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ABSTRACT1

This article develops a deep reinforcement learning (Deep-RL) framework for dynamic pricing on2

managed lanes with multiple access locations and with heterogeneity in travelers’ value of time,3

origin, and destination. The problem is formulated as a partially observable Markov decision pro-4

cess (POMDP) and policy gradient algorithms are used to determine tolls as a function of real-time5

observations. The method is compared against feedback control methods for dynamic pricing. We6

show that Deep-RL is effective in learning toll policies for multiple objectives like maximizing7

revenue, minimizing total system travel time, and objectives with policy constraints, when tested8

on real-world transportation networks. The Deep-RL toll policies outperform the feedback con-9

trol heuristic for the revenue maximization objective by generating revenue 8%-2406% higher10

than the heuristic. We also propose reward shaping methods for the POMDP to overcome unde-11

sired behavior of toll policies, like the jam-and-harvest behavior of revenue maximizing policies.12

Additionally, we test transferability of the algorithms trained on one set of inputs for new input13

distributions and offer recommendations on real-time implementations of Deep-RL algorithms.14

Keywords— Managed lanes, Express lanes, HOT lanes, Dynamic pricing, Deep reinforcement15

learning, Continuous control, Feedback control heuristics.16
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INTRODUCTION1

Priced managed lanes (MLs), also referred to as express lanes or high-occupancy/toll (HOT) lanes,2

are increasingly being used by many cities to mitigate traffic congestion and provide reliable travel3

time. As of January 2019, there are 41 managed lane projects across the United States (1). On4

these lanes, travelers pay a toll which changes either with the time of day, or dynamically based5

on the congestion pattern, to experience less congested travel time. In recent years, managed6

lane networks have become increasingly complex, spanning longer corridors and having multiple7

entrance and exit locations. For example, the LBJ TEXpress lanes in Dallas, TX have 17 entrance8

ramps and 18 exit ramps, and three tolling segments with different time-varying toll values (2).9

Dynamic pricing for express lanes with multiple access points is a complex control problem10

due to the heterogeneity in lane choice behavior of travelers belonging to different classes. Vehi-11

cles differ in their value of time and their destination of travel, both of which impact the pricing12

structure. Predicting driver behavior with certainty is a difficult process. A recent study showed13

that a binary logit model, commonly used for modeling lane choice, is inadequate in predicting14

heterogeneity in lane choice decisions (3).15

Several dynamic pricing algorithms have been explored that optimize tolls under vary-16

ing assumptions on driver behavior. These include methods using stochastic dynamic program-17

ming (4), hybrid model predictive control (MPC) (5, 6), reinforcement learning (RL) (7, 8), and18

approximate dynamic programming (9). While the current algorithms do well against the existing19

heuristics, they make the following restricting assumptions, which we relax in this study.20

1. Restricted access for travelers: travelers do not exit the managed lane once they enter till21

their exit is reached (4, 7) and that they only consider the first entry point as the decision22

point for the lane choice decision (5)23

2. Fully observable system: toll operators have access to measurements of traffic density through-24

out the network for optimizing tolls (4, 5, 7, 8, 9)25

3. Ignored traveler heterogeneity: a single vehicle class is considered with a single origin and26

destination (4, 7, 9)27

4. Simplified traffic dynamics: traffic dynamics are simplified with assumptions like the flow28

dynamics on general-purpose lanes (GPLs) are independent of vehicles using the managed29

lane (4); or that the proportion of flow split at diverge points is identical for all origins (5)30

In addition, there are relatively few analysis on the conflict between optimization of multi-31

ple objectives with realistic constraints. Pandey and Boyles (9) showed that the revenue-maximizing32

tolls exhibit a jam-and-harvest (JAH) nature where the parallel GPLs are intentionally jammed to33

congestion in earlier time periods to harvest more revenue towards the end. Handling such unde-34

sirable behavior of optimal policies has not been studied in the literature.35

Furthermore, practical applicability of these algorithms in real-world environments is a36

less explored question. Algorithms that optimize prices using a simulation model can be applied37

in real-time using lookup tables. However, the transferability analysis of such lookup tables to38

new input distributions is not considered (4, 7, 9). The hybrid MPC algorithm in Tan and Gao (5)39

incorporates real-time measurements for optimizing tolls over a finite horizon with computation40

time in the range of 1.2–2.6 seconds for a 30 seconds optimization horizon. This is sufficient for41

a real-time implementation; however, the tests conducted are limited to one test network under42
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two scenarios of demand, assuming full observability of the system. Solving a MPC-based model1

with heterogeneous vehicle classes and partial observability of the system is complex and not fully2

studied. We thus require scalable algorithms for real-world networks that relax the assumptions on3

driver behavior and traffic flow, and transfer well from simulation settings to new input distribu-4

tions.5

In this research, we use deep reinforcement learning (Deep-RL) algorithms for optimizing6

tolls without making simplifying assumptions in the earlier literature. The algorithms rely on real-7

time density observations using sensors (such as loop detectors) located only at certain locations8

without access to information about the demand distribution or driver characteristics like the value9

of time (VOT) distribution. We formulate the dynamic pricing problem as a Deep-RL problem, use10

standard algorithms based on policy gradient to solve the problem, and compare their performance11

against the existing feedback control methods. Our framework considers multiple origins and12

destinations, multiple access points to the managed lane facility, en route diversion of vehicles13

at each diverge point, and partial observability of the systems. We investigate the usefulness of14

Deep-RL as a tool in our toolbox for dynamic pricing and explain its advantages and limitations15

by experiments on four different test networks.16

The primary contributions of this article are:17

• We demonstrate the usefulness of Deep-RL algorithms for solving the dynamic pricing prob-18

lem under partial observability and show that it performs well against existing heuristics,19

without requiring restricting assumptions on driver behavior or traffic dynamics20

• We apply multi-objective optimization methods to overcome undesirable JAH characteristics21

of revenue-maximizing optimal policies22

• We conduct tests to verify the transferability of learned Deep-RL algorithms to new input23

values and make recommendations on real-time implementation of the algorithm24

The rest of the article is organized as follows. The second section presents an overview25

of the related work. The third section introduces the notation, presents the details of the model,26

and discusses the solution algorithms. The fourth section presents the results from experimental27

analysis on four different test networks, and the final section concludes the paper and identifies28

directions for future work.29

LITERATURE REVIEW30

Control problems in the area of transportation are broadly solved using three methods: open-loop31

optimal control methods (that solve the optimal control problem without incorporating real-time32

measurements), closed-loop control methods like MPC (that incorporate the feedback of real-time33

measurements and optimize over a rolling horizon), and RL methods where the optimal control34

is learned with an iterative interaction with the environment. The applications of reinforcement35

learning methods for traffic control are a few, with adaptive traffic signal control (ATSC) being a36

prominent explored area of research. See Yan et al. (10) and Zhao et al. (11) for a survey of RL37

methods for signal control.38

Managed lane (or HOT) pricing problem is also a traffic control problem where the chosen39

control directly impacts the driver behavior and thus the congestion pattern. There are three com-40
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ponent models to the HOT pricing problem (12): a lane choice model that determines how travelers1

choose a lane given the tolls and travel times, a traffic flow model that models the interaction of2

vehicles in simulated environments, and a toll pricing model which determines the toll pricing3

objectives and how the optimization problem is solved to achieve the best value of the objective.4

Toll pricing models for MLs with a single access point are commonly studied. Gardner et5

al. (12) argued that for ML with a single entrance and exit, the tolls minimizing the total system6

travel time (TSTT) also utilize the managed lanes to full capacity at all times. The authors devel-7

oped an analytical formulation for tolls minimizing TSTT as a function of the VOT distribution.8

Lou et al. (13) used a self-learning approach for optimizing toll prices where the average VOT val-9

ues were learned using real-time measurements. Toledo et al. (6) used a rolling horizon approach10

to optimize future tolls with predicted demand from traffic simulation; however, the method of11

exhaustive search to solve the non-convex control problem does not scale well for large managed12

lane networks.13

For managed lanes with multiple access points, Tan and Gao (5) presented a formulation14

optimizing the proportion of vehicles entering the managed lane instead of directly optimizing toll15

prices. The authors showed a one-to-one mapping between optimal toll prices and the propor-16

tion values, and transformed the control problem into a mixed-integer linear program which can17

be solved efficiently for networks with multiple access points. Dorogush and Kurzhanskiy (14)18

used a similar method and optimized split ratios at each diverge, which are then used to determine19

toll prices; however, their analysis ignored the variation of incoming flow at each diverge. Apart20

from these optimal control based methods, Zhu and Ukkusuri (7) and Pandey and Boyles (9) used21

RL methods, where the control problem is formulated as a Markov decision process (MDP) and22

the value function (or its equivalent, Q-function) is learned by iterative interactions with the en-23

vironment. However, the tests are conducted for discrete state and action spaces assuming full24

observability of the system. This article is guided by the advances in RL methods and improves25

these earlier RL-based approaches for dynamic pricing.26

Deep-RL improves traditional RL by replacing function approximators with deep neural27

networks which has been effective in various control problems. See Arulkumaran et al. (15) for a28

survey of Deep-RL applications. Deep-RL algorithms have also been used for other traffic control29

problems. Belletti et al. (16) developed an “expert-level” control of coordinated ramp metering us-30

ing Deep-RL methods with multiple agents and achieved precise adaptive metering without requir-31

ing model calibration that does better than the traditional benchmark algorithm named ALINEA.32

Wu et al. (17) used Deep-RL algorithms to solve the control problem of selecting the acceleration33

and brake of multiple autonomous vehicles (AVs) under conditions of mixed human vehicles and34

AVs to mitigate traffic congestion. When compared against classical approaches, their approach35

generated 10-20% lower TSTT. Other applications of Deep-RL algorithms are in the domain of36

ATSC including traditional one signal control (18, 19), coordinated control of traffic signals (20),37

and large-scale multiagent control using Deep-RL methods (21). See Yau et al. (10) for a review38

of RL algorithms in the area of ATSC. With an exception of Belletti et al. (16), all other Deep-RL39

models in transportation domain used microsimulation to capture the vehicle-to-vehicle interac-40

tions.41
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DEEP REINFORCEMENT LEARNING MODEL FOR DYNAMIC PRICING1

Notation and Assumptions2

Consider the directed network shown in Figure 1 which is an abstraction of a managed lane net-3

work. The upper set of links form MLs and the lower set of links form GPLs. As we describe4

the network, we label the assumptions made in our model as “A#”. We also label ideas for future5

work as “FW#”.

O a

d

c

b

g

kf

l D

i

h

Managed lane

General purpose lane
O D

e j

FIGURE 1 Managed lane network with multiple entrance and exit where links with higher thickness are
tolled, and links with a box are observed by the toll operator

6

The time horizon is divided into equal time steps, each ∆t units long. The set of all time7

periods is given by T = {t0, t1, t2, . . . , tT/∆t}, where T is the time horizon. Tolls are updated8

after every ∆τ = m∆t time units, where m is a positive integer fixed by the tolling agency. Define9

Tτ = {k | tkm ∈ T , where k ∈ {0, 1, 2, . . .}} as the set of time periods where tolls are updated,10

indexed in increasing order of positive integers. Then, |Tτ | = T/∆τ represent the number of toll11

updates throughout the simulation.12

Let N represent the set of all nodes and A = {(i, j) | i, j ∈ N} represent the set of all links13

in the network. Let No and Nd denote the set of all origins and all destinations, respectively. We14

assume that origins and destinations connect to the network through nodes on the GPLs (A#1).15

The demand between an origin and a destination is a random variable. A toll operator does not16

know the demand distribution, but only relies on the observed realizations of demand. However,17

for simulation purposes, we model the demand of vehicles from origin r ∈ No to destination18

s ∈ Nd at time t ∈ T to be a rectified Gaussian random variable with mean drs(t) and standard19

deviation σd, and ignore correlations of demand between different origin-destination (OD) pairs.20

Let V denote the set of all values of VOT (assumed to a discrete distribution for the pop-21

ulation, A#2) and pv for any v ∈ V be the proportion of demand with VOT v. The pv values are22

unknown to a toll operator. For simulation purposes, we choose the VOT distribution (pv | v ∈ V )23

and σd to be identical for all origin-destination pairs.24

In contrast to the cell-based representation of managed lane network where MLs and GPLs25

are part of the same cell (4, 5, 14), we divide each link on GPL or ML into individual cells.26

This choice lets us use the traditional cell-transmission model (CTM) equations from Daganzo27

(22) for modeling traffic flow. Let C(i,j) represent the set of all cells for link (i, j) ∈ A and28

C =
⋃

(i,j)∈A C(i,j) denote the set of all cells in the network. The length of each cell c ∈ C ,29

denoted by lc, is determined using the usual requirements of the CTM in (22) and is assumed30
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constant for all links in the network (A#3). Let lij, νij, qij, wij, and kjam,ij represent the length,1

free-flow speed, capacity, back-wave speed, and jam density, respectively, for link (i, j) ∈ A as its2

fundamental diagram parameters.3

A toll operator is assumed to manage the toll rate at each on-ramp and diverge point beyond4

a diverge on a ML (A#4). We assume this toll structure because it inherently models the constraint5

that traveling longer distance on the ML levies a higher toll than traveling shorter distance. For6

a detailed discussion on various tolling options on managed lane networks with multiple access7

points, refer Pandey and Boyles (23). Let Atoll represent the links where tolls are collected and8

Figure 1 highlights the link in bold. We denote the toll charged on link (i, j) ∈ Atoll for any t ∈ T9

by βij(t).10

Travelers make routing decisions at each diverge using the received information about11

travel time and toll values while traveling towards their destination. Nodes a, c, f , and h are the12

diverge locations for the network in Figure 1. We assume that the information about the travel time13

is provided by measuring instantaneous travel time (A#5), and that all travelers make lane choice14

decisions only using the instantaneous/real-time information and do not rely on historic informa-15

tion (obtained from prior experience) for making lane choices (A#6). Assumptions A#5 and16

A#6 are only made for simulation purposes as the Deep-RL model only requires the realization17

of lane choice by each traveler in form of observed density measurements at loop detector loca-18

tions. Though dynamic traffic assignment models have been used in the literature for optimization19

of toll prices for express lanes (24), we focus on real-time optimization of toll prices and ignore20

route-choice equilibration of travelers (A#7). Considering dynamic equilibrium while optimizing21

a dynamic stochastic control is a complex problem and will be studied as part of the future work22

(FW#1).23

Similar to earlier instances, the Deep-RL algorithm developed in this research is agnostic24

to the lane choice model. For simulation purposes, we focus our attention on two models: multiple25

VOT classes with two routes and stochastic choice (termed multiclass binary logit model) and26

multiple VOT classes with decision routes and deterministic choice (termed multiclass decision27

route model; refer Pandey and Boyles (9)). For simulation purposes, we evaluate the utility of a28

route as the linear combination of the toll and route’s travel time, converted to the same units using29

the VOT value of the class (A#8).30

POMDP31

Partially observable Markov decision processes (POMDPs) are MDPs where the states are not32

fully observable. This is suitable for cases where a toll operator does not have access to traffic33

information throughout the network but only at certain locations. We define the dynamic pricing34

problem as a POMDP with following components:35

• Timestep: Tolls are to be optimized over a finite time horizon for each time k ∈ Tτ . A finite36

horizon can represent a morning or an evening peak period on a corridor, or an entire day.37

• State: We define xzc(t) as the number of vehicles in cell c ∈ C belonging to class z ∈ Z at38

time t ∈ T , where Z = {(v, d) | v ∈ V, d ∈ Nd} is the set of all classes, disaggregated by39

the VOT value and the destination of the vehicle (the origin of a vehicle does not influence40
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the tolls once the vehicle is on the road and is thus ignored). For ML networks where high1

occupancy vehicles pay a different toll than single/low occupancy vehicles, we can extend2

Z to include the occupancy level of vehicles, but we leave that analysis for future work3

(FW#2). The dimensionality of Z impacts the computational performance of the multiclass4

cell transmission model. We denote the state of the POMDP by s which comprises of the5

current toll update step k ∈ Tτ and the values xzc(tk∆τ ) for all cells c ∈ C and class z ∈ Z.6

Thus, the state space S can be written as Equation (1).7

S = {(k, xzc(tk∆τ )) | k ∈ Tτ , c ∈ C , z ∈ Z} (1)8

• Observation: In our model, the observation is done using loop detectors. The loop detec-9

tors measure the total number of vehicles going from one cell to the next and thus cannot10

distinguish between vehicles belonging to different classes, so the state is not fully observ-11

able. The observation space depends on the link location of loop detectors denoted by set12

Aloop ⊆ A. For the network in Figure 1, Aloop = {(o, a), (a, c), (c, e), (d, f), (g, h), (h, j)}.13

These locations are a variable in our model and we conduct sensitivity of results to changes14

in observation space later in the text. Let o(s) denote the observation vector for state s15

and comprise of the measurement of total number of vehicles on each link (i, j) ∈ Aloop.16

Mathematically, o(s) = {
∑

z∈Z
∑

c∈C(i,j)
xzc(tk∆τ ) | (i, j) ∈ Aloop}. The actual observation is17

assumed to be Gaussian random variable with the mean as specified and the standard devia-18

tion σo which models the noise in loop detector measurements. We project negative values19

of observation, if any, to zero.20

• Action: Action a in state s is the toll βij(tk∆τ ) charged for a toll link (i, j) ∈ Atoll, where21

βij(·) ∈ (βmin, βmax). The action is modeled as a continuous variable; the values can be22

rounded to nearest tenth of a cent or dollar if desired.23

• Transition function: The transition of the POMDP from a state s to a new state s′ given24

action a, is governed by the traffic flow equations from the CTM model which incorporates25

the lane choice behavior of travelers. For simulation purposes, we assume that traffic flow26

throughout the network is deterministic except at diverges where the lane choices of trav-27

elers may be stochastic (A#9). We use a multiclass version of the CTM model from the28

literature (9).29

• Reward: The reward obtained after taking action a in state s, denoted by r(s, a), depends30

on the choice of tolling objective. We consider two objectives, revenue maximization and31

total system travel time (TSTT) minimization, with following definitions of reward:32

– Revenue maximization:33

rRevMax(s, a) =

(k+1)∆τ∑
x=k∆τ

∑
(i,j)∈Atoll

βij(tk∆τ )
∑

(h,i)∈A

yhij(tx)

 (2)34

where yhij(t) is the total flow going from link (h, i) ∈ A to (i, j) ∈ A from time step t35

to time step t+ ∆t36
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– Total system travel time minimization:1

rTSTTMin(s, a) = −

(k+1)∆τ∑
x=k∆τ

∑
c∈C

∑
z∈Z

xzc(tx)

 (3)2

where the negative sign is used to ensure that reward maximization is equivalent to3

TSTT minimization.4

To overcome the undesired JAH nature, we use reward shaping methods that seek to find5

policies with less or no JAH behavior. We quantify the JAH behavior using a statistic defined as a6

numeric value at the end of simulation. The statistic, denoted by JAH1, measures the maximum of7

difference between the number of vehicles in GPL to the number of vehicles in ML across all time8

steps. It is defined as in Equation (4), where AGPL(AML) are links on the GPL (ML). The value of9

JAH1 is dependent on network properties like number of lanes in GPL and ML.10

JAH1 = max
t∈T

 ∑
(i,j)∈AGPL

∑
c∈C(i,j)

∑
z∈Z

xzc(t)−
∑

(i,j)∈AML

∑
c∈C(i,j)

∑
z∈Z

xzc(t)

 (4)11

For the given POMDP, a policy πθ(a|s) denotes the probability of taking action a given12

state s. We consider stochastic policies parameterized by a vector of parameters θ. For example,13

for a policy replaced by a neural network, θ represents the flattened weights and biases for the14

nodes in the network. Since the action space for the POMDP is continuous, the neural network15

outputs the mean of the Gaussian distribution of tolls which is then used to sample continuous16

actions. We assume the covariance of the joint distribution of actions to be a diagonal matrix with17

constant diagonal terms (A#10).18

Episodic RL19

In an episodic RL problem, an agent’s experience is broken into episodes, where an episode is a20

sequence with finite number of states, actions, and rewards. Since the POMDP introduced in the21

previous subsection is finite-horizon, the simulation terminates at time T/∆t. Thus, an episode is22

formed by a sequence of states, actions, and rewards for each time step k ∈ Tτ .23

We first define a trajectory ℵ as a sequence of states and actions visited in an episode, that24

is ℵ = (s0, a0, s1, a1, · · · , s|Tτ |−1), where sk is same as the state defined earlier indexed by the25

time k in that state. Let r(sk, ak) be denoted by rk for all k ∈ Tτ . The goal of the reinforcement26

learning problem is to find a policy that maximizes the expected reward over the entire episode.27

The optimization problem can then be written as following:28

max
πθ(·)

J(πθ) = Eℵ[R(ℵ)|π] (5)

R(ℵ) =
∑
k∈Tτ

rk (6)
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where, Eℵ[R(ℵ)|π] =
∫
R(ℵ)pπ(ℵ)dℵ is the expected reward over all possible trajectories1

obtained after executing policy π with pπ(ℵ) as the probability distribution of trajectories obtained2

by executing policy π. Note that we do not consider discounting for future rewards.3

The solution of this POMDP is a vector θ∗ that determines the policy which optimizes the4

objective under certain constraints on the policy space. Commonly considered policy constraints5

for the dynamic pricing of express lanes include the following:6

1. Tolls levied for a longer distance are higher than tolls levied for a shorter distance: with the7

choice of tolling structure (assumption A#4) where tolls are charged at every diverge, this8

constraint is already satisfied.9

2. The ML is always operated at a speed higher than the minimum speed limit: in our model,10

we allow violation of this constraint on the ML. We observe that, given the stochasticity in11

lane choice of travelers and demand, bottlenecks can occur at merges and diverges which12

can result in an inevitable spillover on managed lanes during congested cases. Thus, a hard13

constraint keeping ML congestion free throughout the learning period is not useful. How-14

ever, as discussed later, we observe that optimal policies only violate this constraint less than15

2% of the time throughout the simulation for all networks tested in the next section.16

3. Toll variation from one time step to the next is restricted: we do not explicitly model this17

constraint. If tolling horizon is “sufficiently” large (say 5 minutes), bigger change in tolls18

from one toll update to the next can be less of a problem. Though, we observe that the19

optimal tolls have a structure and do not oscillate significantly.20

4. Tolls are upper and lower bounded by a value: we model this by clipping the tolls predicted21

by the function approximator within the desired range (βmin, βmax).22

Next, we discuss the solution methods used to solve the POMDP using Deep-RL methods and23

other heuristics.24

Solution Methods25

Deep RL Methods26

For solving the POMDP, we use derivative-based policy gradient algorithms which learn the policy27

directly based on the observations. In this article, we choose two of the commonly used algorithms:28

the vanilla policy gradient (VPG) and the proximal policy optimization (PPO). Both these methods29

determine the derivative of the objective function J(πθ) with respect to the policy parameters30

θ and improve the parameters using stochastic gradient descent from one iteration to the next.31

The methods differ in calculation of the derivatives, with PPO providing an improvement over32

VPG by restricting sudden policy updates. We refer the readers to Schulman (25) for a detailed33

explanation of these standard Deep-RL algorithms. For the experiments, we develop a new RL34

environment for macroscopic simulation of traffic and customize the open-source implementation35

of both algorithms in Python provided by OpenAI Spinningup (26).36
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Feedback control heuristic1

We compare the performance of Deep-RL algorithms against a feedback control (FC) heuristic2

based on the measurement of total number of vehicles in the links on ML. We customize the3

Density heuristic in Pandey and Boyles (9) to charge varying tolls for different toll links.4

Define ML(i, j) as the set of links on the ML used by a traveler who enters the ML using5

the toll link (i, j) ∈ Atoll. For the network in Figure 1, ML(a, b) = {(b, d)}, ML(c, d) = {(d, f)},6

ML(f, i) = {(f, i)}, and ML(h, i) = {(i, k)}. The FC heuristic updates the tolls for each toll link7

(i, j) ∈ Atoll based on the density observations on links in ML(i, j). The toll value for an update8

time (k + 1) ∈ Tτ is based on the toll value in the previous update step tweaked by the difference9

in values of desired number of vehicles to current number of vehicles. The toll update is given by10

Equation (7),11

βij(t(k+1)∆τ ) = βij(tk∆τ ) + P ×
(
XML(i,j)(k)−Xdesired

ML(i,j)

)
(7)12

where XML(i,j)(k) is the total number of vehicles on links in ML(i, j) before updating tolls at time13

k+ 1 and Xdesired
ML(i,j) be the desired value of the number of vehicles on the links in ML(i, j). P is the14

regulator parameter, with units $/veh, controlling the influence of difference between the desired15

and current number of vehicles on the toll update. The commonly used desired value is the number16

of vehicles corresponding to the critical density on the ML link. We generalize the desired number17

of vehicles by defining Xdesired
ML(i,j) as:18

Xdesired
ML(i,j) =

∑
(g,h)∈ML(i,j)

ηkcritical,(g,h)lgh (8)19

where, kcritical,(g,h) is the critical density for link (g, h) ∈ A and η is the scaling parameter varying20

between (0, 1] that sets the desired number of vehicles to a proportion value of the number of21

vehicles at critical density. We calibrate the FC heuristic for different values of desired density22

and regulator parameter. We do not include other algorithms for comparison because of lack23

of compatibility or details. The algorithms using discrete variables do not scale for continuous24

observation space and tolls (7, 9). Comparing the performance of Deep-RL methods against the25

hybrid MPC method in Tan and Gao (5) requires extensive analysis and will be a part of the future26

work (FW#3).27

EXPERIMENTAL ANALYSIS28

Framework29

We conduct our analysis on four different networks. The first is a network with single entrance30

and single exit (SESE) commonly used in the managed lane pricing literature. The next two are31

the double entrance single exit (DESE) network and the abstract network for the toll segment 2 of32

the LBJ TEXpress lanes in Dallas, TX (LBJ). The DESE network includes two toll locations for33

modeling en route lane changes. The LBJ network has four toll locations. Last is the network of34

the northbound Missouri Pacific (MoPac) Express lanes in Austin, TX. The MoPac network has35

three entry locations to the express lanes and two exit locations.36
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Figure 2a shows the abstract networks, where the thick lines denote the links where tolls1

are collected. Demand distribution for the first three networks is artificially generated and follows2

a two-peak pattern (refer the original demand curve in Figure 2b for the LBJ network) while the3

demand for the MoPaC network is derived from the dynamic traffic assignment model of the Travis4

county region. There are a total of 105 origin-destination pairs in the MoPaC network with a total5

demand of 49, 273 vehicles using the network in three hours of the evening peak.6
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FIGURE 2 (a) Abstract networks for single entrance single exit (SESE) network, double entrance and dou-
ble exit (DESE) network, LBJ network, and Northbound MoPaC express lane network (latitude-longitude
locations of express lanes are shifted to the left to show the locations of toll points and exits from the man-
aged lane), (b) demand distributions used for the SESE, DESE and LBJ networks, and (c) VOT distribution

Table 1 shows the values of parameters used for different networks. Five VOT classes were7

selected for each network and the same VOT distribution was used. Figure 2c shows the original8

VOT distribution.9
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TABLE 1 Values of parameters used in the simulation

SESE DESE LBJ MoPaC Parameter Value
Corridor length (miles) 7.3 1.59 2.91 11.1 βmin $0.1

Simulation duration (hour) 2 2 2 3 βmax $4.0
∆τ (seconds) 60 300 300 300 qij (vphpl) 2200
νij (mph) 55 55 55 65 kjam,ij (veh/mile) 265
σo (veh/hr) 50 50 50 50 νij/wij 3
σd (veh/hr) 10 0 0 100 ∆t (seconds) 6

A feedforward multilayer perceptron was selected as the neural network. Hyperparameter1

tuning was conducted and the architecture with two hidden layers and 64 nodes in each layer2

was selected. For the MoPaC network, three hidden layers with 128 nodes each were selected.3

Each network was simulated for a number of iterations ranging between 100 and 200 or until4

convergence of average reward values.5

Deep-RL Learning6

In this section, we compare the learning performance of the VPG and PPO Deep-RL algorithms7

for both revenue maximization and TSTT minimization objectives. Figure 3 show the plots of8

variation of learning for two objectives where the average in each iteration is reported over 109

random seeds.10

We make following observations. First, both Deep-RL algorithms are able to learn “good”11

objective values within 200 iterations evident in the increasing trend of the average revenue for12

the revenue-maximization objective and a decreasing trend of the average TSTT for the TSTT-13

minimization objective. For the revenue-maximization objective, the average revenue values con-14

verge to a high value for all networks. For the TSTT-minimization objective, the average TSTT15

values for SESE (Figure 3b) and DESE (Figure 3d) networks do not converge; however a decreas-16

ing trend is evident. The VPG algorithm for the DESE network in Figure 3d shows divergence17

towards the end. However, if the simulation is run long enough, the learning converges back to a18

lower TSTT value.19

We argue that learning for the revenue maximization objective is easier than learning for the20

TSTT minimization objective. This is because the reward definition for revenue maximization in21

Equation (2) involves the action values (in terms of βij(·)) and thus incorporates a direct feedback22

on the efficiency of current toll. On the other hand, reward for the TSTT minimization objective in23

Equation (3) does not incorporate the toll values directly. This is known as the credit assignment24

problem in the RL literature where it is unclear which actions over the entire episode were helpful.25

The credit assignment problem can be addressed by reframing the reward definition for the TSTT26

minimization objective, but this analysis is left as part of the future work (FW#4).27

Second, we observe that there is no evident difference in the performance of VPG and PPO28

algorithms. For the revenue maximization objectives, the algorithms perform “almost identically”29

with values of average revenue of PPO within ∼ 5% of the average revenue values of VPG algo-30

rithm at any iteration. For the TSTT minimization objective, we observe that PPO prevents high31

variation in average TSTT values from one iteration to the next, whereas the VPG algorithm shows32
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(b) SESE TSTT Minimization.
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(c) DESE Revenue Maximization.
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(d) DESE TSTT Minimization.
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(e) LBJ Revenue Maximization.
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(f) LBJ TSTT Minimization.
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(g) MoPaC Revenue Maximization.
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(h) MoPaC TSTT Minimization.

FIGURE 3 Plot of average objective value with iteration over 10 random seeds for the four networks
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higher oscillations (evident in Figures 3b and 3d).1

Last, in contrast to our expectation that a larger network with high dimensional action space2

might require large number of iterations to converge, we observe that for both LBJ and MoPaC3

networks, the average objectives converge within 200 iterations. This is equivalent to simulating4

2000 episodes with 2000 ∗ 2 hours/5 minutes = 48000 action interactions with the environment.5

The computation time for these interactions when run on a Unix machine with 8 GB RAM is6

25 min for the LBJ network and 23.39 hours for the MoPaC network. For the MoPaC network7

|Z| = 65 and |C | = 258, and thus updating 65 ∗ 258 = 16, 770 flow variables for every time step8

is time consuming. Efficient implementation of CTM model with parallel computations can help9

improve the efficiency of training. We note that the 23.39 hours spent for training are conducted10

offline on a simulation model. Once the model is trained, it can be transferred with less effort11

to real-world settings. Thus, we argue that learning is possible within a reasonable number of12

interactions with the environment even for real-world networks. The amount of data required for13

training Deep-RL models is often considered its major limitation (15); however, for the dynamic14

pricing problem it is not a constraining factor.15

Impact of Observation Space16

We also test the impact of observation space on the learning of Deep-RL algorithms. For the SESE17

network, the results in Figures 3a and 3b assumed that flows are only observed on certain links:18

(3, 6), (6, 7), and (4, 5) (call it, Medium observation). We consider two additional observation19

cases: (a) observing all links in the network (High observation), and (b) only observing link (3, 6)20

in the network (Low observation). Figure 4 shows the learning results for revenue maximization21

objectives for the two algorithms for three levels of observation space.22

We observe that changing observation space has no significant impact on learning rate,23

which indicates that we might be better off just relying on sensors on the main GPL for determining24

the optimal tolls. This behavior is counter-intuitive in a sense that having more sensors installed25

and collecting more data does not impact the learning rate compared to the case of less number26

of sensors. We argue that this happens due to the spatial correlation of the congestion pattern on27

a corridor (where observing additional links does not add a new information for setting the tolls).28

Our tests for other networks also yielded similar results where changing observation space did not29

impact the learning.30

Multi-objective Optimization31

In this section, we focus our attention on multiple optimization objectives together on the LBJ32

network. We consider how different objective vary with respect to each other for 1000 randomized33

toll profiles simulated for all four networks. Figure 5 shows the plots of variation of TSTT, the34

percent of time speed limit constraint is violated on the ML (% violation), and JAH1 against the35

revenue obtained from the toll policies for the LBJ network. The figure also shows the values of36

objectives from the toll profiles generated by Deep-RL algorithms where “DRLRevMax” indicates37

toll profiles from the revenue maximization objectives and “DRLTSTTMin” indicates toll profiles38

from the TSTT minimization objective.39
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FIGURE 4 Plot of the average revenue with iteration over 5 random seeds for the three levels of observation
for (a) VPG algorithm, and (b) PPO algorithm

We make following observations. First, the best toll profiles generated from Deep-RL algo-1

rithm are the best found among the other randomly generated profiles for the respective objectives.2

For the revenue maximization objective, toll profiles generated from Deep-RL algorithms have the3

highest revenue for all networks. For the TSTT minimization objective, toll profiles from Deep-RL4

algorithm have the lowest TSTT. This indicates that Deep-RL is able to learn best policies.5

Second, we observe that for the LBJ network with multiple access points to the ML, several6

toll profiles can cause violation of the speed limit constraint. However, the toll profiles optimizing7

the revenue or TSTT generate % violation less than 2%. This is intuitive: for the revenue maxi-8

mization objectives, a higher revenue is obtained only when more travelers use ML and the lane9

is kept congestion free. Similarly, for the TSTT minimization objective, low TSTT occurs when10

travelers spend less time in the network and exit the system sooner which is achieved when ML is11

ensured to be flowing at its capacity and does not become congested.12

Last, similar to the trends in the literature, toll profiles generating high revenue also gener-13

ate high values of TSTT. Similarly, tolls generating high revenue also have higher values of JAH114

statistics, indicating the jam-and-harvest nature of revenue-maximizing tolls. To reduce the unde-15

sired JAH nature, we modify the reward definition. We simulate a policy and if at the end of an16

episode the JAH statistic is higher than a threshold, a high negative value is added to the reward to17

penalize such update. We test this technique, referred as JAHThreshold, to find tolls that maximize18

revenue such that JAH1 statistic is less than a threshold value.19

For the LBJ network, we apply the JAHThreshold technique with a threshold JAH1 of 70020

vehicles and add a reward value of −$3000 to the final reward if at the end of simulation the JAH121

statistic is higher than the threshold. Figure 5d shows the learning curve plotting the variation22

of modified reward with iterations. We observe that both VPG and PPO algorithms improve the23

modified reward with iterations, though it is hard to argue that they have converged. Learning is24

difficult in this case due to the same credit assignment problem where it is unclear will toll over25

an episode resulted in constraint violation. Figure 5c shows the plot for tolls obtained from JAH-26

threshold technique on the JAH1-Revenue space. As observed, the reward penalization method27

is able to learn toll profiles with desired JAH value for 7 out of 10 random seeds. However, the28

learned toll profile is not the best found (that is there are toll profiles with JAH less than 70029

but generating revenue higher than $2800, which is the best found revenue), which is because30
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(b) Percent violation on ML vs Revenue.
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FIGURE 5 Plot of multiobjective for the LBJ network

the modified reward did not converge (yet) after 200 iterations. Despite the lack of convergence,1

we conclude that the penalization method is a useful tool to model constraints on toll profiles.2

The success of penalization method depends on the random seed as that determines which local3

minimum the algorithm will converge to, so it is encouraged to simulate several random seeds to4

capture randomness in the model.5

Transferability and Comparison against FC Heuristic6

In this section we test how the policies trained on one set of inputs perform when transferred to7

new inputs without retraining for the new inputs. This analysis is useful for a toll operator who8

trains the algorithm in a simulation environment for certain assumptions of input. We consider the9

revenue-maximizing policy for the LBJ network and report results of transferability analysis for10

four cases. The first two cases consider new demand distributions (Variant 1 and Variant 2) shown11
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in Figure 2b. The third case considers a new VOT distribution (Variant 3) shown in Figure 2c.1

And, the last case transfers the policy trained using multiclass decision route model to a setting2

where driver lane choice is governed using a multiclass binary Logit model with scaling parameter3

value of 6 (23). The observation space was kept the same to ensure that the learnt policy can be4

applied.5

Figure 6 show the plots of variation of revenue with iterations while learning from scratch6

and the average revenue (and its full range of variation) obtained from the transferred policy for the7

new inputs. The average is reported over 100 runs of the transferred policy in new environments8

without retraining.9
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(c) VOT Variant 3.
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FIGURE 6 Comparing learning from scratch with transfering the policy learnt on a different distribution

First, we observe that learning for the new input configurations “converges” within 10010

iterations for all four cases with less than 10% variation in average revenue over last 50 iterations.11

Second, the average revenue of the transferred policy is found to be “close to optimal” for the first12

three cases: the average revenue from transferred policy is within 5− 12% of the average revenue13

at termination while learning from scratch. For the case 3, the transferred policy does even better14

than the policy learnt from scratch after 100 iterations of training. The observations from the first15

three cases suggest that even though the Deep-RL algorithms were not trained for the new inputs,16

they are able to learn characteristics of the congestion in the network and perform well (on an17

average) on the new inputs. However, for case 2 there is a lot of variance in the generated revenue18

from the transferred policy; this is because small changes in input tolls have a higher impact on19

generated revenue for demand Variant 2.20

Third, contrary to the first three cases, the transfer of policy in case 4 did not work well: the21
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average revenue of transferred policy is 40% of the maximum revenue obtained. This is because1

the Logit model predicts different proportion of splits of travelers at a diverge and thus has a2

significant impact on the evolution of congestion. This finding suggests that the driver lane choice3

model should be appropriately selected for Deep-RL training.4

Next, we compare the performance of the FC heuristic against Deep-RL algorithms. Ta-5

ble 2 shows the values of different statistics reported as four-tuple: (revenue, TSTT, JAH1, %-6

violation) for both the revenue maximization and the TSTT minimization objectives for Deep-RL7

algorithms (we report the better objective value between VPG and PPO) and the FC heuristic. We8

highlight the value of the optimization objective in bold.9

TABLE 2 Comparison of Deep-RL against the FC heuristic

Revenue maximization objective
Deep-RL Feedback Control

SESE ($11999.80, 2895.27 hr,
1109.00 veh, 0%)

($478.82, 4693.09 hr,
583 veh, 0%)

DESE ($503.71, 213.94 hr,
159.74 veh, 0%)

($467.44, 283.19 hr,
162.99 veh, 0%)

LBJ ($4718.43, 1338.86 hr,
916.42 veh, 0.21%))

($3767.04, 1328.18 hr,
859.12 veh, 4.78%)

MoPaC ($18903.82, 9658.53 hr,
3094.58 veh, 1.41%)

($3956.72, 5151.57 hr,
1490.99 veh, 0%)

TSTT minimization objective
Deep-RL Feedback Control

SESE ($11622.51, 2907.50 hr,
1166.37 veh, 0%)

($240.91, 4071.62 hr,
544.86 veh, 0%)

DESE ($258.15, 173.34 hr,
120.69 veh, 0%)

($233.05, 172.11 hr,
108.91 veh, 0%)

LBJ ($477.02, 600.36 hr,
530.04 veh, 0.14%)

($463.49, 642.35 hr,
557.70 veh, 0%)

MoPaC ($620.17, 4021.73 hr,
1157.40 veh, 0.07%)

($603.89, 4008.97 hr,
1132.52 veh, 0.09%)

We observe that Deep-RL does consistently well in generating toll profiles with higher10

revenues than the FC heuristic. The generated revenues from Deep-RL are 8%–2406% higher than11

the FC heuristic for different cases. For the TSTT minimization objective, no algorithm is clearly12

superior to the other, though Deep-RL algorithms perform relatively well. For DESE and MoPaC13

networks, the FC heuristic generates tolls with 0.32–0.71% lower TSTT than Deep-RL algorithms;14

however, the trend is reversed for the SESE and LBJ network, where Deep-RL algorithms generate15

tolls with 6.5–28.6% lower TSTT than the FC heuristic. Similar to the observations made earlier,16

the tolls maximizing the revenue also generate a high value of JAH2 statistic and the tolls generating17

high revenue generate low TSTT (with an exception of SESE network). We note that the value of18

%-violation on the ML is less than 2% for the best-found toll profiles from Deep-RL algorithms.19

We conclude that the FC heuristic is well suited for generating toll profiles with lower20

TSTT values and can serve as a good initial toll for training using Deep-RL algorithms for TSTT-21
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minimization objective. The feedback control heuristic has a computational advantage as it only1

requires one shot calculation which is easier to implement in real-time. Future work can be devoted2

in devising other heuristics that combine the optimization efficiency of Deep-RL algorithms and3

the computational efficiency of the FC heuristics (FW#5).4

CONCLUSIONS5

In this research, we developed a Deep-RL framework for dynamic pricing of express lanes with6

multiple access points. We showed that the Deep-RL algorithms can learn the best-found toll7

profiles for multiple objectives and for objectives with constraints. The average objective value8

converged within 200 iterations for the four networks tests. The number of sensors and sensor9

locations were found to have a little impact on the learning due to the spatial correlation of con-10

gestion pattern. We also conducted transferability tests and showed that policies trained using11

Deep-RL algorithm can be transferred to settings with new demand and VOT distributions without12

losing performance; however, if the lane choice model is changed the transferred policy performs13

poorly. This indicates that calibrating a lane choice model is critical for dynamic pricing. We14

also compared the performance of Deep-RL algorithms against the FC heuristic and found that15

it outperformed the heuristic for the revenue-maximization objective generating average revenue16

8%-2406% higher than the heuristic. For the TSTT-minimization objective, differences were less17

significant. We recommend the use of VPG and PPO algorithms for finding optimal tolls. Even if18

the input distributions are unknown to a toll operator, training can be performed using an approx-19

imate distribution with large variance. The training can then be improved by using data from a20

given day and the modified policy can be applied from next day onwards.21

In addition to the future work ideas discussed earlier, this research highlights other new22

research directions. Since the current macroscopic model for traffic flow does not capture lane23

choice interactions, efficient Deep-RL algorithms can be developed using microscopic simulation24

models. It is also relevant to test the transferability of algorithms trained on macroscopic scale to25

microscopic levels and vice versa. Next, in addition to loop detectors, other types of observations26

like speeds, toll-tag readings, and measurements using Lagrangian sensors like GPS devices on27

vehicles can be used to train optimal toll profiles. Last, the research can benefit from constrained28

policy optimization methods like in Achiam et al. (27) that enforce that the minimum speed limit29

constraint on ML is satisfied throughout the learning phase.30
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[21] Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-agent deep reinforcement25

learning for large-scale traffic signal control. IEEE Transactions on Intelligent Transportation26

Systems, 2019.27

[22] Carlos F Daganzo. The cell transmission model, part II: network traffic. Transportation28

Research Part B: Methodological, 29(2):79–93, 1995.29

[23] Venktesh Pandey and Stephen D Boyles. Comparing route choice models for managed lane30

networks with multiple entrances and exits. Transportation Research Record, 2019. URL31

https://doi.org/10.1177/0361198119848706.32

[24] Yundi Zhang, Bilge Atasoy, and Moshe Ben-Akiva. Calibration and optimization for adaptive33

toll pricing. In 2018 97th Annual Meeting of Transportation Research Board, pages 18–34

05863. TRB, 2018.35



Pandey et al. 21

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal1

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.2

[26] OpenAI. Welcome to Spinning Up in Deep RL– Spinning Up documentation. https:3

//spinningup.openai.com/en/latest/index.html, 2019. Last Accessed: June 20, 2019.4

[27] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimiza-5

tion. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,6

pages 22–31. JMLR. org, 2017.7


