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Abstract

Autonomous agents situated in real-world environments must be able to master
large repertoires of skills. While a single short skill can be learned quickly, it
would be impractical to learn every task independently. Instead, the agent should
share knowledge across behaviors such that each task can be learned efficiently,
and such that the resulting model can generalize to new tasks, especially ones
that are compositions or subsets of tasks seen previously. A policy conditioned
on a goal or demonstration has the potential to share knowledge between tasks if
it sees enough diversity of inputs. However, these methods may not generalize
to a more complex task at test time. We introduce compositional plan vectors
(CPVs) to enable a policy to perform compositions of tasks without additional
supervision. CPVs represent trajectories as the sum of the subtasks within them.
We show that CPVs can be learned within a one-shot imitation learning framework
without any additional supervision or information about task hierarchy, and enable
a demonstration-conditioned policy to generalize to tasks that sequence twice as
many skills as the tasks seen during training. Analogously to embeddings such
as word2vec in NLP, CPVs can also support simple arithmetic operations — for
example, we can add the CPVs for two different tasks to command an agent to
compose both tasks, without any additional training.

1 Introduction

A major challenge in current machine learning is to not only interpolate within the distribution of
inputs seen during training, but also to generalize to a wider distribution. While we cannot expect
arbitrary generalization, models should be able to compose concepts seen during training into new
combinations. With deep learning, agents learn high level representations of the data they perceive. If
the data is drawn from a compositional environment, then agents that model the data accurately and
efficiently would represent that compositionality without needing specific priors or regularization.
In fact, prior work has shown that compositional representations can emerge automatically from
simple objectives, most notably a highly structured distribution such as language. These techniques
do not explicitly train for compositionality, but employ simple structural constraints that lead to
compositional representations. For example, Mikolov et al. found that a language model trained to
predict nearby words represented words in a vector space that supported arithmetic analogies: “king”
-“man" + “woman" = “queen" [29]. In this work, we aim to learn a compositional feature space to
represent robotic skills, such that the addition of multiple skills results in a plan to accomplish all of
these skills.

Many tasks can be expressed as compositions of skills, where the same set of skills is shared across
many tasks. For example, assembling a chair may require the subtask of picking up a hammer,
which is also found in the table assembly task. We posit that a task representation that leverages this
compositional structure can generalize more easily to more complex tasks. We propose learning an

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Chop Tree Pickup Axe Go to Tree

e ﬁ@@ - @@§ &

T s

A

CPV -
Representation

Figure 1: Compositional plan vectors embed tasks into a space where adding two vectors represents
the composition of the tasks, and subtracting a sub-task leaves an embedding of the remaining
sub-tasks needed for the task.

embedding space such that tasks could be composed simply by adding their respective embeddings.
This idea is illustrated in Figure 2.

In order to learn these representations without additional supervision, we cannot depend on known
segmentation of the trajectories into subtasks, or labels about which subtasks are shared between
different tasks. Instead, we incorporate compositionality directly into the architecture of the policy.
Rather than conditioning the policy on the static embedding of the reference demonstration, we
condition the policy on the difference between the embedding of the whole reference trajectory and
the partially completed trajectory that the policy is outputting an action for.

The main contributions of our work are the compositional plan vector (CPV) representa-
tion and a policy architecture that enables learning of CPVs without any sub-task level su-
pervision. CPVs enable policies to generalize to significantly longer tasks, and they can
be added together to represent a composition of tasks. We evaluate CPVs in the one-
shot imitation learning paradigm [11, 12, 19] on a discrete-action environment inspired by
Minecraft, where tools must be picked up to remove or build objects, as well as on a 3D
simulated pick-and-place environment. For videos and code, please visit our project web-
site https://sites.google.com/berkeley.edu/compositionalplanvectors/home.

2 Related Work

For many types of high dimensional inputs, Euclidean distances are often meaningless in the raw
input space. Words represented as one-hot vectors are equally distant from all other words, and
images of the same scene may have entirely different pixel values if the viewpoint is shifted slightly.
This has motivated learning representations of language and images that respect desirable properties.
Chopra et al. [3] showed that a simple contrastive loss can be used to learn face embeddings. A
similar method was also used on image patches to learn general image features [35]. Word2vec
found that word representations trained to be predictive of their neighbor words support some level
of addition and subtraction [29, 24, 21]. More recently, Nagarajan used a contrastive approach in
learning decomposable embeddings of images by representing objects as vectors and attributes as
transformations of those vectors [30]. These methods motivate our goal of learning an embedding
space over tasks that supports transformations such as addition and subtraction. Notably, these
methods don’t rely on explicit regularization for arithmetic operations, but rather use a simple
objective combined with the right model structure to allow a compositional representation to emerge.
Our method also uses a simple end-to-end policy learning objective, combined with a structural
constraint that leads to compositionality.

Hierarchical RL algorithms learn representations of sub-tasks explicitly, by using primitives or
goal-conditioning [4, 32, 26, 13, 27, 7, 2, 39], or by combining multiple Q-functions [15, 36]. Our
approach does not learn explicit primitives or skills, but instead aims to summarize the task via a
compositional task embedding. A number of prior works have also sought to learn policies that are
conditioned on a goal or task [22, 8, 23, 38, 5, 14, 18, 28, 6, 33], but without explicitly considering
compositionality. Recent imitation learning methods have learned to predict latent intentions of
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Figure 2: By adding the CPVs for two different tasks, we obtain the CPV for the composition of the
tasks. To determine what steps are left in the task, the policy subtracts the embedding of its current
trajectory from the reference CPV.

demonstrations [16, 25]. In the one-shot imitation learning paradigm, the policy is conditioned on
reference demonstrations at both test and train time. This problem has been explored with meta-
learning [12] and metric learning [19] for short reaching and pushing tasks. Duan et al. used attention
over the reference trajectory to perform block stacking tasks [11]. Our work differs in that we aim to
generalize to new compositions of tasks that are out of the distribution of tasks seen during training.
Hausman et al. obtain generalization to new compositions of skills by training a generative model over
skills [17]. However, unlike our method, these approach does not easily allow for sequencing skills
into longer horizon tasks or composing tasks via arithmetic operations on the latent representation.

Prior methods have learned composable task representations by using ground truth knowledge about
the task hierarchy. Neural task programming and the neural subtask graph solver generalize to new
tasks by decomposing a demonstration into a hierarchical program for the task, but require ground-
truth hierarchical decomposition during training [40, 37]. Using supervision about the relations
between tasks, prior approaches have uses analogy-based objectives to learn task representations that
decompose across objects and actions [31] or have set up a modular architectures over subtasks [1]
or environments [9]. Unlike our approach, these methods require labels about relationships. We
implicitly learn to decompose tasks without supervising the task hierarchy.

3 Compositional Plan Vectors

In this paper, we introduce compositional plan vectors (CPVs). The goal of CPVs is to obtain policies
that generalize to new compositions of skills without requiring skills to be labeled and without
knowing the list of skills that may be required. Consider a task named “red-out-yellow-in” which
involves taking a red cube out of a box and placing a yellow cube into the box. A plan vector encodes
the task as the sum of its parts: a plan vector for taking the red cube out of the box plus the vector for
putting the yellow cube into the box should equal the plan vector for the full task. Equivalently, the
plan vector for the full task minus the vector for taking the red cube out of the box should equal the
vector that encodes “put yellow cube in box.”

If the list of all possible skills was known ahead of time, separate policies could be learned for each
skill, and then the policies could be used in sequence. However, this knowledge is often unavailable
in general and limits compositionality to a fixed set of skills. Instead, our goal is to formulate an
architecture and regularization that are compositional by design and do not need additional supervision.
With our method, CPVs acquire compositional structure because of the structural constraint they place
on the policy. To derive the simplest possible structural constraint, we observe that the minimum
information that the policy needs about the task in order to complete it is knowledge of the steps
that have not yet been done. That is, in the cube example above, after taking out the red cube, only
the “yellow-in” portion of the task is needed by the policy. One property of this representation is
that task ordering cannot be represented by the CPV because addition is commutative. If ordering is



necessary to choose the right action, the policy will have to learn to decode which component of the
compositional plan vector must be done first.

As an example, let ' be a plan vector for the “red-out-yellow-in" task. To execute the task, a policy
m(0g, ') outputs an action for the first observation 0g. After some number ¢ of timesteps, the policy
has successfully removed the red cube from the box. This partial trajectory Og.; can be embedded
into a plan vector #, which should encode the “red-out" task. We would like (¥ — ) to encode the
remaining portion of the task, in this case placing the yellow block into the box. In other words,
(0, U — @) should take the action that leads to accomplishing the plan described by ¢ given that @
has already been accomplished. In order for both ¢ and ' — # to encode the yellow-in task, @ must
not encode as strongly as ¥. If ¢/ is equal to the sum of the vectors for “red-out” and “yellow-in,” then
¥ may not encode the ordering of the tasks. However, the policy 7(0q, ¥) should have learned that
the box must be empty in order to perform the yellow-in task, and that therefore it should perform the
red-out task first.

We posit that this structure can be learned without supervision at the subtask-level. Instead, we
impose a simple architectural and arithmetic constraints on the policy: the policy must choose its
action based on the arithmetic difference between the plan vector embedding of the whole task and
the plan vector embedding of the trajectory completed so far. Additionally, the plan vectors of two
halves of the same trajectory should add up to the plan vector of the whole trajectory, which we
can write down as a regularization objective for the embedding function. By training the policy and
the embedding function together to optimize their objectives, we obtain an embedding of tasks that
supports compositionality and generalizes to more complex tasks. In principle, CPVs can be used
with any end-to-end policy learning objective, including behavioral cloning, reinforcement learning,
or inverse reinforcement learning. In this work, we will validate CPVs in a one-shot imitation learning
setting.

One-shot imitation learning setup. In one-shot imitation learning, the agent must perform a task
conditioned on one reference example of the task. For example, given a demonstration of how to
fold a paper crane, the agent would need to fold a paper crane. During training, the agent is provided
with pairs of demonstrations, and learns a policy by predicting the actions in one trajectory by using
the second as a reference. In the origami example, the agent may have trained on demonstrations of
folding paper into a variety of different creatures.

We consider the one-shot imitation learning scenario where an agent is given a reference trajectory
in the form of a list of 7" observations OFY. = (of, ..., off). The agent starts with op ~ p(0p),

where oy may be different from o{ff. At each timestep t, the agent performs an action drawn from
7(a¢|Og:t, OFr)-

Plan vectors. We define a function g4 (Oy.;), parameterized by ¢, which takes in a trajectory and
outputs a plan vector. The plan vector of a reference trajectory g4(OR5) should encode an abstract
representation of the milestones required to accomplish the goal. Similarly, the plan vector of a
partially accomplished trajectory g,4(Op.;) should encode the steps already taken. We can therefore
consider the subtraction of these vectors to encode the steps necessary to complete the task defined
by the reference trajectory. Thus, the policy can be structured as

7o (ot 9o(OG:r) — 94(00:1)), (1)
a function parameterized by 6 that takes in the trajectory and is learned end-to-end.

In this work we use a fully observable state space and only consider tasks that cause a change in the
state. For example, we do not consider tasks such as lifting a block and placing it exactly where it
was, because this does not result in a useful change to the state. Thus, instead of embedding a whole
trajectory Oyg.;, we limit g to only look at the first and last state of the trajectory we wish to embed.

Then, ™ becomes
ref _ref

7r9(at|0t>g(0() ’OT) —g(OO,Ot)). )

Training. With 7 defined as above, we learn the parameters of the policy with imitation learning.
Dataset D containing N demonstrations paired with reference trajectories is collected. Each trajectory
may be a different arbitrary length, and the tasks performed by each pair of trajectories are unlabeled.
The demonstrations include actions, but the reference trajectories do not. In our settings, the reference
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Figure 3: Illustrations of the 5 skills in the crafting environment. To ChopTree, the agent must pick
up the axe and bring it to the tree, which transforms the tree into logs. To BuildHouse, the agent
picks up the hammer and brings it to logs to transform them into a house. To MakeBread, the agent
brings the axe to the wheat which transforms it into bread. The agent eats bread if it lands on a state
that contains bread. To BreakRock, the agent picks up a hammer and destroys the rock.

trajectories only need to include their first and last states. Formally,

D = {(0™" (747, O (0. 111} A fo.1i - 1]) oy,

where T" is the length of the i reference trajectory and H* is the length of the ith demonstration.
Given the policy architecture defined in Equation 1, the behavioral cloning loss for a discrete action
policy is

N H?

Lu(D,6,6) = " ~log(rs(ailoi, gs (0™, 0%77) — go(0h, 0}))).
i=0 t=0

We also introduce a regularization loss function to improve compositionality by enforcing that the
sum of the embeddings of two parts of a trajectory is close to the embedding of the full trajectory. We
denote this a homomorphism loss Lyom because it constrains the embedding function g to preserve
the structure between concatenation of trajectories and addition of real-valued vectors. We implement
the loss using the triplet margin loss from [34] with a margin equal to 1:

lyi(a,p,n) = max{||la — p||2 — ||a — nl||2 + 1.0,0}
N H'

EHom Zzlm 9o 00701‘) +g¢(0ta0T) g¢(00 OT) g¢(OO’OT))
i=0 t=0

Finally, we follow James et al. in regularizing embeddings of paired trajectories to be close in
embedding space, which has been shown to improve performance on new examples [19]. This “pair”
loss Lp,ir pushes the embedding of a demonstration to be similar to the embedding of its reference
trajectory and different from other embeddings, which enforces that embeddings are a function of the
behavior within a trajectory rather than the appearance of a state.

N O ) )
Lric(D,6) > Y lii(gs(0h, 07), 96070, 0%, g4 (07, 0™7)
i=0 t=0
for any j # i. We empirically evaluate how these losses affect the composability of learned
embeddings. While Lp,;; leverages the supervision from the reference trajectories, Lyon, is entirely
self-supervised.

Measuring compositionality. To evaluate whether the representation learned by g is compositional,
we condition the policy on the sum of plan vectors from multiple tasks and measure the policy’s

success rate. Given two reference trajectories Oref i and O™, ef) 0.14» we condition the policy on

gs(0 o'l oll.) + go (0™ 0™ )). The policy is successful if it accomplishes both tasks. We also

evaluate whether the representation generalizes to more complex tasks.
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Figure 4: Two example skills from the pick and place environment. Time evolves from left to right.
If the relevant objects are in the box, the agent must first remove the lid to interact with the object and
also return the lid to the box in order to complete a task.

4 Sequential Multitask Environments

We introduce two new learning environments, shown in Figures 3 and 4, that test an agent’s ability to
perform tasks that require different sequences and different numbers of sub-skills. We designed these
environments such that the actions change the environment and make new sub-goals possible: in the
3D environment, opening a box and removing its contents makes it possible to put something else
into the box. In the crafting environment, chopping down a tree makes it is possible to build a house.
Along with the environments, we will release code to generate demonstrations of the compositional
tasks.

4.1 Crafting Environment

The first evaluation domain is a discrete-action world where objects can be picked up and modified
using tools. The environment contains 7 types of objects: tree, rock, logs, wheat, bread, hammer, axe.
Logs, hammers, and axes can be picked up, and trees and rocks block the agent. The environment
allows for 6 actions: up, down, left, right, pickup, and drop. The transitions are deterministic, and
only one object can be held at a time. Pickup has no effect unless the agent is at the same position as
a pickup-able object. Drop has no effect unless an object is currently held. When an object is held,
it moves with the agent. Unlike the Malmo environment which runs a full game engine [20], this
environment can be easily modified to add new object types and interaction rules. We define 5 skills
within the environment, ChopTree, BreakRock, BuildHouse, MakeBread, and EatBread, as illustrated
in Figure 3. A task is defined by a list of skills. For example, a task with 3 skills could be [ChopTree,
ChopTree, MakeBread]. Thus, considering tasks that use between 1 and 4 skills with replacement,
there are 125 distinct tasks and about 780 total orderings. Unlike in Andreas et al. [1], Oh et al. [31],
skill list labels are only used for data generation and evaluation; they are not used for training and are
not provided to the model. The quantities and positions of each object are randomly selected at each
reset. The observation space is a top-down image view of the environment, as shown in Figure 6a.

4.2 3D Pick and Place Environment

The second domain is a 3D simulated environment where a robot arm can pick up and drop objects.
Four cubes of different colors, as well as a box with a lid, are randomly placed within the workspace.
The robot’s action space is a continuous 4-dimensional vector: an (z, y) position at which to close
the gripper and an (x, y) position at which to open the gripper. The z coordinate of the grasp is
chosen automatically. The observation space is a concatenation of the (z, y, 2) positions of each
of the 4 objects, the box, and the box lid. We define 3 families of skills within the environment:
PlacelnCorner, Stack, and PlacelnBox, each of which can be applied on different objects or pairs of
objects. Considering tasks that use 1 to 2 skills, there are 420 different tasks. An example of each
skill is shown in Figure 4.



5 Experiments

Our experiments aim to understand how well CPVs can learn tasks of varying complexity, how
well they can generalize to tasks that are more complex than those seen during training (thus
demonstrating compositionality), and how well they can handle additive composition of tasks,
where the policy is expected to perform both of the tasks in sequence. We hypothesize that, by
conditioning a policy on the subtraction of the current progress from the goal task embedding,
we will learn a task representation that encodes tasks as the sum of their component subtasks.
We additionally evaluate how regularizing objectives improve generalization and compositionality.
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(where to grasp). The object attention as well as the features from the observation and CPVs are
passed to another fully connected layer to output the position for placing.
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Data generation. For the crafting environment, we train all models on a dataset containing 40k
pairs of demonstrations, each pair performs the same task. The demonstration pairs are not labeled
with what task they are performing. The tasks are randomly generated by sampling 2-4 skills
with replacement from the five skills listed previously. A planning algorithm is used to generate
demonstration trajectories. For the 3D environment, we collect 180k trajectories of tasks with 1 and
2 skills. All models are trained on this dataset to predict actions from the environment observations
shown in Figure 6a. For both environments, we added 10% of noise to the planner’s actions but
discarded any trajectories that were unsuccessful. The data is divided into training and validation
sets 90/10. To evaluate the models, reference trajectories were either regenerated or pulled from the
validation set. Compositions of trajectories were never used in training or validation.

Comparisons. We compare our CPV model to several one-shot imitation learning models. All
models are based on Equation 2, where the policy is function of four images: 0g, o, o', 0. The
naive baseline simply concatenates the four inputs as input to a neural network policy. The TECNets
baseline is an implementation of task embedding control networks from [19], where the embeddings
are normalized to a unit ball and a margin loss is applied over the cosine distance to push together
embeddings of the same task. The policy in TECNets is conditioned on the static reference embedding
rather than the subtraction of two embeddings. For both TECNets and our model, g is applied to the
concatenation of the two input observations.

We perform several ablations of our model, which includes the CPV architecture (including the
embedding subtraction as input the policy), the homomorphism regularization, and the pair regular-
ization. We compare the plain version of our model, where the objective is purely imitation learning,
to versions that use the regularizations. CPV-Plain uses no regularization, CPV-Pair uses only Lpy;,



Table 1: Evaluation of generalization and compositionality in the craftin environment. Policies were
trained on tasks using between 1 and 4 skills. We evaluate the policies conditioned on reference trajectories
that use 4, 8, and 16 skills. We also evaluate the policies on the composition of skills: “2, 2”” means that the
embeddings of two demonstrations that each use 2 skills were added together, and the policy was conditioned
on this sum. For the naive model, we instead average the observations of the references, which performed
somewhat better. All models are variants on the architecture in Figure 5. The max horizon is three times the
average number of steps used by the expert for that length of task: 160, 280, and 550, respectively. Numbers are
all success percentages.

MODEL | 4SKILLS | 8 SKILLS | 16 SKILLS || 1+1 | 2,2 | 44
NAIVE 29+ 2 942 T+2 294+ 10 2445 542
TECNET 49 £ 11 177 7T+6 59+ 11 | 43 +£11 29 £+ 23
TE h3+4 28+ 2 25+ 20 32+1 44 +25 | 18 £ 12
TE-PAIR 64 +1 31+1 18+ 2 55+ 3 53+ 8 21 +2
TE-HoMm 50+ 4 27T+ 2 21 +1 51+1 52+1 20+1
TE-FuLL 61 +8 28+ 8 13+2 60+ 1 47+ 7 23+ 7
CPV-NAIVE 51 +8 19+5 942 31+16 | 30 £ 15 542
CPV-PAIR 68 +11 44 + 14 31 +13 2+ 3 1+2 0+0
CPV-HoMm 63+ 3 35+5 27+ 8 71 +8 60+11 | 26 =14
CPV-FULL 73 +2 40 £ 3 28 +6 76 +3 6416 30+ 10

CPV-Hom uses only Lyon, and CPV-Full uses both. To ablate the effect of the architecture vs the
regularizations, we run the same set of comparisons for a model denoted TE (task embeddings) which
has the same architecture as TECNets without normalizing embeddings. These experiments find
whether the regularization losses produce compositionality on their own, or whether they work in
conjunction with the CPV architecture.

Table 2: 3D Pick and Place Results. Each model was trained on tasks with 1 to 2 skills. We evaluate the
models on tasks with 1 and 2 skills, as well as the compositions of two 1 skill tasks. For each model we list the
success rate of the best epoch of training. All numbers are averaged over 100 tasks. All models are variants of
the object-centric architecture, shown in the supplement. We find that the CPV architecture plus regularizations
enable composing two reference trajectories better than other methods.

MODEL | 1SkILL | 2 SKILLs || 1,1
NAIVE 65+ 7 34+8 6+ 2
TECNET 82+6 50+ 2 33+4
TE-PLAIN 91 +2 55+5 22+ 2
TE-PAIR 81+ 11 51 +8 15+3
TE-HoMm 92+1 59+1 24 + 12
TE-FuLL 88 + 2 55+ 8 9+6

CPV-PLAIN | 8742 55+ 2 52+ 2
CPV-PAIR 8244 42+ 3 7T+1

CPV-HoMm 88+ 1 54+5 55+4
CPV-FuLL 87+ 4 54 4+ 4 56 £ 6

Results. We evaluate the methods on both domains. To be considered successful in the crafting
environment, the agent must perform the same sub-skills with the same types of objects as those seen
in the reference trajectory. The results on the crafting environment are shown in Table 1, where we
report the mean and standard deviation across 3 independent training seeds. We see that both the
naive model and the TECNet model struggle to represent these complex tasks, even the 4 skill tasks
that are in the training distribution. We also find that both the CPV architecture and the regularization
losses are necessary for both generalizing the longer tasks and composing multiple tasks. The pair
loss seems to help mostly with generalization, while the homomorphism losses helps more with
compositionality. CPVs are able to generalize to 8 and 16 skills, despite being trained on only 4
skill combinations, and achieve 76% success at composing two tasks just by adding their embedding
vectors. Recall that CPVs are not explicitly trained to compose multiple reference trajectories in this
way — the compositionality is an extrapolation from the training. The TE ablation, which does not use
the subtraction of embeddings as input to the policy, shows worse compositionality than our method



even with the homomorphism loss. This supports our hypothesis that structural constraints over the
embedding representation contribute significantly to the learning.

These trends continue in the pick and place environment in Table 2, were we report the mean and
standard deviation across 3 independent training seeds. In this environment, a trajectory is successful
if the objects that were moved in the reference trajectory are in the correct positions: placed in each
corner, placed inside the box, or stacked on top of a specific cube. As expected, TECNet performs
well on 1 skill tasks which only require moving a single object. TECNet and the naive model fail to
compose tasks, but the CPV model performs as well at composing two 1-skill tasks as it does when
imitating 2-skill tasks directly. As before, the TE ablation fails to compose as well as CPV, indicating
that the architecture and losses together are needed to learn composable embeddings.

6 Discussion

Many tasks can be understood as a composition of multiple subtasks. To take advantage of this latent
structure without subtask labels, we introduce the compositional plan vector (CPV) architecture
along with a homomorphism-preserving loss function, and show that this learns a compositional
representation of tasks. Our method learns a task representation and multi-task policy jointly. Our
main idea is to condition the policy on the arithmetic difference between the embedding of the goal
task and the embedding of the trajectory seen so far. This constraint ensures that the representation
space is structured such that subtracting the embedding of a partial trajectory from the embedding
of the full trajectory encodes the portion of the task that remains to be completed. Put another way,
CPVs encode tasks as a set of subtasks that the agent has left to perform to complete the full task.
CPVs enable policies to generalize to tasks twice as long as those seen during training, and two plan
vectors can be added together to form a new plan for performing both tasks.

We evaluated CPVs in a one-shot imitation learning setting. Extending our approach to a reinforce-
ment learning setting is a natural next step, as well as further improvements to the architecture to
improve efficiency. A particularly promising future direction would be to enable CPVs to learn from
unstructured, self-supervised data, reducing the dependence on hand-specified objectives and reward
functions.
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A Network Architectures

A.1 Crafting environment

The observation is an RGB image of 33x30 pixels.
The architecture for g concatenates the first and last
image of the reference trajectory along the channel
dimension, to obtain an input size of 33x30x6. This
is followed by 4 convolutions with 16, 32,64, and 64
channels, respectively, with ReL.U activations. The
3x3x64 output is flattened and a fully connected layer
reduces this to the desired embedding dimension. The
same architecture is used for the TECNet encoder. For
the policy, the observation is passed through a convo-
lutional network with the same architecture as above
and the output is concatenated with the subtraction of
embeddings as defined in the paper’s method. This
concatenation is passed through a 4 layer fully con-
nected network with 64 hidden units per layer and
ReLU activations. The output is softmaxed to pro-
duce a distribution over the 6 actions. The TECNet
uses the same architecture, but the reference trajectory
embeddings are normalized there is no subtraction;
instead, the initial image of the current trajectory is
concatenated with the observation. The naive model
uses the same architecture but all four input images

(a) (b)

Figure 6: The crafting environment. (a) Shows a
state observation as rendered for the agent. The
white square in the bottom left indicates that an
object is held by the agent. (b) Shows the same
state, but rendered in a human-readable format.
The axe shown in the last row indicates that the
agent is currently holding an axe.

are concatenated for the initial convolutional network and there is no concatenation at the embedding level.

A.2 3D environment

The environment has 6 objects: 4 cubes (red, blue, green, white), a box body and a box lid. The state space is
the concatenation of the (x, y, z) positions of these objects, resulting in an 18-dimensional state. As the object
positions are known, we use an attention over the objects as part of the action, as shown in Figure 7. The actions
are 2 positions: the (zo, yo) position at which to grasp and the the (z1, y1) position at which to place. When
training the policy using the object centric model, (xo, yo) is a weighted sum of the object positions, with the
z coordinate being ignored. Weights over the 6 object are output by a neural network given the difference of
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CPVs and the current observation. At evaluation time, (zo, yo) is the arg max object position. This means that
all policies will always grasp at an object position. For (x1, y1), we do not have the same constraint. Instead,
the softmaxed weights over the objects are concatenated with the previous layer’s activations, and another fully
connected layer maps this directly to continuous valued (x1, 1 ). This means that the policy can place at any
position in the workspace. The naive model, TECNet model, and CPV models all use this object-centric policy,
then only differ in how the input to the policy.

ref M
Y CPV
0T 8
N Object
T Attention
- -
0 —
0t 0
0 place
3 FC layers | position
L o
I [ grasp
Ot position

Figure 7: The object-centric network architecture we use for the 3D grasping environment. Because
the observations include the concatenated positions of the objects in the scene, the policy chooses a
grasp position by predicting a discrete classification over the objects grasping at the weighted sum of
the object positions. The classification logits are passed back to the network to output the position at
which to place the object.

B Hyperparameters

‘We compared all models across embedding dimension sizes of [64,128,256, and 512]. In the crafting environment,
the 512 size was best for all methods. In the grasping environment, the 64 size was best for all methods. For
TECNets, we tested A\r = 1 and 0.1, and found that 0.1 was best. All models are trained on either k-80 GPUs
or Titan X GPUs.

C Additional Experiments

We ran a pared down experiment on a ViZDoom environment to show the method working from first person
images, as shown in C. In the experiment, the skills are reaching 4 different waypoints in the environment. The
actions are “turn left," “turn right," and “go forward." The observation space consists of a first person image
observation as well as the (z, y) locations of the waypoints. We evaluate on trajectories that must visit 1 or 2
waypoints (skills), and also evaluate on the compositions of these trajectories. The policies were only trained on
trajectories that visit up to 3 waypoints. These evaluations are shown in 3.

Figure 8: First person view Table 3: ViZDoom Navigation Results. All numbers are success
in VizDoom env. rates of arriving within 1 meter of each waypoint.

MODEL | 1SKILL | 2 SKILLS | 1+1 | 242

NAIVE 97 94 36.7 2
TECNET 96 95.3 48.3 0
CPV 93 90.7 91 64
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