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Goals

 Physically based for all types of surfaces (sea-ice, snow, 
vegetation, frozen ground)

 Closing energy budget at all space-time scales

 Reducing model inputs and parameters

 Using remote sensing data. 



• Model Formulation

with

Maximum Entropy Production (MEP) Theory
• The Maximum Entropy Production (MEP) 

Model (Wang and Bras, 2009, 2011)
– close surface energy budget automatically
– does not use wind speed, air temperature 

and humidity, and surface roughness 
lengths explicitly

– has reduced uncertainty in surface heat 
fluxes bounded by that of surface radiations.
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[Wang et al, 2014]Water-Snow-Ice Surface
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Fluxes Surface Energy 
Budget

Bulk Variables Model 
Parameters

Modeling Error

Bulk not closed temperature & 
moisture gradient

wind speed, 
roughness, etc.

semi-empirical 
(first order 
closure)

MEP automatically 
closed

not used not used First-principles 
(MaxEnt, MEP, 
MOST)



Surface 
Energy 
Budget

Input data Model  
Parameters

Modeling Error

Penman Method Balanced Air temperature, 
humidity, ground 
heat flux

Wind speed, 
roughness 
lengths, etc.

Semi-empirical (first 
order closure)

Bulk Method Not balanced Temperature & 
moisture gradient

Wind speed, 
roughness 
lengths, etc.

Semi-empirical (first 
order closure)

MEP Method Balanced Not used Not used First-principles 
(MaxEnt, MEP, 
MOST) constrained 
by radiation data
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SHEBA field experiment 
10 April to 30 May 1998

[Wang et al., 2014] Sea Ice



E: latent heat flux 
H: sensible heat flux
G: ground heat flux 

[El Sharif et al., 2019]

Frozen Ground
(Permafrost)



PET; potential evapotranspiration
P-M: Penman‐Monteith Model

[El Sharif et al., 2019]

Vegetation
(Tundra)



Results
Climatology – Latent Heat Flux
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E (MEP)

E (GLDAS)

E (Jung et al., 2010)

E (MERRA) 𝑞𝑠 (MERRA)

𝑅𝑛 (CERES)

𝑇𝑠 (CERES)

Model Inputs



Results
Climatology – Sensible and Ground Heat Fluxes
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H (MEP)

Q (MEP) Q (MERRA)

H (MERRA)

Q (GLDAS)

H (GLDAS)



Methodology – The MEP Model
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Methodology – The MEP Model
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Conclusions

• The trends of global land evapotranspiration are positive (0.41 ± 0.23 W m-2 

yr-1) attributed to the increase of surface radiation energy and humidity. 

• The trends of sensible heat flux are positive globally but statistically 
insignificant (0.18 ± 0.18 W m-2 yr-1).

• The ground heat flux over continents has positive trend (0.21 ± 0.16 W m-2 

yr-1) during the model period driven by increase of surface radiation.

• The surplus surface radiation energy is mostly used to increase 
evapotranspiration. 

• The sensible heat flux and surface temperature have opposite trends.
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