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Abstract— Actuator power consumption is a limiting factor
in mobile robot design. In this paper we introduce the concept
of an energy-recycling actuator, which uses an array of springs
and clutches to capture and return elastic energy in parallel
with an electric motor. Engaging and disengaging clutches ap-
propriately could reduce electrical energy consumption without
sacrificing controllability, but presents a challenging control
problem. We formulated the optimal control objective of
minimizing actuator power consumption as a mixed-integer
quadratic program (MIQP) and solved for the global minimum.
For a given actuator design and a wide range of simulated
torque and rotation patterns, all corresponding to zero net
work over one cycle, we compared optimized actuator energy
consumption to that of an optimized gear motor with simple
parallel elasticity. The simulated energy-recycling actuator con-
sumed less electrical energy: 57% less on average and 80% less
in the best case. These results demonstrate an effective approach
to optimal control of this type of system, and suggest that
energy-recycling actuators could substantially reduce power
consumption in some robotics applications.

Index Terms— Optimization and optimal control, force con-
trol, prosthetics and exoskeletons

I. INTRODUCTION

Many useful robotic tasks require performing almost no

net positive mechanical work on their environments. These

low net work tasks include a diverse range of behaviors such

as robotic locomotion [1], pick-and-place [2], and in some

cases lower limb prosthesis [3] and exoskeleton [4] assis-

tance. Although these tasks do not inherently require large

amounts of energy input, mobile robotic actuator inefficiency

often leads to short run times and large batteries.

A. Electric Motors

Electric motors provide the versatility and controllability

required to perform a wide range of tasks, but this perfor-

mance comes at the cost of poor system efficiency. As motors

are inefficient at low velocities, efficiency can typically be

improved by employing a high gear reduction. However, high

gear ratios lead to an increase in weight and inertia and

often substantial losses due to gear friction. Additionally,

high gear ratios can create non-backdrivable transmissions,

which preclude the option of regenerative braking and can

complicate torque sensing [5]. Research focusing on efficient

actuation for quadrupedal locomotion has shown promising

results by designing with a large motor radius, low gear ratio,

well-tuned series stiffness, and efficient drive electronics [6].
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However, ohmic losses inherent to electromagnetic actuation

leave significant room for improvement.

B. Parallel Elastic Elements

Placing elastic elements in parallel with a robotic joint

allows for passively generating torques at no additional

power consumption costs. When placed in parallel with a

motor on the same joint, this configuration is referred to as

a parallel elastic actuator. When designing actuation for a

specific task, the spring characteristics can be tailored such

that the elastic element offloads the torque requirements of

the motor [7]. This allows for lighter, lower-power motors,

and often lower gear ratios which can reduce gearbox

mass and losses [8]. Parallel elastic elements can also be

used to passively shift the equilibrium point of a robotic

joint, which can be especially useful in reducing power

consumption for serial link robots that need to support their

weight under gravity [9]. A downside of parallel elasticity is

increased motor torque requirements when countering the

elastic torques [8]; elasticity that is useful for one task

may be detrimental for another. For example, the parallel

elastic stiffness at a hip joint that is useful for walking on

level ground would be detrimental for stair climbing, which

requires a different neutral joint position.

C. Clutches

Whereas motors typically require high power consumption

to produce static torques [10], active mechanical clutches

have the potential to operate under high torques at a fraction

of the power consumption [3]. Clutches can also improve

parallel elastic actuator efficiency and robustness by only

engaging elastic components when it is beneficial [7] [11].

However, in many cases clutch power consumption is still

significant, and the additional energy cost of transport-

ing added clutch mass can offset the energy savings pro-

vided. Devices with conventional clutch and spring elements

have demonstrated capture and return of system kinetic

energy with the goal of reducing actuator power consump-

tion [8] [11]. However, as these systems only consist of a

single spring, active clutch control can only dictate when a

spring is engaged but not the corresponding spring torque.

To avoid the power consumption costs of active clutches,

many devices have been designed with passive clutches.

Passive mechanical clutches can be designed to engage or

disengage at certain angles [4], or velocities [12] or engage

upon the application of motor torques [13]. Passive clutches

can also reduce power consumption by disengaging drive

components and allowing outputs to swing freely according



to the passive system dynamics [13]. However, as with other

passive devices, the power savings of passive clutches comes

at the cost of versatility.

Electroadhesive clutches are an emerging technology

that can combine the controllability of conventional ac-

tive clutches with the low energy consumption of passive

clutches. They have up to ∼10× improvements in weight and

∼1000× improvements in power consumption per unit force

compared to conventional electromagnetic or magnetorheo-

logical clutches [14], and can be engaged or disengaged in

under 30 ms [15]. Electroadhesive clutches consist of two

thin, flexible electrodes with a large overlap area that can

slide freely past each other when disengaged but adhere

and resist shear forces when a high voltage is applied [16].

Although electroadhesive clutches require high voltages, they

exhibit very low power consumption [15]. These clutches are

lightweight, thin, and planar, so each clutch can be connected

in series with a planar spring and multiple clutched-springs

can be stacked in parallel for discrete stiffness selection.

Highly efficient and lightweight active stiffness control en-

ables exciting new design possibilities for robotic actuation.

II. ENERGY-RECYCLING ACTUATOR

A. Actuator Concept

The energy-recycling actuator consists of a parallel array

of springs, each connected to two clutches. This allows each

spring to be either engaged to a base frame and held in

place, thereby maintaining its elastic energy, or connected

to an output, thereby applying a force to its environment.

By using multiple clutched springs in parallel, all connected

to the same output, we can achieve discrete force control.

To keep mass and power requirements low, planar natural

rubber tension springs can be used for energy storage and

electroadhesive clutches can be used for control. This is

conceptualized with a side view of a single spring in Fig. 1.
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Fig. 1. Cross hatching shows engagement between clutch electrode pairs.
Spring electrodes are shown in gray. (a) The spring is engaged to the frame
and held in place while the output moves freely. (b) The spring force is
transmitted to the output. (c) The spring has contracted and performed
positive work. (d) The spring has extended and performed negative work.
(e) The spring returns to its initial energy and clutch state.
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Fig. 2. One rotary configuration for an energy-recycling actuator, with
each clutched spring and the motor connected to the same output shaft. At
this instant, two springs are engaged to the output.

The principle of operation of an energy-recycling actuator

is illustrated by a scenario in which the springs act on a

pulley to raise and lower a mass against gravity. Engaging

all the springs to the output will cause the mass to accelerate

upward, gaining kinetic and gravitational potential energy,

while the springs lose equivalent elastic energy. Disengaging

some of the springs from the output will cause the mass

to accelerate downward. By engaging more springs we may

slow the descent and transfer the potential and kinetic energy

of the mass into elastic energy in the actuator. At all times

the total system mechanical energy remains constant.

Even for true zero net work tasks like moving a mass

cyclically under gravity, elastic losses and friction will lead

to a reduction in stored energy. To make up for these

losses, we can add a motor in parallel with the springs.

The motor allows the actuator to perform positive work and

improves torque tracking resolution; the clutches can only be

controlled discretely, whereas motor torque can be controlled

continuously. Because the springs in the actuator are largely

responsible for torque generation, the peak torque and peak

mechanical power requirements for the motor in the actuator

can be significantly lower than for the actuator itself. One

possible actuator configuration is shown in Fig. 2. In this

rotary configuration all of the springs and the motor apply

torques about the same output shaft. Bidirectional torques

could be achieved with a similar design by placing clutched

springs on opposing sides of the output shaft. In some cases,

such as ankle exoskeleton assistance, unidirectional torque is

sufficient [16].

III. ENERGY-RECYCLING OPTIMAL CONTROL PROBLEM

A. Control Problem Formulation

In this section we pose actuator control optimization

as a torque control problem, where the actuator tracks a

predefined reference torque τref while acting on a system

whose displacements are assumed. This approach can be

used for offline optimization of arbitrary scenarios, provided

that the target torques and displacements are dynamically

consistent.

We consider an actuator with n springs and a discrete-

time control scheme with N +1 time points in the planning

horizon. At time ti, the control inputs for the actuator are



the binary clutch control vector ui ∈ {0, 1}n, and the

commanded motor current Iim ∈ R. We will use ui
j = 1

to denote that the jth spring is engaged to the output, and

ui
j = 0 to denote that the jth spring is engaged to the base

frame. The state vector x ∈ Rn gives the position of the

springs in the actuator. As the displacements are assumed to

follow a reference trajectory, the state vector does not include

the output position or velocity.

1) Torque Output: The total torque output from the actu-

ator is the sum of the spring and motor torques given by

τout = τs + τm. (1)

Natural rubber elastomer springs follow a non-linear force-

displacement relation [16]. To simplify the spring model,

we linearized the spring force over a specified displacement

range. With this linearization, the torque generated by an

individual spring can be given as

τs,j = rj (bj + kjxj) , (2)

where rj is the pulley radius for the jth spring, bj is the

baseline force that the spring will exert at xj = 0, and kj
is the linearized stiffness. We define b, k, r ∈ Rn for the

baseline force, linearized stiffness, and pulley radius of the

springs respectively. We also define a stiffness matrix K and

a radius matrix R with k and r on their respective diagonals.

The total spring torque exerted on the output is then given

by

τs = (b+Kx)
T
Ru. (3)

We consider the torques required to compensate for the

inertia of the motor and gearbox leading to a total motor

output torque given by

τm = τem − Jeω̇, (4)

where τem is the electromechanical contribution to gearbox

output torque and Je is the effective motor-gearbox inertia

as seen by the output shaft. We consider a motor-gearbox

model which accounts for energy losses by assuming motor

Coulomb friction and fixed gearbox efficiency. Motor fric-

tion, which always opposes motor motion, is given as

τf = −ktINL · sign (ω) , (5)

where kt is the motor torque constant and INL is the motor

no-load current. The sign of the gearbox losses depends on

whether the motor is driving the system output or being

driven by it [17], leading to the switched equation

τem =

{
αη (ktIm + τf ) Im · sign (ω) ≥ INL

α 1
η (ktIm + τf ) Im · sign (ω) < INL,

(6)

where η is the gearbox efficiency and α is the gear ratio.

2) System Dynamics and Constraints: The springs that are

clutched to the base frame maintain their positions, while the

springs that are clutched to the output will move. This gives

the discrete time state update equation

xi+1 = xi −ΔθiRui, (7)

where Δθi is the output displacement from ti to ti+1.

Due to the finite stiffness of the electrodes, the springs

also move at the instant when clutch control is changed;

the newly-engaged electrodes stretch, transferring elastic

energy from the spring to the clutch and causing the spring

to relax slightly. Denoting the clutch stiffness as kc, the

spring displacement before relaxation as xi−1
j , and the spring

relaxation distance as dj , force equilibrium is reached when

bj + kj
(
xi−1
j − dj

)
= kcdj . (8)

The clutch transition dynamics that occur when the clutch

control vector is changed are then given by

xi
j = xi−1

j + dj
(
2ui

ju
i−1
j − ui

j − ui−1
j

)
. (9)

Here we use an electrode stiffness of 24 kN·m−1 based on

experiments with similarly sized electrodes [14].

In addition to the equality constraints on the dynamics,

we enforce an equality constraint on the output torque of the

actuator given by

τ iout = τ iref. (10)

To ensure perfect torque tracking at the instant when the

clutch control is changed, we allow motor current, and

thereby torque, to change instantaneously to account for the

spring torque before and after the clutch transition.

To prevent exceeding the voltage capabilities of the motor

driver or overheating the motor we add two inequality

constraints on the commanded current. Here we ignore the

effects of motor inductance and assume the drive voltage v
can be related to the motor current by

vi = IimRm + keαω
i (11)

where Rm is the winding resistance and ke is the speed

constant (ke = kt). We assume a maximum drive voltage of

±56 V and constrain the voltages to be within this range.

The motor nominal current Inom dictates the continuous

thermal power dissipation that can be achieved without

damaging the motor. To prevent overheating the motor, we

add a constraint that the integral of the Joule heating over

the planning horizon is less than the maximum allowable

thermal power dissipation, given by

N−1∑
i=0

ti+1 − ti

2
(Iim)2Rm ≤

N−1∑
i=0

ti+1 − ti

2
I2nomRm, (12)

where we use trapezoidal integration instead of simple sum-

mation to account for the discontinuities in motor current at

clutch transitions.

3) Cost Function: The total power consumption of the

actuator includes power consumption from the motor and the

electroadhesive clutches. Here we ignore power losses from

the motor driver electronics and assume the power consumed

by the motor at time ti is the product of the current and drive

voltage given by

cim = Iim
(
IimRm + keαω

i
)
. (13)

Assuming a clutch capacitance of 20 nF and an operating

voltage of 300 V the estimated energy consumption per



clutch change is 1
2cv

2 ≈ 0.9 mJ, which we will denote ec.

Here we ignore the clutch leakage currents, which will only

contribute losses of ≈ 1 mW per spring [15]. The energy

consumption with each clutch transition is then given by

cic = ec

n∑
j=1

(
ui
j − ui−1

j

)2
. (14)

To prevent the springs from drifting over time and reaching

their displacement limits, we add a terminal state cost on the

spring positions given by

cp = ρ
∥∥xN − xnom

∥∥2 , (15)

where xN is the terminal state, xnom = 1
2xmax gives the

midpoints of the allowable spring displacement ranges, and

ρ is a weighting factor.

The total optimization problem is now given as

minimize
xi,ui∀i

N−1∑
i=0

[
ti+1 − ti

2

(
cim + ci+1

m

)
+ cic

]
+ cp (16)

subject to Eq. 7, Eq. 9 (dynamics constraints)

0 � xi � xmax ∀i (state constraints)

ui ∈ {0, 1}n ∀i
vmin ≤ vi ≤ vmax ∀i
Eq. 10, Eq. 12

⎫⎪⎬
⎪⎭ (control constraints).

B. Mixed-Integer Quadratic Programming

Minimizing (16) requires finding the optimal assignment

of binary variables which leads to an optimization that is

combinatorial in nature. Although there are a finite number

of possible binary assignments, a brute force approach is

intractable even for small problems.

We produce globally optimal solutions for the optimization

problem (16) by formulating it as a mixed-integer quadratic

program (MIQP). Any mixed-integer quadratic program can

be written as

minimize
y

yTQy + qT y + c

subject to A1y = b1

A2y � b2

yi ∈ {0, 1} ∀i ∈ B
ymin � y � ymax,

(17)

where y is the vector of optimization variables, Q 	 0 is

the quadratic objective matrix, q is a linear objective term,

and c is a constant. The matrices A1 and A2 are linear

equality and inequality constraint matrices, and B is the set

of indices in y that must take on binary values. If there are

no binary constraints this problem is known as a quadratic

program (QP). Quadratic programs are convex and can be

solved efficiently [18]. However, restricting certain variables

to the non-convex set of binary values makes the problem

non-convex and NP-hard [19]. Nevertheless, many efficient

algorithms for solving MIQPs have been developed.

The standard approach to constructing an optimization

problem as an MIQP is to define a vector of optimization

variables, write out the objective as a quadratic function of

the optimization vector, and write the constraints as rows in

the equality and inequality constraint matrices.

In our case, defining y to contain the state and control

variables from every step, we find the objective function

cannot be expressed as a quadratic function of y and the con-

straints cannot be constructed directly though linear equality

and inequality constraints on y. To use an MIQP approach,

we must first transform (16) into an equivalent problem of

the form (17) by introducing new auxiliary optimization

variables and constraints, allowing us to write the torque

output and dynamics with linear expressions.

We start the process of transforming the torque output into

a linear function of optimization variables by introducing

the new optimization variable zij which we would like to

be equal to xi
ju

i
j . This new variable allows us to write the

spring torque (3) as a linear function of ui and zi given by

τ is = bTRui + kTRzi. (18)

Because zij = xi
ju

i
j is a non-linear constraint, which is

incompatible with (17), we instead introduce this equiva-

lence by adding new inequalities that indirectly enforce the

constraint. Defining a new variable, in our case z, which

must be equivalent to the product of a binary variable and

a continuous variable, in our case u and x respectively, can

be accomplished by introducing the following four linear

inequalities (see [20] equation 5b)

zij ≤ xi
j,maxu

i
j (19a)

zij ≥ xi
j,minu

i
j (19b)

zij ≤ xi
j − xi

j,min(1− ui
j) (19c)

zij ≥ xi
j − xi

j,max(1− ui
j), (19d)

where xi
j,min and xi

j,max represent bounds on xi
j . Although

all these inequalities are linear, the only feasible solution

results in zij ≡ xi
ju

i
j . To incorporate z into the MIQP, we

add z to the optimization vector and we add these inequalities

as rows in the inequality constraint matrix.

Writing the electromechanical torque as a linear function

of optimization variables requires the introduction of the

binary variable δ at each time step. We let δ = 1 denote

that the motor is driving the load, and let δ = 0 denote that

it is being driven, leading to

τem = αkt

(
δη +

1− δ

η

)
(Im − INL · sign (ω)) . (20)

We also introduce the new optimization variable γ and add

inequalities to enforce γi ≡ δiIim following the same process

for the product of continuous and binary variables as in (19).

This lets us rewrite the electromechanical torque (20) as a

linear function of optimization variables given by

τem = αkt

[
γ

(
η − 1

η

)
+

1

η
Im

−
(
1− δ

η
+ δη

)
INL · sign (ω)

]
. (21)



The last step in writing the torque as a linear function

of optimization variables is to introduce inequalities that

enforce proper assignment of δ at each time step. Relating

a binary variable to the truth value of a linear inequality

can be accomplished by enforcing two inequalities (see [20]

equation 4e). From (6) we require [δi = 1] ⇐⇒ [INL −
Iimsign

(
ωi
) ≤ 0]. Letting ψ(Iim) = INL − Iimsign

(
ωi
)
, we

find that δ will be assigned correctly by adding the following

linear inequalities into our inequality constraint matrix

ψ(Iim) ≤ ψmax

(
1− δi

)
(22a)

ψ(Iim) ≥ ε+ (ψmin − ε) δi, (22b)

where ψmin, ψmax are lower and upper bounds on ψ, and ε
is a small number, often the machine precision.

In addition to expressing the torque output as a linear

function of optimization variables, we also need to express

the dynamics constraints using only linear equalities or

inequalities of optimization variables. The expression for

elastic losses in the dynamics (9) is non-linear and requires

the introduction of new variables and constraints. We first

introduce a binary variable gij ≡ ui
ju

i−1
j . As gij is the product

of two binary variables we can use just three inequality

constraints to enforce equivalence (see [20] equation 5a).

We also introduce continuous variables pij ≡ xi−1
j gij and

aij ≡ xi−1
j ui

j . As these are products of continuous and binary

variables we can use the process of (19) to incorporate these

variables into the MIQP by adding inequalities. This allows

us to rewrite (9) as a linear equality given by

xi
j = xi−1

j +

(
bj

kc + kj

)(
2gij − ui

j − ui−1
j

)
+(

kj
kc + kj

)(
2pij − aij − zi−1

j

)
. (23)

When the motor is doing negative work, using (13) to

model the power consumption will often overestimate the

benefits of regenerative braking. To ignore regeneration, we

can constrain motor power consumption to be non-negative

by letting cim be an optimization variable which should be

equivalent to max{Iim
(
IimRm + keαω

i
)
, 0}. This is done

by adding the following constraints

cim ≥ 0 (24a)

cim ≥ Iim
(
IimRm + keαω

i
)
. (24b)

These inequalities and the inequality constraint on Joule heat-

ing convert the optimization problem from a standard form

MIQP to a mixed-integer quadratically-constrained quadratic

program (MIQCQP). Although often more computationally

demanding than standard MIQPs, large MIQCQPs have been

solved in real time for robotic locomotion tasks [21].

IV. SIMULATIONS

A. Test Cases

To compare energy-recycling actuator performance to a

conventional motor-gearbox system without biasing the de-

sign towards a specific task, we generated 100 random cyclic

torque and velocity test profiles that result in zero net work.

Each test profile satisfies
∫ T

0
τref(t)ω(t) dt = 0, where T is

the cycle period. For each profile the maximum absolute

position was in the range of 30◦ to 40◦, with a minimum

change of 30◦ over the cycle. The peak torque was 30 N·m
and the minimum torque was between 0 and 30 N·m.

B. Optimal Motor Selection

To make a fair comparison between the energy-recycling

actuator and a conventional motor and gearbox with parallel

elasticity, we first ran an optimization to find the motor-

gearbox parallel-elastic configuration that gave the lowest

average cost over the test profiles using the motor-gearbox

model described above. To select a motor we ran a brute

force optimization on motor and gearbox parameters from

the Maxon-Motor online catalog [22] (data available at [23]).

For a given set of motor parameters, the total output torque

can be written as a linear function of the drive current

and the parallel-elastic spring parameters, allowing us to

generate one large mixed-integer quadratic program that

includes all of the test profiles and optimize the parallel-

elastic parameters and the control simultaneously for each

candidate motor. We ran two optimizations to account for

scenarios with and without regenerative braking. We found

Maxon motor 578298, gearbox 223091, and motor 634043,

gearbox 223087, to be optimal for the cases with and without

regeneration, respectively.

C. Actuator Parameters

For the simulations presented here we used n = 5 springs

as this struck a good balance between actuator performance

and computational complexity. We considered an actuator

with a length of 55 cm, width of 15 cm, and maximum

output shaft pulley radius 11.5 cm. For each spring we

used experimentally determined material constants from [14].

The spring displacement ranges were selected so that each

spring could always be engaged to the frame or the output

for 0 ≤ x ≤ xmax (assuming a clutch holding force per

overlap area of 7800 N·m−2). We used the same motor for

the energy-recycling actuator as for the simple parallel elastic

configuration but used a slightly lower gear ratio because this

improved performance (with regeneration: Maxon gearbox

223089, without regeneration: gearbox 223086).

D. Simulation Settings

For all simulations we used a cycle time of T = 1 second,

a clutch control frequency of 10 Hz, and a motor control

frequency of 40 Hz. The clutches are controlled at a lower

frequency due to limits on their engage and release times. We

used the commercial solver Gurobi to generate solutions [24].

For each torque-displacement profile, we optimized the

actuator control for 10 cycles using a receding horizon

control approach. Each trajectory begins with x0 = xnom and

all clutches engaged to the frame. To generate a trajectory,

we optimize the control for the upcoming 1.1 cycles and

execute the first 0.1 seconds of the plan, corresponding to

one change of the clutch control vector. After updating the

clutch control, we reoptimize for the following 1.1 cycles



using the result of the previous optimization to warm start

the solution and improve the solve time. In the following

section we report values from the last of the 10 cycles.

The computations were run on a desktop computer with

an Intel i7-8700 3.20 GHz processor with 6 cores. All results

reported here are within 0.1% of the true optimal values.

V. RESULTS

The energy-recycling actuator used significantly less en-

ergy than the motor with optimized parallel elasticity. The

average reduction in electrical energy consumption over all

the profiles tested was 57% (50% with regeneration), with

a maximum reduction of 80% (86% with regeneration). The

data from the last cycle for the profile with the largest percent

reduction are shown in Fig. 3. The energy-recycling actuator

resulted in lower energy consumption for all 100 test profiles.

The energy-recycling actuator required lower peak motor

torque than the motor with a parallel spring, on average. The

mean peak electromechanical torque for the motor in the

actuator was 12.6± 2.3 (13.4± 2.6 with regeneration) N·m
whereas the mean peak torque from the motor with a parallel

spring was 18.7± 0.7 (18.8± 3.2 with regeneration) N·m.

The computation time for the initial control step was

16.3 ± 16.6 seconds. For all subsequent steps the average

computation time was 4.8± 4.7 seconds, where the increase

in speed is due to warm starting the solver with the solution

from the previous step.

Fig. 3. Best case percent energy reduction for the no-regeneration case.
The springs in the energy-recycling actuator provide most of the required
torque and the contributions from the motor are small.

VI. DISCUSSION AND FUTURE WORK

We found that an optimally controlled energy-recycling ac-

tuator can halve electrical power consumption in some tasks.

For mobile robots or exoskeletons, this could substantially

reduce battery mass or increase operating time. Reduced

peak motor torque requirements might also allow for smaller

motors and gears with less mass.

A variety of simplifying assumptions have been made for

the actuator model to make the control scheme tractable.

In this work we used a simple linear spring model for the

elastomer spring. If this linearization proves too coarse, a

piecewise affine approximation could be used at the cost

of increased computational complexity. Here we also ig-

nore potential hysteresis resulting from viscoelastic spring

properties. Although any elastomeric material will have

some hysteresis, natural rubbers exhibit significantly lower

hysteretic energy loss than most elastomers [25].

Our model also makes some simplifying assumptions

about the system dynamics when the clutch control is

changed by assuming that clutch states and motor current

can change instantaneously. In our intended robotic and

exoskeleton applications, the energy-recycling actuator will

be interacting with substantial inertia. As such, transients

in the torque production on the order of 50 ms are not

expected to significantly affect the resulting trajectories.

External disturbances and model errors will eventually cause

the joint trajectory to drift from the initial reference. This

drift will be compensated for by periodically replanning new

dynamically consistent trajectories.

It is unlikely that the MIQP formulation for (16) can be

solved to optimality with the restrictions imposed by real

time control for mobile robots. A simple solution to this

problem is to set a time limit on the solver and return the

best feasible solution found within the allowable computation

time. Another approach is to use algorithms that approxi-

mately solve MIQPs [19], which may sacrifice optimality

guarantees but can produce usable solutions very quickly.

VII. CONCLUSIONS

Here we have presented the concept of an energy-recycling

actuator to reduce electrical energy consumption in robotic

systems. We have shown how optimal control of the energy-

recycling actuator can be solved by constructing the problem

as a mixed-integer quadratic program. We have presented

simulations comparing the energy-recycling actuator to a

standard motor with parallel elasticity, each under optimal

control, under a wide range of test trajectories with zero net

work. We found that the energy-recycling actuator reduced

power consumption by a factor of two on average and five

at best. These promising simulation results motivate future

design optimization and hardware implementation.
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