, D., and Wierstra, D. Continuous

control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard,

A. J., Banino, A., Denil, M., Goroshin, R., Sifre, L.,

Kavukcuoglu, K., et al. Learning to navigate in complex

environments. arXiv preprint arXiv:1611.03673, 2016.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,

J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-

land, A. K., Ostrovski, G., et al. Human-level control

through deep reinforcement learning. Nature, 518(7540):

529–533, 2015.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-

tized experience replay. arXiv preprint arXiv:1511.05952,

2015.

Schmidhuber, J. Making the world differentiable: On us-

ing fully recurrent self-supervised neural networks for

dynamic reinforcement learning and planning in non-

stationary environments. Technical Report FKI-126-90,

TUM, 1990.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,

Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,

D., Graepel, T., et al. Mastering atari, go, chess and

shogi by planning with a learned model. arXiv preprint

arXiv:1911.08265, 2019.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A

unified embedding for face recognition and clustering. In

Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 815–823, 2015.

Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E.,

Schaal, S., Levine, S., and Brain, G. Time-contrastive

networks: Self-supervised learning from video. In 2018

IEEE International Conference on Robotics and Automa-

tion (ICRA), pp. 1134–1141. IEEE, 2018.

Shelhamer, E., Mahmoudieh, P., Argus, M., and Darrell, T.

Loss is its own reward: Self-supervision for reinforce-

ment learning. arXiv preprint arXiv:1612.07307, 2016.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn,

C. Universal planning networks. arXiv preprint

arXiv:1804.00645, 2018.

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Sutton, R. S. Integrated architectures for learning, plan-

ning, and reacting based on approximating dynamic pro-

gramming. In Machine learning proceedings 1990, pp.

216–224. Elsevier, 1990.

Sutton, R. S. et al. Introduction to reinforcement learning,

volume 135. 1998.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,

A. Going deeper with convolutions. In Computer

Vision and Pattern Recognition (CVPR), 2015. URL

http://arxiv.org/abs/1409.4842.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.

d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,

A., et al. Deepmind control suite. arXiv preprint

arXiv:1801.00690, 2018.

Tian, Y., Krishnan, D., and Isola, P. Contrastive multiview

coding. arXiv preprint arXiv:1906.05849, 2019.

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S.,

and Lucic, M. On mutual information maximization for

representation learning. arXiv preprint arXiv:1907.13625,

2019.

van den Oord, A., Li, Y., and Vinyals, O. Representa-

tion learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-

ment learning with double q-learning. In Thirtieth AAAI

conference on artificial intelligence, 2016.

van Hasselt, H. P., Hessel, M., and Aslanides, J. When to

use parametric models in reinforcement learning? In

Advances in Neural Information Processing Systems, pp.

14322–14333, 2019.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.

Extracting and composing robust features with denoising

autoencoders. In Proceedings of the 25th international

conference on Machine learning, pp. 1096–1103, 2008.

Wang, X. and Gupta, A. Unsupervised learning of visual

representations using videos. In Proceedings of the IEEE

International Conference on Computer Vision, pp. 2794–

2802, 2015.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanc-

tot, M., and De Freitas, N. Dueling network architec-

tures for deep reinforcement learning. arXiv preprint

arXiv:1511.06581, 2015.

Warde-Farley, D., Van de Wiele, T., Kulkarni, T., Ionescu,

C., Hansen, S., and Mnih, V. Unsupervised control

through non-parametric discriminative rewards. arXiv

preprint arXiv:1811.11359, 2018.

Wu, Z., Xiong, Y., Yu, S., and Lin, D. Unsupervised feature

learning via non-parametric instance-level discrimination.

arXiv preprint arXiv:1805.01978, 2018.

Yarats, D., Zhang, A., Kostrikov, I., Amos, B., Pineau, J.,

and Fergus, R. Improving sample efficiency in model-

free reinforcement learning from images. arXiv preprint

arXiv:1910.01741, 2019.

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

is repeated when it’s drawn from the agent’s policy. For

example, if action repeat is set to 4, then 100k interaction

steps is equivalent to 400k environment steps.

Batch Updates: After initializing the replay buffer with

observations extracted by a random agent, we sample a

batch of observations, compute the CURL objectives, and

step through the optimizer. Note that since queries and keys

are generated by data-augmenting an observation, we can

generate arbitrarily many keys to increase the contrastive

batch size without sampling any additional observations.

Shared Representations: The objective of performing con-

trastive learning together with RL is to ensure that the shared

encoder learns rich features that facilitate sample efficient

control. There is a subtle coincidental connection between

MoCo and off-policy RL. Both the frameworks adopt the

usage of a momentum averaged (EMA) version of the un-

derlying model. In MoCo, the EMA encoder is used for

encoding the keys (targets) while in off-policy RL, the EMA

version of the Q-networks are used as targets in the Bellman

error (Mnih et al., 2015; Haarnoja et al., 2018). Thanks to

this connection, CURL shares the convolutional encoder,

momentum coefficient and EMA update between contrastive

and reinforcement learning updates for the shared parame-

ters. The MLP part of the critic that operates on top of these

convolutional features has a separate momentum coefficient

and update decoupled from the image encoder parameters.

Balancing Contrastive and RL Updates: While past work

has learned hyperparameters to balance the auxiliary loss co-

efficient or learning rate relative to the RL objective (Jader-

berg et al., 2016; Yarats et al., 2019), CURL does not need

any such adjustments. We use both the contrastive and RL

objectives together with equal weight and learning rate. This

simplifies the training process compared to other methods,

such as training a VAE jointly (Hafner et al., 2018; 2019;

Lee et al., 2019), that require careful tuning of coefficients

for representation learning.

Differences in Data Collection between Computer Vi-

sion and RL Settings: There are two key differences be-

tween contrastive learning in the computer vision and RL

settings because of their different goals. Unsupervised fea-

ture learning methods built for downstream vision tasks like

image classification assume a setting where there is a large

static dataset of unlabeled images. On the other hand, in RL,

the dataset changes over time to account for the agent’s new

experiences. Secondly, the size of the memory bank of la-

beled images and dataset of unlabeled ones in vision-based

settings are 65K and 1M (or 1B) respectively. The goal in

vision-based methods is to learn from millions of unlabeled

images. On the other hand, the goal in CURL is to develop

sample-efficient RL algorithms. For example, to be able to

solve a task within 100K timesteps (approximately 2 hours

in real-time), an agent can only ingest 100K image frames.

Therefore, unlike MoCo, CURL does not use a memory

bank for contrastive learning. Instead, the negatives are

constructed on the fly for every minibatch sampled from the

agent’s replay buffer for an RL update similar to SimCLR.

The exact implementation is provided as a PyTorch-like

code snippet in 4.7.

Data Augmentation:

Random crop data augmentation has been crucial for the per-

formance of deep learning based computer vision systems in

object recognition, detection and segmentation (Krizhevsky

et al., 2012; Szegedy et al., 2015; Cubuk et al., 2019; Chen

et al., 2020). However, similar augmentation methods have

not seen much adoption in the field of RL even though

several benchmarks use raw pixels as inputs to the model.

CURL adopts the random crop data augmentation as the

stochastic data augmentation applied to a frame stack. To

make it easier for the model to correlate spatio-temporal

patterns in the input, we apply the same random crop (in

terms of box coordinates) across all four frames in the stack

as opposed to extracting different random crop positions

from each frame in the stack. Further, unlike in computer

vision systems where the aspect ratio for random crop is

allowed to be as low as 0.08, we preserve much of the spatial

information as possible and use a constant aspect ratio of

0.84 between the original and cropped. In our experiments,

data augmented samples for CURL are formed by cropping

84× 84 frames from an input frame of 100× 100.

DMControl: We render observations at 100 × 100 and

randomly crop 84× 84 frames. For evaluation, we render

observations at 100× 100 and center crop to 84× 84 pixels.

We found that implementing random crop efficiently was

extremely important to the success of the algorithm. We

provide pseudocode below:

from skimage import view_as_windows
import numpy as np

def random_crop(imgs, out):
"""
Vectorized random crop
args:

imgs: shape (B,C,H,W)
out: output size (e.g. 84)

"""

n: batch size.
n = imgs.shape[0]
img_size = imgs.shape[-1] # e.g. 100
crop_max = img_size - out

imgs = np.transpose(imgs, (0, 2, 3, 1))

w1 = np.random.randint(0, crop_max, n)
h1 = np.random.randint(0, crop_max, n)

creates all sliding window
combinations of size (out)

windows = view_as_windows(
imgs, (1, out, out, 1))[..., 0,:,:, 0]

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

selects a random window
for each batch element
cropped = windows[np.arange(n), w1, h1]
return cropped

B. Atari100k Implementation Details

The flexibility of CURL allows us to apply it to discrete

control setting with minimal modifications. Similar to our

rationale for picking SAC as the baseline RL algorithm to

couple CURL with (for continuous control), we pick the

data-efficient version of Rainbow DQN (Efficient Rainbow)

(van Hasselt et al., 2019) for Atari100K which performs

competitively with an older version of SimPLe (most re-

cent version has improved numbers). In order to understand

specifically what the gains from CURL are without any

other changes, we adopt the exact same hyperparameters

specified in the paper (van Hasselt et al., 2019) (including

a modified convolutional encoder that uses larger kernel

size and stride of 5). We present the details in Table 4.

Similar to DMControl, the contrastive objective and the

RL objective are weighted equally for learning (except for

Pong, Freeway, Boxing and PrivateEye for which we used a

coefficient of 0.05 for the momentum contastive loss. On

a large majority (22 out of 26) of the games, we do not

use this adjustment. While it is standard practice to use

the same hyperparameters for all games in Atari, papers

proposing auxiliary losses have adopted a different practice

of using game specific coefficients (Jaderberg et al., 2016).).

We use the Efficient Rainbow codebase from https:

//github.com/Kaixhin/Rainbow which has a re-

produced version of van Hasselt et al. (2019). We evaluate

with 20 random seeds and report the mean score for each

game given the high variance nature of the Atari100k steps

benchmark. We restrict ourselves to using grayscale render-

ings of image observations and use random crop of frame

stack as data augmentation.

C. Benchmarking Data Efficiency

Tables 1 and 2 show the episode returns of DMControl100k,

DMControl500k, and Atari100k across CURL and a number

of pixel-based baselines. CURL outperforms all baseline

pixel-based methods across experiments on both DMCon-

trol100k and DMControl500k. On Atari100k experiments,

CURL coupled with Eff Rainbow outperforms the baseline

on the majority of games tested (19 out of 26 games).

D. Further Investigation of Data-Efficiency in

Contrastive RL

To further benchmark CURL’s sample-efficiency, we com-

pare it to state-based SAC on a total of 16 DMControl envi-

ronments. Shown in Figure 7, CURL matches state-based

Table 4. Hyperparameters used for Atari100K CURL experiments.

Hyperparameters are unchanged across games.

Hyperparameter Value

Random crop True
Image size (84, 84)
Data Augmentation Random Crop (Train)
Replay buffer size 100000
Training frames 400000
Training steps 100000
Frame skip 4
Stacked frames 4
Action repeat 4
Replay period every 1
Q network: channels 32, 64
Q network: filter size 5× 5, 5× 5
Q network: stride 5, 5
Q network: hidden units 256
Momentum (EMA for CURL) τ 0.001
Non-linearity ReLU
Reward Clipping [−1, 1]
Multi step return 20
Minimum replay size for sampling 1600
Max frames per episode 108K
Update Distributional Double Q
Target Network Update Period every 2000 updates
Support-of-Q-distribution 51 bins
Discount γ 0.99
Batch Size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: β1 0.9
Optimizer: β2 0.999
Optimizer ε 0.000015
Max gradient norm 10
Exploration Noisy Nets
Noisy nets parameter 0.1
Priority exponent 0.5
Priority correction 0.4 → 1
Hardware CPU

data-efficiency on most of the environments, but lags behind

state-based SAC on more challenging environments.

E. Ablations

E.1. Learning Temporal Dynamics

To gain insight as to whether CURL learns temporal dy-

namics across the stacked frames, we also train a variant

of CURL where the discriminants are individual frames as

opposed to stacked ones. This can be done by sampling

stacked frames from the replay buffer but only using the

first frame to update the contrastive loss:

f_q = x_q[:,:3,...] # (B,C,H,W), C=9.
f_k = x_k[:,:3,...]

During the actor-critic update, frames in the batch are en-

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

Pacman Frostbite Asterix KungFuMaster Kangaroo Gopher RoadRunner JamesBond BattleZone Seaquest Assault Krull Qbert

1287 2292 850 8470 600 1036 2820 305 18100 322 634.2 3404.3 1020
1608 1046 525 10870 2280 574 3190 265 18200 236 696.8 2443.5 650
1466 1209 655 10920 1940 540 7840 335 26800 352 655.2 6791.4 830
1430 255 565 7730 1140 618 12060 145 21300 386 443 3022.5 902.5
1114 426 715 17525 520 534 8340 565 7900 458 546 3892.2 3957.5
1083 2280 715 3560 600 596 6920 565 8100 224 564.9 3505.5 772.5
2301 259 770 10940 600 502 2230 350 12000 282 514.4 2564.1 782.5
1128 335 980 23420 900 998 4250 365 16500 339 516.6 4079.7 727.5
1184 1409 665 15160 600 950 1570 140 23900 526 661.5 2376.4 705
1510 258 610 15370 730 544 6300 425 19900 436 664.5 4161.8 757.5
2343 335 905 22260 600 796 3100 315 10000 272 529 3311.1 647.5
1063 1062 800 17320 880 522 1060 335 11200 428 445.2 2517.3 562.5
2040 1542 675 31820 220 392 6050 735 9700 358 573.3 3764.7 2425
1195 1102 795 23360 920 780 11810 950 23500 533 531.3 10150.2 1112.5
1343 2461 585 27460 600 792 4630 520 10500 968 663.6 2883.6 527.5
1354 257 865 7770 2300 454 2530 755 18100 314 795.3 5123.7 472.5
1925 513 730 8820 320 564 6840 750 9000 378 633 3652.5 610
1228 1826 680 2980 600 522 6580 795 8900 168 674.1 2376.4 697.5
1099 1889 965 10100 600 496 10720 450 10700 242 604.8 11745 1847.5
1608 2869 640 10300 500 1176 4380 355 13100 467 665.7 2826 840

1465.5 1181.3 734.5 14307.8 872.5 669.3 5661 471 14870 384.5 600.6 4229.6 1042.4

397.5 856.2 129.8 7919.3 600.1 220.6 3289.3 226.2 5964.3 170.2 89.5 2540.6 828.4

Table 6. CURL implemented on top of Efficient Rainbow - Scores reported for 20 random seeds for each of the above games, with the last

two rows being the mean and standard deviation across the runs.

UpNDown Hero CrazyClimber ChopperComm. DemonAttack Amidar Alien BankHeist Breakout Freeway Pong PrivateEye Boxing

3529 8747.5 19090 560 611.5 150.9 616 95 3.6 29.2 -19.3 100 -0.5
772 3026 8290 1530 707.5 131.2 923 184 5 25.4 -16.9 100 -11.4
5972 7146 12160 1390 843.5 141.5 467 75 3.2 27.6 -12 100 4
2793 7686 8920 1100 330.5 133.7 441 232 5.1 28.6 -19.6 100 3.6
3546 7335 11360 500 759 157.1 716 187 2.9 22.8 -17.8 1357.4 6.2
4552 7325 4110 990 940 125.4 453 367 6.3 29.6 -18.9 100 5
2972 7275.5 9460 780 1136 183.2 273 186 5.9 23.3 -15.9 0 -1.7
2865 3115 20630 1180 758 153.6 540 68 2.6 27.6 -15.2 100 0.1
3098 7424 6780 1380 772.5 127.8 499 60 5.9 26.1 -18.7 100 3.5
1953 7475 13570 970 820 149.4 475 123 4.3 28.3 -13.3 100 -0.5
1467 3135 11890 1200 784 125.7 553 72 3.2 21.8 -17.2 1510 -22.1
2912 5060.5 9160 1130 1080 130.4 446 53 4.8 21.8 -20.1 100 -1.8
4123 4409 10960 1380 847 133 533 68 6.3 28.9 -16.5 100 1.6
2334 6979 17360 1230 771.5 140.5 968 36 7.3 28.2 -14.9 100 3.6
2605 4159 8930 1350 907.5 133.8 499 53 4.8 28.3 -19.3 100 -17.6
2432 7560 11510 1080 1095.5 191.8 523 105 3.7 26.8 -15.6 0 21.7
3826 8587 22690 1210 700 115.5 616 276 6.6 27.5 -21 100 2
3052 4683.5 8120 840 803.5 164 475 69 5.5 26.5 -10.5 0 5.9
3131 7317 13500 730 818 131.7 525 50 4.3 26.8 -13.3 100 18.7
1169 7141 14440 640 866 122.4 622 273 6.2 28.6 -13.1 100 3.7

2955.2 6279.3 12146.5 1058.5 817.6 142.1 558.2 131.6 4.9 26.7 -16.5 218.4 1.2

1181.1 1871.5 4765.6 299.1 176.6 20.0 160.3 94.4 1.4 2.4 2.9 417.9 10.0

Table 7. CURL implemented on top of Efficient Rainbow - Scores reported for 20 random seeds for each of the above games, with the last

two rows being the mean and standard deviation across the runs.

