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Abstract. A matrix algorithm runs at sublinear cost if it uses much
fewer memory cells and arithmetic operations than the input matrix
has entries. Such algorithms are indispensable for Big Data Mining and
Analysis, where input matrices are so immense that one can only access
a small fraction of all their entries. Typically, however, such matrices
admit their Low Rank Approximation (LRA), which one can access and
process at sublinear cost. Can, however, we compute LRA at sublinear
cost? Adversary argument shows that no algorithm running at sublinear
cost can output accurate LRA of worst case input matrices or even of
the matrices of small families of our Appendix A, but we prove that some
sublinear cost algorithms output a reasonably close LRA of a matrix W
if (i) this matrix is sufficiently close to a low rank matrix or (ii) it is
a Symmetric Positive Semidefinite (SPSD) matrix that admits LRA. In
both cases supporting algorithms are deterministic and output LRA in
its special form of CUR LRA, particularly memory efficient. The design
of our algorithms and the proof of their correctness rely on the results
of extensive previous study of CUR LRA in Numerical Linear Algebra
using volume maximization. In case (i) we apply Cross-Approximation
(C-A) iterations, running at sublinear cost and computing accurate LRA
worldwide for more than a decade. We provide the first formal support
for this long-known empirical efficiency assuming non-degeneracy of the
initial submatrix of at least one C-A iteration. We cannot ensure non-
degeneracy at sublinear cost for a worst case input but prove that it
holds with a high probability (whp) for any initialization in the case of a
random or randomized input. Empirically we can replace randomization
with sparse multiplicative preprocessing of an input matrix, performed
at sublinear cost. In case (ii) we make no additional assumptions about
the input class of SPSD matrices admitting LRA or about initialization
of our sublinear cost algorithms for CUR LRA, which promise to be prac-
tically valuable. We hope that proper combination of our deterministic
techniques with randomized LRA methods, popular among Computer
Science researchers, will lead them to further progress in LRA.
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1 Introduction

1.1. LRA Problem. An m × n matrix W admits its close approximation of
rank at most r if and only if the matrix W has numerical rank at most r (and
then we write nrank(W ) ≤ r), that is,

W = AB + E, ||E||/||W || ≤ ε, (1.1)

for A ∈ C
m×r, B ∈ C

r×n, a matrix norm || · ||, and a small tolerance ε. Such
an LRA approximates the mn entries of W by using (m + n)r entries of A and
B. This is a crucial benefit in applications of LRA to Big Data Mining and
Analysis, where the size mn of an input matrix is usually immense, and one
can only access a tiny fraction of its mn entries. Quite typically, however, such
matrices admit LRA of (1.1) where (m+n)r � mn. (Hereafter a � b and b � a
mean that the ratio |a/b| is small in context.)

Can we, however, compute close LRA at sublinear cost, that is, by using much
fewer memory cells and flops than an input matrix has entries? Based on adver-
sary argument one can prove that no algorithm running at sublinear cost can
output close LRA of the worst case inputs and even of the matrices of small
families of our AppendixA, but for more than a decade Cross-Approximation
(C-A) iterations, running at sublinear cost, have been routinely computing close
LRA worldwide. Moreover they output LRA in its special form of CUR LRA (see
Sect. 2), which is particularly memory efficient and is defined by a proper choice
of a submatrix G of W , said to be a generator of CUR LRA or a CUR generator.

1.2. Our First Main Result. The main result of Part I of our paper, made
up of Sects. 2–5, provides partial formal support for this empirical phenomenon.

Let us elaborate. Let σj(M) denote the jth largest singular value of a matrix
M , which is the minimal distance from M to a matrix of rank j + 1 in spectral
norm. Suppose that C-A iterations are applied to an m×n matrix W that admits
a sufficiently close LRA (1.1). Let Wi and Vi denote the input and output subma-
trices of W at the ith C-A iteration for i = 1, 2, . . . and let || · || denote the spectral
or Frobenius matrix norm. Then we prove (see Corollary 3 and Remark 3) that the
approximation error norm ||W − Vi+1|| is within a factor f from optimal, which
is reasonably bounded unless the ratio σr(Wi)/σr(W ) is small.

Our proof relies on Theorems 1 and 2, recalled from [OZ18], which extend long
study traced back to [CI94,GE96,GTZ97,GT01] and which bound the output
errors of CUR LRA in term of maximization of the volume v2(G) or r-projective
volume v2,r(G) of a CUR generator G (see Definition 1 for these concepts).

The ratio σr(Wi)/σr(W ) is small where one applies C-A iterations to a worst
case input matrix, but one can prove that it is not small whp where an input
matrix of small numerical rank is random or randomized by means of its pre-
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and post-multiplying by random multipliers. Empirically the ratio tends to be
not small even where an input matrix of small numerical rank is pre-processed
with any fixed rather than random orthogonal multipliers, and in particular at
sublinear cost for proper sparse multipliers. The above error factor f can be
considered a price for obtaining CUR LRA at sublinear cost, but if the ratio
σr+1(W )/σr(W ) is small enough, we can iteratively refine LRA at sublinear
cost by means of our algorithms of [PLa].

1.3. Our Results About CUR LRA of SPSD Matrices. Our novel sub-
linear cost algorithm computes reasonably close CUR LRA of any SPSD matrix
admitting LRA. Then again we devise and analyze our algorithm based on the
cited link of the error bounds of an output CUR LRA and maximization of
the volume or r-projective volume of a CUR generator, and we can reapply our
comments on deviation from optimum and iterative refinement of the output.

1.4. Earlier Works. Our results of Part I appeared in [PLSZ16, Section 5]
and [PLSZ17, Part II] together with various results on LRA of random input
matrices.1 Our progress in Part II has been inspired by the results of [OZ18] and
[CKM19]. Section 1.4 of [LPa] covers relevant earlier works in more details.

1.5. Organization of Our Paper. We define CUR LRA and C-A iterations in
the next section. We devote Sect. 3 to background material on matrix volumes,
their maximization and its impact on LRA. In Sect. 4 we recall C-A iterations
and in Sect. 5 prove that they output reasonably close LRA of a matrix having
sufficiently low numerical rank. These sections make up Part I of our paper,
while Sects. 6–8 make up its Part II. In Sect. 6 we state our main results for
SPSD inputs. We prove the correctness of our algorithms in Sect. 7 and [LPa]
and estimate their complexity in Sect. 8. In the Appendix we recall the relevant
definitions and auxiliary results and specify small matrix families that are hard
for LRA at sublinear cost.

Part I. CUR LRA by Means of C-A Iterations

2 Background: CUR LRA

We use basic definitions for matrix computations recalled in AppendixB. We
simplify our presentation by confining it to the case of real matrices, but the
extension to the case of complex matrices is straightforward.

CUR LRA of a matrix W of numerical rank at most r is defined by three
matrices C, U , and R, with C and R made up of l columns and k rows of W ,

1 The papers [PLSZ16], unsuccessfully submitted to ACM STOC 2017 and widely
circulated at that time, and [PLSZ17] provided the first formal support for LRA
at sublinear cost, which they called “superfast” LRA. Their approach has extended
to LRA the earlier study in [PQY15,PZ17a], and [PZ17b] of randomized Gaussian
elimination with no pivoting and other fundamental matrix computations. It was
followed by sublinear cost randomized LRA algorithms of [MW17].
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respectively, U ∈ C
l×k said to be the nucleus of CUR LRA,

0 < r ≤ k ≤ m, r ≤ l ≤ n, kl � mn, (2.1)

W = CUR + E, and ||E||/||W || ≤ ε, for a small tolerance ε > 0. (2.2)

CUR LRA is a special case of LRA of (1.1) where k = l = r and, say, A = LU ,
B = R. Conversely, given LRA of (1.1) one can compute CUR LRA of (2.2) at
sublinear cost (see [PLa] and [PLSZa]).

Define a canonical CUR LRA as follows.

(i) Fix two sets of columns and rows of W and define its two submatrices C
and R made up of these columns and rows, respectively.

(ii) Define the k × l submatrix Wk,l made up of all common entries of C and R,
and call it a CUR generator.

(iii) Compute its rank-r truncation Wk,l,r by setting to 0 all its singular values,
except for the r largest ones.

(iv) Compute the Moore–Penrose pseudo inverse U =: W+
k,l,r and call it the

nucleus of CUR LRA of the matrix W (cf. [DMM08,OZ18]); see an alter-
native choice of a nucleus in [MD09]).

Wr,r = Wr,r,r, and if a CUR generator Wr,r is nonsingular, then U = W−1
r,r .

3 Background: Matrix Volumes

3.1 Definitions and Hadamard’s Bound

Definition 1. For three integers k, l, and r such that 1 ≤ r ≤ min{k, l}, define
the volume v2(M) :=

∏min{k,l}
j=1 σj(M) and r-projective volume v2,r(M) :=

∏r
j=1 σj(M) of a k × l matrix M such that v2,r(M) = v2(M) if r = min{k, l},

v2
2(M) = det(MM∗) if k ≥ l; v2

2(M) = det(M∗M) if k ≤ l, v2
2(M) = |det(M)|2

if k = l.

Definition 2. The volume of a k × l submatrix WI,J of a matrix W is h-
maximal over all k × l submatrices if it is maximal up to a factor of h. The
volume v2(WI,J ) is column-wise (resp. row-wise) h-maximal if it is h-maximal
in the submatrix WI,: (resp. W:,J ). The volume of a submatrix WI,J is column-
wise (resp. row-wise) locally h-maximal if it is h-maximal over all submatrices
of W that differ from the submatrix WI,J by a single column (resp. single row).
Call volume (hc, hr)-maximal if it is both column-wise hc-maximal and row-wise
hr-maximal. Likewise define locally (hc, hr)-maximal volume. Write maximal
instead of 1-maximal and (1, 1)-maximal in these definitions. Extend all of them
to r-projective volumes.

For a k × l matrix M = (mij)
k,l
i,j=1,1 write mj := (mij)k

i=1 and m̄i :=
((mij)l

j=1)
∗ for all i and j. For k = l = r recall Hadamard’s bound

v2(M) = |det(M)| ≤ min {
∏r

j=1
||mj ||,

∏r

i=1
||m̄∗

j ||, rr/2 maxr
i,j=1 |mij |r}.
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3.2 The Impact of Volume Maximization on CUR LRA

The estimates of the two following theorems in the Chebyshev matrix norm ||·||C
increased by a factor of

√
mn turn into estimates in the Frobenius norm || · ||F

(see (B.3)).

Theorem 1 [OZ18].2 Suppose r := min{k, l}, WI,J is the k× l CUR generator,
U = W+

I,J is the nucleus of a canonical CUR LRA of an m × n matrix W ,
E = W − CUR, h ≥ 1, and the volume of WI,J is locally h-maximal, that is,

h v2(WI,J ) = max
B

v2(B)

where the maximum is over all k × l submatrices B of the matrix W that differ
from WI,J in at most one row and/or column. Then

||E||C ≤ h f(k, l) σr+1(W ) for f(k, l) :=

√
(k + 1)(l + 1)

|l − k| + 1
.

Theorem 2 [OZ18]. Suppose that Wk,l = WI,J is a k × l submatrix of an
m × n matrix W , U = W+

k,l,r is the nucleus of a canonical CUR LRA of W ,
E = W −CUR, h ≥ 1, and the r-projective volume of WI,J is locally h-maximal,
that is,

h v2,r(WI,J ) = max
B

v2,r(B)

where the maximum is over all k × l submatrices B of the matrix W that differ
from WI,J in at most one row and/or column. Then

||E||C ≤ h f(k, l, r) σr+1(W ) for f(k, l, r) :=

√
(k + 1)(l + 1)

(k − r + 1)(l − r + 1)
.

Corollary 1. Suppose that BW = (BU |BV ) for a nonsingular matrix B and
that the submatrix U is h-maximal in the matrix W = (U |V ). Then the submatrix
BU is h-maximal in the matrix BW .

Remark 1. Theorems 1 and 2 have been stated in [OZ18] under assumptions
that the matrix WI,J has (globally) h-maximal volume or r-projective volume,
respectively, but their proofs in [OZ18] support the above extensions to the case
of locally maximal volume and r-projective volume.

4 C-A Iterations

C-A iterations recursively apply two auxiliary Subalgorithms A and B (see
Algorithm 1).

2 The theorem first appeared in [GT01, Corollary 2.3] in the special case where k =
l = r and m = n.
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Given a 4-tuple of integers k, l, p, and q such that r ≤ k ≤ p and r ≤ l ≤ q
subalgorithm A is applied to a p × q matrix and computes its k × l submatrix
whose volume or projective volume is maximal up to a fixed factor h ≥ 1 among
all its k × l submatrices. For simplicity first consider the case where k = l = p =
q = r (see Fig. 1, borrowed from [PLSZa]).

Fig. 1. The three successive C-A steps output three striped matrices.

Subalgorithm B verifies whether the error norm of the CUR LRA built on a
fixed CUR generator is within a fixed tolerance τ (see [PLa] for some verification
recipes).

5 CUR LRA by Means of C-A Iterations

We can apply C-A steps by choosing deterministic algorithms of [GE96] for Sub-
algorithm A. In this case mq and pn memory cells and O(mq2) and O(p2n) flops
are involved in “vertical” and “horizontal” C-A iterations, respectively. They
run at sublinear cost if p2 = o(m) and q2 = o(n) and output submatrices hav-
ing h-maximal volumes for h being a low degree polynomial in m + n. Every
iteration outputs a matrix that has locally h-maximal volume in a “vertical” or
“horizontal” submatrix, and the hope is to obtain globally h̄-maximal subma-
trix (for reasonably bounded h̄) when maximization is performed recursively in
alternate directions.

Of course, the contribution of C-A step is nil where it is applied to a p × q
input whose volume is 0 or nearly vanishes compared to the target maximum,
but the consistent success of C-A iterations in practice suggests that in a small
number of loops such a degeneration is regularly avoided.

In the next subsection we show that already two successive C-A iterations
output a CUR generator having h-maximal volume (for any h > 1) if these
iterations begin at a p × q submatrix of W that shares its rank r > 0 with
W . By continuity of the volume the result is extended to small perturbations
of such matrices within a norm bound estimated in Theorem13. In Sect. 5.2
we extend these results to the case where r-projective volume rather than the
volume of a CUR generator is maximized. (Theorem 2 shows benefits of such a
maximization.) In Sect. 5.3 we summarize our study in this section and comment
on the estimated and empirical performance of C-A iterations.
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5.1 Volume of the Output of a C-A Loop

By comparing SVDs of the matrices W and W+ obtain the following lemma.

Algorithm 1. C-A Iterations
Input: W ∈ C

m×n, four positive integers r, k, l, and ITER; a number τ > 0.

Output: A CUR LRA of W with an error norm at most τ or FAILURE.

Initialization: Fix a submatrix W0 made up of l columns of W and
obtain an initial set I0.

Computations:
for i = 1, 2, . . . , ITER do

if i is even then
“Horizontal” C-A step:
1. Let Ri := WIi−1,: be a p × n submatrix of W .
2. Apply Subalgorithm A for q = n to Ri and obtain a k × l
submatrix Wi = WIi−1,Ji .

else
“Vertical” C-A step:
1. Let Ci := W:,Ji−1 be an m × q submatrix of W .
2. Apply Subalgorithm A for p = m to Ci and obtain a k × l
submatrix Wi = WIi,Ji−1 .

end if

Apply subalgorithm B and obtain E, the error bound of CUR LRA built
on the generator Wi.
if E ≤ τ then

return CUR LRA built on the generator Wi.
end if

end for
return Failure

Lemma 1. σj(W )σrank(W )+1−j(W+) = 1 for all matrices W and all subscripts
j, j ≤ rank(W ).

Corollary 2. v2(W )v2(W+) = 1 and v2,r(W )v2,r(W+
r ) = 1 for all matrices W

of full rank and all integers r such that 1 ≤ r ≤ rank(W ).

We are ready to prove that a k× l submatrix of rank r that has (h, h′)-locally
maximal nonzero volume in a rank-r matrix W has hh′-maximal volume globally
in W , that is, over all k × l submatrices of W .

Theorem 3. Suppose that the volume of a k× l submatrix WI,J is nonzero and
(h, h′)-maximal in a matrix W for h ≥ 1 and h′ ≥ 1 where rank(W ) = r =
min{k, l}. Then this volume is hh′-maximal over all its k × l submatrices of the
matrix W .
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Proof. The matrix WI,J has full rank because its volume is nonzero.
Fix any k × l submatrix WI′,J ′ of the matrix W , recall that W = CUR, and

obtain that
WI′,J ′ = WI′,J W+

I,J WI,J ′ .

If k ≤ l, then first apply claim (iii) of Theorem14 for G := WI′,J and
H := W+

I,J ; then apply claim (i) of that theorem for G := WI′,J W+
I,J and

H := WI,J ′ and obtain that

v2(WI′,J ) = v2(WI′,J W+
I,J WI,J ′) ≤ v2(WI′,J )v2(W+

I,J )v2(WI,J ′).

If k > l deduce the same bound by applying the same argument to the matrix
equation

WT
I′,J ′ = WT

I,J ′W+T
I,J WT

I′,J .

Combine this bound with Corollary 2 for W replaced by WI,J and deduce
that

v2(WI′,J ′) = v2(WI′,J W+
I,J WI,J ′) ≤ v2(WI′,J )v2(WI,J ′)/v2(WI,J ). (5.1)

Recall that the matrix WI,J is (h, h′)-maximal and conclude that

hv2(WI,J ) ≥ v2(WI,J ′) and h′v2(WI,J ) ≥ v2(WI′,J ).

Substitute these inequalities into the above bound on the volume v2(WI′,J ′)
and obtain that v2(WI′,J ′) ≤ hh′v2(WI,J ).

5.2 From Maximal Volume to Maximal r-Projective Volume

Recall that the CUR LRA error bound of Theorem1 is strengthened when we
shift to Theorem 2, that is, maximize r-projective volume for r < k = l rather
than the volume. Next we reduce maximization of r-projective volume of a CUR
generators to volume maximization.

Corollary 1 implies the following lemma.

Lemma 2. Let M and N be a pair of k × l submatrices of a k × n matrix and
let Q be a k × k unitary matrix. Then v2(M)/v2(N) = v2(QM)/v2(QN), and if
r ≤ min{k, l} then also v2,r(M)/v2,r(N) = v2,r(QM)/v2,r(QN).

The submatrices R′ and
(

R′

O

)

of R of Algorithm 2 have maximal volume

and maximal r-projective volume in the matrix R, respectively, by virtue of
Theorem 14 and because v2(R) = v2,r(R) = v2,r(R′). Therefore the submatrix
W:,J has maximal r-projective volume in the matrix W by virtue of Lemma2.

Remark 2. By transposing a horizontal input matrix W and interchanging the
integers m and n and the integers k and l we extend the algorithm to computing
a k × l submatrix of maximal or nearly maximal r-projective volume in an m× l
matrix of rank r.
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Algorithm 2. From maximal volume to maximal r-projective volume
Input: Four integers k, l, n, and r such that 0 < r ≤ k ≤ n and r ≤ l ≤ n; a
k × n matrix W of rank r; a black box algorithm that finds an r × l
submatrix having locally maximal volume in an r × n matrix of full rank r.
Output: A column set J such that W:,J has maximal r-projective volume
in W .
Computations:

1. Compute a rank-revealing QRP factorization W = QRP , where Q is a

unitary matrix, P is a permutation matrix, R =

(
R′

O

)
, and R′ is an r × n

matrix. (See [GL13, Sections 5.4.3 and 5.4.4] and [GE96].)
2. Compute an r × l submatrix R′

:,J of R′ having maximal volume.
return J ′ such that P : J ′ −→ J .

5.3 Complexity and Accuracy of a Two-Step C-A Loop

The following theorem summarizes our study in this section.

Theorem 4. Given five integers k, l, m, n, and r such that 0 < r ≤ k ≤ m and
r ≤ l ≤ n, suppose that two successive C-A steps (say, based on the algorithms
of [GE96]) combined with Algorithm2 have been applied to an m × n matrix
W of rank r and have output k × l submatrices W ′

1 and W ′
2 = WI2,J2 with

nonzero r-projective column-wise locally h-maximal and nonzero r-projective
row-wise locally h′-maximal volumes, respectively. Then the submatrix W ′

2 has
h′h-maximal r-projective volume in the matrix W .

By combining Theorems 1, 2, and 4 we obtain the following corollary.

Corollary 3. Under the assumptions of Theorem4 apply a two-step C-A loop
to an m × n matrix W of rank r and suppose that both its C-A steps output
k × l submatrices having nonzero r-projective column-wise and row-wise locally
h-maximal volumes (see Remark 3 below). Build a canonical CUR LRA on a
CUR generator W ′

2 = Wk,l of rank r output by the second C-A step. Then

(i) the computation of this CUR LRA by using the auxiliary algorithms of
[GE96] involves (m + n)r memory cells and O((m + n)r2) flops3 and

(ii) the error matrix E of the output CUR LRA satisfies the bound ||E||C ≤
g(k, l, r) h̄ σr+1(W ) for h̄ of Theorem4 and g(k, l, r) denoting the func-
tions f(k, l) of Theorem1 or f(k, l, r) of Theorem2. In particular ||E||C ≤
2hh′σ2(W ) for k = l = r = 1.

Remark 3. Theorem 13 enables us to extend Theorem 4 and Corollary 3 to the
case of an input matrix W of numerical rank r if the input matrix of any C-A
3 For r = 1 an input matrix turns into a vector of dimension m or n, and then

we compute its absolutely maximal coordinate just by applying m − 1 or n − 1
comparisons, respectively (cf. [O17]).
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step shares its numerical rank with W . This is fulfilled whp for a random matrix
W that admits LRA (see our full paper, arXiv:1907.10481).

Part II. CUR LRA for SPSD Matrices

6 CUR LRA of SPSD Matrices: Two Main Results

For SPSD matrices we can a little improve our estimates of Theorem 13 by
applying Wielandt–Hoffman theorem (see [GL13, Theorem 8.6.4]), but we are
going to compute reasonably close CUR LRA of an SPSD matrix at sublinear
cost with no restriction on its distance from a low rank matrix.

Theorem 5 (Main Result 1). Suppose that A ∈ R
n×n is an SPSD matrix,

r and n are two positive integers, r < n, ξ is a positive number, and I is the
output of Algorithm6. Write C := A:,I , U := A−1

I,I , and R := AI,:. Then

||A − CUR||C ≤ (1 + ξ)(r + 1)σr+1(A). (6.1)

Furthermore Algorithm6 runs at an arithmetic cost in O(nr4 log r).

Theorem 6 (Main Result 2, proven in [LPa], due to size limitation for this
paper). Suppose that A ∈ R

n×n is an SPSD matrix, r, K and n are three positive
integers such that r < K < n, ξ is a positive number, and I is the output of
Algorithm6. Write C := A:,I , U := (AI,I)+r , and R := AI,:. Then

||A − CUR||C ≤ (1 + ξ)
K + 1

K − r + 1
σr+1(A). (6.2)

In particular, let K = cr − 1 for c > 1. Then

||A − CUR||C ≤ (1 +
1

c − 1
)(1 + ξ)σr+1(A). (6.3)

Furthermore Algorithm6 runs at an arithmetic cost in O(r2K4n+rK4n log n) =
O((r+log n)K4n), which turns into O((r+log n)n5) in case of a constant c > 1.

7 Proof of Main Result 1

Theorem 7 (Adapted from [OZ18, Thm. 6] and [GT01, Thm. 2.1]). Suppose
that W ∈ R

(r+1)×(r+1),

W =
[

A b
cT d

]

,

and A ∈ R
r×r has maximal volume among all r × r submatrices of W . Then

v2 (W )
v2 (A)

≤ (1 + r)σr+1(W ). (7.1)

http://arxiv.org/abs/1907.10481
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Algorithm 3. Greedy Column Subset Selection [CM09].
Input: A ∈ R

m×nan a positive integer K < n.
Output: I.

Initialize I = {}.
M1 ← A.
for t = 1, 2, ..., K do

i ← arg maxa∈[n] ||M t
:,a||

I ← I ∪ {i}.
M t+1 ← M t − ||M t

:,i||−2(M t
:,i)(M

t
:,i)

TM t

end for
return I.

Hereafter [n] denotes the set of n integers {1, 2, . . . , n}, and |T | denotes the
cardinality (the number of elements) of a set T .

The theorem is readily deduced from the following result.

Theorem 8 (Cf. [CKM19]). Suppose that W is an n×n SPSD matrix and I and
J are two sets of integers in [n] having the same cardinality. Then v2 (WI,J )2 ≤
v2 (WI,I) v2 (WJ ,J ).

Theorem 8 shows that the maximal volume submatrix M of an SPSD matrix
A can be chosen to be principal. This can be exploited to greatly reduce the cost
of searching for the maximal volume submatrix. As pointed out in [CKM19] and
implied in [CM09] searching for a maximal volume submatrix in a general matrix
or even in an SPSD matrix is NP hard and therefore is impractical for inputs
of even moderately large size. [CKM19] proposed to search for a submatrix with
a large volume by means of algorithm that is equivalent to Gaussian Elimi-
nation with Complete Pivoting (Algorithm 4). Such a submatrix, however,
only guarantees an upper bound of 4rσr+1(A) on the Chebyshev error norm for
the output CUR LRA (see the definition of Chebyshev’s norm in AppendixB).

Next we seek a principal submatrix AI,I having maximal volume in every
matrix AS,S such that S ⊃ I and |S| = |I| + 1. Such a submatrix generates a
CUR LRA with Chebyshev error norm bound (r +1)σr+1(A), thus considerably
improving the aforementioned exponential bound. According to the following
theorem, we arrive at such a submatrix AI,I by recursively replacing a single
index in an initial set I.

Theorem 9. Suppose that A ∈ R
n×n is an SPSD matrix, I is an index set, and

0 < |I| = r < n. Let v2 (AI,I) ≥ v2 (AJ ,J ) for any index set J where |J | = r,
and J only differs from I at a single element. Then AI,I is a maximal volume
submatrix of AS,S for any superset S of I lying in [n] and such that |S| = r +1.

Proof. Apply [CKM19] Thm. 1 to such an SPSD matrix AS,S and obtain that
there exists a subset I ′ of S such that |I ′| = r and AI′,I′ is a maximal volume
submatrix of AS,S . v2 (AI,I) ≥ v2 (AI′,I′) since I ′ and I differs at most at a
single element, and this proves the theorem.
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Algorithm 4. An SPSD Matrix: Gaussian Elimination with Complete
Pivoting (cf. [B00] and [CKM19]).

Input: An SPSD matrix A ∈ R
n×n and a positive integer K < n.

Output: I.

Initialize R ← A, and I = {}.
for t = 1, 2, ..., K do

it ← arg maxj∈[n] |Rj,j |.
I ← I ∪ {it}.
R ← R − R:,it · r−1

it,it
· Rit,:.

end for
return I.

The papers [GT01] and [OZ18] have considerably relaxed the condition that
the generator AI,I is a maximal volume submatrix: if v2 (AI,I) is increased by a
factor of h > 1 from maximal, then the error bound only increases by at most the
same factor of h. In the case of SPSD inputs, we extend this relaxation further to
AI,I having close-to-maximal volume among “nearby” principal submatrices.

Theorem 10. For an SPSD matrix A ∈ R
n×n, a positive integer r < n, and

a positive number ξ, let I ⊂ [n] be an index set and let |I| = r. Suppose that
(1 + ξ)v2 (AI,I) ≥ v2 (AJ ,J ) for any subset J of [n] such that |J | = r and J
differs from I at one element. Then

||A − A:,IA−1
I,IAI,:||C ≤ (1 + ξ)(r + 1)σr+1(A). (7.2)

If v2 (AI,I) is increased by at most a factor of 1+ξ each time when we replace
an index in I, then Algorithm 6 would not run into infinite loop due to rounding
to machine precision. Furthermore, Theorem 10 guarantees that the accuracy is
mostly preserved, that is, upon termination, the returned index set I satisfies
inequality (7.2).

Let t denote the number of times a single index in I is replaced. In the
following, we show that t is bounded by O(r log r), if the initial set I0 is greedily
chosen in Algorithm 3.

Theorem 11 (Adapted from [CM09] Thm. 10). For a matrix C ∈ R
m×n and a

positive integer r < n, let Algorithm3 with input C and r output a set I. Then

v2 (C:,I) ≥ 1
r!

max
S⊂[n]:|S|=r

v2 (C:,S) . (7.3)

Theorem 12. For an SPSD matrix A ∈ R
n×n and a positive integer r < n, let

Algorithm4 with inputs A and r output a set I. Then

v2 (AI,I) ≥ 1
(r!)2

max
S⊂[n]:|S|=r

v2 (AS,S) . (7.4)

Corollary 4. For an SPSD matrix A ∈ R
n×n, a positive integer r < n, and a

positive number ξ, Algorithm6 calls Algorithm5 at most O(r log r) times.
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Algorithm 5. Index Swap
Input: An SPSD matrix A ∈ R

n×n, a set I ∈ [n], a positive integer r ≤ |I|,
and a positive number ξ.
Output: J

Compute v2,r
(
AI,I

)
for all i ∈ I do

I′ ← I − {i}
for all j ∈ [n] − I do

J ← I′ ∪ {j}
Compute v2,r

(
AJ ,J

)
if v2,r

(
AJ ,J

)
/v2,r

(
AI,I

)
> 1 + ξ then

return J
end if

end for
end for
return I

8 Complexity Analysis

In this section, we estimate the time complexity of performing the Main Algo-
rithm (Algorithm 6) in the case of both r = K and r < K. The cost of finding
the initial set I0 by means of Algorithm 4 is O(nK2). Let t denote the number of
iterations and let c(r,K) denote the arithmetic cost of performing Algorithm 5
with parameters r and K. Then the complexity is in O(nK2 + t · c(r,K)).

In the case of r = K, Corollary 4 implies that t = O(r log r). Algorithm 5 may
need up to nr comparisons of v2

(
AI,I

)
and v2

(
AJ ,J

)
. Since I and J differs at

most at one index, we compute v2
(
AJ ,J

)
faster by using small rank update of

Algorithm 6. Main Algorithm
Input: An SPSD matrix A ∈ R

n×n, two positive integers K and r such that
r ≤ K < n, and a positive number ξ.
Output: I

I ← Algorithm 4(A, K)
while TRUE do

J ← Algorithm 5(A, I, r, ξ)
if J = I then

BREAK
else

I ← J
end if

end while
return I.
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AI,I instead of computing from the scratch; this saves a factor of k. Therefore
c(r, r) = O(r3n), and the time complexity of the Main Algorithm is O(nr4 log r).

In the case of r < K, according to [GE96, Theorem 7.2] and [CM09, Theorem
10], t increases slightly to O(r2+r log n), and if v2,r

(
AJ ,J

)
is computed by using

SVD, then c(r,K) = O(K4n), and the time complexity of the Main Algorithm
is O(r2K4n + rK4n log n).
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Appendix

A Small Families of Hard Inputs for Sublinear Cost LRA

Any sublinear cost LRA algorithm fails on the following small input families.

Example 1. Define a family of m×n matrices of rank 1 (we call them δ-matrices):

{Δi,j , i = 1, . . . ,m; j = 1, . . . , n}.

Also include the m × n null matrix Om,n into this family. Now fix any sublinear
cost algorithm; it does not access the (i, j)th entry of its input matrices for some
pair of i and j. Therefore it outputs the same approximation of the matrices Δi,j

and Om,n, with an undetected error at least 1/2. Apply the same argument to
the set of mn + 1 small-norm perturbations of the matrices of the above family
and to the mn + 1 sums of the latter matrices with any fixed m × n matrix of
low rank. Finally, the same argument shows that a posteriori estimation of the
output errors of an LRA algorithm applied to the same input families cannot
run at sublinear cost.

This example actually covers randomized LRA algorithms as well. Indeed
suppose that with a positive constant probability an LRA algorithm does not
access K entries of an input matrix. Apply this algorithm to two matrices of
low rank whose difference at all these K entries is equal to a large constant C.
Then, clearly, with a positive constant probability the algorithm has errors at
least C/2 at at least K/2 of these entries.

B Definitions for Matrix Computations and a Lemma

Next we recall some basic definitions for matrix computations (cf. [GL13]).
C

m×n is the class of m × n matrices with complex entries.
Is denotes the s× s identity matrix. Oq,s denotes the q × s matrix filled with

zeros.
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diag(B1, . . . , Bk) = diag(Bj)k
j=1 denotes a k × k block diagonal matrix with

diagonal blocks B1, . . . , Bk.
(B1 | . . . | Bk) and (B1, . . . , Bk) denote a 1 × k block matrix with blocks

B1, . . . , Bk.
WT and W ∗ denote the transpose and the Hermitian transpose of an m × n

matrix W = (wij)
m,n
i,j=1, respectively. W ∗ = WT if the matrix W is real.

For two sets I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n} define the submatrices

WI,: := (wi,j)i∈I;j=1,...,n,W:,J := (wi,j)i=1,...,m;j∈J , WI,J := (wi,j)i∈I;j∈J .
(B.1)

An m × n matrix W is unitary (also orthogonal when real) if W ∗W = In or
WW ∗ = Im.

Compact SVD of a matrix W , hereafter just SVD, is defined by the equations

W = SW ΣW T ∗
W ,

where S∗
W SW = T ∗

W TW = Iρ, ΣW := diag(σj(W ))ρ
j=1, ρ = rank(W ),

(B.2)

σj(W ) denotes the jth largest singular value of W for j = 1, . . . , ρ; σj(W ) =
0 for j > ρ.

||W || = ||W ||2, ||W ||F , and ||W ||C denote spectral, Frobenius, and Cheby-
shev norms of a matrix W , respectively, such that (see [GL13, Section 2.3.2 and
Corollary 2.3.2])

||W || = σ1(W ), ||W ||2F :=
m,n∑

i,j=1

|wij |2 =
rank(W )∑

j=1

σ2
j (W ), ||W ||C :=

m,n
max
i,j=1

|wij |,

||W ||C ≤ ||W || ≤ ||W ||F ≤
√

mn ||W ||C , ||W ||2F ≤ min{m,n} ||W ||2. (B.3)

W+ := TW Σ−1
W S∗

W is the Moore–Penrose pseudo inverse of an m×n matrix W .

||W+||σr(W ) = 1 (B.4)

for a full rank matrix W .
A matrix W has ε-rank at most r > 0 for a fixed tolerance ε > 0 if there is

a matrix W ′ of rank r such that ||W ′ − W ||/||W || ≤ ε. We write nrank(W ) = r
and say that a matrix W has numerical rank r if it has ε-rank r for a small ε.

Lemma 3. Let G ∈ C
k×r, Σ ∈ C

r×r and H ∈ C
r×l and let the matrices G, H

and Σ have full rank r ≤ min{k, l}. Then ||(GΣH)+|| ≤ ||G+|| ||Σ+|| ||H+||.
A proof of this well-known result is included in [LPa].

C The Volume and r-Projective Volume of a Perturbed
Matrix

Theorem 13. Suppose that W ′ and E are k × l matrices, rank(W ′) = r ≤
min{k, l}, W = W ′ + E, and ||E|| ≤ ε. Then
(
1− ε

σr(W )

)r ≤
r∏

j=1

(
1− ε

σj(W )

)
≤ v2,r(W )

v2,r(W ′)
≤

r∏
j=1

(
1+

ε

σj(W )

)
≤

(
1+

ε

σr(W )

)r
. (C.1)
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If min{k, l} = r, then v2(W ) = v2,r(W ), v2(W ′) = v2,r(W ′), and

(
1 − ε

σr(W )

)r

≤ v2(W )
v2(W ′)

=
v2,r(W )
v2,r(W ′)

≤
(
1 +

ε

σr(W )

)r

. (C.2)

Proof. Bounds (C.1) follow because a perturbation of a matrix within a norm
bound ε changes its singular values by at most ε (see [GL13, Corollary 8.6.2]).
Bounds (C.2) follow because v2(M) = v2,r(M) =

∏r
j=1 σj(M) for any k × l

matrix M with min{k, l} = r, in particular for M = W ′ and M = W = W ′ +E.

If the ratio ε
σr(W ) is small, then

(
1 − ε

σr(W )

)r

= 1 − O
(

rε
σr(W )

)
and

(
1 + ε

σr(W )

)r

= 1 + O
(

rε
σr(W )

)
, which shows that the relative perturbation

of the volume is amplified by at most a factor of r in comparison to the relative
perturbation of the r largest singular values.

D The Volume and r-Projective Volume of a Matrix
Product

Theorem 14 (Cf. [OZ18]). [Examples 2 and 3 below show some limitations on
the extension of the theorem.]

Suppose that W = GH for an m × q matrix G and a q × n matrix H. Then

(i) v2(W ) = v2(G)v2(H) if q = min{m,n}; v2(W ) = 0 ≤ v2(G)v2(H) if q <
min{m,n}.

(ii) v2,r(W ) ≤ v2,r(G)v2,r(H) for 1 ≤ r ≤ q,
(iii) v2(W ) ≤ v2(G)v2(H) if m = n ≤ q.

Example 2. If G and H are unitary matrices and if GH = O, then v2(G) =
v2(H) = v2,r(G) = v2,r(H) = 1 and v2(GH) = v2,r(GH) = 0 for all r ≤ q.

Example 3. If G = (1 | 0) and H = diag(1, 0), then v2(G) = v2(GH) = 1 and
v2(H) = 0.
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