

2 RELATED WORK

2.1 Set Visualization

While sets and set-typed data have not received as much attention in
the visualization literature as other data types, sets, e.g., defined by
groups with the same values of categorical attributes, are frequently
included as secondary aspects in visualizations. In contrast, we focus
our attention to sets and their relations as the primary aspect of the data.
In 2016, Alsallakh et al. [5] presented an in-depth state-of-the-art report
on set visualization, which defines a taxonomy of element-related, set-
related, and attribute-related tasks for set visualizations as well as a
classification of set visualization techniques.

The oldest and most popular set visualizations are Euler diagrams,
representing each set with a closed curve and set relations with curve
intersections. Euler diagrams generalize Venn diagrams, which show
every possible relation of the given sets. Most of the time, Euler dia-
grams do not explicitly show individual set elements, but some methods
aim for area proportionality to indicate set cardinalities. Methods for
automatically generating Euler diagrams use circles and ellipses for the
sets [47, 54, 79, 90], as well as less regular shapes [34, 65, 76, 77, 80].
While Euler and Venn diagrams are intuitive, they have limited scal-
ability and work well only for a handful of different sets [5]. Since
well-formed Euler diagrams do not always exist, some of the algo-
rithms may also produce inconsistent diagrams and non-existing set
intersections. Our aim with MetroSets is to develop an equally intuitive
set visualization technique using the well-known metro map metaphor,
but be able to better scale to larger numbers of sets with more complex
overlaps and also explicitly show all individual elements of the sets.

Another type of set visualization is based on overlaying set contours
on elements with pre-specified locations, e.g., spatial set data or sets
defined on top of node-link network drawings. Here, the set aspects
of the data are only secondary and the set visualization must adapt
to the geometric input. Bubble Sets [18] draw isocontours enclosing
prespecified point sets based on the point locations, and GMap [37]
computes Vornoi-based regions based on clusters in an embedded graph.
Both Bubble Sets and GMap may show non-existing set intersections.
MapSets [24] also enclose sets by contour curves, but using a space-
filling, convexity-optimizing, and non-overlapping style inspired by
political maps. Line Sets [3] is based on the idea of connecting the
elements of each set by a smooth and short curve that is optimized
with a traveling salesperson heuristic. There are certain visual similar-
ities to the metro map metaphor such as connecting the elements of
each set as a line or showing elements belonging to multiple sets as
interchanges. However, other aspects are quite different from metro
maps, e.g., sequences of elements belonging to two or more sets are
not shown as parallel lines and the shape of curves is not simplified and
schematized, but rather irregular and they may have many crossings
without semantic meaning. The latter is due to the fixed positions of the
set elements, which is also why Line Sets cannot be applied to abstract
set systems without given element locations. Kelp Diagrams [22] and
KelpFusion [53] extend and combine ideas from LineSets and Bubble
Sets by defining a parameter space ranging from sparse spanning graphs
to convex hulls, with the middle range resulting in bubble shapes for
local point clusters in a set and thinner links to bridge longer distances.
All the overlay techniques assume/require pre-computed point positions
and so these methods are not directly applicable for abstract set systems
as the ones considered in this paper.

The next group are techniques based on bipartite graphs, where each
set is represented as a vertex and each set element as a second type of
vertex. Then each element is connected by an edge to all sets containing
that element. Visualizations for bipartite graphs thus become of interest
and have been integrated in several systems [4,12,23,56,81]. However,
for complex set systems, the resulting layouts are dense with many
edge crossings and there is little support for set-related tasks [5].

Hypergraph layout approaches are also relevant as a set system is
naturally modeled by a hypergraph. Johnson and Pollak [41] introduced
different notions of hypergraph planarity. Many papers studied support
graphs (or supports in short), which are graphs defined on the elements
as vertex set, such that the elements of each set (or hyperedge) induce

a connected subgraph, which could then be used as the basis for a
set visualization. Of particular interest are planar supports [15, 16],
tree supports [44, 45], and path supports [14]. We note that not all
hypergraphs admit all types of supports, which may limit their general-
purpose use in practice. In our first pipeline step, we actually compute
a (not necessarily planar) path support.

Matrix-based approaches map sets and elements to rows and
columns, respectively, and marking containment by a dot. This makes it
easy to determine all elements of a set or all sets an element belongs to.
However, more complex set-related tasks typically require interaction,
so most systems are designed for interactive analysis and exploration.
Examples are ConSet [43], OnSet [67], RainBio [46], or UpSet [48].
The latter is a powerful and scalable visual analytics system with many
possibilities for interactive queries. Matrix-based methods scale well,
but have a strong dependency on row and column ordering, are less
intuitive, and require interaction with a non-trivial interface for more
complex tasks.

In linear diagrams [51, 66, 78] each set is a row in a table filled with
one or more horizontal line segments. Any vertical line intersecting
the diagram crosses a certain subset of horizontal line segments, which
indicates that these sets have a non-empty intersection (similar to an
overlap region in an Euler diagram). Linear diagrams typically do not
show individual elements of the sets, but only the set relations.

2.2 Metro Map Layout

The area of schematic metro map generation is well researched and
several papers have been published on this subject the last few years [9,
17, 61, 83, 86, 88, 89]. An overview of different algorithms up to 2014
is given in Nöllenburg’s survey paper [60]. A recent survey by Wu
et al. [91] presents a taxonomy for state-of-the-art algorithms with a
focus on the trade-off between map quality and computation speed.
These two surveys cover most of the literature on schematic metro map
generation. For applying such a schematization algorithm as Step 4
of our pipeline, a geometric input layout is needed, which is usually
derived from the physical position of rail tracks but, in the case of
abstract graphs, from an intermediate graph layout (computed in Step 3
of the pipeline).

2.3 Metro Map Metaphor

The popularity and ubiquity of metro maps in large cities world-
wide [62] has turned them them a natural metaphor for artists and
graphic designers. The familiarity and simplicity of well-designed
metro maps make them an attractive choice for catching the attention
of people and letting them delve into exploring the depicted informa-
tion. In fact, visualizations of all kinds of data have been turned into
metro-map-like pictures. Some works explore the usefulness of the
metro map metaphor by studying hand-drawn maps for various data
sets. A few examples are metro maps of cancer pathways [32], cell
signaling [52], politics [21], music [7], and project plans [57]. Others
provide an interactive editor with some layout support, but most map
creation steps being made by the user [71]. Finally, there are also mul-
tiple implemented systems and algorithms for automatically creating
visualizations inspired by the metro map metaphor. The main challenge
of these works is to turn the respective data into a graph, which in a
second step is to be drawn as a metro map.

The first step is highly application dependent and includes tree-
like neurite structures [2], coherent themes in newspaper articles and
other text documents [72, 73], plant disease progression [87], air traf-
fic routes [38], and project plans [1, 82]. In all these examples, the
definition of metro lines is either directly derived from ordered data
(e.g., using temporal attributes) or extracted through more complex
data analysis [72, 73]. None of these tools can create metro maps of
set systems, nor do they make use of hypergraph supports. Most of
the examples reported in the literature have a low degree of interaction
between the different metro lines. The final layout component is cre-
ated either by a simple force-based method or uses/adapts one of the
existing metro map layout algorithms (Section 2.2). For temporal data,
time is usually mapped to the x-axis, such that the layout only needs to

2

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

compute the y-coordinates. Such temporal metro maps, where all lines
are x-monotone, are quite similar to Storyline visualizations [27,50,84].

3 THE METROSETS PIPELINE

Throughout this paper, we model the input set system as a hypergraph
H = (V,S). Hypergraphs are a generalization of ordinary graphs
which allow edges to contain any number of vertices. These hyperedges
then correspond to sets, while their vertices correspond to elements.

A metro map layout of a hypergraph is a drawing of a graph G =
(V,E) with the property that every hyperedge E ∈ S corresponds to a
path v0, v1, ..., vn in G. This drawing should follow the conventions
of the metro map metaphor, spelled out in the design goals below.

We describe a framework for creating such drawings from input
hypergraphs. The framework is modeled as a flexible, four-step pipeline
with mandatory pre- and postprocessing steps (see Figure 1).

• In the preprocessing step we set aside and merge vertices from
the input hypergraph to decrease the problem size.

• Step 1 constructs a path-based support that defines a linear order
over the vertices of each hyperedge.

• Step 2 expands the merged vertices and reintroduces the removed
vertices from the preprocessing step.

• Step 3 creates an initial embedding of the support graph.
• Step 4 schematizes the initial layout by straightening paths, stan-

dardizing edge lengths, and setting angles to multiples of 45◦.
• In the postprocessing step, we determine optimal placement for

labels and ordering for lines along each edge.

We implemented two or more different methods for each of the
pipeline steps. To simplify the interface, we additionally provide three
preset pipeline configurations which are easy to use and suitable for
most tasks.

3.1 Design Goals

The design goals guiding MetroSets and its pipeline steps can be parti-
tioned into (i) design goals for creating and optimizing the path support
G and (ii) design goals for optimizing the metro map layout of G.

Path Support. While real metro maps have the topology defined
by geographical coordinates and physical connections between stations,
we can freely order vertices along each metro line. We define the
following design goals that are crucial for being able to find a good
layout in pipeline Steps 3 and 4.

• Conjointness/Closeness. Vertices that share the same set of hy-
peredges should be drawn closely together with conjoint lines
that avoid branching off and rejoining.

• Sparseness. To aid in creating readable layouts, we prefer bal-
anced support graphs that avoid excessively connected, dense
centers.

• Planarity. The support graph should allow a planar embedding.

Metro Map Layout. One reason for the success of the metro map
metaphor in general is that most metro maps worldwide follow a very
similar set of design rules [60, 62]. Therefore our goal for the metro
map layout style implemented for MetroSets is to be as close to the
appearance of real metro maps as possible. In particular we aim to
achieve the following design goals.

• Octolinearity. All edges of the metro map should have an octo-
linear orientation.

• Straightness/Monotonicity. Individual metro lines should have
few bends and obtuse bend angles; they should run monotonically
through the map.

• Edge Crossings. Crossings between metro lines that are not
interchange stations should be avoided, especially if the support
is planar.

• Edge Uniformity. The distances between pairs of adjacent sta-
tions should be as uniform as possible.

Fig. 2: Illustration of a two-opt move, the local improvement used
by the two-opt heuristic. Two edges are removed from the path and
vertices are reconnected to reduce the total length of the path.

• Station Separation. Unrelated metro lines and stations should
keep a sufficiently large distance.

• Line Crossings. Parallel metro lines sharing the same tracks
should cross as little as possible.

• Colors and Symbols. Metro lines should have contrasting and
distinguishable colors. Stations are shown as small circle symbols
with larger circles for interchanges.

• Label Placement. Stations should be labeled unambiguously by
their names without overlaps, ideally horizontally aligned and
coherently on the same side of each line.

Note that not all design goals align well. For example, monotonicity
and octolinearity can literally and figuratively pull the layout in different
directions. With this in mind, we opt for a modular multi-step pipeline
with different algorithms for each stage, making it possible to add new
methods or design goals. As having many options and choices could
make MetroSets difficult to use, we provide several “presets:” balanced,
simplicity, max-speed. Each of these presets selects a complete path
through the pipeline, requiring no options to be selected or parameters
to be set.

3.2 Preprocessing and Support Graph Extraction (Step 1)

Because the support graph construction is computationally expensive,
we begin by preprocessing the input hypergraph into a condensed
version which preserves all set intersections. We do this by temporarily
discarding all vertices which belong to only a single hyperedge, and
merging together all vertices which belong to the same hyperedges.
The discarded and merged vertices are then returned after the support
graph has been constructed.

The input to the first pipeline step is then the compressed hypergraph
H = (V,S), where V is the set of vertices, and S ⊆ 2V is the set of
hyperedges. The desired output of Step 1 is a path-based support graph
G = (V,E), which has the property that every hyperedge E ∈ S
induces a Hamiltonian subgraph in G, i.e., the vertices of E can be
spanned by a path [14]. To do so, we must determine an order in which
this path should visit the vertices in each hyperedge. The union of these
ordered paths, one for each hyperedge, is our support graph G. We
propose two methods for constructing the support graph.

3.2.1 Two-Opt Heuristic

The motivation behind this method is the idea that vertices which belong
to the same or similar groups of hyperedges should be placed closely
together in our final drawing, to emphasize their similarity. Thus, we
want to choose our paths in such a way that vertices which share many
hyperedges are visited sequentially. To this end, we assign each pair
of vertices along a hyperedge a similarity score, which is the number
of hyperedges that both belong to. For example, if vertex u belongs
to the hyperedges {A,B,C} and vertex v belongs to the hyperedges
{B,C,D}, then their similarity score is 2. We then treat the problem
of finding an optimal order in which to visit the vertices as a travelling
salesperson (TSP) path problem, where the cost of an edge between
two vertices is the reciprocal of their similarity score. We employ the
two-opt heuristic [20] to find such a path.

The two-opt heuristic is a local search method for solving TSP
instances. While most TSP heuristics, including two-opt, are defined
in terms of finding good cycles, the two-opt heuristic can be easily
modified to find a good path. The two-opt heuristic also has the benefit
of not requiring that the underlying space is metric. Two-opt starts with

3

an initial path, removes two edges, and then reconnects the dangling
vertices to create a new path (called a two-opt move; see Figure 2).
It then checks to see if the new path is shorter than the initial one.
After attempting every possible two-opt move, it chooses the one which
produces the largest improvement. This process is repeated until every
possible move fails to improve upon the initial path, at which point we
say the path is two-optimal [40]. We construct our initial path using
the nearest neighbor heuristic, whereby we start at an initial vertex and
recursively move to the closest neighbor that hasn not been visited yet.
We then improve this path with the two-opt heursitic.

The two-opt algorithm is well studied, in part because it is a key
component of the popular Lin-Kernighan algorithm [49]. Despite a

relatively poor approximation ratio of
√

n/2, where n is the number
of cities to be visited, it often performs well in practice [36]. Because
our TSP problem is non-metric and involves finding a path, rather than
a cycle, we performed extensive quantitative analysis on random TSP
instances to decide if the two-opt heuristic was appropriate for our use
case. We found that, when using the nearest neighbor heuristic for
initial route construction, the two-opt heuristic produced results that
were on average only 5% worse than the optimal solution, found using
an ILP solver; more details in supplementary materials, section A.1

3.2.2 Consecutive Ones Method

The second algorithm extracts a support graph by finding a permuta-
tion of the vertices, which maximizes the conjointness of metro lines.
Two metro lines are conjoint if they are drawn as a pair of parallel
lines between two vertices, thus reducing the number of edges in the
support graph. While it is NP-complete to find a support graph with
a minimal number of edges [14], the number of edges in the graph
inversely correlates with the consecutive ones property of the incidence
matrix A = (aij), where an entry aij = 1 iff the vertex vi is in the
hyperedge Ej . A matrix has the consecutive ones property if there
exists a permutation of its columns such that all non-zero elements of
each row appear consecutively; see Figure 3.

This is important because if an incidence matrix has the consecutive
ones property, then there is a planar support graph [45]. Therefore, we
try to minimize the violation of the consecutive ones property. To solve
the problem of finding an optimal or near-optimal permutation of the
vertices we model the consecutive ones property as a TSP instance,
where the resulting optimal route is the permutation of vertices of the
support graph. For the calculation of the cost matrix C = (cij), we
consider each column i in the incidence matrix as a vector ai. The cost
of traversing from vertex vi to vj in the TSP is cij = ‖ai − aj‖. We

additionally add a dummy vertex whose column vector is
−→
0 , which

functions as the initial or terminal vertex of the route. This is necessary
as otherwise we would incorrectly ignore the cost of the last vertex in
the route.

The implementation for finding an exact solution uses the mixed-
integer-programming (MIP) problem formulation of Miller et al. [55].
We constrain the maximal time for finding a solution by stopping the
MIP solver after too much time has passed and falling back to using
the simulated annealing heuristic to find an approximate solution.

For each hyperedge, we can then construct a path by beginning at the
dummy vertex we introduced and traversing the tour, adding vertices
as we encounter them. The union of all of these paths then becomes
the support graph.

3.3 Expansion of Condensed Graph (Step 2)

Once the support graph has been created, we re-introduce the vertices
that were removed during the earlier simplification. This involves
two steps: expanding the vertices that were condensed into a single
vertex (see Figure 4a) and inserting the vertices which only belonged
to a single-set. The first step is straight-forward, but we propose two
different methods for inserting single-set vertices.

3.3.1 First Viable

With this method, all single-set vertices are simply prepended to the
path corresponding to their hyperedge; see Figure 4b. This approach
can be aesthetically appealing because it mimics the structure of many

v1 v2

v3 v4 v5 v6

v7 v8

(a) Path-based support of Π1.

v1

v2

v3 v4 v5 v6

v7

v8

(b) Path-based support of Π2.

v3 v1 v7 v4 v5 v2 v8 v6

s1 1 1 0 1 1 1 0 1

s2 1 0 1 1 1 0 1 1

(c) Incidence matrix of Π1.

v1 v2 v3 v4 v5 v6 v7 v8

s1 1 1 1 1 1 1 0 0

s2 0 0 1 1 1 1 1 1

(d) Incidence matrix of Π2.

Fig. 3: Consecutive ones property. Both (a) and (b) are valid support
graphs. (a) shows the path-based support of incidence matrix (c), while
(b) shows the support graph of incidence matrix (d). Permutation Π2

with incidence matrix (d) has the consecutive ones property.

real-world metro systems, with a dense cluster of interconnected sta-
tions near the middle of the graph in the city center, and long, solitary
lines leading to the suburbs. Problems can arise with larger datasets,
however. If the cluster of stations in the center of the metro map is too
large, or its vertices are of too high degree, then it becomes extremely
difficult to draw the map in an octolinear style, and the resulting layout
is often both difficult to read and only vaguely reminiscent of a metro
map. This is the motivation behind our second insertion algorithm.

3.3.2 Split Insert

With this method, we also insert single-set vertices inside our paths, and
not only at the periphery. The possible candidates for locations to insert
are all of the edges which are traversed only by the given hyperedge.
Inserting single set vertices into the path at these locations has the
effect of spreading the center of the graph and spacing high-degree
vertices further from each other. This leads to a more readable layout,
and one which more closely resembles a metro map; see Figure 4c. In
order to preserve some of the aesthetic advantages of the first viable
insertion method, we conserve half of the single-set vertices to place at
the beginning of the path, and distribute the rest evenly along all of the
candidate edges.

We tried other strategies for this step, including maximizing the girth
of the resulting graph, and placing vertices at both ends of the path.
The results were somewhat mixed: more space efficient in some cases,
or introducing edge crossings and decreasing readability in other cases.

3.4 Initial Layout and Refinement (Step 3)

The input to this step is a path-based support graph G = (V,E). Our
goal is to create an initial embedding of this graph into the plane, and
we propose two methods for constructing this embedding.

3.4.1 Repeated Refinement of Paths

As the name suggests, this method refines paths by repeatedly reorder-
ing the vertices along them. We implement two different pipeline
options which follow the same essential logic, but utilize different pre-
existing layout algorithms as a basis. One uses the Kamada-Kawai
algorithm [42] as implemented in NetworkX [31] and the other uses
Neato from graphviz [25]. We begin by creating an initial layout of the
support graph. Each hyperedge in the initial input corresponds to a path
in G. However, these paths can initially meander and self-intersect and
so we reorder the vertices along them.

4

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

{v4, v5}v1

{v2, v3}

v1

v2 v3

v4 v5

(a) Expansion of merged vertices

v1

v2 v3

v4 v5

v9

v8

v6

v7

v10

v11

(b) First Viable

v1

v2 v3

v4 v5

v9

v8

v6

v7

v10

v11

(c) Split Insert

Fig. 4: Support Graph before and after vertex expansion (a). The same
support graph after the single-set vertex insertion (b) and (c).

Once again, we treat this as a TSP problem. This time, however,
we are not merely concerned with the similarity score between two
vertices; we also want to take into account the Euclidean distance
between vertices in our initial embedding. The numeric ranges of these
two values can vary wildly, so we say that the cost of an edge between
two vertices is the geometric mean of the two.

After we solve the TSP problem for each of the hyperedges, we once
again take the union of those paths as the new path-based support graph
and compute a new layout. The result is a new embedded graph whose
paths are better behaved. This process can be repeated as many times
as needed until the paths stabilize.

It is highly desirable to avoid self-intersecting paths, as this can be
confusing and it does not normally occur in metro maps. One of the
advantages of the two-opt heuristic is that it naturally eliminates most
self-crossings, provided the underlying space is metric [40]. To take
advantage of this property, on the final iteration, we drop the similarity
score and base costs purely on Euclidean distance.

3.4.2 Force-Based Initial Layout

This method relies on a modified implementation of the Fruchterman-
Reingold spring embedder algorithm [29]. To improve performance
and reach faster convergence to an equilibrium state, we implemented
an adaptive temperature scheme [28]. The ideal edge length is set to
a constant target length and the drawing area is unrestricted. We set
an iteration threshold of 5000, after which we terminate the algorithm
even if it has not converged to an equilibrium state before. We provide
two options for initial positions of the vertices: random positions
and positions computed via multidimensional scaling (MDS) using
the graph theoretic distances [19]. MDS requires fewer iterations for
convergence and is the default option.

3.5 Schematization (Step 4)

At this stage we have an embedded path-based support graph and we
modify its layout to obtain uniform edge lengths and to impose the
constraint of octolinearity: each edge should have a slope which is a
multiple of 45◦. We offer two methods for schematization.

3.5.1 Least Squares Approximation

The first schematization method is adapted from the work of Lutz et
al. [86]. The goal of schematization is to produce a layout, where every
edge has a uniform length and is drawn octolinearly. This is not always
possible (e.g., a triangle cannot be realized). We treat edge uniformity
and octolinearity as soft constraints and minimize the error. However,
the error function is non-linear, making it difficult and time-consuming

to optimize. To overcome this, we create a linear approximation of the
problem which can then be solved quickly.

To create an approximation, we first choose a desired angle for
each edge. This is done by creating eight ‘ports’ around each vertex,
separated by 45◦ angles. We treat the assignment of edges (incident to
the vertex) to ports as a discrete least squares problem, with the goal of
minimizing the discrepancy between port assignments and original edge
directions. This gives us the angle at which we would like each edge
to leave the vertex. Next, for each edge, we have two cost functions
representing error in edge length and error in angle. As these functions
are nonlinear, we approximate them using scalar projection. These new,
linear constraints are then optimized using least squares approximation,
giving us an optimal position for each vertex.

3.5.2 Force-Based Schematization

The second schematization approach follows the force-based metro
map layout algorithm by Chivers and Rodgers [17]. The idea is to use
a standard spring embedder and add magnetic forces that pull edges
towards an octolinear position. While the spring embedder forces,
fspring are identical to the ones discussed earlier, the magnetic forces
fmag are new and are also calculated for each edge of the graph at
every iteration. For every edge the closest angle to one of the eight
possible octolinear directions is calculated. Then the ideal octolinear
position of one of the incident vertices is determined by rotating the
edge according to the previously calculated angle around its midpoint.
The vector between this vertex and its ideal octolinear position is used
to calculate the magnetic force. To keep the layout from collapsing,
fmag also adds a repulsive or attractive force to both incident vertices
that either pushes the vertices apart or pulls them together, depending
on the actual length of the edge compared to the ideal edge length.

We also define two weights αspring and αmag, which are used as
scaling factors for calculating the resulting sum of forces before the
displacement is determined. Adaptive temperature [28] is used to
counter oscillating movements.

The Chivers-Rodgers approach has multiple stages and in each stage
αspring and αmag vary. The first stage is identical to a spring embedder
and since the input to Step 4 of our pipeline already provides an initial
layout, we skip this stage. In the second stage we perform a fixed num-
ber of iterations, while linearly decreasing αspring from 1.0 to 0.0 and
linearly increasing αmag from 0.0 to 1.0, such that αmag +αspring = 1.0.
In the third stage we disable the spring forces and only apply magnetic
forces to each vertex. We set the maximum number of iterations to
700 for stage 2 and to 200 for stage 3. In each iteration we calculate
the remaining energy in the system and terminate if it falls below a
convergence threshold.

3.6 Postprocessing

To further enhance the visualization of the hypergraph, we apply two
postprocessing steps to the schematized layout. First, we minimize line
crossings by considering the order of incoming and outgoing lines for
each vertex, such that crossovers are minimized, which leads to less
visual complexity and improves the continuity of lines. Second, we
apply a station labeling algorithm, to generate metro-like labels with
the name of each vertex.

3.6.1 Line Crossing Minimization

Finding orderings that minimize the number of crossings is known as
the metro-line crossing minimization (MLCM) problem; see Figure 5.
We add the additional requirement that terminating lines must be at
the leftmost or rightmost side of the edge leading up to their terminus,
thus preventing gaps between continuing lines. Under this requirement,
referred to as the periphery condition, the MLCM problem is NP-
hard [11]. However, if we are given the sides on which each line should
terminate as part of our input, called terminator positions, then the
problem can be solved efficiently in polynomial time [59].

We therefore employ a heuristic algorithm developed by Asquith
et al. [8], which assigns terminator positions locally. The central idea
of this algorithm is as follows: for each terminator position, we ask
how many crossings will definitely occur if we choose to place the

5

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

(d)(c)(a) (b)

Fig. 7: Monotonicity is a measure of a line’s tendency to reverse
direction: (a) has a score of 2, while (b) has a score of 0. Gabriel Score
is a measure of how well-spaced unrelated elements are: (c) has a score
of 1, while (d) has a score of 0.

visualization design mainly targets two of those categories, namely
tasks related to elements and tasks related to sets and set relations.
Of the 21 tasks over those two categories, our system supports 17, of
which 11 are possible without interaction. Eight tasks can be done
visually, but are enhanced with interactivity. The exact list can be found
in Table 3 in the supplementary materials. We did not consider the third
task category, tasks related to element attributes.

Following Shneiderman’s mantra [74], “overview first, zoom and fil-
ter, then details on demand,” we scale the visualized schematic drawing
to the maximal available screen space while keeping the aspect ratio
fixed. Zoom and pan can be used to focus on different parts of the visu-
alization. For details-on-demand we use hover interaction to emphasize
specific sets or elements, while the set operation mode can be used to
perform standard set operations and filter the data accordingly.

In the hover mode, lines and vertices can be hovered to emphasize
them. When emphasizing a line or vertex, we apply low opacity to all
other lines and vertices which are not in focus. This makes it possible to
focus on one part of the visualization while keeping the overall structure
of the map visible. When hovering a line, we set the focus on the line
itself and all vertices that are incident to the line. When hovering a
vertex, we set the focus on all hyperedges the vertex is incident to,
as well as all other vertices this set of hyperedges covers. We also
show a tool-tip with information such as vertex label and additional
data attributes. All interactions that apply to lines can also be triggered
by hovering or clicking the entries of the legend. All labels that are
abbreviated (because their length is above the 16 character limit) can
be hovered to show the full text.

The data can be further filtered with the following set operations:

• The intersection mode can be used to show set intersections.
Hyperedges can be selected and deselected to focus on the set of
vertices that are incident to all of the selected hyperedges.

• The union mode can be used to focus the selected hyperedges
along with all vertices incident to at least one of them.

• The complement mode emphasizes all of the vertices which do
not belong the union of the selected hyperedges.

• The symmetric difference mode emphasizes vertices that are
covered by the union of the selected hyperedges while being
complementary to the intersection of all selected hyperedges.

• Finally, the subtract mode can emphasize the difference between
sets. The operation works on two levels. First: by clicking on
lines a union of all selected hyperedges is constructed. Second:
when additionally a modifier key is pressed when a line is clicked,
an independent second union of hyperedges is created. After each
interaction the second union is subtracted from the first union and
the remaining vertices are highlighted.

5 EVALUATION

5.1 Quality Measures

To evaluate the maps produced by the various combinations of pipeline
steps, we have created a library of methods to calculate quality met-
rics that correspond to the design goals laid out in section 4, which
correspond to generally well accepted principles of schematic metro

map design [60] [63]. These should be taken as our best preliminary
attempt to capture the concept of “a good metro-map” in a rigorous
and quantifiable way which is amenable to large-scale testing. The
following are the primary statistics we calculate. In the supplementary
materials, we provide examples of maps which are similar in most
respects but differ strongly in one metric as a way of illustrating the
metric’s impact; see Figure 13.

Octolinearity is one of the most immediately recognizable features
of a metro-map. A highly octolinear schematization maximizes the
coherence of the visualization through the presence of many parallel
lines [63], and is identified by Nöllenburg as one of the primary rules
of metro-map generation [60]. We quantify the octolinearity of a map
through the average and maximum number of degrees that each edge
differs from a multiple of 45 degrees.

Edge Uniformity is the principle that each edge should have a uni-
form length. High edge uniformity helps to enlarge and focus densely
interconnected regions of the graph, enhancing readability, and is iden-
tified explicitly as a rule of metro-map generation by Nöllenburg [60].
We quantify both the average and the maximum proportion of each
edge to the average edge length.

Monotonicity of a line is a measure of its tendency to change direc-
tion. Optimizing monotonicity simplifies the visualization and appeals
to the gestalt principle of continuity, reducing the difficulty of visually
tracking lines. We quantify monotonicity on a per-line basis by calcu-
lating an “As the crow flies” vector from the first vertex on the line to
the last, and then counting the number of times the edges of the line
reverse orientation with respect to this direct vector using dot products.
The monotonicity of the graph is the sum of the monotonicity of its
lines, and a score of 0 is optimal; see Figure 7.

Gabriel Score is inspired by the Gabriel graph [30], in which two
vertices p and q are connected by an edge if and only if the circle with
diameter pq contains no other vertices. The Gabriel Score of a metro
map is computed by counting the number of times this condition fails
to hold, i.e., the number of (vertex, edge) pairs such that the vertex
is not incident to the edge, but lies within the circle defined by the
edge. The Gabriel score measures the “station separation” design goal,
motivated by the notion that unrelated features should be kept far apart;
see Figure 7.

Consecutive Ones is a property that measures the “conjoint-
ness/closeness” design goal, motivated by the idea that, wherever possi-
ble, the intersection of two hyperedges should form a contiguous path.
In this way, the fact that the two hyperedges overlap will be manifested
in a visually conspicuous manner as two lines running in parallel. We
quantify this property by finding the subgraph induced by each pair of
metro lines and counting the number of connected components; each
component beyond the first increases the score of the graph by 1, with
a score of 0 being optimal.

Edge crossings, self crossings, and line crossings observed in the
final graph measure the “planarity” and “edge/line-crossing minimiza-
tion” design goals. These scores are just counts of the different types
of intersections.

Running time is the final measure, as this is important for the usability
and responsiveness of the online MetroSets system.

5.2 Datasets

To test our system, we created a tool for randomly extracting sub-
hypergraphs. Given a specified number of nodes and hyperedges, our
tool first selects a random sub-hypergraph with the given number of
hyperedges, and then greedily replaces the hyperedges with others
from the dataset until it also has the correct number of nodes. For
our base dataset, we used a large (6,714 vertices, 39,774 hyperedges)
hypergraph of recipes and ingredients drawn from the Kaggle “What’s
Cooking?” competition [6]. Then, for each value n ∈ 20, 25, ...160
and h ∈ 6, 7, ..., 19, we extracted ten sub-hypergraphs with n vertices
and h hyperedges (for a total of 29× 14× 10 = 4060 hypergraphs).

5.3 Experimental Design

To quantify how the choice of pipeline steps affects our quality metrics,
we chose a restricted subset of our datasets (n ∈ 40, 80, ..., 160, h ∈

7

Factor G
ab

ri
el

S
co

re
C

on
se

cu
ti
ve

O
ne

s
M

on
ot

on
ic

it
y

A
vg

.
O

ct
il
in

ea
ri

ty
M

ax
O

ct
il
in

ea
ri

ty
E

dg
e

C
ro

ss
in

gs
S
el

f
C

ro
ss

in
gs

L
in

e
C

ro
ss

in
gs

R
un

ni
ng

T
im

e
A

vg
.
E

dg
e

U
ni

.
M

ax
E

dg
e

U
ni

.

Insert p

ω
2

0.00

0.01

0.47

0.00

0.00

0.02

0.22

0.00

0.00

0.01

0.90

0.00

0.00

0.00

0.18

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Layout p

ω
2

0.00

0.05

0.85

0.00

0.00

0.04

0.00

0.02

0.00

0.00

0.00

0.04

0.00

0.20

0.04

0.00

0.00

0.19

0.00

0.04

0.00

0.03

|S| p

ω
2

0.00

0.37

0.00

0.18

0.00

0.42

0.00

0.22

0.00

0.29

0.00

0.40

0.00

0.08

0.00

0.37

0.00

0.00

0.00

0.47

0.00

0.19

|V | p

ω
2

0.00

0.16

0.00

0.06

0.00

0.08

0.00

0.02

0.00

0.03

0.00

0.12

0.00

0.01

0.00

0.01

0.00

0.59

0.00

0.08

0.00

0.23

Schem. p

ω
2

0.58

0.00

0.94

0.00

0.00

0.00

0.00

0.01

0.00

0.17

0.04

0.00

0.84

0.00

0.87

0.00

0.00

0.01

0.00

0.00

0.00

0.12

Support p

ω
2

0.00

0.02

0.06

0.00

0.00

0.00

0.00

0.00

0.32

0.00

0.00

0.01

0.10

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.95

0.00

Layout,|S| p

ω
2

0.00

0.03

0.07

0.00

0.00

0.02

0.00

0.01

0.16

0.00

0.00

0.04

0.00

0.12

0.01

0.00

0.00

0.00

0.00

0.01

0.00

0.01

Layout,|V | p

ω
2

0.00

0.01

0.01

0.00

0.38

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.00

0.01

0.36

0.00

0.00

0.16

0.13

0.00

0.03

0.00

|S|,|V | p

ω
2

0.00

0.11

0.00

0.15

0.00

0.04

0.00

0.05

0.00

0.02

0.00

0.09

0.00

0.01

0.00

0.09

0.00

0.00

0.00

0.03

0.00

0.01

|S|,Schem. p

ω
2

0.94

0.00

1.00

0.00

0.28

0.00

0.00

0.17

0.00

0.05

0.24

0.00

0.97

0.00

1.00

0.00

0.84

0.00

0.00

0.06

0.00

0.06

|V |,Schem. p

ω
2

0.60

0.00

1.00

0.00

0.66

0.00

0.00

0.01

0.00

0.02

0.66

0.00

0.93

0.00

1.00

0.00

0.00

0.01

0.00

0.07

0.00

0.02

Table 1: Abbreviated summary of the impact of different factors on each
metric, based on the results of ANOVA tests. Each column represents
a metric and each row represents a factor (or pair of factors). The
top value in each cell is the p-value of the effect of the factor on the
metric and the bottom value is the ω2 measure of effect size, with all
values rounded to 2 decimal places. Additionally, a cell is colored
deep, medium, or light green if that factor has a large (ω2 ≥ 0.14),
medium (0.06 ≤ ω2 < 0.14) or small (0.01 ≤ ω2 < 0.06) effect on
that metric, respectively. A cell is left white if that factor’s effect is
very small (ω2 < 0.01). Pairs of factors represent interaction terms;
when a cell in a row corresponding to an interaction term is colored, it
means that the value of that metric behaves differently from how you
would guess based on looking at the two interacting factors in isolation.
This table is a subset of the full results, which are recorded in 5.

6, 9, ..., 18, with 3 datasets per combination of n and h) and fed each of
them through every combination of pipeline steps. Then, for each map
produced, we recorded descriptive statistics indicating its performance
by each of the quality measures described in Section 5.1.

Treating the number of vertices and number of hyperedges as categor-
ical variables, we performed a 6-way ANOVA test [26] for each of our
descriptive statistics, including interaction terms for all pairs of indepen-
dent variables. For each statistically significant factor, we performed
additional post-hoc analysis using Tukey’s test [85], and quantified its
impact with the Omega Squared measure for effect size [33].

5.4 Results

We briefly summarize our main findings:

• The running time of MetroSets is most strongly influenced by the
number of vertices.

• For most metrics, the number of hyperedges is the most important
factor.

• For most metrics, the choice of support or insertion does not have
a large effect on the final score, and the impact of the schematiza-
tion algorithm is limited to octolinearity and edge uniformity.

We present the results of our ANOVA tests in Table 1. The most
important point to stress is that many of the interaction terms are
significant. In other words, it is in general not possible to predict the
quality of a map by looking at the input size or each pipeline step in
isolation. For example, when optimizing the number of line crossings,
the spring embedder is the worst performing layout algorithm when
paired with the TSP support algorithm, but it performs best when

6 8 10 12 14 16 18
Number of Hyperedges

0

2

4

6

8

10

Av
er

ag
e

Ti
m

e
in

 S
ec

on
ds

20

40

60

80

100

120

140

160

(a) Line plot of median computation time by number of hyperedges. Lines are colored

sequentially by the number of vertices, from 20 to 160 by 5’s.

20 40 60 80 100 120 140 160
Number of Nodes

0

2

4

6

8

10

Av
er

ag
e

Ti
m

e
in

 S
ec

on
ds

6

8

10

12

14

16

18

(b) Line plot of median computation time by number of vertices. Lines are colored sequen-

tially by the number of hyperedges, from 6 to 19. Note the much closer spread; the number

of vertices is a very reliable predictor for running time.

Fig. 8: Running times of the Balanced pipeline

paired with the C1P support algorithm. This is denoted in Table 1
by the (Layout,Support) cell being highlighted in the column for line
crossings. Salient results from our post-hoc analysis include:

• Several metrics, such as Consecutive Ones and Average Octolin-
earity, improve with increased number of vertices. In other words,
a larger dataset does not necessarily imply worse results.

• The two TSP layout algorithms perform better than the Spring
Embedder for most tasks. The Spring Embedder can outperform
them on some metrics when paired with Consecutive Ones.

• The Consecutive Ones algorithm is slightly slower than the TSP
support graph algorithm, Chivers-Rodgers is slightly slower than
the Least Squares schematization algorithm, and both TSP layout
algorithms are faster than the Spring Embedder.

A more detailed discussion of our post-hoc analysis can be found in
the supplementary materials, section A.3

5.5 Scalability of the Default Pipeline

Because the balanced pipeline will likely be the one used by the ma-
jority of MetroSets users, we subjected it to additional scrutiny, using
it to make maps for every one of the 4060 datasets we extracted. By
recording the time required to create each map, we were then able to
use linear regression to create a model predicting the number of seconds
it will take for a given dataset to be visualized using this preset pipeline.
This model, with R2 = 0.99, is: T (N) = 4.07× 10−4N2.

This implies a run-time that is quadratic in the number of vertices.
In practical terms (backed by 4060 examples) the default pipeline can
comfortably handle inputs of up to 140 vertices and 19 hyperedges in
no more than 10 seconds; see Figure 8.

8

7 CONCLUSIONS

We presented MetroSets, a system for automatically visualizing set
systems with hundreds of elements and more than a dozen intersecting
sets using the metro map metaphor. We have designed MetroSets with
as a flexible and modular 4-step layout pipeline and implemented a
selection of algorithms for each step, optimizing various design goals.
Our systematic quantitative evaluation explored the properties of these
alternatives and their trade-offs. We provide a functional prototype
of MetroSets at https://metrosets.ac.tuwien.ac.at and have
published the code on OSF https://osf.io/nvd8e/.

8 ACKNOWLEDGMENTS

We thank the organizers of the Dagstuhl Seminar 17332 on Scalable
Set Visualizations and specifically Robert Baker, Nan Cao, Yifan Hu,
Michael Kaufmann, Tamara Mchedlidze, Sergey Pupyrev, Torsten
Ueckerdt, and Alexander Wolff. We also thank Miranda Rintoul for her
help with the experimental analysis. This work is supported by NSF
grants CCF-1740858, CCF-1712119, and DMS-1839274.

REFERENCES

[1] A. Aguirregoitia, J. J. D. Cosı́n, and C. Presedo. Software project visual-

ization using task oriented metaphors. Journal of Software Engineering

and Applications, 3:1015–1026, 2010. doi: 10.4236/jsea.2010.311119

[2] A. K. Al-Awami, J. Beyer, H. Strobelt, N. Kasthuri, J. W. Lichtman,

H. Pfister, and M. Hadwiger. Neurolines: a subway map metaphor for

visualizing nanoscale neuronal connectivity. IEEE Trans. Visualization

and Computer Graphics, 20(12):2369–2378, 2014. doi: 10.1109/TVCG.

2014.2346312

[3] B. Alper, N. Henry Riche, G. Ramos, and M. Czerwinski. Design study

of Linesets, a novel set visualization technique. IEEE Trans. Visualization

and Computer Graphics, 17(12):2259–2267, 2011. doi: 10.1109/TVCG.

2011.186

[4] B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser. Radial sets: Interactive

visual analysis of large overlapping sets. IEEE Trans. Visualization and

Computer Graphics, 19(12):2496–2505, 2013. doi: 10.1109/TVCG.2013.

184

[5] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. J.

Rodgers. The state-of-the-art of set visualization. Computer Graphics

Forum, 35(1):234–260, 2016. doi: 10.1111/cgf.12722

[6] I. Amburg, N. Veldt, and A. R. Benson. Clustering in graphs and hyper-

graphs with categorical edge labels. In The Web Conference (WWW’20),

pp. 706–717. ACM, 2020. doi: 10.1145/3366423.3380152

[7] Antoniazzi, Alberto. Metro map of Rock’n’Roll. https://www.flickr.

com/photos/smoy/4413987999/, 2010.

[8] M. Asquith, J. Gudmundsson, and D. Merrick. An ILP for the metro-

line crossing problem. In Computing: Australasian Theory Symposium

(CATS’08), vol. 77 of CRPIT, pp. 49–56, 2008.

[9] H. Bast, P. Brosi, and S. Storandt. Metro maps on octilinear grid graphs.

Computer Graphics Forum, 39(3):357–367, 2020. doi: 10.1111/cgf.13986

[10] M. A. Bekos, M. Kaufmann, S. G. Kobourov, K. Stavropoulos, and S. Veer-

amoni. The maximum k-differential coloring problem. Journal of Discrete

Algorithms, 45:35–53, 2017. doi: 10.1016/j.jda.2017.08.001

[11] M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis. Line crossing

minimization on metro maps. In S.-H. Hong, T. Nishizeki, and W. Quan,

eds., Graph Drawing (GD’07), vol. 4875 of LNCS, pp. 231–242. Springer,

2007. doi: 10.1007/978-3-540-77537-9 24

[12] F. Bertault and P. Eades. Drawing hypergraphs in the subset standard. In

J. Marks, ed., Graph Drawing (GD’00), vol. 1984 of LNCS, pp. 164–169.

Springer, 2000. doi: 10.1007/3-540-44541-2 15

[13] Booth, Cameron. US routes as a subway map. www.cambooth.net/

us-routes-as-a-subway-map/, 2014.

[14] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Path-based

supports for hypergraphs. J. Discrete Algorithms, 14:248–261, 2012. doi:

10.1016/j.jda.2011.12.009

[15] K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek. On

planar supports for hypergraphs. J. Graph Algorithms Appl., 15(4):533–

549, 2011. doi: 10.7155/jgaa.00237

[16] T. Castermans, M. van Garderen, W. Meulemans, M. Nöllenburg, and

X. Yuan. Short plane supports for spatial hypergraphs. J. Graph Algorithms

Appl., 23(3):463–498, 2019. doi: 10.7155/jgaa.00499

[17] D. Chivers and P. Rodgers. Octilinear force-directed layout with mental

map preservation for schematic diagrams. In T. Dwyer, H. Purchase,

and A. Delaney, eds., Diagrammatic Representation and Inference (DIA-

GRAMS’14), vol. 8578 of LNCS, pp. 1–8. Springer, 2014. doi: 10.1007/

978-3-662-44043-8

1

[18] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set

relations with isocontours over existing visualizations. IEEE Trans. Vi-

sualization and Computer Graphics, 15(6):1009–1016, 2009. doi: 10.

1109/TVCG.2009.122

[19] M. A. Cox and T. F. Cox. Multidimensional scaling. In Handbook of Data

Visualization, pp. 315–347. Springer, 2008.

[20] G. A. Croes. A method for solving traveling-salesman problems. Opera-

tions Research, 6(6):791–812, 1958. doi: 10.1287/opre.6.6.791

[21] S. De Groot and M. Roberts. Brexit mapping. http://www.

brexitmapping.com, 2019.

[22] K. Dinkla, M. van Kreveld, B. Speckmann, and M. A. Westenberg. Kelp

diagrams: Point set membership visualization. Computer Graphics Forum,

31(3):875–884, 2012. doi: 10.1111/j.1467-8659.2012.03080.x

[23] M. Dörk, N. Henry Riche, G. A. Ramos, and S. T. Dumais. Pivotpaths:

Strolling through faceted information spaces. IEEE Trans. Visualization

and Computer Graphics, 18(12):2709–2718, 2012. doi: 10.1109/TVCG.

2012.252

[24] A. Efrat, Y. Hu, S. G. Kobourov, and S. Pupyrev. MapSets: Visualizing

embedded and clustered graphs. J. Graph Algorithms Appl., 19(2):571–

593, 2015. doi: 10.7155/jgaa.00364

[25] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.

Graphviz - open source graph drawing tools. In P. Mutzel, M. Jünger,

and S. Leipert, eds., Graph Drawing (GD’01), vol. 2265 of LNCS, pp.

483–484. Springer, 2001. doi: 10.1007/3-540-45848-4

57

[26] R. A. Fisher. Statistical methods for research workers. In S. Kotz and N. L.

Johnson, eds., Breakthroughs in Statistics: Methodology and Distribution,

pp. 66–70. Springer, 1992. doi: 10.1007/978-1-4612-4380-9 6

[27] B. Foo. The memory underground. http://memoryunderground.com,

2020.

[28] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for

undirected graphs. In R. Tamassia and I. G. Tollis, eds., Graph Drawing

(GD’94), vol. 894 of LNCS, pp. 388–403. Springer, 1995. doi: 10.1007/3

-540-58950-3 393

[29] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed

placement. Software: Practice and Experience, 21(11):1129–1164, 1991.

doi: 10.1002/spe.4380211102

[30] K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic

variation analysis. Systematic Zoology, 18(3):259–278, 1969. doi: 10.

2307/2412323

[31] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure,

dynamics, and function using networkx. Technical report, Los Alamos

National Lab.(LANL), Los Alamos, NM (United States), 2008.

[32] W. C. Hahn and R. A. Weinberg. A subway map of cancer pathways, 2002.

Poster in Nature Reviews Cancer.

[33] W. L. Hays. Statistics for psychologists. New York: Holt, Rinebart &

Winston, 1963.

[34] N. Henry Riche and T. Dwyer. Untangling Euler diagrams. IEEE Trans.

Visualization and Computer Graphics, 16(6):1090–1099, 2010. doi: 10.

1109/TVCG.2010.210

[35] D. Honnorat. Imdb’s top 250 films.

www.upcomingvfxmovies.com/2013/10/

metro-map-with-the-250-best-films-of-the-cinema/, 2013.

[36] S. Hougardy, F. Zaiser, and X. Zhong. The approximation ratio of the

2-opt heuristic for the metric traveling salesman problem. arXiv preprint

arXiv:1909.12025, 2019.

[37] Y. Hu, E. Gansner, and S. Kobourov. Visualizing graphs and clusters as

maps. IEEE Computer Graphics and Applications, 30(6):54–66, 2010.

doi: 10.1109/MCG.2010.101

[38] C. Hurter, M. Serrurier, R. Alonso, G. Tabart, and J. Vinot. An automatic

generation of schematic maps to display flight routes for air traffic con-

trollers: structure and color optimization. In Advanced Visual Interfaces

(AVI’10), pp. 233–240. ACM, 2010. doi: 10.1145/1842993.1843034

[39] E. Imhof. Positioning names on maps. The American Cartographer,

2(2):128–144, 1975. doi: 10.1559/152304075784313304

[40] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A

case study in local optimization. Local Search in Combinatorial Optimiza-

10

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

tion, 1(1):215–310, 1997.

[41] D. S. Johnson and H. O. Pollak. Hypergraph planarity and the complexity

of drawing Venn diagrams. J. Graph Theory, 11(3):309–325, 1987. doi:

10.1002/jgt.3190110306

[42] T. Kamada and S. Kawai. An algorithm for drawing general undirected

graphs. Information Processing Letters, 31(1):7–15, 1989. doi: 10.1016/

0020-0190(89)90102-6

[43] B. H. Kim, B. Lee, and J. Seo. Visualizing set concordance with permuta-

tion matrices and fan diagrams. Interacting with Computers, 19(5-6):630–

643, 2007. doi: 10.1016/j.intcom.2007.05.004

[44] B. Klemz, T. Mchedlidze, and M. Nöllenburg. Minimum tree supports

for hypergraphs and low-concurrency Euler diagrams. In R. Ravi and

I. L. Gørtz, eds., Algorithm Theory (SWAT’14), vol. 8503 of LNCS, pp.

253–264. Springer, 2014. doi: 10.1007/978-3-319-08404-6 23

[45] E. Korach and M. Stern. The clustering matroid and the optimal clustering

tree. Mathematical Programming, 98(1-3):385–414, 2003. doi: 10.1007/

s10107-003-0410-x

[46] J.-B. Lamy and R. Tsopra. RainBio: Proportional visualization of large

sets in biology. IEEE Trans. Visualization and Computer Graphics, 2019.

doi: 10.1109/TVCG.2019.2921544

[47] J. Larsson. eulerr: Area-Proportional Euler and Venn Diagrams with

Ellipses, 2020. R package version 6.1.0.

[48] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. Upset:

visualization of intersecting sets. IEEE Trans. Visualization and Computer

Graphics, 20(12):1983–1992, 2014. doi: 10.1109/TVCG.2014.2346248

[49] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the

traveling-salesman problem. Operations Research, 21(2):498–516, 1973.

doi: 10.1287/opre.21.2.498

[50] S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu. Storyflow: Tracking the

evolution of stories. IEEE Trans. Visualization and Computer Graphics,

19(12):2436–2445, 2013. doi: 10.1109/TVCG.2013.196

[51] S. Luz and M. Masoodian. A comparison of linear and mosaic diagrams

for set visualization. Information Visualization, 18(3), 2019. doi: 10.

1177/1473871618754343

[52] S. Makieva, E. Giacomini, J. Ottolina, A. M. Sanchez, E. Papaleo, and

P. Viganò. Inside the endometrial cell signaling subway: Mind the gap (s).

International Journal of Molecular Sciences, 19(9):2477, 2018. doi: 10.

3390/ijms19092477

[53] W. Meulemans, N. Henry Riche, B. Speckmann, B. Alper, and T. Dwyer.

Kelpfusion: A hybrid set visualization technique. IEEE Trans. Visu-

alization and Computer Graphics, 19(11):1846–1858, 2013. doi: 10.

1109/TVCG.2013.76

[54] L. Micallef and P. Rodgers. eulerforce: Force-directed layout for Euler

diagrams. J. Visual Languages and Computing, 25(6):924–934, 2014. doi:

10.1016/j.jvlc.2014.09.002

[55] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming

formulation of traveling salesman problems. J. ACM, 7(4):326–329, 1960.

doi: 10.1145/321043.321046

[56] K. Misue. Anchored maps: Visualization techniques for drawing bipartite

graphs. In J. A. Jacko, ed., Human-Computer Interaction (HCI’07) Part

II, vol. 4551 of LNCS, pp. 106–114. Springer, 2007. doi: 10.1007/978-3

-540-73107-8 12

[57] K. V. Nesbitt. Getting to more abstract places using the metro map

metaphor. In Information Visualisation (IV’04), pp. 488–493. IEEE, 2004.

doi: 10.5555/1018435.1021663

[58] B. Niedermann and J.-H. Haunert. An algorithmic framework for labeling

network maps. Algorithmica, 80(5):1493–1533, 2018. doi: 10.1007/

s00453-017-0350-0

[59] M. Nöllenburg. An improved algorithm for the metro-line crossing mini-

mization problem. In D. Eppstein and E. R. Gansner, eds., Graph Drawing

(GD’09), vol. 5849 of LNCS, pp. 381–392. Springer, 2010. doi: 10.1007/

978-3-642-11805-0

36

[60] M. Nöllenburg. A survey on automated metro map layout methods. In 1st

Schematic Mapping Workshop. Essex, UK, 2014.

[61] M. Nöllenburg and A. Wolff. Drawing and labeling high-quality metro

maps by mixed-integer programming. IEEE Trans. Visualization and

Computer Graphics, 17(5):626–641, 2011. doi: 10.1109/TVCG.2010.81

[62] M. Ovenden. Metro Maps of the World. Capital Transport Publishing,

2003.

[63] M. J. Roberts, H. Gray, and J. Lesnik. Preference versus performance:

Investigating the dissociation between objective measures and subjective

ratings of usability for schematic metro maps and intuitive theories of

design. International J. Human-Computer Studies, 98:109–128, 2017. doi:

10.1016/j.ijhcs.2016.06.003

[64] P. Rodgers, G. Stapleton, and P. Chapman. Visualizing sets with linear

diagrams. ACM Transactions on Computer-Human Interaction (TOCHI),

22(6):1–39, 2015. doi: 10.1145/2810012

[65] P. Rodgers, L. Zhang, and A. Fish. General Euler diagram generation. In

G. Stapleton, J. Howse, and J. Lee, eds., Diagrammatic Representation

and Inference (DIAGRAMS’08), vol. 5223 of LNCS, pp. 13–27, 2008. doi:

10.1007/978-3-540-87730-1 6

[66] P. J. Rodgers, G. Stapleton, and P. Chapman. Visualizing sets with linear

diagrams. ACM Trans. Comput. Hum. Interact., 22(6):27:1–27:39, 2015.

doi: 10.1145/2810012

[67] R. Sadana, T. Major, A. D. M. Dove, and J. T. Stasko. Onset: A visualiza-

tion technique for large-scale binary set data. IEEE Trans. Visualization

and Computer Graphics, 20(12):1993–2002, 2014. doi: 10.1109/TVCG.

2014.2346249

[68] B. Saket, C. Scheidegger, and S. Kobourov. Comparing node-link and

node-link-group visualizations from an enjoyment perspective. In Com-

puter Graphics Forum, vol. 35, pp. 41–50. Wiley Online Library, 2016.

doi: 10.1111/cgf.12880

[69] B. Saket, C. Scheidegger, S. Kobourov, and K. Börner. Map-based visual-

izations increase recall accuracy of data. In Computer Graphics Forum,

vol. 34, pp. 441–450. Wiley Online Library, 2015. doi: 10.1111/cgf.12656

[70] B. Saket, P. Simonetto, S. Kobourov, and K. Börner. Node, node-link,

and node-link-group diagrams: An evaluation. IEEE Transactions on

Visualization and Computer Graphics, 20(12):2231–2240, 2014. doi: 10.

1109/TVCG.2014.2346422

[71] E. S. Sandvad, K. Grønbæk, L. Sloth, and J. L. Knudsen. A metro map

metaphor for guided tours on the web: the webvise guided tour system. In

World Wide Web Conference (WWW’01), pp. 326–333. ACM, 2001. doi:

10.1145/371920.372079

[72] D. Shahaf, C. Guestrin, and E. Horvitz. Trains of thought: generating

information maps. In World Wide Web Conference, (WWW’12), pp. 899–

908. ACM, 2012. doi: 10.1145/2187836.2187957

[73] D. Shahaf, C. Guestrin, E. Horvitz, and J. Leskovec. Information car-

tography. Communications of the ACM, 58(11):62–73, 2015. doi: 10.

1145/2735624

[74] B. Shneiderman. The eyes have it: A task by data type taxonomy for

information visualizations. In Symposium on Visual Languages, pp. 336–

343. IEEE, 1996. doi: 10.1109/VL.1996.545307

[75] Simmonds, Jonathan. An illustrated subway map of human anatomy.

www.visualcapitalist.com/subway-map-human-anatomy/, 2018.

[76] P. Simonetto, D. W. Archambault, and C. Scheidegger. A simple approach

for boundary improvement of Euler diagrams. IEEE Trans. Visualization

and Computer Graphics, 22(1):678–687, 2016. doi: 10.1109/TVCG.2015.

2467992

[77] P. Simonetto, D. Auber, and D. Archambault. Fully automatic visualisation

of overlapping sets. Computer Graphics Forum, 28(3):967–974, 2009. doi:

10.1111/j.1467-8659.2009.01452.x

[78] G. Stapleton, P. Chapman, P. Rodgers, A. Touloumis, A. Blake, and

A. Delaney. The efficacy of Euler diagrams and linear diagrams for

visualizing set cardinality using proportions and numbers. PloS one, 14(3),

2019. doi: 10.1371/journal.pone.0211234

[79] G. Stapleton, J. Flower, P. J. Rodgers, and J. Howse. Automatically

drawing Euler diagrams with circles. J. Visual Languages and Computing,

23(3):163–193, 2012. doi: 10.1016/j.jvlc.2012.02.001

[80] G. Stapleton, P. Rodgers, J. Howse, and L. Zhang. Inductively generat-

ing Euler diagrams. IEEE Trans. Visualization and Computer Graphics,

17(1):88–100, 2011. doi: 10.1109/TVCG.2010.28

[81] J. T. Stasko, C. Görg, and Z. Liu. Jigsaw: supporting investigative analysis

through interactive visualization. Information Visualization, 7:118–132,

2008. doi: 10.1057/palgrave.ivs.9500180

[82] J. Stott, P. Rodgers, R. Burkhard, M. Meier, and M. Smis. Automatic

layout of project plans using a metro map metaphor. In Information

Visualisation, pp. 203–206. IEEE, 2005. doi: 10.1109/IV.2005.26

[83] J. Stott, P. Rodgers, J. C. Martı́nez-Ovando, and S. G. Walker. Automatic

metro map layout using multicriteria optimization. IEEE Trans. Visualiza-

tion and Computer Graphics, 17(1):101–114, 2011. doi: 10.1109/TVCG.

2010.24

[84] Y. Tanahashi and K.-L. Ma. Design considerations for optimizing story-

line visualizations. IEEE Trans. Visualization and Computer Graphics,

18(12):2679–2688, 2012. doi: 10.1109/TVCG.2012.212

[85] J. W. Tukey. Comparing individual means in the analysis of variance.

11

Biometrics, pp. 99–114, 1949. doi: 10.2307/3001913

[86] T. C. van Dijk and D. Lutz. Realtime linear cartograms and metro maps.

In Advances in Geographic Information Systems (SIGSPATIAL’18), pp.

488–491. ACM, 2018. doi: 10.1145/3274895.3274959

[87] M. Wahabzada, A.-K. Mahlein, C. Bauckhage, U. Steiner, E.-C. Oerke,

and K. Kersting. Metro maps of plant disease dynamics—automated

mining of differences using hyperspectral images. Plos one, 10(1), 2015.

doi: 10.1371/journal.pone.0116902

[88] Y.-S. Wang and M.-T. Chi. Focus+Context metro maps. IEEE Trans.

Visualization and Computer Graphics, 17(12):2528–2535, 2011. doi: 10.

1109/TVCG.2011.205

[89] Y.-S. Wang and W.-Y. Peng. Interactive metro map editing. IEEE Trans.

Visualization and Computer Graphics, 22(2):1115–1126, 2016. doi: 10.

1109/TVCG.2015.2430290

[90] L. Wilkinson. Exact and approximate area-proportional circular Venn

and Euler diagrams. IEEE Trans. Visualization and Computer Graphics,

18(2):321–331, 2012. doi: 10.1109/TVCG.2011.56

[91] H.-Y. Wu, B. Niedermann, S. Takahashi, and M. Nöllenburg. A survey

on computing schematic network maps: The challenge to interactivity. In

2nd Schematic Mapping Workshop. Vienna, Austria, 2019.

A SUPPLEMENTAL MATERIALS

A.1 The Two-Opt Heuristic

It is not immediately obvious that the two-opt algorithm, which is tradi-
tionally applied in solving the metric travelling salesman problem, can
be of use in solving the non-metric travelling salesman path problem.
To quantify its usefulness, we performed a large number of experiments
on random instances of travellings salesman problems resembling those
likely to arise during the MetroSets experiments. On each of these
instances, we compared results produced by the standard two-opt algo-
rithm, a variation of the two-opt algorithm which constructs an initial
tour using the nearest neighbor heuristic before refining it, and an ILP
solver which finds the optimal solution.

A.1.1 Experiment Design

There are essentially three related versions of the travelling salesman
problem which arise throughout the MetroSets pipeline. In the first
case, which appears in the support graph construction, the cost of an
edge between two vertices is based on their similarity score, which is
generally the reciprocal of some small, positive integer. In the second
case, which appears during the layout stage, the cost of an edge is the
geometric mean of their similarity score and the Euclidean distance
between the two vertices. In the third case, which appears on the final
iteration of the layout stage, the cost is based purely on Euclidean
distance. We tested the performance of the two-opt algorithm on each
of these cases separately.

In all three cases, the experiment proceeds in essentially the same
way. We consider inputs with between 3 and 60 vertices, inclusive
(chosen to resemble the anticipated length of hyperedges visualized
using our method). For each input size n, we randomly generate 10
instances of the travelling salesman problem by placing n vertices
uniformly throughout a square region with sides of 100 units. In the
first two cases, we assign each pair of vertices a similarity score of 1
divided by a random integer from 1 to 5. Finally, we solve the travelling
salesman path problem using the two-opt algorithm with arbitrary initial
path, the two-opt algorithm with an initial path constructed using the
nearest neighbor heuristic, and the ILP solver. The costs of the output
paths are then compared.

A.1.2 Results

Across all three cases, the two-opt algorithm generally produced results
no more than 10% worse than the optimal solution. The use of the
nearest neighbor heuristic for constructing the initial tour decreased this
error by roughly half, while also speeding up the algorithm by a factor
of roughly 5, presumably because it saves us the trouble of optimizing
obviously terrible initial paths by a long and painful sequence of local
improvements. On the basis of these results, which are summarized
below, we conclude that the two-opt heuristic, with an initial path
constructed using the nearest neighbor method, is an efficient and
effective algorithm for our purposes.

A.2 Comparison

A.2.1 Set visualization tasks

We used the proposed task taxonomy of Alsallakh et al. [5] and self-
evaluated our pipeline. Table 3 shows the tasks of the three different
categories and how they are performed in MetroSets.

A.2.2 Comparison with Other Systems

We created a metro map schematization of the Magic: The Gathering
meta game data set and directly compared our proposed pipeline with
other set visualization systems. Magic: The Gathering is a collectible
card game that is played by two players against each other with their
own 60 card decks. The meta game is the subset of successful decks
the players gravitate towards when entering a tournament and choosing
amongst thousands of legal cards. The data set contains the top 12
decks as of spring 2019 and each meta deck is modeled as a hyperedge,

12

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Method Avg. Cost % Above
Optimal

Avg. Time
(s)

Similarity Only

Two-Opt 6.24 3.03% .017
Two-Opt (NN Init) 6.20 1.54% .003

Gurobi 6.14 0% .019

Hybrid

Two-Opt 56.12 5.18% .026
Two-Opt (NN Init) 55.33 3.09% .006

Gurobi 53.52 0% .039

Euclidean Only

Two-Opt 431.92 8.36% .026
Two-Opt (NN Init) 415.64 4.06% .005

Gurobi 398.35 0% .055

Table 2: Summary of experimental results evaluating quality of the
two-opt heuristic.

depicting cards as vertices in said hyperedges. Some cards may appear
in several decks because of their usefulness.

First we excluded set visualization systems which were not sen-
sible for comparison against our proposed system, because of their
differences in prerequirements for the input data. These are mainly
line-based, region-based or glyph-based overlay systems, like Bubble
Sets, LineSets or Kelp Diagrams , where an initial position for all set
elements is required. Therefore, we think that comparing those systems
would be too dependent on the choice of initial positions. We also
excluded tools that would have been interesting for visualizing our data
set, but we were not able to find implementations, the implementations
did not work on our end, or they were not flexible enough to allow user
data. Finally we surveyed 6 tools and generated an output for each. All
tools and their respective output are depicted in Figure 11.

A.3 Post-Hoc Analysis of Experiment Results

Running time grows fairly slowly as the number of vertices approaches
100, and grows very quickly thereafter. The number of hyperedges, on
the other hand, has relatively little impact.

The pipeline step with the greatest impact is the layout stage. TSP
(Neato) is slightly faster than TSP (Kamada-Kawai) (p = .022, mean
difference = 1.01s), which is in turn much faster than the Spring Em-
bedder (p = .001, mean difference = 6.15s). This effect is exacerbated
as the number of vertices in the input graph increases; for graphs with
40 vertices, the Spring Embedder is not significantly slower than the
other layout algorithms. However, at 160 vertices, it averages 13.9
seconds slower than TSP (Kamada-Kawai) and 16.2 seconds slower
than TSP (Neato).

With respect to the other pipeline stages, the Consecutive Ones
method of support graph construction is slightly slower than the TSP
method (p = .001, mean difference = .88s), and Chivers-Rodgers is
slightly slower than Least Squares Approximation for schematization
(p = .001, mean difference = 1.23).

Maximum error in Octolinearity is minimized by choosing Chivers-
Rodgers for schematization (p = .001, mean difference of 7.3 degrees).
Chivers-Rodgers is also slightly superior at minimizing average error
(p = .001, mean difference of .62 degrees).

Interestingly, adding vertices to a dataset has a beneficial effect on
average octolinearity. This is likely because low degree vertices can
frequently be drawn in a perfectly octolinear fashion, and thus tend to
drag down the average.

The two TSP algorithms are not significantly different with respect
to Average Edge Uniformity (p=.4), but both are significantly better
than the Spring Embedder (p=.001, mean difference of .035 for TSP
(Neato) and .043 for TSP (Kamada-Kawai)). The same pattern holds
with maximum error in edge uniformity; the TSP algorithms do not
perform significantly differently (p=.43), but outperform the Spring
Embedder (p=.001, mean difference of .22 for TSP (Neato) and .26 for

TSP (Kamada-Kawai)).
With respect to Monotonicity, the two TSP algorithms are not sig-

nificantly different (p=.51), but both outperform the Spring Embedder
(p=.001, mean difference of 2.8 for TSP (Neato) and 2.4 for TSP
(Kamada-Kawai)).

The same holds for Gabriel Score: the TSP layout algorithms per-
form comparably (p=.84) but the Spring Embedder underperforms
compared to both of them (p=.001, mean difference of 13.6 for TSP
(Neato) and 14.5 for TSP (Kamada-Kawai)).

Consecutive Ones exhibits several interesting properties. Firstly,
there is no significant difference in the Consecutive Ones property
for number of hyperedges between 6 and 15; however, the score de-
teriorates significantly for graphs with 18 hyperedges (p=.001, mean
difference of roughly 1.3 with each of the smaller values). Secondly,
like average error in octolinearity, the consecutive ones property is
improved by the addition of more vertices, with the worst performance
by far seen in graphs with 40 vertices (p=.001, mean difference of
roughly 0.8 compared to larger values).

While it is not statistically significant, it is also interesting to note
that, while the Spring Embedder was the worst performing algorithm
when paired with the TSP method for support graph construction, it
was the best performing algorithm when paired with the consecutive
ones method. This possibly hints at why the support graph choice has a
surprisingly low impact; during both of the TSP layout algorithms, the
paths representing each hyperedge are iteratively changed according
to optimization metrics mostly independent of the consecutive ones
property, meaning that some of the work done by the support graph
algorithm is erased. The spring embedder preserves the paths given
to it, and while this can lead to poor performance with respect to
other metrics, it also means that does the best job of preserving the
optimization of the support graph algorithm.

The number of Edge Crossings does not differ significantly between
the two TSP layout algorithms, (p = 0.2), but the Spring Embedder
performed worse than both of them (p = .001, mean difference of 3.7
for TSP (Neato) and 4.7 for TSP (Kamada-Kawai)).

The number of Self Crossings is dominated by the choice of layout
algorithm. This is almost certainly a result of the fact that the two-opt
heuristic for solving the Travelling Salesman Path Problem removes
almost all self-crossings. Accordingly, both TSP algorithms reliably
produce maps with 0 self-crossings, with a few very rare exceptions.
The Spring Embedder makes no such guarantee, however. While it
is not significantly worse than the TSP algorithms for graphs with
6 hyperedges, it averages over 2 self-crossings for graphs with 18
hyperedges.

The number of Line Crossings exhibits similar behavior to the Con-
secutive Ones property: although the Spring Embedder is the worst
performing layout algorithm when paired with the TSP support graph
algorithm, it is the best performing algorithm when paired with the
Consecutive Ones support graph algorithm. This time, however, the
differences are mostly statistically significant, with p ≤ .01 for every
other combination of support and layout algorithm except for Consecu-
tive Ones + TSP (Neato), for which p = .07. Mean differences range
from .7 to 1.5.

13

Task Supported How to perform the task

A1 Find/Select elements that belong to a specific set V, Id Hover line to highlight elements
A2 Find sets containing a specific element. V, Id Hover element to highlight sets
A3 Find/Select elements based on their set memberships V Check lines for elements
A4 Find/Select elements in a set with a specific set member-ship degree V Count number of outgoing lines
A5 Filter out elements based on their set memberships. Io, Id Exclusive or Union mode and hover can act as filter
A6 Filter out elements based on their set membership degrees -
A7 Create a new set that contains certain elements. -

B1 Find out the number of sets in the set family. V, Id Information given by legend or sidebar
B2 Analyze inclusion relations. V Conjoint metro lines depict inclusion
B3 Analyze inclusion hierarchies - -
B4 Analyze exclusion relation V, Io Exclusion mode can check for exclusion
B5 Analyze intersection relation Io Intersection mode can check for intersection
B6 Identify intersections between k sets V, Io Intersection mode can check for k intersections
B7 Identify the sets involved in a certain intersection V, Id Hover lines or vertices to highlight intersecting sets
B8 Identify set intersections belonging to a specific set Io Use intersection mode to check against other sets
B9 Identify the set with the largest / smallest number of pair-wise set intersections Io Use intersection mode to identify

B10 Analyze and compare set- and intersection cardinalities V, Io Use intersection mode to check cardinality
B11 Analyze and compare set similarities - -
B12 Analyze and compare set exclusiveness Io Exclusion mode or can show set exclusiveness
B13 Highlight specific sets, subsets, or set relations V, Id Hovering or clicking emphasizes sets
B14 Create a new set using set-theoretic operation - -

C1 Find out the attribute values of a certain element Id Hover element to see attributes
C2 Find out the distribution of an attribute in a certain set or subset - -
C3 Compare the attribute values between two sets or subsets - -
C4 Analyze the set memberships for elements having certain attribute values - -
C5 Create a new set out of elements that have certain attribute values - -

Table 3: We used the task taxonomy of Alsallakh et al. to classify our proposed system. We state how a certain task can be solved and whether
interactivity is required or not. (V: Task can be solved visually, Id: Details-on-demand with interactivity is necessary to solve the task, Io:
Interactivity with the set operation mode is required, -: Task is not supported)

Choose a pipeline with:
To optimize... Support Insertion Layout Schematization

Running Time Travelling Salesman * TSP (Neato) Least Squares
Avg. Oct Travelling Salesman * TSP (Kamada-Kawai) Chivers-Rodgers
Max Oct * Split Insert TSP (Kamada-Kawai) Chivers-Rodgers

Avg. Edge Uni * * TSP (*) Chivers-Rodgers
Max Edge Uni * * TSP(*) Chivers-Rodgers
Monotonicity Travelling Salesman First Viable TSP(*) Chivers-Rodgers
Gabriel Score Travelling Salesman First Viable TSP(*) *

Con. Ones Consecutive Ones * Spring Embedder *
Edge Crossings Travelling Salesman * TSP (Kamada-Kawai) *
Self Crossings * Split Insert TSP(*) *
Line Crossings Consecutive Ones * Spring Embedder *

Table 4: Suggested pipelines for specific optimization goals, based on post-hoc analysis of our experimental results. * denotes that any choice of
pipeline step is equally acceptable.

14

Factor G
ab

ri
el

S
co

re

C
on

se
cu

ti
ve

O
ne

s

M
on

ot
on

ic
it
y

A
vg

.
O

ct
il
in

ea
ri

ty

M
ax

O
ct

il
in

ea
ri

ty

E
dg

e
C

ro
ss

in
gs

S
el

f
C

ro
ss

in
gs

L
in

e
C

ro
ss

in
gs

R
un

ni
ng

T
im

e

A
vg

.
E

dg
e

U
ni

.

M
ax

E
dg

e
U

ni
.

Insert p

ω
2

0.00

0.01

0.47

0.00

0.00

0.02

0.22

0.00

0.00

0.01

0.90

0.00

0.00

0.00

0.18

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Layout p

ω
2

0.00

0.05

0.85

0.00

0.00

0.04

0.00

0.02

0.00

0.00

0.00

0.04

0.00

0.20

0.04

0.00

0.00

0.19

0.00

0.04

0.00

0.03

|S| p

ω
2

0.00

0.37

0.00

0.18

0.00

0.42

0.00

0.22

0.00

0.29

0.00

0.40

0.00

0.08

0.00

0.37

0.00

0.00

0.00

0.47

0.00

0.19

|V | p

ω
2

0.00

0.16

0.00

0.06

0.00

0.08

0.00

0.02

0.00

0.03

0.00

0.12

0.00

0.01

0.00

0.01

0.00

0.59

0.00

0.08

0.00

0.23

Schem. p

ω
2

0.58

0.00

0.94

0.00

0.00

0.00

0.00

0.01

0.00

0.17

0.04

0.00

0.84

0.00

0.87

0.00

0.00

0.01

0.00

0.00

0.00

0.12

Support p

ω
2

0.00

0.02

0.06

0.00

0.00

0.00

0.00

0.00

0.32

0.00

0.00

0.01

0.10

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.95

0.00

Insert,Layout p

ω
2

0.68

0.00

0.65

0.00

0.00

0.00

0.35

0.00

0.14

0.00

0.00

0.00

0.00

0.01

0.29

0.00

0.00

0.00

0.09

0.00

0.26

0.00

Insert,|S| p

ω
2

0.00

0.00

0.75

0.00

0.00

0.00

0.03

0.00

0.01

0.00

0.97

0.00

0.17

0.00

0.40

0.00

0.00

0.00

0.72

0.00

0.01

0.00

Insert,|V | p

ω
2

0.00

0.00

0.95

0.00

0.00

0.01

0.00

0.00

0.02

0.00

0.71

0.00

0.20

0.00

0.89

0.00

0.00

0.00

0.02

0.00

0.02

0.00

Insert,Schem. p

ω
2

0.70

0.00

0.78

0.00

0.29

0.00

0.04

0.00

0.01

0.00

0.84

0.00

0.14

0.00

0.71

0.00

0.98

0.00

0.00

0.00

0.04

0.00

Insert,Support p

ω
2

0.44

0.00

0.94

0.00

0.95

0.00

0.39

0.00

0.35

0.00

0.53

0.00

0.65

0.00

0.08

0.00

0.06

0.00

0.45

0.00

0.77

0.00

Layout,|S| p

ω
2

0.00

0.03

0.07

0.00

0.00

0.02

0.00

0.01

0.16

0.00

0.00

0.04

0.00

0.12

0.01

0.00

0.00

0.00

0.00

0.01

0.00

0.01

Layout,|V | p

ω
2

0.00

0.01

0.01

0.00

0.38

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.00

0.01

0.36

0.00

0.00

0.16

0.13

0.00

0.03

0.00

Layout,Schem. p

ω
2

0.68

0.00

0.98

0.00

0.97

0.00

0.00

0.00

0.16

0.00

0.14

0.00

0.75

0.00

0.97

0.00

0.95

0.00

0.00

0.00

0.00

0.00

Layout,Support p

ω
2

0.00

0.01

0.01

0.00

0.86

0.00

0.08

0.00

0.20

0.00

0.00

0.00

0.06

0.00

0.00

0.01

0.01

0.00

0.01

0.00

0.14

0.00

|S|,|V | p

ω
2

0.00

0.11

0.00

0.15

0.00

0.04

0.00

0.05

0.00

0.02

0.00

0.09

0.00

0.01

0.00

0.09

0.00

0.00

0.00

0.03

0.00

0.01

|S|,Schem. p

ω
2

0.94

0.00

1.00

0.00

0.28

0.00

0.00

0.17

0.00

0.05

0.24

0.00

0.97

0.00

1.00

0.00

0.84

0.00

0.00

0.06

0.00

0.06

|S|,Support p

ω
2

0.00

0.01

0.00

0.00

0.39

0.00

0.03

0.00

0.08

0.00

0.00

0.01

0.41

0.00

0.22

0.00

0.00

0.00

0.02

0.00

0.84

0.00

|V |,Schem. p

ω
2

0.60

0.00

1.00

0.00

0.66

0.00

0.00

0.01

0.00

0.02

0.66

0.00

0.93

0.00

1.00

0.00

0.00

0.01

0.00

0.07

0.00

0.02

|V |,Support p

ω
2

0.00

0.00

0.41

0.00

0.00

0.00

0.70

0.00

0.02

0.00

0.05

0.00

0.00

0.00

0.70

0.00

0.00

0.00

0.40

0.00

0.22

0.00

Schem.,Support p

ω
2

0.00

0.00

0.94

0.00

0.76

0.00

0.04

0.00

0.54

0.00

0.18

0.00

0.49

0.00

0.88

0.00

0.72

0.00

0.02

0.00

0.01

0.00

Table 5: Summarizes the impact of different factors on each metric’s performance, based on the results of our ANOVA tests. Each column
represents a metric while each row represents a factor or pair of factors. The top value in each cell is the p-value of the effect of the factor on the
metric, while the bottom value is the ω2 measure of effect size. Additionally, a cell is colored deep, medium, or light green if that factor has
a large (ω2 > 0.14), medium (0.06 < ω2 ≤ 0.14) or small (0.01 < ω2 < 0.06) effect on that metric, respectively. A cell is left white if that
factor’s effect is very small (ω2 ≤ 0.01). Pairs of factors represent interaction terms; when a cell in a row corresponding to an interaction term is
colored, it means that the value of that metric behaves differently from how you would guess based on looking at the two interacting factors in
isolation. All figures are rounded to two decimal places.

20

	Introduction
	Related Work
	Set Visualization
	Metro Map Layout
	Metro Map Metaphor

	The MetroSets Pipeline
	Design Goals
	Preprocessing and Support Graph Extraction (Step 1)
	Two-Opt Heuristic
	Consecutive Ones Method

	Expansion of Condensed Graph (Step 2)
	First Viable
	Split Insert

	Initial Layout and Refinement (Step 3)
	Repeated Refinement of Paths
	Force-Based Initial Layout

	Schematization (Step 4)
	Least Squares Approximation
	Force-Based Schematization

	Postprocessing
	Line Crossing Minimization
	Labeling

	Preset Pipelines

	Map Rendering and Interface
	Metro Map Rendering
	MetroSets Interface

	Evaluation
	Quality Measures
	Datasets
	Experimental Design
	Results
	Scalability of the Default Pipeline

	Discussion and Limitations
	Comparison with Other Systems
	Limitations

	Conclusions
	Acknowledgments
	Supplemental Materials
	The Two-Opt Heuristic
	Experiment Design
	Results

	Comparison
	Set visualization tasks
	Comparison with Other Systems

	Post-Hoc Analysis of Experiment Results

