
Effectively Prefetching Remote Memory with Leap

Hasan Al Maruf
University of Michigan

Mosharaf Chowdhury
University of Michigan

Abstract
Memory disaggregation over RDMA can improve the perfor-
mance of memory-constrained applications by replacing disk
swapping with remote memory accesses. However, state-of-
the-art memory disaggregation solutions still use data path
components designed for slow disks. As a result, applications
experience remote memory access latency significantly higher
than that of the underlying low-latency network, which itself
can be too high for many applications.

In this paper, we propose Leap, a prefetching solution for
remote memory accesses due to memory disaggregation. At
its core, Leap employs an online, majority-based prefetching
algorithm, which increases the page cache hit rate. We com-
plement it with a lightweight and efficient data path in the
kernel that isolates each application’s data path to the disag-
gregated memory and mitigates latency bottlenecks arising
from legacy throughput-optimizing operations. Integration of
Leap in the Linux kernel improves the median and tail remote
page access latencies of memory-bound applications by up to
104.04× and 22.62×, respectively, over the default data path.
This leads to up to 10.16× performance improvements for
applications using disaggregated memory in comparison to
the state-of-the-art solutions.

1 Introduction
Modern data-intensive applications [5, 29, 30, 70] experience
significant performance loss when their complete working
sets do not fit into the main memory. At the same time, despite
significant and disproportionate memory underutilization in
large clusters [62, 78], memory cannot be accessed beyond
machine boundaries. Such unused, stranded memory can be
leveraged by forming a cluster-wide logical memory pool via
memory disaggregation, improving application-level perfor-
mance and overall cluster resource utilization [11, 45, 48].

Two broad avenues have emerged in recent years to expose
remote memory to memory-intensive applications. The first
requires redesigning applications from the ground up using
RDMA primitives [15, 22, 36, 49, 59, 63, 77]. Despite its effi-
ciency, rewriting applications can be cumbersome and may
not even be possible for many applications [10]. Alternatives
rely on well-known abstractions to expose remote memory;
e.g., distributed virtual file system (VFS) for remote file ac-
cess [10] and distributed virtual memory management (VMM)
for remote memory paging [28, 32, 45, 46, 65].

Because disaggregated remote memory is slower, keeping

hot pages in the faster local memory ensures better perfor-
mance. Colder pages are moved to the far/remote memory as
needed [9, 32, 45]. Subsequent accesses to those cold pages
go through a slow data path inside the kernel – for instance,
our measurements show that an average 4KB remote page
access takes close to 40 µs in state-of-the-art memory disag-
gregation systems like Infiniswap. Such high access latency
significantly affects performance because memory-intensive
applications can tolerate at most single µs latency [28, 45].
Note that the latency of existing systems is many times more
than the 4.3 µs average latency of a 4KB RDMA operation,
which itself can be too high for some applications.

In this paper, we take the following position: an ideal solu-
tion should minimize remote memory accesses in its critical
path as much as possible. In this case, a local page cache can
reduce the total number of remote memory accesses – a cache
hit results in a sub-µs latency, comparable to that of a local
page access. An effective prefetcher can proactively bring in
correct pages into the cache and increase the cache hit rate.

Unfortunately, existing prefetching algorithms fall short
for several reasons. First, they are designed to reduce disk
access latency by prefetching sequential disk pages in large
batches. Second, they cannot distinguish accesses from differ-
ent applications. Finally, they cannot quickly adapt to tempo-
ral changes in page access patterns within the same process.
As a result, being optimistic, they pollute the cache with un-
necessary pages. At the same time, due to their rigid pattern
detection technique, they often fail to prefetch the required
pages into the cache before they are accessed.

In this paper, we propose Leap, an online prefetching so-
lution that minimizes the total number of remote memory
accesses in the critical path. Unlike existing prefetching al-
gorithms that rely on strict pattern detection, Leap relies on
approximation. Specifically, it builds on the Boyer-Moore
majority vote algorithm [17] to efficiently identify remote
memory access patterns for each individual process. Rely-
ing on an approximate mechanism instead of looking for
trends in strictly consecutive accesses makes Leap resilient to
short-term irregularities in access patterns (e.g., due to multi-
threading). It also allows Leap to perform well by detecting
trends only from remote page accesses instead of tracing
the full virtual memory footprint of an application, which
demands continuous scanning and logging of the hardware
access bits of the whole virtual address space and results in
high CPU and memory overhead. In addition to identifying

User
Space

Kernel
SpaceVirtual File System

(VFS)

Device Mapping Layer

Block Device Driver

Block Devices
(HDD, SSD, etc.)

Generic Block Layer
I/O Scheduler Request

QueueRequest queue processing:
Insertion, Merging,
Sorting, Staging and Dispatch

bio

Remote Memory

Storage

Dispatch
Queue

Memory Management
Unit (MMU)

Process 1 Process 2 Process N…

File Read/Write Page Fault

HDD: 91.48 us
SSD: 20 us
RDMA: 4.3 us

0.27 us

10.04 us

21.88 us

2.1 us

Cache
Miss

Cache
Hit

MMU
Page Cache

VFS
Page Cache

Figure 1: High-level life cycle of page requests in Linux data path
along with the average time spent in each stage.

the majority access pattern, Leap determines how many pages
to prefetch following that pattern to minimize cache pollution.

While reducing cache pollution and increasing the cache
hit rate, Leap also ensures that the host machine faces mini-
mal memory pressure due to the prefetched pages. To move
pages from local to remote memory, the kernel needs to scan
through the entire memory address-space to find eviction can-
didates – the more pages it has, the more time it takes to scan.
This increases the memory allocation time for new pages.
Therefore, alongside a background LRU-based asynchronous
page eviction policy, Leap eagerly frees up a prefetched cache
just after it gets hit and reduces page allocation wait time.

We complement our algorithm with an efficient data path
design for remote memory accesses that is used in case of a
cache miss. It isolates per-application remote traffic and cuts
inessentials in the end-host software stack (e.g., the block
layer) to reduce host-side latency and handle a cache miss
with latency close to that of the underlying RDMA operations.

Overall, we make the following contributions in this paper:

• We analyze the data path latency overheads for disaggre-
gated memory systems and find that existing data path
components can not consistently support single µs 4KB
page access latency (§2).

• We propose Leap, a novel online prefetching algorithm
(§3) and an eager prefetch cache eviction policy along
with a leaner data path, to improve remote I/O latency.
• We implement Leap on Linux Kernel 4.4.125 as a separate

data path for remote memory access (§4). Applications
can choose either Linux’s default data path for traditional
usage or Leap for going beyond the machine’s boundary
using unmodified Linux ABIs.

• We evaluate Leap’s effectiveness for different memory
disaggregation frameworks. Leap’s faster data path and
effective cache management improve the median and tail
4KB page access latency by up to 104.04× and 22.62×
for micro-benchmarks (§5.1) and by 1.27–10.16× for

real-world memory-intensive applications with produc-
tion workloads (§5.3).

• We evaluate Leap’s prefetcher against practical real-time
prefetching techniques (Next-K Line, Stride, Linux Read-
ahead) and show that simply replacing the default Linux
prefetcher with Leap’s prefetcher can provide application-
level performance benefit (1.1–3.36× better) even when
they are paging to slower storage (e.g., HDD, SSD) (§5.2).

2 Background and Motivation

2.1 Remote Memory
Memory disaggregation systems logically expose unused clus-
ter memory as a global memory pool that is used as the slower
memory for machines with extreme memory demand. This
improves the performance of memory-intensive applications
that have to frequently access slower memory in memory-
constrained settings. At the same time, the overall cluster
memory usage gets balanced across the machines, decreasing
the need for memory over-provisioning per machine.

Access to remote memory over RDMA without significant
application rewrites typically relies on two primary mecha-
nisms: disaggregated VFS [10], that exposes remote memory
as files and disaggregated VMM for remote memory pag-
ing [32, 45, 65]. In both cases, data is communicated in small
chunks or pages. In case of remote memory as files, pages
go through the file system before they are written to/read
from the remote memory. For remote memory paging and
distributed OS, page faults cause the virtual memory manager
to write pages to and read them from the remote memory.

2.2 Remote Memory Data Path
State-of-the-art memory disaggregation frameworks depend
on the existing kernel data path that is optimized for slow
disks. Figure 1 depicts the major stages in the life cycle of
a page request. Due to slow disk access times – average
latencies for HDDs and SSDs range between 4–5 ms and 80–
160 µs, respectively – frequent disk accesses have a severe
impact on application throughput and latency. Although the
recent rise of memory disaggregation is fueled by the hope
that RDMA can consistently provide single µs 4KB page
access latency [11, 28, 32], this is often a wishful thinking in
practice [79]. Blocking on a page access – be it from HDD,
SSD, or remote memory – is often unacceptable.

To avoid blocking on I/O, race conditions, and synchroniza-
tion issues (e.g., accessing a page while the page out process
is still in progress), the kernel uses a page cache. To access a
page from slower memory, it is first looked up in the appro-
priate cache location; a hit results in almost memory-speed
page access latency. However, when the page is not found in
the cache (i.e., a miss), it is accessed through a costly block
device I/O operation that includes several queuing and batch-
ing stages to optimize disk throughput by merging multiple
contiguous smaller disk I/O requests into a single large re-

0

0.2

0.4

0.6

0.8

1

0.01 1 100 10000

C
D

F

Latency (us)

Disk

Disaggregated
VMM
Disaggregated
VFS

(a) Sequential

0

0.2

0.4

0.6

0.8

1

0.01 1 100 10000

C
D

F

Latency (us)

(b) Stride-10

Figure 2: Data path latencies for two access patterns. Memory dis-
aggregation systems have some constant implementation overheads
that cap their minimum latency to around 1 µs.

quest. On average, these batching and queuing operations
cost around 34 µs and over a few milliseconds at the tail. As
a result, a cache miss leads to more than 100× slower la-
tency than a hit; it also introduces high latency variations. For
microsecond-latency RDMA environments, this unnecessary
wait-time has a severe impact on application performance.

2.3 Prefetching in Linux
Linux tries to store files on the disk in adjacent sectors to in-
crease sequential disk accesses. The same happens for paging.
Naturally, existing prefetching mechanisms are designed as-
suming a sequential data layout. The default Linux prefetcher
relies on the last two page faults: if they are for consecu-
tive pages, it brings in several sequential pages into the page
cache; otherwise, it assumes that there are no patterns and re-
duces or stops prefetching. This has several drawbacks. First,
whenever it observes two consecutive paging requests for con-
secutive pages, it over-optimistically brings in pages that may
not even be useful. As a result, it wastes I/O bandwidth and
causes cache pollution by occupying valuable cache space.
Second, simply assuming the absence of any pattern based
on the last two requests is over-pessimistic. Furthermore, all
the applications share the same swap space in Linux; hence,
pages from two different processes can share consecutive
places in the swap area. An application can also have multi-
ple, inter-leaved stride patterns – for example, due to multiple
concurrent threads. Overall, considering only the last two
requests to prefetch a batch of pages falter on both respects.

To illustrate this, we measure the page access latency for
two memory access patterns: (a) Sequential accesses memory
pages sequentially, and (b) Stride-10 accesses memory in
strides of 10 pages. In both cases, we use a simple application
with its working set size set to 2GB. For disaggregated VMM,
it is provided 1GB memory to ensure that 50% of its access
cause paging. For disaggregated VFS, it performs 1GB remote
write and then another 1GB remote read operations.

Figure 2 shows the latency distributions for 4KB page ac-
cesses from disk and disaggregated remote memory for both
of the access patterns. For a prefetch size of 8 pages, both
perform well for the Sequential pattern; this is because 80%
of the requests hit the cache. In contrast, we observe signif-

0
0.2
0.4
0.6
0.8

1

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Po
w

er
G

ra
ph

N
um

Py

V
ol

tD
B

M
em

ca
ch

ed

Window-2 Window-4 Window-8 Window-8
Strict Pattern Majority-based

Pattern

%
 o

f P
at

te
rn

s

Sequential Stride Other

Figure 3: Fractions of sequential, stride, and other access patterns
in page fault sequences of length X (Window-X).

icantly higher latency in the Stride-10 case because all the
requests miss the page cache due to the lack of consecutive-
ness in successive page accesses. By analyzing the latency
breakdown inside the data path for Stride-10 (as shown in Fig-
ure 1), we make two key observations. First, although RDMA
can provide significantly lower latency than disk (4.3µs vs.
91.5µs), RDMA-based solutions do not benefit as much from
that (38.3µs vs. 125.5µs). This is because of the significant
data path overhead (on average 34µs) to prepare and batch
a request before dispatching it. Significant variations in the
preparation and batching stages of the data path cause the
average to stray far from the median. Second, the existing
sequential data layout-based prefetching mechanism fails to
serve the purpose in the presence of diverse remote page ac-
cess patterns. Solutions based on fixed stride sizes also fall
short because stride sizes can vary over time within the same
application. Besides, there can be more complicated patterns
beyond stride or no repetitions at all.

Shortcoming of Strict Pattern Finding for Prefetching
Figure 3 presents the remote page access patterns of four
memory-intensive applications during page faults when they
are run with 50% of their working sets in memory (more
details in Section 5.3). Here, we consider all page fault se-
quences within a window of size X ∈ {2,4,8} in these ap-
plications. Therefore, we divide the page fault scenarios into
three categories: sequential when all pages within the window
of X are sequential pages, stride when the pages within the
window of X have the same stride from the first page, and
other when it is neither sequential nor stride.

The default prefetcher in Linux finds strict sequential pat-
terns in window size X = 2 and tunes up its aggressiveness
accordingly. For example, page faults in PowerGraph and
VoltDB follow 67% and 27% sequential pattern within win-
dow size X = 2, respectively. Consequently, for these two
applications, Linux optimistically prefetches many pages into
the cache. However, if we look at the X = 8 case, the percent-
age of sequential pages within consecutive page faults goes
down to 53% and 7% for PowerGraph and VoltDB, respec-
tively. Meaning, for these two applications, 14–20% of the
prefetched pages are not consumed immediately. This creates

0
0.2
0.4
0.6
0.8

1

0 20 40 60 80 100

C
D

F

Time (s)

Cache Eviction
Latency

Figure 4: Due to Linux’s lazy cache eviction policy, page caches
waste the cache area for significant amount of time.

unnecessary memory pressure and might even lead to cache
pollution. At the same time, all non-sequential patterns in
the X = 2 case fall under the stride category. Considering
the low cache hit rate, Linux pessimistically decreases/stops
prefetching in those cases, which leads to a stale page cache.

Note that strictly expecting all X accesses to follow the
same pattern results in not having any patterns at all (e.g.,
when X = 8), because this cannot capture the transient inter-
ruptions in sequence. In that case, following the major sequen-
tial and/or stride trend within a limited page access history
window is more resilient to short-term irregularities. Consec-
utively, when X = 8, a majority-based pattern detection can
detect 11.3%–29.7% more sequential accesses. Therefore, it
can successfully prefetch more accurate pages into the page
cache. Besides sequential and stride access patterns, it is also
transparent to irregular access patterns; e.g., for Memcached,
it can detect 96.4% of the irregularity.

Prefetch Cache Eviction Linux kernel maintains an asyn-
chronous background thread (kswapd) to monitor the ma-
chine’s memory consumption. If the overall memory con-
sumption goes beyond a critical memory pressure or a pro-
cess’s memory usage hits its limit, it determines the eviction
candidates by scanning over the in-memory pages to find out
the least-recently-used (LRU) ones. Then, it frees up the se-
lected pages from the main memory to allocate new pages.
A prefetched cache waits into the LRU list for its turn to get
selected for eviction even though it has already been used by
a process (Figure 4). Unnecessary pages waiting for eviction
in-memory leads to extra scanning time. This extra wait-time
due to lazy cache eviction policy adds to the overall latency,
especially in a high memory pressure scenario.

3 Remote Memory Prefetching
In this section, we first highlight the characteristics of an ideal
prefetcher. Next, we present our proposed online prefetcher
along with its different components and the design princi-
ples behind them. Finally, we discuss the complexity and
correctness of our algorithm.

3.1 Properties of an Ideal Prefetcher
A prefetcher’s effectiveness is measured along three axes:
• Accuracy refers to the ratio of total cache hits and the total

pages added to the cache via prefetching.

• Coverage measures the ratio of the total cache hit from the
prefetched pages and the total number of requests (e.g.,
page faults in case of remote memory paging solutions).

• Timeliness of an accurately prefetched page is the time
gap from when it was prefetched to when it was first hit.

Trade-off An aggressive prefetcher can hide the slower
memory access latency by bringing pages well ahead of the
access requests. This might increase the accuracy, but as
prefetched pages wait longer to get consumed, this wastes
the effective cache and I/O bandwidth. On the other hand, a
conservative prefetcher has lower prefetch consumption time
and reduces cache and bandwidth contention. However, it
has lower coverage and cannot hide memory access latency
completely. An effective prefetcher must balance all three.

An effective prefetcher must be adaptive to temporal
changes in memory access patterns as well. When there is a
predictable access pattern, it should bring pages aggressively.
In contrast, during irregular accesses, the prefetch rate should
be throttled down to avoid cache pollution.

Prefetching algorithms use prior page access information
to predict future access patterns. As such, their effectiveness
largely depends on how well they can detect patterns and
predict. A real-time prefetcher has to face a trade-off between
pattern identification accuracy vs. computational complex-
ity and resource overhead. High CPU usage and memory
consumption will negatively impact application performance
even though they may help in increasing accuracy.

Common Prefetching Techniques The most common and
simple form of prefetching is spatial pattern detection [51].
Some specific access patterns (i.e., stride, stream, etc.) can
be detected with the help of special hardware (HW) fea-
tures [33, 35, 66, 80]. However, they are typically applied
to identify patterns in instruction access that are more regular;
in contrast, data access patterns are more irregular. Special
prefetch instructions can also be injected into an application’s
source code, based on compiler or post-execution based analy-
sis [27,40,41,60,61]. However, compiler-injected prefetching
needs a static analysis of the cache miss behavior before the
application runs. Hence, they are not adaptive to dynamic
cache behavior. Finally, HW- or software (SW)-dependent
prefetching techniques are limited to the availability of the
special HW/SW features and/or application modification.

Summary An ideal prefetcher should have low computa-
tional and memory overhead. It should have high accuracy,
coverage, and timeliness to reduce cache pollution; an adap-
tive prefetch window is imperative to fulfill this requirement.
It should also be flexible to both spatial and temporal local-
ity in memory accesses. Finally, HW/SW independence and
application transparency make it more generic and robust.

Table 1 compares different prefetching methods.

3.2 Majority Trend-Based Prefetching
Leap has two main components: detecting trends and deter-

Low Computational
Complexity

Low Memory
Overhead

Unmodified
Application

HW/SW
Independent

Temporal
Locality

Spatial
Locality

High Prefetch
Utilization

Next-N-Line [52] X X X X X X X
Stride [14] X X X X X X X
GHB PC [54] X X X X X X X
Instruction Prefetch [27, 41] X X X X X X X
Linux Read-Ahead [72] X X X X X X X
Leap Prefetcher X X X X X X X

Table 1: Comparison of prefetching techniques based on different objectives.

Algorithm 1 Trend Detection

1: procedure FINDTREND(Nsplit)
2: Hsize← SIZE(AccessHistory)
3: w← Hsize/Nsplit . Start with small detection window
4: ∆ma j← /0

5: while true do
6: ∆ma j ← Boyer-Moore on {Hhead , . . . ,Hhead−w−1}
7: w← w∗2
8: if ∆ma j 6= major trend then
9: ∆ma j← /0

10: if ∆ma j 6= /0 or w >Hsize then
11: return ∆ma j

12: return ∆ma j

mining what to prefetch. The first component looks for any
approximate trend in earlier accesses. Based on the trend
availability and prefetch utilization information, the latter
component decides how many and which pages to prefetch.

3.2.1 Trend Detection

Existing prefetch solutions rely on strict pattern identifica-
tion mechanisms (e.g., sequential or stride of fixed size) and
fail to ignore temporary irregularities. Instead, we consider
a relaxed approach that is robust to short-term irregularities.
Specifically, we identify the majority ∆ values in a fixed-size
(Hsize) window of remote page accesses (ACCESSHISTORY)
and ignore the rest. For a window of size w, a ∆ value is said to
be the major only if it appears at least bw/2c+1 times within
that window. To find the majority ∆, we use the Boyer-Moore
majority vote algorithm [17] (Algorithm 1), a linear-time and
constant-memory algorithm, over ACCESSHISTORY elements.
Given a majority ∆, due to the temporal nature of remote page
access events, it can be hypothesized that subsequent ∆ values
are more likely to be the same as the majority ∆.

Note that if two pages are accessed together, they will be
aged and evicted together in the slower memory space at
contiguous or nearby addresses. Consequently, the temporal
locality in virtual memory accesses will also be observed in
the slower page accesses and an approximate stride should be
enough to detect that.

Window Management If a memory access sequence
follows a regular trend, then the majority ∆ is likely to be

t0 t1 t2 t3

0x48 0x45 0x42 0x3F
-3-3-3+72

(a) at time t3

t4 t5 t6 t7

0x3C 0x02 0x04 0x06

t0 t1 t2 t3

0x48 0x45 0x42 0x3F
-3-3-3+72 +2+2-58-3

(b) at time t7

t8 t1 t2 t3

0x08 0x45 0x42 0x3F
-3-3-3+2 +2+2-58-3

t4 t5 t6 t7

0x3C 0x02 0x04 0x06

(c) at time t8

t8 t9 t10 t11

0x08 0x0A 0x0C 0x10
+4+2+2+2 +2+2-39-41

t12 t13 t14 t15

0x39 0x12 0x14 0x16

(d) at time t15

Figure 5: Content of ACCESSHISTORY at different time. Solid col-
ored boxes indicate the head position at time ti. Dashed boxes indi-
cate detection windows. Here, time rolls over at t8.

found in almost any part of that sequence. In that case, a
smaller window can be more effective as it reduces the total
number of operations. So instead of considering the entire
ACCESSHISTORY, we start with a smaller window that starts
from the head position (Hhead) of ACCESSHISTORY. For
a window of size w, we find the major ∆ appearing in the
Hhead ,Hhead−1, ...,Hhead−w−1 elements.

However, in the presence of short-term irregularities, small
windows may not detect a majority. To address this, the
prefetcher starts with a small detection window and doubles
the window size up to ACCESSHISTORY size until it finds a
majority; otherwise, it determines the absence of a majority.
The smallest window size can be controlled by Nsplit .

Example Let us consider a ACCESSHISTORY with Hsize =
8 and Nsplit = 2. Say pages with the following addresses:
0x48, 0x45, 0x42, 0x3F, 0x3C, 0x02, 0x04, 0x06, 0x08,
0x0A, 0x0C, 0x10, 0x39, 0x12, 0x14, 0x16, were requested in
that order. Figure 5 shows the corresponding ∆ values stored
in ACCESSHISTORY, with t0 being the earliest and t15 being
the latest request. At ti, Hhead stays at the ti-th slot.

FINDTREND in Algorithm 1 will initially try to detect a

Algorithm 2 Prefetch Candidate Generation

1: procedure GETPREFETCHWINDOWSIZE(page Pt)
2: PWsizet . Current prefetch window size
3: PWsizet−1 . Last prefetch window size
4: Chit . Prefetched cache hits after last prefetch
5: if Chit = 0 then
6: if Pt follows the current trend then
7: PWsizet ← 1 . Prefetch a page along trend
8: else
9: PWsizet ← 0 . Suspend prefetching

10: else . Earlier prefetches had hits
11: PWsizet ← Round up Chit +1 to closest power of 2
12: PWsizet ←min(PWsizet ,PWsizemax)
13: if PWsizet <PWsizet−1/2 then . Low cache hit
14: PWsizet ← PWsizet−1/2 . Shrink window smoothly

15: Chits← 0
16: PWsizet−1 ← PWsizet

17: return PWsizet

18: procedure DOPREFETCH(page Pt)
19: PWsizet ← GETPREFETCHWINDOWSIZE(Pt)
20: if PWsizet 6= 0 then
21: ∆ma j← FINDTREND(N_split)
22: if ∆ma j 6= /0 then
23: Read PWsizet pages with ∆ma j stride from Pt
24: else
25: Read PWsizet pages around Pt with latest ∆ma j

26: else
27: Read only page Pt

trend using a window size of 4. Upon failure, it will look for
a trend first within a window size of 8.

At time t3, FINDTREND successfully finds a trend of -3
within the t0–t3 window (Figure 5a).

At time t7, the trend starts to shift from -3 to +2. At that
time, t4–t7 window does not have a majority ∆, which doubles
the window to consider t0–t7. This window does not have any
majority ∆ either (Figure 5b). However, at t8, a majority ∆ of
+2 within t5–t8 will be adopted as the new trend (Figure 5c).

Similarly, at t15, we have a majority of +2 in the t8–t15,
which will continue to the +2 trend found at t8 while ignoring
the short-term variations at t12 and t13 (Figure 5d).

3.2.2 Prefetch Candidate Generation

So far we have focused on identifying the presence of a trend.
Algorithm 2 determines whether and how to use that trend for
prefetching for a request for page Pt .

We determine the prefetch window size (PWsizet) based on
the accuracy of prefetches between two consecutive prefetch
requests (see GETPREFETCHWINDOWSIZE). Any cache hit
of the prefetched data between two consecutive prefetch re-
quests indicates the overall effectiveness of the prefetch. In
case of high effectiveness (i.e., a high cache hit), PWsizet is

expanded until it reaches maximum size (PWsizemax). On the
other hand, low cache hit indicates low effectiveness; in that
case, the prefetch window size gets reduced. However, in
the presence of drastic drops, prefetching is not suspended
immediately. The prefetch window is shrunk smoothly to
make the algorithm flexible to short-term irregularities. When
prefetching is suspended, no extra pages are prefetched until a
new trend is detected. This is to avoid cache pollution during
irregular/unpredictable accesses.

Given a non-zero PWsize, the prefetcher brings in PWsize
pages following the current trend, if any (DOPREFETCH). If
no majority trend exists, instead of giving up right away, it
speculatively brings PWsize pages around Pt ’s offset following
the previous trend. This is to ensure that short-term irregulari-
ties cannot completely suspend prefetching.

Prefetching in the Presence of Irregularity FINDTREND
can detect a trend within a window of size w in the presence of
at most bw/2c−1 irregularities within it. If the window size
is too small or the window has multiple perfectly interleaved
threads with different strides, FINDTREND will consider it
a random pattern. In that case, if the PWsize has a non-zero
value then it performs a speculative prefetch (line 25) with
the previous ∆ma j. If that ∆ma j is one of the interleaved strides,
then this speculation will cause cache hit and continue. Oth-
erwise, PWsize will eventually be zero and the prefetcher will
stop bringing unnecessary pages. In that case, the prefetcher
cannot be worse than the existing prefetch algorithms.

Prefetching During Constrained Bandwidth In Leap,
faulted page read and prefetch are done asynchronously. Here,
prefetching has a lower priority. In extreme bandwidth con-
straints, prefetched pages will take a long time to arrive and
result in fewer cache hits. This will eventually shrink down
PWsize. Thus, dynamic prefetch window sizing will help in
bandwidth-constrained scenarios.

Effect of Huge Page Linux kernel splits a huge page into
4KB pages before swapping. When transparent huge page is
enabled, Leap will be applied on these splitted 4KB pages.

Note that, using huge pages will result in high amplification
for dirty data [18]. Besides, average RDMA latencies for 4KB
vs 2MB page are 3µs vs 330µs. If huge pages were never split,
to maintain single µs latency for 2MB pages, we will need
a significantly larger prefetch window size (PWsize ≥ 128),
demanding more bandwidth and cache space, and making
mispredictions more expensive.

3.3 Analysis
Time Complexity The FINDTREND function in Algo-
rithm 1 initially tries to detect trend aggressively within a
smaller window using the Boyer-Moor Majority Voting al-
gorithm. If it fails, then it expands the window size. The
Boyer-Moor Majority Voting algorithm (line 6) detects a ma-
jority element (if any) in O(w) time, where w is the size of
the window. In the worst case, it will invoke the Boyer-Moor

User
Space

Kernel
Space

Virtual File System
(VFS)

Remote Memory Storage

Memory Management
Unit (MMU)

Process 1 Process 2 Process N…

File Read/Write Page Fault

Trend
Detection

Prefetch
Candidate
Generation

Process Specific
Page Access Tracker

Prefetcher

Leap

Cache
Miss

Cache
Hit 0.27us

4.3us

2.1us

Eager Cache Eviction

VFS
Page Cache

MMU
Page Cache

Figure 6: Leap has a faster data path for a cache miss.

Majority Voting algorithm for O(logHsize) times. However, as
the windows are continuous, searching in a new window does
not need to start from the beginning and the algorithm never
access the same item twice. Hence, the worst-case time com-
plexity of the FINDTREND function is O(Hsize), where Hsize
is the size of the ACCESSHISTORY queue. For smaller Hsize
the computational complexity is constant. Even for Hsize = 32,
the prefetcher provides significant performance gain (§5) that
greatly outweighs the slight extra computational cost.

Memory Complexity The Boyer-Moor Majority Voting al-
gorithm operates on constant memory space. FINDTREND
just invokes the Boyer-Moor Majority Voting algorithm and
does not require any additional memory to execute. So, the
Trend Detection algorithm needs O(1) space to operate.

Correctness of Trend Detection The correctness of FIND-
TREND depends on that of the Boyer-Moor Majority Voting
algorithm, which always provides the majority element, if one
exists, in linear time (see [17] for the formal proof).

4 System Design
We have implemented our prefetching algorithm as a data
path replacement for memory disaggregation frameworks (we
refer to this design as Leap data path) alongside the traditional
data path in Linux kernel v4.4.125. Leap has three primary
components: a page access tracker to isolate processes, a
majority-based prefetching algorithm, and an eager cache
eviction mechanism. All of them work together in the kernel
space to provide a faster data path. Figure 6 shows the basic
architecture of Leap’s remote memory access mechanism. It
takes only around 400 lines of code to implement the page
access tracker, prefetcher, and the eager eviction mechanism.

4.1 Page Access Tracker
Leap isolates each process’s page access data paths. The page
access tracker monitors page accesses inside the kernel that
enables the prefetcher to detect application-specific page ac-
cess trends. Leap does not monitor in-memory pages (hot
pages) because continuously scanning and recording the hard-
ware access bits of a large number of pages causes significant
computational overhead and memory consumption. Instead,

it monitors only the cache look-ups and records the access
sequence of the pages after I/O requests or page faults, trading
off a small loss in access pattern detection accuracy for low
resource overhead. As temporal locality in the virtual memory
space results in a spatial locality in the remote address space,
just monitoring the remote page accesses is often enough.

The page access tracker is added as a separate control
unit inside the kernel. Upon a page fault, during the page-in
operation (do_swap_page() under mm/memory.c), we no-
tify (log_access_history()) Leap’s page access tracker
about the page fault and the process involved. Leap maintains
process-specific fixed-size (Hsize) FIFO ACCESSHISTORY
circular queues to record the page access history. Instead of
recording exact page addresses, however, we only store the
difference between two consecutive requests (∆). For exam-
ple, if page faults happen for addresses 0x2, 0x5, 0x4, 0x6,
0x1, 0x9, then ACCESSHISTORY will store the corresponding
∆ values: 0, +3, -1, +2, -5, +8. This reduces the storage space
and computation overhead during trend detection (§3.2.1).

4.2 The Prefetcher
To increase the probability of cache hit, Leap incorporates the
majority trend-based prefetching algorithm (§3.2). Here, the
prefetcher considers each process’s earlier remote page ac-
cess histories available in the respective ACCESSHISTORY to
efficiently identify the access behavior of different processes.
Because threads of the same process share memory with each
other, we choose process-level detection over thread-based.
Thread-based pattern detection may result in requesting the
same page for prefetch multiple times for different threads.

Two consecutive page access requests are temporally cor-
related in the sense that they may happen together in the
future. The ∆ values stored in the ACCESSHISTORY records
the spatial locality in the temporally correlated page accesses.
Therefore, the prefetcher utilizes both temporal and spatial
localities of page accesses to predict future page demand.

The prefetcher is added as a separate control unit
inside the kernel. While paging-in, instead of going
through the default swapin_readahead(), we re-
route it through the prefetcher’s do_prefetch() func-
tion. Whenever the prefetcher generates the prefetch
candidates, Leap bypasses the expensive request
scheduling and batching operations of the block layer
(swap_readpage()/swap_writepage() for paging and
generic_file_read()/generic_file_write() for the
file systems) and invokes leap_remote_io_request() to
re-direct the request through Leap’s asynchronous remote I/O
interface over RDMA (§4.4).

4.3 Eager Cache Eviction
Leap maintains a circular linked list of prefetched caches
(PREFETCHFIFOLRULIST). Whenever a page is fetched from
remote memory, besides the kernel’s global LRU lists, Leap
adds it at the tail of the linked list. After the prefetch cache

gets hit and the page table is updated, Leap marks the page
as an eviction candidate. A separate background process con-
tinuously removes eviction candidates from PREFETCHFI-
FOLRULIST and frees up those pages to the buddy list. As
an accurate prefetcher is timely in using the prefetched data,
in Leap, prefetched caches do not wait long to be freed up.
For workloads where repeated access to paged-in data is not
so common, this eager eviction of prefetched pages reduces
the wait time to find and allocate new pages - on average,
page allocation time is reduced by 750ns (36% less than the
usual). Thus, new pages can be brought to the memory more
quickly leading to a reduction in the overall data path latency.
For workloads where paged-in data is repeatedly used, Leap
considers the frequency of access for prefetched pages and
exempt them from eager eviction.

However, if the prefetched pages need to be evicted even
before they get consumed (e.g., at severe global memory
pressure or extreme constrained prefetch cache size scenario),
due to the lack of any access history, prefetched pages will
follow a FIFO eviction order among themselves from the
PREFETCHFIFOLRULIST. Reclamation of other memory
(file-backed or anonymous page) follows the existing LRU-
based eviction technique by kswapd in the kernel. We modify
the kernel’s Memory Management Unit (mm/swap_state.c)
to add the prefetch eviction related functions.

4.4 Remote I/O Interface
Similar to existing works [10, 32], Leap uses an agent in
each host machine to expose a remote I/O interface to the
VFS/VMM over RDMA. The host machine’s agent commu-
nicates to another remote agent with its resource demand
and performs remote memory mapping. The whole remote
memory space is logically divided into fixed-size memory
slabs. A host agent can map slabs across one or more remote
machine(s) according to its resource demand, load balancing,
and fault tolerance policies.

The host agent maintains a per CPU core RDMA connec-
tion to the remote agent. We use the multi-queue IO queuing
mechanism where each CPU core is configured with an indi-
vidual RDMA dispatch queue for staging remote read/write
requests. Upon receiving a remote I/O request, the host gen-
erates/retrieves a slot identifier, extracts the remote memory
address for the page within that slab, and forwards the request
to the RDMA dispatch queue to perform read/write over the
RDMA NIC. During the whole process, Leap completely
bypasses the expensive block layer operations.

Resilience, Scalability, & Load Balancing One can use
existing memory disaggregation frameworks [10, 32, 65] with
respective scalability and fault tolerance characteristics and
still have the performance benefits of Leap. We do not claim
any innovation here. In our implementation, the host agent
leverages the power of two choices [53] to minimize mem-
ory imbalance across remote machines. Remote in-memory
replication is the default fault tolerance mechanism in Leap.

5 Evaluation
We evaluate Leap on a 56 Gbps InfiniBand cluster on Cloud-
Lab [3]. Our key results are as follows:
• Leap provides a faster data path to remote memory. La-

tency for 4KB remote page accesses improves by up to
104.04× (24.96×) at the median and 22.06× (17.32×)
at the tail in case of Disaggregated VMM (VFS) (§5.1).

• While paging to disk, our prefetcher outperforms its coun-
terparts (Next-K, Stride, and Read-Ahead) by up to 1.62×
for cache pollution and up to 10.47× for cache miss. It
improves prefetch coverage by up to 37.51% (§5.2).

• Leap improves the end-to-end application completion
times of PowerGraph, NumPy, VoltDB, and Memcached
by up to 9.84× and their throughput by up to 10.16× over
existing memory disaggregation solutions (§5.3).

Methodology We integrate Leap inside the Linux kernel,
both in its VMM and VFS data paths. As a result, we evaluate
its impact on three primary mediums.
• Local disks: Here, Linux swaps to a local HDD and SSD.
• Disaggregated VMM (D-VMM): To evaluate Leap’s ben-

efit for disaggregated VMM system, we integrate Leap
with the latest commit of Infiniswap on GitHub [4].
• Disaggregated VFS (D-VFS): To evaluate Leap’s bene-

fit for a disaggregated VFS system, we add Leap to our
implementation of Remote Regions [10], which is not
open-source.

For both of the memory disaggregation systems, we use re-
spective load balancing and fault tolerance mechanisms. Un-
less otherwise specified, we use ACCESSHISTORY buffer size
Hsize = 32, and maximum prefetch window size PWsizemax = 8.

Each machine in our evaluation has 64 GB of DRAM and
2× Intel Xeon E5-2650v2 with 16 cores (32 hyperthreads).

5.1 Microbenchmark
We start by analyzing Leap’s latency characteristics with the
two simple access patterns described in Section 2.

During sequential access, due to prefetching, 80% of the
total page requests hit the cache in the default mechanism.
On the other hand, during stride access, all prefetched pages
brought in by the Linux prefetcher are unused and every page
access request experiences a cache miss.

Due to Leap’s faster data path, for Sequential, it improves
the median by 4.07× and 99th percentile by 5.48× for disag-
gregated VMM (Figure 7a). For Stride-10, as the prefetcher
can detect strides efficiently, Leap performs almost as good as
it does during the sequential accesses. As a result, in terms of
4KB page access latency, Leap improves disaggregated VMM
by 104.04× at the median and 22.06× at the tail (Figure 7b).

Leap provides similar performance benefits during memory
disaggregation through the file abstraction as well. During
sequential access, Leap improves 4KB page access latency by
1.99× at the median and 3.42× at the 99th percentile. During

0

0.2

0.4

0.6

0.8

1

0.01 1 100 10000

C
D

F

Latency (us)

D-VMM

D-VMM+Leap

D-VFS

D-VFS+Leap

(a) Sequential

0

0.2

0.4

0.6

0.8

1

0.01 1 100 10000

C
D

F

Latency (us)

(b) Stride-10

Figure 7: Leap provides lower 4KB page access latency for both
sequential and stride access patterns.

stride access, the median and 99th percentile latency improves
by 24.96× and 17.32×, respectively.

Performance Benefit Breakdown For disaggregated
VMM (VFS), the prefetcher improves the 99th percentile
latency by 25.4% (23.1%) over the optimized data path where
Leap’s eager cache eviction contributes another 9.7% (8.5%)
improvement.

As the idea of using far/remote memory for storing cold
data is getting more popular these days [9,32,45], throughout
the rest of the evaluation, we focus only on remote paging
through a disaggregated VMM system.

5.2 Performance Benefit of the Prefetcher
Here, we focus on the effectiveness of the prefetcher itself.
We use four real-world memory-intensive applications and
workload combinations (Figure 3) used in prior works [10,32].
• TunkRank [8] on PowerGraph [29] to measure the influ-

ence of a Twitter user from the follower graph [44]. This
workload has a significant amount of stride, sequential,
and random access patterns.

• Matrix multiplication on NumPy [57] over matrices of
floating points. This has mostly sequential patterns.

• TPC-C benchmark [7] on VoltDB [70] to simulate an
order-entry environment. We set 256 warehouses and 8
sites and run 2 million transactions. This has mostly ran-
dom with a few amount of sequential patterns.

• Facebook’s ETC workload [13] on Memcached [5]. We
use 10 million SET operations to populate the Memcached
server. Then we perform another 10 million queries
(5%SETs, 95%GETs). This has mostly random patterns.

The peak memory usage of these applications varies from 9–
38.2 GB. To prompt remote paging, we limit an application’s
memory usage through cgroups [2]. To separate the benefit
of the prefetcher, we run all of the applications on disk (with
existing block layer-based data path) with 50% memory limit.

5.2.1 Prefetch Utilization

We observe the benefit of Leap’s prefetcher over following
practical and realtime prefetching techniques:
• Next-N-Line Prefetcher [52] aggressively brings N pages

1

10

100

0 10 20 30 40

C
C

D
F

(%
)

4KB Page Access Latency (μs)

Data path optimizations

 Data path optimizations +
Prefetcher
 Data path optimizations +
Prefetcher + Eviction

(a) Benefit Breakdown

263.90
424.47

647.53204.56

297.42

412.32

0 200 400 600 800

HDD+Leap Prefetcher

HDD+Read-Ahead

HDD w/o Prefetching

SSD+Leap Prefetcher

SSD+Read-Ahead

SSD w/o Prefetching

Completion Time (s)

(b) Prefetcher with Slow Storage

Figure 8: The prefetcher is effective for different storage systems.

sequentially mapped to the page with the cache miss if
they are not in the cache.

• Stride Prefetcher [14] brings pages following a stride
pattern relative to the current page upon a cache miss. The
aggressiveness of this prefetcher depends on the accuracy
of the past prefetch.

• Linux Read-Ahead prefetches an aligned block of pages
containing the faulted page [72]. Linux uses prefetch hit
count and an access history of size 2 to control the aggres-
siveness of the prefetcher.

Impact on the Cache As the volume of data fetched into
the cache increases, the prefetch hit rate increases as well.
However, thrashing begins as soon as the working set exceeds
the cache capacity. As a result, useful demand-fetched pages
are evicted. Table 2 shows that Leap’s prefetcher uses fewer
page caches (4.37–62.13%) than the other prefetchers for
every workload.

A successful prefetcher reduces the number of cache misses
by bringing the most accurate pages into the cache. Leap’s
prefetcher experiences fewer cache miss events (1.1–10.47×)
and enhances the effective usage of the cache space.

Application Performance Due to the improvement in
cache pollution and reduction of cache miss, using Leap’s
prefetcher, all of the applications experience the lowest com-
pletion time. Based on the access pattern, Leap’s prefetcher
improves the application completion time by 7.4–75.3% over
Linux’s default Read-Ahead prefetching technique (Table 2).

Effectiveness If a prefetcher brings every possible page in
the page cache, then it will be 100% accurate. However, in re-
ality, one cannot have an infinite cache space due to large data
volumes and/or multiple applications running on the same
machine. Besides, optimistically bringing pages may create
cache contention, which reduces the overall performance.

Leap’s prefetcher trades off cache pollution with compara-
tively lower accuracy. In comparison to other prefetchers,
it shows 0.3–10.8% lower accuracy (Table 2). This accu-
racy loss is linear to the number of cache adds done by the
prefetchers. Because the rest of the prefetchers bring in too
many pages, their chances of getting lucky hits increase too.
Although Leap has the lowest accuracy, its high coverage
(0.7–37.5%) allows it to serve with accurate prefetches with
a lower cache pollution cost. At the same time, it has an im-

PowerGraph NumPy VoltDB Memcached
Next-N-Line Stride Read-Ahead Leap Next-N-Line Stride Read-Ahead Leap Next-N-Line Stride Read-Ahead Leap Next-N-Line Stride Read-Ahead Leap

Cache Add (millions) 4.88 3.88 3.85 3.01 10.75 10.52 10.61 10.08 6.50 6.23 5.91 5.20 4.65 4.14 4.06 3.25
Cache Miss (millions) 1.11 1.61 0.26 0.15 0.13 0.16 0.14 0.12 1.53 2.24 0.96 0.90 1.44 1.39 1.36 0.96
Completion Time (s) 683.92 885.86 462.54 263.90 1410.30 1380.10 1332.40 1240.60 2017.47 2454.72 2064.60 1799.84 382.54 374.60 366.91 302.43
Accuracy (%) 55.30 45.60 45.10 44.60 89.60 89.40 89.20 88.90 40.20 39.50 39.90 37.60 41.80 42.10 41.90 39.40
Coverage (%) 70.90 52.30 86.80 89.80 95.80 96.30 96.80 98.60 61.20 47.40 68.50 71.00 51.70 52.40 56.90 57.60
Timeliness (ms) - 95th Percentile 19.10 0.03 0.39 0.07 10.34 0.02 0.24 0.06 22125.14 34.32 64314.96 776.68 32417.89 466.64 46679.77 886.67

Table 2: Leap’s prefetcher reduces cache pollution and cache miss events. With higher coverage, better timeliness and almost similar accuracy,
the prefetcher outperforms its counterparts in terms of application level performance. Here, shaded numbers indicate the best performances.

11
6.

2

11
8.

3

11
7.

4

42
4.

5

21
4.

6

14
2.

2

71
0.

6

29
8.

5

0
200
400
600
800

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

100% 50% 25%

C
om

pl
et

io
n

T
im

e
(s

)

N
ev

er
 fi

ni
sh

es

(a) PowerGraph Completion Time

55
1.

9

55
1.

9

55
1.

9 13
32

.4

83
5.

2

66
0.

2 15
12

.6

10
57

.9

75
7.

0

0
400
800

1200
1600

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

100% 50% 25%

C
om

pl
et

io
n

T
im

e
(s

)

(b) NumPy Completion Time

38.6 37.0 37.0

1.0
12.9

35.6

1.5

15.6

0
10
20
30
40

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

100% 50% 25%

T
PS

 (T
ho

us
an

ds
)

N
ev

er
 fi

ni
sh

es

(c) VoltDB Throughput

11
9

11
9

11
9

11

10
7

11
9

97

11
7

0

40

80

120

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

D
isk

D
-V

M
M

D
-V

M
M

+L
ea

p

100% 50% 25%

O
PS

 (T
ho

us
an

ds
)

N
ev

er
 fi

ni
sh

es

(d) Memcached Throughput

Figure 9: Leap provides lower completion times and higher throughput over Infiniswap’s default data path for different memory limits. Note
that lower is better for completion time, while higher is better for throughput. Disk refers to HDD in this figure.

proved timeliness over Read-Ahead (4–52.6×) at the 95th

percentile. Due to the higher coverage, better timeliness, and
almost similar accuracy, Leap’s prefetcher thus outperforms
others in terms of application-level performance. Note that de-
spite having the best timeliness, Stride has the worst coverage
and completion time that impedes its overall performance.

5.2.2 Performance Benefit Breakdown

Figure 8a shows the performance benefit breakdown for each
of the components of Leap’s data path. For PowerGraph at
50% memory limit, due to data path optimizations, Leap pro-
vides with single µs latency for 4KB page accesses up to
the 95th percentile. Inclusion of the prefetcher ensures sub-
µs 4KB page access latency up to the 85th percentile and
improves the 99th percentile latency by 11.4% over Leap’s
optimized data path. The eager eviction policy reduces the
page cache allocation time and improves the tail latency by
another 22.2%.

5.2.3 Performance Benefit for HDD and SSD

To observe the usefulness of the prefetcher for different slow
storage systems, we incorporate it into Linux’s default data
path while paging to SSD. For PowerGraph, Leap’s prefetcher
improves the overall application run time by 1.45× (1.61×)
for SSD (HDD) over Linux’s default prefetcher (Figure 8b).

5.3 Leap’s Overall Impact on Applications
Finally, we evaluate the overall benefit of Leap (including
all of its components) for the applications mentioned in Sec-
tion 5.2. We limit an application’s memory usage to fit 100%,
50%, 25% of its peak memory usage. Here, we considered
the extreme memory constrain (e.g., 25%) to validate the
applicability of Leap to recent resource (memory) disaggre-

gation frameworks that operate on a minimal amount of local
memory [65].

PowerGraph PowerGraph suffers significantly for cache
misses in Infiniswap (Figure 9a). In contrast, Leap increases
the cache hit rate by detecting 19.03% more remote page ac-
cess patterns over Read-Ahead. The faster the prefetch cache
hit happens, the faster the eager cache eviction mechanism
frees up page caches and eventually helps in faster page al-
locations for a new prefetch. Besides, due to more accurate
prefetching, Leap reduces the wastage in both cache space
and RDMA bandwidth. This improves 4KB remote page ac-
cess time by 8.17× and 2.19× at the 99th percentile for 50%
and 25% cases, respectively. Overall, the integration of Leap
to Infiniswap improves the completion time by 1.56× and
2.38× at 50% and 25% cases, respectively.

NumPy Leap can detect most of the remote page access
patterns (10.4% better than Linux’s default prefetcher). As a
result, similar to PowerGraph, for NumPy, Leap improves the
completion time by 1.27× and 1.4× for Infiniswap at 50%
and 25% memory limit, respectively (Figure 9b). The 4KB
page access time improves by 5.28× and 2.88× at the 99th

percentile at 50% and 25% cases, respectively.

VoltDB Latency-sensitive applications like VoltDB suffer
significantly due to paging. During paging, due to Linux’s
slower data path, Infiniswap suffers 65.12% and 95.72%
lower throughput than local memory behavior at 50% and
25% cases, respectively. In contrast, Leap’s better prefetching
(11.6% better than Read-Ahead) and instant cache eviction
improves the 4KB page access time – 2.51× and 2.7× better
99th percentile at 50% and 25% cases, respectively. However,
while executing short random transactions, VoltDB has ir-
regular page access patterns (69% of the total remote page

143.2 155.3 158.5 160.2

660.2 726.1 734.3 739.6

0
200
400
600
800

No Limit 320 32 3.2

C
om

pl
et

io
n

Ti
m

e (
s)

Prefetch Cache Size (MB)

PowerGraph NumPy

(a) Completion Time

35.6 33.7 31.6 31.0

119.0 119.0 118.0 118.0

0
30
60
90

120
150

No Limit 320 32 3.2TP
S

(T
ho

us
an

ds
)

Prefetch Cache Size (MB)

VoltDB Memcached

(b) Throughput

Figure 10: Leap has minimal performance drop for Infiniswap even
in the presence of O(1) MB cache size.

accesses). At that time, our prefetcher’s adaptive throttling
helps the most by not congesting the RDMA. Overall, Leap
faces smaller throughput loss (3.78% and 57.97% lower than
local memory behavior at 50% and 25% cases, respectively).
Leap improves Infiniswap’s throughput by 2.76× and 10.16×
at 50% and 25% cases, respectively (Figure 9c).

Memcached This workload has a mostly random remote
page access pattern. Leap’s prefetcher can detect most of
them and avoids prefetching in the presence of randomness.
This results in fewer remote requests and less cache pollution.
As a result, Leap provides Memcached with almost the local
memory level behavior at 50% memory limit while the default
data path of Infiniswap faces 10.1% throughput loss (Figure
9d). At 25% memory limit, Leap deviates from the local
memory throughput behavior by only 1.7%. Here, the default
data path of Infiniswap faces 18.49% throughput loss. In this
phase, Leap improves Infiniswap’s throughput by 1.11× and
1.21× at 50% and 25% memory limits, respectively. Here,
Leap provides with 5.94× and 1.08× better 99th percentile
4KB page access time at 50% and 25% cases, respectively.

Performance Under Constrained Cache Size To observe
Leap’s performance benefit in the presence of limited cache
size, we run the four applications in 50% memory limit con-
figuration at different cache limits (Figure 10).

For Memcached, as most of the accesses are of random pat-
terns, most of the performance benefit comes from Leap’s
faster slow path. For the rest of the applications, as the
prefetcher has better timeliness, most of the prefetched caches
get used and evicted before the cache size hits the limit. Hence,
during O(1) MB cache size, all of these applications face min-
imal performance drop (11.87–13.05%) compared to the un-
limited cache space scenario. Note that, for NumPy, 3.2 MB
cache size is only 0.02% of its total remote memory usage.

Multiple Applications Running Together We run all four
applications on a single host machine simultaneously with
their 50% memory limit and observe the performance benefit
of Leap for Infiniswap when multiple throughput- (Power-
Graph, NumPy) and latency-sensitive applications (VoltDB,
Memcached) concurrently request for remote memory access
(Figure 11). As Leap isolates each application’s page access
path, its prefetcher can consider individual access patterns
while making prefetch decisions. Therefore, it brings more

515.1
214.8

1429.6

836.7

191.7 92.1 88.4 82.6
0

400
800

1200
1600

D
-V

M
M

D
-V

M
M

 +
Le

ap

D
-V

M
M

D
-V

M
M

 +
Le

ap

D
-V

M
M

D
-V

M
M

 +
Le

ap

D
-V

M
M

D
-V

M
M

 +
Le

ap

PowerGraph NumPy VoltDB Memcached

C
om

pl
et

io
n

Ti
m

e (
s)

Figure 11: Leap improves application-level performance when all
four applications access remote memory concurrently.

accurate remote pages for each of the applications and re-
duces the contention over the network. As a result, overall
application-level performance improves by 1.1–2.4× over In-
finiswap. To enable aggregate performance comparison, here,
we present the end-to-end completion time of application-
workload combinations defined earlier; application-specific
metrics improve as well.

6 Discussion and Future Work
Thread-specific Prefetching Linux kernels today manage
memory address space at the process level. Thread-specific
page access tracking requires a significant change in the whole
virtual memory subsystem. However, this would help effi-
ciently identify multiple concurrent streams from different
threads. Low-overhead, thread-specific page access tracking
and prefetching can be an interesting research direction.

Concurrent Disk and Remote I/O Leap’s prefetcher can
be used for both disaggregated and existing Linux Kernels.
Currently, Leap runs as a single memory management module
on the host server where paging is allowed through either
existing block layers or Leap’s remote memory data path. The
current implementation does not allow the concurrent use of
both block layer and remote memory. Exploring this direction
can lead to further benefits for systems using Leap.

Optimized Remote I/O Interface In this work, we focused
on augmenting existing memory disaggregation frameworks
with a leaner and efficient data path. This allowed us to keep
Leap transparent to the remote I/O interface. We believe that
exploring the effects of load balancing, fault-tolerance, data
locality, and application-specific isolation in remote memory
as well as an optimized remote I/O interface are all potential
future research directions.

7 Related Work
Remote Memory Solutions A large number of software
systems have been proposed over the years to access remote
machine’s memory for paging [1, 21, 23, 26, 32, 45, 46, 50,
55, 64, 65], global virtual machine abstraction [6, 25, 43], and
distributed data stores and file systems [10, 22, 42, 47, 58].
Hardware-based remote access using PCIe interconnects [48]
or extended NUMA memory fabric [56] are also proposed to
disaggregate memory. Leap is complementary to these works.

Kernel Data Path Optimizations With the emergence of
faster storage devices, several optimization techniques, and
design principles have been proposed to fully utilize faster
hardware. Considering the overhead of the block layer, dif-
ferent service level optimizations and system re-designs have
been proposed – examples include parallelism in batching
and queuing mechanism [16,75], avoiding interrupts and con-
text switching during I/O scheduling [12, 20, 74, 76], better
buffer cache management [34], etc. During remote memory
access, optimization in data path has been proposed through
request batching [37, 38, 71], eliminating page migration bot-
tleneck [73], reducing remote I/O bandwidth through com-
pression [45], and network-level block devices [46]. Leap’s
data path optimizations are inspired by many of them.

Prefetching Algorithms Many prefetching techniques ex-
ist to utilize hardware features [33, 35, 66, 80], compiler-
injected instructions [27, 40, 41, 60, 61], and memory-side
access pattern [24,54,67–69] for cache line prefetching. They
are often limited to specific access patterns, application behav-
ior, or require specified hardware design. More importantly,
they are designed for a lower level memory stack.

A large number of entirely kernel-based prefetching tech-
niques have also been proposed to hide the latency overhead
of file accesses and page faults [19, 24, 31, 39, 72]. Among
them, Linux Read-Ahead [72] is the most widely used. How-
ever, it does not consider the access history to make prefetch
decisions. It was also designed for hiding disk seek time.
Therefore, its optimistic looking around approach often re-
sults in lower cache utilization for remote memory access.

To the best of our knowledge, Leap is the first to consider
a fully software-based, kernel-level prefetching technique for
DRAM with remote memory as a backing storage over fast
RDMA-capable networks.

8 Conclusion

The paper presents Leap, a remote page prefetching algorithm
that relies on majority-based pattern detection instead of strict
detection. As a result, Leap is resilient to short-term irregu-
larities in page access patterns of multi-threaded applications.
We implement Leap in a leaner and faster data path in the
Linux kernel for remote memory access over RDMA without
any application or hardware modifications.

Our integrations of Leap with two major memory disag-
gregation systems (namely, Infiniswap and Remote Regions)
show that the median and tail remote page access latencies
improves by up to 104.04× and 22.62×, respectively, over
the state-of-the-art. This, in turn, leads to application-level
performance improvements of 1.27–10.16×. Finally, Leap’s
benefits extend beyond disaggregated memory – applying it
to HDD and SSD leads to considerable performance benefits
as well.

Leap is available at https://github.com/SymbioticLab/leap.

Acknowledgments
We want to thank the anonymous reviewers, our shepherd,
Vincent Liu, and SymbioticLab members for their insightful
comments and feedback that helped improve the paper. This
work was supported in part by National Science Foundation
grants CNS-1845853, CCF-1629397, and CNS-1617773.

References
[1] Accelio based network block device. https://github.

com/accelio/NBDX.

[2] cgroups. https://wiki.archlinux.org/index.
php/cgroups.

[3] CloudLab. https://www.cloudlab.us.

[4] Infiniswap github repository. https://github.com/
SymbioticLab/infiniswap.

[5] Memcached - A distributed memory object caching sys-
tem. http://memcached.org.

[6] The versatile SMP (vSMP) architecture.
http://www.scalemp.com/technology/
versatile-smp-vsmp-architecture/.

[7] TPC Benchmark C (TPC-C). http://www.tpc.org/
tpcc.

[8] A twitter analog to PageRank. http:
//thenoisychannel.com/2009/01/13/
a-twitter-analog-to-pagerank.

[9] N. Agarwal and T. F. Wenisch. Thermostat: Application-
transparent page management for two-tiered main mem-
ory. In ASPLOS, 2017.

[10] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, S. Novaković, A. Ramanathan, P. Subrah-
manyam, L. Suresh, K. Tati, R. Venkatasubramanian,
and M. Wei. Remote regions: a simple abstraction for
remote memory. In ATC, 2018.

[11] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, P. Subrahmanyam, L. Suresh, K. Tati,
R. Venkatasubramanian, and M. Wei. Remote mem-
ory in the age of fast networks. In SoCC, 2017.

[12] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and
S. Swanson. Onyx: A protoype phase change memory
storage array. In HotStorage, 2011.

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. SIGMETRICS Perform. Eval. Rev., 2012.

[14] J.-L. Baer and T.-F. Chen. An effective on-chip preload-
ing scheme to reduce data access penalty. In ACM/IEEE
Conference on Supercomputing, 1991.

https://github.com/SymbioticLab/leap
https://github.com/accelio/NBDX
https://github.com/accelio/NBDX
https://wiki.archlinux.org/index.php/cgroups
https://wiki.archlinux.org/index.php/cgroups
https://www.cloudlab.us
https://github.com/SymbioticLab/infiniswap
https://github.com/SymbioticLab/infiniswap
http://memcached.org
http://www.scalemp.com/technology/versatile-smp-vsmp-architecture/
http://www.scalemp.com/technology/versatile-smp-vsmp-architecture/
http://www.tpc.org/tpcc
http://www.tpc.org/tpcc
http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank
http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank
http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank

[15] C. Barthels, S. Loesing, G. Alonso, and D. Kossmann.
Rack-scale in-memory join processing using RDMA. In
SIGMOD, 2015.

[16] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet. Linux
block io: Introducing multi-queue ssd access on multi-
core systems. In SYSTOR, 2013.

[17] R. S. Boyer and J. S. Moore. MJRTY: A fast majority
vote algorithm. In Automated Reasoning. 1991.

[18] I. Calciu, I. Puddu, A. Kolli, A. Nowatzyk, J. Gandhi,
O. Mutlu, and P. Subrahmanyam. Project pberry: FPGA
acceleration for remote memory. In HotOS, 2019.

[19] P. Cao, E. W. Felten, and K. Li. Implementation and
performance of application-controlled file caching. In
OSDI, 1994.

[20] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation, non-
volatile memories. In MICRO, 2010.

[21] H. Chen, Y. Luo, X. Wang, B. Zhang, Y. Sun, and
Z. Wang. A transparent remote paging model for virtual
machines. In International Workshop on Virtualization
Technology, 2008.

[22] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast Remote Memory. In NSDI, 2014.

[23] S. Dwarkadas, N. Hardavellas, L. Kontothanassis,
R. Nikhil, and R. Stets. Cashmere-VLM: Remote mem-
ory paging for software distributed shared memory. In
IPPS/SPDP, 1999.

[24] V. Fedorov, J. Kim, M. Qin, P. V. Gratz, and A. L. N.
Reddy. Speculative paging for future NVM storage. In
MEMSYS, 2017.

[25] M. J. Feeley, W. E. Morgan, E. Pighin, A. R. Karlin,
H. M. Levy, and C. A. Thekkath. Implementing global
memory management in a workstation cluster. In SOSP,
1995.

[26] E. W. Felten and J. Zahorjan. Issues in the implemen-
tation of a remote memory paging system. Technical
report, University of Washington, 1991.

[27] M. Ferdman, C. Kaynak, and B. Falsafi. Proactive in-
struction fetch. In MICRO, 2011.

[28] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker. Network
requirements for resource disaggregation. In OSDI,
2016.

[29] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In OSDI, 2012.

[30] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph processing in a
distributed dataflow framework. In OSDI, 2014.

[31] J. Griffioen and R. Appleton. Reducing file system
latency using a predictive approach. In USTC, 1994.

[32] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with Infiniswap. In
NSDI, 2017.

[33] A. Jain and C. Lin. Linearizing irregular memory ac-
cesses for improved correlated prefetching. In MICRO,
2013.

[34] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. Dulo:
An effective buffer cache management scheme to exploit
both temporal and spatial localities. In FAST, 2005.

[35] D. Joseph and D. Grunwald. Prefetching using markov
predictors. In ISCA, 1997.

[36] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA efficiently for key-value services. In SIGCOMM,
2014.

[37] A. Kalia, M. Kaminsky, and D. G. Andersen. Design
guidelines for high performance RDMA systems. In
ATC, 2016.

[38] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST:
Fast, scalable and simple distributed transactions with
two-sided (RDMA) datagram RPCs. In OSDI, 2016.

[39] S. F. Kaplan, L. A. McGeoch, and M. F. Cole. Adaptive
caching for demand prepaging. SIGPLAN Not., 2002.

[40] M. Khan, A. Sandberg, and E. Hagersten. A case for
resource efficient prefetching in multicores. In ICPP,
2014.

[41] A. Kolli, A. Saidi, and T. F. Wenisch. RDIP: Return-
address-stack directed instruction prefetching. In MI-
CRO, 2013.

[42] C. Kulkarni, A. Kesavan, T. Zhang, R. Ricci, and
R. Stutsman. Rocksteady: Fast migration for low-
latency in-memory storage. In SOSP, 2017.

[43] Y. Kuperman, J. Nider, A. Gordon, and D. Tsafrir. Par-
avirtual Remote I/O. In ASPLOS, 2016.

[44] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter,
a social network or a news media? In WWW, 2010.

[45] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal,
R. Burny, S. Butt, J. Chang, A. Chaugule, N. Deng,
J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and
P. Ranganathan. Software-defined far memory in
warehouse-scale computers. In ASPLOS, 2019.

[46] S. Liang, R. Noronha, and D. K. Panda. Swapping to
remote memory over Infiniband: An approach using a
high performance network block device. In Cluster
Computing, 2005.

[47] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A holistic approach to fast in-memory key-value
storage. In NSDI, 2014.

[48] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Rein-
hardt, and T. F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. In ISCA, 2009.

[49] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose, H. Sub-
ramoni, H. Wang, and D. K. Panda. High-performance
design of hadoop RPC with RDMA over InfiniBand. In
ICPP, 2013.

[50] E. P. Markatos and G. Dramitinos. Implementation of a
reliable remote memory pager. In ATC, 1996.

[51] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A fast file system for UNIX. ACM Trans. Comput. Syst.,
1984.

[52] S. Mittal. A survey of recent prefetching techniques for
processor caches. ACM Comput. Surv., 2016.

[53] M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The
power of two random choices: A survey of techniques
and results. Handbook of Randomized Computing, 2001.

[54] K. Nesbit and J. Smith. Data cache prefetching using a
global history buffer. IEEE Micro, 2005.

[55] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel.
Nswap: A network swapping module for Linux clus-
ters. In Euro-Par, 2003.

[56] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and
B. Grot. Scale-out NUMA. In ASPLOS, 2014.

[57] T. Oliphant. NumPy: A guide to NumPy. USA: Trelgol
Publishing, 2006.

[58] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout,
and M. Rosenblum. Fast Crash Recovery in RAMCloud.
In SOSP, 2011.

[59] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble, E. Strat-
mann, and R. Stutsman. The case for RAMClouds:

Scalable high performance storage entirely in DRAM.
SIGOPS Oper. Syst. Rev., 2010.

[60] L. Peled, S. Mannor, U. Weiser, and Y. Etsion. Semantic
locality and context-based prefetching using reinforce-
ment learning. In ISCA, 2015.

[61] R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong,
and W.-F. Wong. Compiler orchestrated prefetching via
speculation and predication. In ASPLOS, 2004.

[62] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch. Heterogeneity and dynamicity of clouds
at scale: Google trace analysis. In SoCC, 2012.

[63] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann.
High-speed query processing over high-speed networks.
In PVLDB, 2015.

[64] A. Samih, R. Wang, C. Maciocco, T.-Y. C. Tai, R. Duan,
J. Duan, and Y. Solihin. Evaluating dynamics and bot-
tlenecks of memory collaboration in cluster systems. In
CCGrid, 2012.

[65] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In OSDI, 2018.

[66] T. Sherwood, S. Sair, and B. Calder. Predictor-directed
stream buffers. In MICRO, 2000.

[67] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilk-
erson, S. H. Pugsley, and Z. Chishti. Efficiently prefetch-
ing complex address patterns. In MICRO, 2015.

[68] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi.
Spatio-temporal memory streaming. In ISCA, 2009.

[69] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback
directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchers. In HPCA,
2007.

[70] M. Stonebraker and A. Weisberg. The VoltDB main
memory DBMS. IEEE Data Engineering Bulletin, 2013.

[71] S.-Y. Tsai and Y. Zhang. Lite kernel rdma support for
datacenter applications. In SOSP, 2017.

[72] Y. Wiseman, S. Jiang, Y. Wiseman, and S. Jiang. Ad-
vanced Operating Systems and Kernel Applications:
Techniques and Technologies. Information Science Ref-
erence - Imprint of: IGI Publishing, 2009.

[73] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee.
Nimble page management for tiered memory systems.
In ASPLOS, 2019.

[74] J. Yang, D. B. Minturn, and F. Hady. When poll is better
than interrupt. In FAST, 2012.

[75] S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Krish-
namurthy, S. Al-Kiswany, R. T. Kaushik, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Split-level i/o
scheduling. In SOSP, 2015.

[76] Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, J. W. Choi,
H. S. Kim, H. Eom, and H. Y. Yeom. Optimizing the
block i/o subsystem for fast storage devices. ACM Trans.
Comput. Syst., 2014.

[77] E. Zamanian, C. Binnig, T. Harris, and T. Kraska. The
end of a myth: Distributed transactions can scale. In
PVLDB, 2017.

[78] Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu, R. Boutaba,
and J. L. Hellerstein. Dynamic energy-aware capacity
provisioning for cloud computing environments. In
ICAC, 2012.

[79] Y. Zhang, J. Gu, Y. Lee, M. Chowdhury, and K. G. Shin.
Performance Isolation Anomalies in RDMA. In KBNets,
2017.

[80] H. Zhu, Y. Chen, and X.-H. Sun. Timing local streams:
Improving timeliness in data prefetching. In ICS, 2010.

	Introduction
	Background and Motivation
	Remote Memory
	Remote Memory Data Path
	Prefetching in Linux

	Remote Memory Prefetching
	Properties of an Ideal Prefetcher
	Majority Trend-Based Prefetching
	Trend Detection
	Prefetch Candidate Generation

	Analysis

	System Design
	Page Access Tracker
	The Prefetcher
	Eager Cache Eviction
	Remote I/O Interface

	Evaluation
	Microbenchmark
	Performance Benefit of the Prefetcher
	Prefetch Utilization
	Performance Benefit Breakdown
	Performance Benefit for HDD and SSD

	Leap's Overall Impact on Applications

	Discussion and Future Work
	Related Work
	Conclusion

