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Abstract

This paper presents a new mechanism for producing sanitized statistical summaries
that achieve differential privacy, called the K-Norm Gradient Mechanism, or KNG.
This new approach maintains the strong flexibility of the exponential mechanism,
while achieving the powerful utility performance of objective perturbation. KNG
starts with an inherent objective function (often an empirical risk), and promotes
summaries that are close to minimizing the objective by weighting according to
how far the gradient of the objective function is from zero. Working with the
gradient instead of the original objective function allows for additional flexibility
as one can penalize using different norms. We show that, unlike the exponential
mechanism, the noise added by KNG is asymptotically negligible compared to the
statistical error for many problems. In addition to theoretical guarantees on privacy
and utility, we confirm the utility of KNG empirically in the settings of linear and
quantile regression through simulations.

1 Introduction

The last decade has seen a tremendous increase in research activity related to data privacy [Aggarwal
and Philip, 2008, Lane et al., 2014, Machanavajjhala and Kifer, 2015, Dwork et al., 2017]. This drive
has been fueled by an increasing societal concern over the large amounts of data being collected
by companies, governments, and scientists. These data often contain vast amounts of personal
information, for example DNA sequences, images, voice recordings, electronic health records, and
internet usage patterns. Such data allows for great scientific progress by researchers and governments,
as well as increasingly curated business strategies by companies. However, the such data also comes
with increased risk for privacy breaches, placing greater pressure on institutions to prevent disclosures.

Currently, Differential Privacy (DP) [Dwork et al., 2006] is the leading framework for formally
quantifying privacy risk. One of the most popular methods for achieving DP is the Exponential
Mechanism, introduced by McSherry and Talwar [2007], and used in [Friedman and Schuster, 2010,
Wasserman and Zhou, 2010, Blum et al., 2013, Dwork and Roth, 2014]. A major attribute of the
exponential mechanism that contributes to its popularity is its flexibility; it can be readily adapted and
incorporated into most statistical analyses. In particular, its structure makes it amenable to a wide
array of statistical and machine learning problems that are based on minimizing an objective function,
so called “m-estimators” [van der Vaart, 2000, Chapter 5]. Some examples where the exponential
mechanism has been used include PCA [Chaudhuri et al., 2013, Awan et al., 2019], hypothesis testing
[Canonne et al., 2019], maximum likelihood estimation (related to posterior sampling) [Wang et al.,
2015, Minami et al., 2016], and density estimation [Wasserman and Zhou, 2010].

However, examples have arisen [Wang et al., 2015, Awan et al., 2019] where the magnitude of the
noise added by the exponential mechanism is substantially higher than other mechanisms. Recently,
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Awan et al. [2019], demonstrated that, in a very broad sense, the exponential mechanism adds
noise that is not asymptotically negligible relative to the statistical estimation error, which other
mechanism are able to achieve in different problems [e.g. Smith, 2011]. In this paper we provide
a new mechanism called the K-Norm Gradient Mechanism, or KNG, that retains the flexibility of
the exponential mechanism, but with substantially improved utility guarantees. KNG provides a
principled approach to developing efficient mechanisms that also perform well in practice. Indeed the
Laplace, K-norm, and PrivateQuantile mechanisms can all be viewed as instantiations of KNG. Here
we also use KNG to provide the first mechanism for private quantile regression that we are aware of,
which we empirically show is efficient.

At a high level, KNG uses a similar perspective to that of the exponential mechanism. In particular,

suppose that `n(θ;D) is an objective, whose minimizer, θ̂ ∈ R
d, is the summary we aim to sanitize.

Here D represents the particular database and n the sample size of D. The exponential mechanism

aims to release θ̃E based on the density

fE(θ) ∝ exp{−c0`n(θ;D)},

where c0 is a generic constant determined by the sensitivity of `n and the desired level of privacy.
Conceptually, the idea is to promote sanitized estimates whose utility, as measured by `n, is close

to that of θ̂. Unfortunately, Awan et al. [2019], showed that the magnitude of the noise added by
the exponential mechanism is often of the same order as the statistical error (as a function of n),
resulting in inefficient private estimators. KNG uses a similar perspective, but takes the gradient of

`n and promotes θ that are close to the solution ∇`n(θ̂) = 0. Since we work with the gradient, we
also have the flexibility of choosing a desirable norm, which Awan and Slavković [2018] showed
can be tailored to the problem at hand to achieve better utility. The resulting mechanism produces a

sanitized θ̃ according to the density

fn(θ) ∝ exp{−c0‖∇`n(θ;D)‖K},

where ‖ · ‖K is a general norm on R
d that can be chosen to accommodate the context of the problem.

Here we see a connection between KNG and the K-norm mechanism, introduced by Hardt and
Talwar [2010]. The terminology is based on the idea of considering a set K which is the convex hull
of the sensitivity polytope [Kattis and Nikolov, 2017], and defining ‖·‖K to be the norm such that the

ball of radius one is K, i.e. {v ∈ R
d | ‖v‖K = 1} = K. In fact every norm can be generated in this

manner, so no there is no loss in generality from using this approach [Awan and Slavković, 2018].

KNG can similarly be viewed as a modification of objective perturbation [Chaudhuri et al., 2011,

Kifer et al., 2012]. There, one releases a sanitized estimate, θ̃O, by minimizing2

θ̃O = argminθ∈Θ

(
`n(θ;D) + ωθ>b

)
,

where b ∈ R
d is a random vector with distribution drawn from the K-norm mechanism fb(x) ∝

exp{−‖b‖K}, and ω ∈ R is a fixed constant based on the sensitivity of `n and the desired level of

privacy3. Equivalently, one has that ∇`n(θ̃O;D) + ωb = 0, which implies that θ̃O = ∇`−1
n (−ωb),

assuming ∇`n is invertible. Using the change of variables formula, this implies that θ̃O has density

fO(θ) ∝ exp{−ω−1‖∇`n(θ)‖K}|det(∇2`n(θ))|.

With KNG, the second derivative term ∇2`n is not included. Furthermore, there are several technical
requirements when working with objective perturbation that KNG sidesteps. In particular, the proof
that objective perturbation satisfies DP requires the objective function to be strongly convex and twice
differentiable almost everywhere [Chaudhuri et al., 2011, Kifer et al., 2012, Awan and Slavković,
2018]. While we assume strong convexity and a second derivative to prove a utility result in Theorem
3.2, KNG does not require either of these conditions to satisfy DP. This allows the KNG mechanism
to be applied in more general situations (such as median estimation and quantile regression, explored
in Section 4), and requires fewer calculations to implement.

The remainder of this paper is organized as follows. In Section 2 we recall the necessary background
on differential privacy and the exponential mechanism. In Section 3 we formally define KNG and

2In fact, objective perturbation minimizes `n(θ;D) + cθ
>
θ + ωθ

>
b, where c is a constant. We ignore this

regularization term in this discussion for the simplicity of the illustration.
3In Chaudhuri et al. [2011] and Kifer et al. [2012], the `2 norm is used. Awan and Slavković [2018] extend

objective perturbation to allow for arbitrary norms.
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show that it achieves ε-DP with nearly the same flexibility as the exponential mechanism. We also
provide a general utility result that shows that the noise introduced by KNG is of order Op(n

−1),

which is negligible compared to the statistical estimation error, which is typically Op(n
−1/2). We

also show that the noise introduced by KNG is asymptotically from a K-norm mechanism. In section
4 we provide several examples of KNG applied to statistical problems, including mean estimation,
linear regression, median/quantile estimation, and quantile regression. We also illustrate the empirical
advantages of KNG in the settings of linear and quantile regression through simulations. We conclude
in Section 5 by discussing challenges and potential extensions of KNG.

2 Differential Privacy Background

Differential privacy (DP), introduced by Dwork et al. [2006] has taken hold as the primary framework
for formally quantifying privacy risk. Several versions of DP have been proposed, such as approximate
DP [Dwork and Roth, 2014], concentrated DP [Dwork and Rothblum, 2016, Bun and Steinke, 2016],
and local DP [Duchi et al., 2013], all of which fit into the axiomatic treatment of formal privacy given
by Kifer and Lin [2012]. In this paper, we work with pure ε-DP, stated in Definition 2.1.

Let Dn denote the collection of all possible databases with n units. The bivariate function δ :
Dn ×Dn → R, which maps δ(D,D′) := #{i | Di 6= D′

i}, is called the Hamming Distance on Dn.
It is easy to verify that δ is a metric on Dn. If δ(D,D′) = 1 then D and D′ are said to be adjacent.

Let f : Dn → Θ represent a summary of Dn, and F a σ-algebra on Θ, such that (Θ,F) is a
measurable space. A privacy mechanism is a family of probability measures {µD : D ∈ Dn} over Θ.

Definition 2.1 (Differential Privacy: Dwork et al., 2006). A privacy mechanism {µD : D ∈ Dn}
satisfies ε-Differential Privacy (ε-DP) if for all B ∈ F and adjacent D,D′ ∈ Dn,

µD(B) ≤ µD′(B) exp(ε).

The exponential mechanism, introduced by McSherry and Talwar [2007] is a central tool in the design
of DP mechanisms [Dwork and Roth, 2014]. In fact every mechanism can be viewed as an instance
of the exponential mechanism, by setting the objective function as the log-density of the mechanism.
In practice, it is most common to set the objective as a natural loss function, such as an empirical risk.

Proposition 2.2 (Exponential Mechanism: McSherry and Talwar, 2007). Let (Θ,F , ν) be a measure
space, and let {`n(θ;D) : Θ → R | D ∈ Dn} be a collection of measurable functions indexed by
the database D. We say that this collection has a finite sensitivity ∆, if

|`n(θ;D)− `n(θ;D
′)| ≤ ∆ < ∞,

for all adjacent D,D′ and ν-almost all θ ∈ Θ. If
∫
Θ
exp(−`n(θ;D)) dν(θ) < ∞ for all D ∈ D,

then the collection of probability measures {µD | D ∈ D} with densities (with respect to ν)

fD(θ) ∝ exp

{(
−ε

2∆

)
`n(θ;D)

}
satisfies ε-DP.

Intuitively, `n(θ;D) provides a score quantifying the utility of an output θ for the database D. We use
the convention that smaller values of `n(θ;D) provide more utility. So, the exponential mechanism
places more mass near the minimizers of `, and less mass the higher the value of `n(θ;D).

3 The K-Norm Gradient Mechanism

In Section 2 we considered an arbitrary measure space, (θ,F , ν), when defining DP and the exponen-

tial mechanism. However, here we focus on R
d. The KNG mechanism cannot be defined to quite

the generality of the exponential mechanism since we require enough structure on the parameter
space to define a gradient. Most applications focus on Euclidean spaces, so this is not a major
practical concern, but there could be implications for more complicated nonlinear, discrete, or infinite
dimensional settings.

Theorem 3.1 (K-Norm Gradient Mechanism (KNG)). Let Θ ⊂ R
d be a convex set, ‖·‖K be a norm

on R
d, and ν be a σ-finite measure on Θ. Let {`n(θ;D) : Θ → R | D ∈ Dn} be a collection of
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measurable functions, which are differentiable ν almost everywhere. We say that this collection has
sensitivity ∆ : Θ → R

+, if

‖∇`n(θ;D)−∇`n(θ;D
′)‖K ≤ ∆(θ) < ∞,

for all adjacent D,D′ and ν-almost all θ. If
∫
Θ
exp(− 1

∆(θ)‖∇`n(θ;D)‖K) dν(θ) < ∞ for all

D ∈ D, then the collection of probability measures {µD | D ∈ D} with densities (with respect to ν)

fD(θ) ∝ exp

[(
−ε

2∆(θ)

)
‖∇`n(θ;D)‖K

]
satisfies ε-DP.

Proof. Set ˜̀n(θ;D) = ∆(θ)−1‖∇`n(θ;D)‖K . Then ˜̀has sensitivity 1. By Proposition 2.2, the
described mechanism satisfies ε-DP.

One advantage of this approach over the traditional exponential mechanism is that the sensitivity
calculation is often simpler (e.g. quantile regression, subsection 4.5). However, it also has the same

intuition as the exponential mechanism. In particular, the optimum, θ̂, occurs when ∇`n(θ̂) = 0, thus
we want to promote solutions that make the gradient close to 0, and discourage ones that make the
gradient far from 0. These concepts are closely related to m-estimators, z-estimators, and estimating
equations [van der Vaart, 2000, Chapter 5].

Since KNG utilizes the gradient, it links in nicely to optimization methods such as gradient descent.
However, it could also suffer from some of the same challenges as gradient descent. Namely, if
the objective function has multiple local minima, then KNG will promote output near each these
points. For this reason, a great deal of care should be taken with KNG when applying to non-convex
objective functions, such as fitting neural networks [Gori and Tesi, 1992].

3.1 Asymptotic Properties

While flexibility of a mechanism is an important concern, ultimately the utility of the output is of
primary importance. Awan et al. [2019] showed that for a large class of objective functions, the

exponential mechanism introduces noise of magnitude Op(n
−1/2), where n is the sample size. For

many statistical problems the non-private error rate is also Op(n
−1/2) [van der Vaart, 2000, Chapter

5], meaning that the exponential mechanism introduces noise that is not asymptotically negligible.

Under similar assumptions, we show in Theorem 3.2 that KNG has aymptotic error Op(n
−1), which

is asymptotically negligible compared to the statistical error. In fact, Theorem 3.2 shows that the
noise introduced is asymptotically from a K-norm mechanism [Hardt and Talwar, 2010, Awan and
Slavković, 2018], which generalizes the Laplace mechanism.

The assumptions in Theorem 3.2 are chosen to capture a large class of common loss functions,
which include many convex empirical risk functions and log-likelihood functions. Mathematically,
the assumption that ` is twice-differentiable and strongly convex allow us to use a one term Taylor

expansion of ∇` about θ̂, and guarantee that the integrating constants converge. The proof of Theorem
3.2 is found in the Supplementary Materials.

Theorem 3.2 (Utility of KNG). Let Θ ⊂ R
d be a convex set, ‖·‖K a norm on R

d, ν a σ-finite measure
om Θ, and `n(θ) := `n(θ;D) be a sequence of objective functions which satisfy the assumptions of
Theorem 3.1, with sensitivity ∆(θ). We further assume that

1. n−1`n(θ) are twice differentiable (almost everywhere) convex functions and there exists a
finite α > 0 such that n−1

Hn(θ) has eigenvalues greater than α. for all n and θ ∈ Θ;

2. the minimizers satisfy θ̂ → θ? ∈ R
d and n−1

Hn(θ̂) → Σ−1 where Σ is a d × d positive
definite matrix;

3. ∆(θ) is continous in θ, constant in n, and there exists ∆ > 0 such that ∆ ≤ ∆(θ).

Assume the base measure, ν, has a bounded, differentiable density g(θ) (with respect to Lebesgue

measure) which is strictly positive in a neighborhood of θ?. Then the sanitized value θ̃ drawn from
the KNG mechanism with privacy parameter ε is asymptotically K-norm. That is, the density of
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Z = n(θ̃ − θ̂) converges to a K-norm distribution, with density (wrt ν) proportional to f(z) ∝

exp

(
−ε

2∆(θ∗)
‖Σ−1z‖K

)
.

The proof of the CLT for the exponential mechanism in Awan et al. [2019], as well as the proof of
Theorem 3.2, both rely on a Taylor expansion of the objective function. In both cases, it is assumed
that the Hessian converges, when scaled by n, to a positive definite matrix. However, using the
original objective function requires two derivatives before the Hessian appears in the Taylor expansion,
whereas the use of the gradient only requires one derivative. The consequence of this is that the
traditional exponential mechanism results in a quadratic numerator inside the exponent, whereas

KNG has a (normed) linear numerator. Asymptotically, this gives an Op(n
−1/2) Gaussian noise for

the exponential mechanism and an Op(n
−1) K-norm noise for KNG. Geometrically, it seems that

the use of an objective function which behaves linearly (in absolute value) near the optimum, rather
than quadratic, results in better asymptotic utility. By using the normed-gradient, we construct an
objective function with this property.

The assumptions in Theorem 3.2 are very similar to the assumptions for the CLT in Awan et al. [2019].
So, whenever these properties hold, we know that KNG results in an Op(n

−1) privacy noise whereas

the exponential mechanism is Op(n
−1/2). To further emphasize the importance of this result, we

note that the magnitude of the noise introduced for privacy can have a substantial impact on the
sample complexity. Asymptotically, KNG requires exactly the same sample size as the non-private
estimator, whereas the exponential mechanism requires a constant > 1 multiple of the non-private
sample size to achieve the same accuracy.

As we see in Section 4, in the problem of quantile regression the assumptions of Theorem 3.2 do not
hold, meaning that while we guarantee privacy in that setting, we can’t guarantee the utility of the
estimator. However, we see in Figure 2 that KNG still introduces asymptotically negligible noise,
suggesting that the assumptions of Theorem 3.2 can likely be weakened to accomodate a larger class
of objective functions.

Remark 3.3. Based on the discussion in Section 1, a result similar to 3.2 may hold for objective
perturbation as well. The main issue is dealing with the change of variables factor | detHn(θ)|,
which may or may not contribute to the asymptotic form. We suspect that when both KNG and
objective perturbation are applicable (e.g. linear regression, see subsection 4.3), they will have similar
performance. However, as KNG does not require a second derivative (or convexity), it is applicable
in more settings than objective perturbation (e.g. quantile regression, see subsection 4.5).

4 Examples

4.1 Mean Estimation

Mean estimation is one of the simplest statistical tasks, and one of the first to be solved in DP.
Assuming bounds on the data, the mean can be estimated by adding Laplace noise [Dwork et al.,
2006]. Recently there has been some work developing statistical tools for the mean under differential
privacy, such as confidence intervals in the normal model [Karwa and Vadhan, 2017] and hypothesis
tests for Bernouilli data [Awan and Slavković, 2018]. We show that KNG recovers the K-norm
mechanism when estimating the mean, a generalization of the Laplace mechanism.

Let x1, . . . , xn ∈ R
d, which we assume are drawn from some population with mean θ∗. To estimate

θ∗, we use the sum of squares as our objective function:

`n(θ;D) =

n∑

i=1

‖xi − θ‖22 and ∇`n(θ;D) = −2

n∑

i=1

(xi − θ) = −2n(x̄− θ).

Turning to the sensitivity, if we assume that there exists a constant r such that ‖xi‖K ≤ r < ∞
for some norm ‖ · ‖K , then the sensitivity of the gradient is ‖∇`n(θ;D) − ∇`n(θ;D

′)‖K =
2‖x1 − x′

1‖K ≤ 2r. Thus the mechanism becomes fn(θ) ∝ exp {−(nε/(4r)) ‖x̄− θ‖K} , which is

exactly a K-norm mechanism [Hardt and Talwar, 2010]. So θ̃ − x̄ has mean 0 and standard deviation
Op(n

−1). Thus, the noise added for privacy is asymptotically negligible compared to the statistical

error Op(n
−1/2).
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Remark 4.1. Because the KNG results in a location family in this case, the integrating constant does
not depend on the data. So, we do not need to divide ε by 2 in the density, and may instead draw from
fn(θ) ∝ exp

{
nε
2r ‖x̄− θ‖K

}
, which is how the K-norm mechanism is normally stated.

4.2 Linear Regression

There has been a great deal of work developing DP methods for linear regression [Zhang et al.,
2012, Song et al., 2013, Dwork and Lei, 2009, Chaudhuri et al., 2011, Kifer et al., 2012, Sheffet,
2017]. In this section, we detail how KNG can be used to estimate the coefficients in a linear
regression model. We observe pairs of data (xi, yi), where yi ∈ R and xi ∈ R

d, which we assume

are modeled as yi = x>
i θ

∗ + ei, where the errors are iid with mean zero and are uncorrelated with
x. Our goal is to estimate θ∗. To implement KNG, we assume that the data has been pre-processed
such that −1 ≤ xi ≤ 1 and −1 ≤ yi ≤ 1 for all i = 1, . . . , n. We also assume that ‖θ∗‖1 ≤ B.
The usual non-private estimator for θ∗ is the least-squares, which minimizes the objective function
`(θ;D) =

∑n
i=1(yi − x>

i θ)
2. KNG requires a bound on the sensitivity of ∇`n:

‖∇`n(θ;D)−∇`n(θ;D
′)‖ ≤ sup

y1,x1,θ
4‖(y1 − x>

1 θ)x1‖ = sup
x1

4(1 +B)‖x1‖.

By using the `∞ norm, we get the tightest bound, since ‖x1‖∞ ≤ 1. KNG samples from the density

fn(θ) ∝ exp

(
−ε

8(1 +B)

∥∥∥∥∥

n∑

i=1

(yi − x>
i θ)x

>
1

∥∥∥∥∥
∞

)
, (1)

with respect to the uniform measure on Θ = {θ | ‖θ‖1 ≤ B}.

Remark 4.2. Alternative sensitivity bounds can be obtained by choosing other bounds on x and y.
The bound on θ∗ can be removed entirely, allowing ∆ to depend on θ. In that case, a nontrivial base
measure will be required as the resulting density is not integrable with respect to Lebesgue measure.
We prefer to use the given sensitivity bound as it allows a fairer comparison against the exponential
mechanism and objective perturbation in subsection 4.3.
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4.3 Linear Regression Simulation

In this section, we examine the finite sample performance of the KNG mechanism on linear regression
compared to the exponential mechanism and objective perturbation mechanism. KNG samples from
the density (1), the exponential mechanism samples from

fn(θ) ∝ exp

(
−ε

2(1 +B)2

n∑

i=1

(yi − x>
i θ)

2

)
,
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and objective perturbation draws a random vector b from the density f(b) ∝ exp
(
− ε

8(1+B)‖b‖∞

)
,

and then finds the optimum of the modified objective: argmin‖θ‖1≤1 `n(θ;D)+ γ
2 θ

>θ+θ>b, where

γ = (exp(ε/2)− 1)−1(2d) and d is the dimension of the xi’s. For all three mechanisms we assume
the bound on ‖θ∗‖1 is B = 1. Details on these mechanisms for linear regression can be found in the
Supplementary Materials.

For the simulations the true regression vector θ∗ ∈ R
12 is θ∗ = (0,−1,−1+2/11,−1+4/11, . . . , 1−

2/11), and so d = 12. For each n in 102, 103, 104, . . . , 107 we run 100 replicates of Algorithm 1
at ε = 1. For KNG and exponential mechanism, we draw samples using a one-at-a-time MCMC
procedure with 10000 steps.

At the end, we compute the average distance over the 100 replicates for each mechanism and for each
sample size n. The results are plotted in Figure 1, taking the base 10 log of both axes. At each n
value and for each mechanism, the Monte Carlo standard errors are between 0.01380 and 0.02729, in
terms of the log-scale used in the plot. The benefit of plotting in this fashion is that it makes it easier
to understand the asymptotic behavior of each estimator.

Since we know that the estimation error of the non-private MLE is error = Cn−1/2, taking the
log of both sides shows that the convergence should appear as a straight line with slope −1/2:
log(error) = − 1

2 log(n) + log(C), which is the black line in Figure 1.

As Awan et al. [2019] showed, the asymptotic estimation error of the exponential mechanism is

error = Kn−1/2, where K is a constant greater than C. Taking the log of both sides gives another
line with slope −1/2, but with a higher intercept: log(error) = − 1

2 log(n) + log(K), which we see
in red in Figure 1.

On the other hand, for KNG and objective perturbation (based on Remark 3.3) , the asymptotic

estimation error is error = Cn−1/2 +Kn−1, which when logged shows that for larger n, the curve
approaches the line of the non-private estimation error from above: log(error) = − 1

2 log(n) +

log(C +Kn−1/2), which is also confirmed in Figure 1.

Algorithm 1 Regression Simulation

INPUT: n, ε, d, θ∗.

1: Generate X ∈ R
n×d such that Xi,1 = 1 and Xij

iid
∼ U(−1, 1) for i = 1, . . . , n and j = 2, . . . , d.

2: Generate independent errors ei ∼ N(0, 1) for i = 1, . . . , n.

3: Compute the responses Yi = Xiθ
∗ + ei.

4: Set R = maxi |Yi|.
5: Set Y ′

i = Yi/R.

6: Use X and Y ′ to estimate the regression coefficient via the non-private estimator, and each DP mechanism.

7: Multiply the estimates by R to estimate θ∗.

8: Compute the euclidean distance between the estimate and the true θ∗ for each estimator.

OUTPUT: Average distances of the estimates to the true θ∗.

4.4 Median Estimation

Just as in the mean estimation problem, we observe D = (x1, . . . , xn), where xi ∈ R
d, and our

goal is to estimate the population median. In the case when d = 1, the median can be estimated
using the empirical risk function `n(θ;D) =

∑n
i=1 |xi − θ|. In general for d ≥ 1, we are estimating

the geometric median [Minsker et al., 2015], which can be expressed as argminm E‖X −m‖, and
typically the euclidean norm is used. Now, our objective becomes `n(θ;D) =

∑n
i=1‖xi − θ‖. It

may be concerning that this objective is not differentiable everywhere, however, KNG only requires
that the gradient exist on a set of measure one. The gradient of ‖xi − θ‖ in our norm’s topology is
given by d(θ, xi) := ‖xi − θ‖−1(xi − θ), provided that θ 6= xi. Notice that this gives a direction in

R
d since ‖d(θ, xi)‖ = 1. Using the triangle inequality, we see that the sensitivity of the gradient is

bounded by 2. So the KNG mechanism for the median can be expressed as

fn(θ) ∝ exp

{
−
εn

4

∥∥∥∥∥
1

n

n∑

i=1

d(θ, xi)

∥∥∥∥∥

}
.

Again, the error introduced is Op(n
−1), which is negligible compared to the statistical error.
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4.5 Quantile Regression

For quantile regression as for linear regression, we observe pairs of data (xi, yi), where yi ∈ R and

xi ∈ R
d. We assume that QYi|Xi

(τ) = X>
i θ∗τ , for all i = 1, . . . , n, where QY |X(τ) is the conditional

quantile function of Y given X for 0 < τ < 1, and θ∗ ∈ R
p [Hao et al., 2007]. For a given τ , θ∗τ can

be estimated as θ̂τ = argminθ
∑n

i=1 ρτ (yi−x>
i θ), where ρτ (z) = (τ −1)zI(z ≤ 0)+ τzI(z > 0)

is called the tiled absolute value function [Koenker and Hallock, 2001]. So, our objective function is

`n(θ;D) = (τ − 1)
∑

yi≤x>

i
θ

(yi − x>
i θ) + τ

∑

yi>x>

i
θ

(yi − x>
i θ),

with gradient (almost everywhere)

∇`n(θ;D) = (τ − 1)
∑

yi≤x>

i
θ

(−xi) + τ
∑

yi>x>

i
θ

(−xi) = −τ

n∑

i=1

xi +
∑

yi≤x>

i
θ

xi.

We bound the sensitivity as ∆ = 2(1− τ)CX , where supx1
‖x1‖ ≤ CX . Then KNG samples from

fn(θ) ∝ exp





−εn

4(1− τ)CX

∥∥∥∥∥∥
−τ

1

n

n∑

i=1

xi +
1

n

∑

yi≤x>

i
θ

xi

∥∥∥∥∥∥



 . (2)

We see a few nice benefits of the KNG method in this example. If we were to use `n directly
in the exponential mechanism, then not only would we expect worse asymptotic performance (as
demonstrated in subsection 4.5.1), but we see that the sensitivity calculation for the gradient only
requires a bound on X , whereas the sensitivity of `n requires bounds on Y , X , and θ∗. Furthermore,
the objective perturbation mechanism cannot be used in this setting, because ` is not strongly convex,
whereas the proofs for objective perturbation [Chaudhuri and Monteleoni, 2009, Chaudhuri et al.,
2011, Kifer et al., 2012, Awan and Slavković, 2018] all require strong convexity. In fact, the Hessian
of `n is zero almost everywhere making the objective perturbation inapplicable.

Finally note that if we are only interested in estimating the τ th quantile of a set of real numbers
Y1, . . . , Yn, we could set Xi = 1 for all i = 1, . . . , n, in which case KNG samples from

fn(θ) ∝ exp

{
−εn

4(1− τ)

∣∣∣τ − F̂ (θ;Y )
∣∣∣
}
. (3)

In fact, this is the Private Quantile algorithm proposed by Smith [2011], who also establish strong
utility guarantees for the algorithm; this exercise demonstrates that KNG could provide, or at least
contribute to, a more unified framework for developing efficient privacy mechanisms.

4.5.1 Quantile Regression Simulation

In this section, we examine the empirical performance of the KNG mechanism on quantile regression
compared to the exponential mechanism. KNG samples from the density (2) using the ‖·‖∞ norm
and setting CX = 1, and the exponential mechanism samples from

fn(θ) ∝ exp

{
−ε

4max{τ, 1− τ}(1 +B)
`n(θ;D)

}
.

We assume, as in subsection 4.3 that B = 1. Details on the exponential mechanism can be found
in the Supplementary Materials. Note that objective perturbation cannot be used in this setting, as
discussed in subsection 4.5.

For the simulations, we use τ = 1/2 and the true regression vector θ∗1/2 ∈ R
2 is θ∗1/2 = (0,−1). For

each n in 101, 102, . . . , 105 we run 100 replicates of Algorithm 1 at ε = 1. Samples from KNG and
the exponential mechanism are obtained using 1000 steps of a one-at-a-time MCMC algorithm. At
the end, we compute the average distance over the 100 replicates for each estimator and for each
sample size n. The results are plotted in Figure 1, taking the base 10 log of both axes. At each n
value and for each mechanism, the monte carlo standard errors are between 0.04403 and 0.06028, in
terms of the log-scale.
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We see in figure 2 that the non-private estimate appears as a straight line with slope −1/2, reflecting

the fact that its estimation error is Op(n
−1/2). We also see that the exponential mechanism approaches

a line with slope −1/2, but with a higher intercept, reflecting that it has increased asymptotic variance.
Last, we see that the error of KNG approaches the error line of the non-private estimator, suggesting
that KNG has the same asymptotic rate as the non-private estimator.

While the utility guarantees of Theorem 3.2 do not apply in this setting, as the objective function is not
strongly convex, the santized estimates still achieve ε-DP and we see from Figure 2 that, empirically,

KNG introduces op(n
−1/2) error in this setting as well. This suggests that the assumptions in

Theorem 3.2 can likely be weakened, and KNG in fact produces efficient mechanisms for an even
broader set of problems than Theorem 3.2 prescribes.

5 Conclusions

In this paper we presented a new privacy mechanism, KNG, that maintains much of the flexbility of
the exponential mechanism, while having substantially better utility guarantees. These guarantees
are similar to those provided by objective perturbation, but privacy can be achieved with far fewer
structural assumptions. A major draw back of the mechanism is the same as for gradient descent,
which can have trouble with local minima or saddle points. Two interesting open questions concern
the finite sample efficiency of KNG vs objective perturbation and if KNG can be adapted or combined
with other methods to better handle multiple minima.

We also believe that KNG has a great deal of potential for handling infinite dimensional and nonlinear
problems. For example, parameter spaces consisting of Hilbert spaces or Riemannian manifolds
have structures that allow for the computation of gradients, and which might be amenable to KNG.
With Riemannian manifolds, the gradient is often viewed as a linear mapping over tangent spaces,
while in Hilbert spaces, the gradient is often treated as a linear functional. A major advantage of
KNG over other mechanisms is the direct incorporation of a general K-norm. Awan et al. [2019]
showed that the exponential mechanism has major problems over function spaces, which are of
interest in nonparametric statistics. These issues could potentially be alleviated by KNG with a
careful choice of norm. Many interesting challenges remain in data privacy, especially if there is
additional complicated structure in the parameters or data.

KNG has strong connections with prior DP mechanisms, especially the exponential mechanism
and objective perturbation. Indeed, like nearly every privacy mechanism, KNG can be phrased as
very particular type of exponential mechanism, however this doesn’t provide insight into why KNG
achieves better statistical properties. In particular, a key point is to consider the objective function
that motivated the original statistical summary, which, when used with KNG produces sanitized
estimators with better statistical performance than the classic implementation of the exponential
mechanism.

One downside of KNG is the issue of sampling, which is similar to the exponential mechanism
in that sampling from these distributions is, in general, non-trivial. We show that for mean and
quantile estimation, KNG results in distributions that are efficiently sampled. However, for linear
and quantile regression, we used a one-at-a-time MCMC procedure (also used for exponential
mechanism). Just like sampling from an posterior distribution, developing a convenient sampling
scheme is case-by-case, but often a simple MCMC procedure works well in practice.

Acknowledgements

This research was supported in part by NSF DMS 1712826, NSF SES 1853209, and NSF SES-153443
to The Pennsylvania State University. The first author is also grateful for the hospitality of the Simons
Institute for the Theory of Computing at UC Berkeley.

References

Charu C Aggarwal and S Yu Philip. A general survey of privacy-preserving data mining models and
algorithms. In Privacy-preserving data mining, pages 11–52. Springer, 2008.

9
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