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1 Introduction

Recently, geometric constructions in M-theory have been very successful in progress-
ing our understanding of 5d SCFTs and the 5d N’ = 1 gauge theories arising on the
extended' Coulomb branch of 5d SCFTs [1-14]?. Thanks to this understanding, it has
been possible to generate claims of obtaining a full classification of 5d SCFTs [2—4, 10—
12] which are backed by substantial evidence [2, 14]. According to this classification
proposal, all 5d SCFTs can be generated by performing special type of RG flows upon
5d theories obtained by compactifying 6d SCFTs on a circle of finite, non-zero radius.
Such 5d theories are often referred to as 5d KK theories, and we will use this termi-
nology throughout this paper. The special type of RG flows mentioned above can be
understood as those processes that integrate out a set of BPS particles and strings [12]
from the extended Coulomb branch of a 5d KK theory.

Such RG flows obtain a clean characterization when the 5d theories under discus-
sion are constructed by compactifying M-theory on a local Calabi-Yau threefold (CY3)
with an isolated singularity. The extended Coulomb branch of the 5d theory is obtained
by resolving the singularity, and the resulting resolved CY3 can be described by a col-
lection of intersecting compact Kahler surfaces. The RG flows under discussion are then

"We define extended Coulomb branch to be the total space obtained by fibering the Coulomb
branch over the space of supersymmetry preserving mass parameters.
2See [15-42] for other recent related work on the subject of 5d N' = 1 QFTs.



mapped to motions on the extended Kahler cone of the resolved CY3 which decompact-
ify a set of compact complex curves and surfaces. This map is a consequence of the fact
that M2/M5 branes compactified on compact complex curves/surfaces produce BPS
particles/strings in the resulting 5d theory, and the volumes of these curves/surfaces
can be identified as the masses/tensions of the corresponding BPS particles/strings.

Therefore, understanding the full set of 5d KK theories and the local CY3 asso-
ciated to them is very important for the purposes of the classification program of 5d
SCFTs based on the proposal described above. This task was undertaken by [3, 4, 11],
but the work of [14] featured some 5d KK theories which did not appear in [3, 4, 11]. All
such examples involve a twisted compactification of a 6d SCFT, which means that the
observables in the 6d SCF'T are acted upon by the action of a discrete global symmetry
when transported around the circle. Twisted circle compactifications of 6d SCFTs and
the CY3 associated to them were studied in [11]. This article is devoted to a study of
5d KK theories (and the associated CY3) that are missing from their analysis.

The twists discussed in this paper fall into the following two different classes:

1. In the first class are the twists whose associated discrete global symmetry acts by
outer automorphism of a gauge algebra appearing in the low energy® 6d A = (1,0)
gauge theory, and its action on the hypermultiplets cannot be represented as a
permutation of the hypermultiplets. This is in contrast with the outer automor-
phism twists considered in [11], all of which could be represented as a permutation
of hypermultiplets. For example, let us contrast the two 6d SCFTs which have
one dimensional tensor branch and carry su(5) gauge algebra at low energies on
the tensor branch. One of the theories carries 10 fundamental hypers and the
other carries 13 fundamental hypers plus a hyper in two-index antisymmetric
representation. The outer automorphism of su(5) exchanges fields transforming
in fundamental /antisymmetric representation with fields transforming in complex
conjugate of fundamental /antisymmetric representation inside each hypermulti-
plet. In the case of first theory, this action is equivalent to organizing the 10
fundamental hypers into 5 pairs and exchanging the hypers in each pair, thus
representing the action of outer automorphism as a permutation on hypermulti-
plets. In the case of second theory, the number of fundamental and antisymmetric
hypers are odd, and hence the action cannot be represented fully as a permutation
of hypermultiplets.

2. In the second class are the twists whose associated discrete global symmetry acts
only on the hypermultiplets, but not on the vector and tensor multiplets. This is

3Let us recall that a 6d SCFT reduces to a 6d N' = (1,0) gauge theory interacting with tensor
multiplets on its tensor branch.



in contrast to the twists considered in [11], all of which acted either on vector or
on tensor multiplets. Such twists can arise when we have 2n half-hypermultiplets
transforming in a pseudoreal representation of some gauge algebra. These half-
hypers are rotated by an O(2n) global symmetry?, thus opening up the possibility
of twisting the theory by a Zs element of determinant —1 inside O(2n). When we
have 2n + 1 half-hypers, then a Z, element of determinant —1 inside O(2n + 1)
acts as a central element of the gauge group, thus reducing the global symmetry
group to SO(2n + 1).

These two kind of twists lead to new building blocks for 5d KK theories and new ways
of gluing these building blocks to produce 5d KK theories. We will enlist these building
blocks and their possible gluings. We will provide data of resolved CY3 associated to
each new building block, and rules for gluing the associated resolved CY3s for each
new gluing between the corresponding building blocks.

Our approach to the new resolved CY3s will differ from the approach employed in
[11]. This is because the approach used in [11] relied on the knowledge of a low-energy
5d N = 1 non-Abelian gauge theory description of the 5d KK theory. The data of this
low-energy bd gauge theory was obtained by modding out the data of the associated
6d gauge theory by the action of discrete symmetry. So, for the 6d SCFT carrying
su(5) with 10 fundamental hypers compactified using an outer automorphism twist,
the associated low energy 5d gauge theory carries sp(2) with 5 fundamental hypers.
However, this procedure of projecting the data of 6d gauge theory does not work for
the first kind of twists discussed above, since in those cases the associated discrete
symmetry does not act by permutation of hypermultiplets.

Due to this reason, we will instead simply propose the resolved CY3s associated
to the new building block 5d KK theories. The proposed resolved CY3 satisfy nec-
essary geometric consistency conditions implying that they are consistent geometric
backgrounds to compactify M-theory. Moreover, the proposed resolved CY3s will be
presented in a special form which makes it manifest that the 5d A/ = 1 theory resulting
from M-theory compactification is actually a 5d KK theory. Such special presentations
of the resolved CY3s associated to 5d KK theories were discussed at length in [11, 14]
and will be reviewed briefly in this paper. According to the analysis of [14], one can
easily read the data of the associated 6d SCF'T and the type of twist from the data of
the resolved CY3 presented in this special form. In this way, we will identify the 5d
KK theory associated to each proposed resolved CY3.

4In some cases, non-perturbative excitations force the global symmetry group to be Spin(2n)
instead of O(2n), thus removing the possibility of such a twist.



This paper is organized as follows:
In Section 2, we discuss the various new 5d KK theory building blocks that can arise by
considering the two kinds of twists discussed above. These building blocks are 5d KK
theories arising by compactifying 6d SCFTs having a one-dimensional tensor branch,
or in other words carrying a single tensor multiplet. These building blocks are collected
in Table 1.
In Section 2.1, we propose resolved CY3 that describe the extended Coulomb branches
of these new building blocks.
In Section 2.2, we provide some checks of our proposal, where we review (following
[14]) how some data of the associated 6d SCFT and twist can be read from the data of
resolved CY3.
In Section 2.3, we provide further arguments in favor of our proposal put forward in
Section 2.1. In this section, we discuss how one can compute, using the data of as-
sociated CY3, the various low-energy effective 5d N' = 1 non-abelian gauge theories
arising upon compactifying a 6d SCFT (possibly with a twist) on a circle of finite,
non-zero radius. These low-energy 5d gauge theories can be predicted by modding out
the data of the 6d NV = (1,0) non-abelian gauge theory appearing on the tensor branch
of the associated 6d SCFT by the action of the discrete symmetry generating the twist.
We show that these predictions for new KK building blocks match the computations
performed using the proposed associated resolved CY3s.
In Section 3, we discuss the various ways in which the new 5d KK theory building
blocks can be combined with other new/old 5d KK theory building blocks to produce
more general 5d KK theories whose associated 6d SCFTs have a tensor branch of di-
mension more than one. Such combinations are collected in Table 4 where, due to
reasons explained in Section 3, we have restricted our attention to new building blocks
arising only from the twists of the first type discussed above.
In Section 3.1, we propose rules for gluing the two CY3s associated to two building
blocks, so that the combined CY3 describes the extended Coulomb branch of the KK
theory produced by combining the two building blocks.
In Section 3.2, we provide some checks of our proposal, where we review (following [14])
how data of the discrete symmetry (used for twisting) permuting tensor multiplets in
the associated 6d SCFT can be read from the data of gluing rules.
In Section 3.3, we describe how the gluing rules can be used to read the data of hyper-
multiplet content charged under multiple simple factors of the gauge algebra of 5d gauge
theory appearing at low-energies. The discussion also supports some field-theoretic ar-
guments made at the beginning of Section 3 and used to compile Table 4.



2 Building blocks

In this paper, we are going to use the notation developed in [11] to denote 5d KK
theories. This captures the tensor branch data of the associated 6d SCFT and the
action of discrete symmetry (used to twist the theory) on the tensor branch data. The
notation used there for 5d KK theories arising from 6d SCFTs carrying a single tensor
multiplet took the following form

g(q)

k (2.1)

where g is a simple gauge algebra, ¢ denotes the order of outer automorphism acting
on g, and k (a positive integer) denotes the coefficient of Green-Schwarz term in the
Lagrangian used for canceling 1-loop gauge anomaly. To incorporate twists of the
second kind discussed in Section 1, we extend the above notation and use

o g(Q)
Ly’ | — k
2 (2.2)
to denote that we have an extra twist by a Z, living inside an O(2n) flavor symmetry.

The new building block 5d KK theories arising from the two kinds of twists dis-
cussed in Section 1 have been collected in Table 1, where they are expressed in the
notation reviewed above. Let us discuss each of the entries in the table:

e The 6d SCFT denoted by
su(n)
1 (2.3)

carries n + 8 hypers in fundamental and one hyper in two-index antisymmetric
of su(n). Accordingly, a Z, outer automorphism of su(n) is a symmetry of the
theory since it complex conjugates all fields inside hypermultiplets. For n =
3,4, the action of the outer automorphism can be represented as a permutation
of hypermultiplets (see Section 1) and thus the corresponding 5d KK theories
appeared already in [11].

e The 6d SCFT denoted by
su(n)
1 (2.4)
carries n — 8 hypers in fundamental and one hyper in two-index symmetric of
su(n). The hat on top of n in su(n) has been placed to distinguish this theory
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Table 1. List of new building blocks for 5d KK theories. See text for more details.

from the theory (2.3). A Zy outer automorphism of su(n) is a symmetry of the
theory since it complex conjugates all fields inside hypermultiplets.

e For su(6) with Green-Schwarz coupling k& = 1, there is another possibility for
matter content which we denote as

su(6)
1 (2.5)

and it carries 15 hypers in fundamental plus a half-hyper in three-index anti-
symmetric of su(6). A Zy outer automorphism of su(6) is a symmetry of the
theory since it complex conjugates all fields inside fundamental hypermultiplets
and leaves the half-hyper in three-index antisymmetric invariant.



e The 6d SCF'T denoted by
50(10)

k (2.6)
carries 6 — k hypers in fundamental representation and 4 — k hypers in an ir-
reducible spinor representation of so(10). A Z, outer automorphism of s0(10)
leaves fundamental invariant but exchanges the spinor and cospinor representa-
tions. Since spinor and cospinor are complex conjugates for so(10), the outer
automorphism acts as a symmetry of the theory. For k = 2,4, the action of outer
automorphism can be represented as a permutation of hypermultiplets and hence
the corresponding 5d KK theories appeared already in [11].

e The 6d SCF'T denoted by
43

k (2.7)
carries 6 — k hypers in 27 dimensional representation of es. A Zs outer automor-
phism of su(n) is a symmetry of the theory since it complex conjugates all fields
inside hypermultiplets. For k = 2,4, 6, the action of outer automorphism can be

represented as a permutation of hypermultiplets and hence the corresponding 5d
KK theories appeared already in [11].

e The 6d SCFT denoted by
s0(11)

2 (2.8)
carries five hypers in fundamental and two half-hypers in spinor of so(11). The
half-hypers in spinor are thus rotated by an O(2) global symmetry and we can
twist by a Zy element of determinant —1 in O(2). The superscript (1) on so(11)
denotes that there is no outer automorphism twist involved.

e The 6d SCFT denoted by
50(12)
2 (2.9)
carries six hypers in fundamental representation and two half-hypers in irreducible

spinor representation of s0(12). Thus, we can twist by a Zs element of determi-
nant —1 in O(2) rotating the two half-hypers in spinor representation.

e The 6d SCF'T denoted by

1 (2.10)



carries seven hypers in fundamental, two half-hypers in spinor and one half-hyper
in cospinor of s0(12). Thus, we can twist by a Z, element of determinant —1
in O(2) rotating the two half-hypers in spinor representation. The hat on 12 in
50(12) has been placed to distinguish it from the 6d SCFT denoted as

50(12)

1 (2.11)
which carries seven hypers in fundamental and three half-hypers in spinor of
50(12).

e The 6d SCFT denoted by
€7
k (2.12)

carries 8 — k half-hypers in 56 dimensional representation of e;. Thus, we can
twist by a Zs element of determinant —1 in O(8 — k) rotating the 8 — k half-hypers
if k is even (see Section 1 for explanation).

The last four entries in Table 1 involve twists of the second type discussed in Section 1.
Such twists require the presence of matter in pseudo-real representations of the gauge
algebra. For 6d SCFTs, along with the cases discussed above, there is another case
carrying pseudo-real representations. This 6d SCFT is denoted as

sp(n)
1 (2.13)

and carries 4n + 16 half-hypers in fundamental of sp(n). However, the global symme-
try associated to these half-hypers is Spin(4n + 16) rather than O(4n + 16) since an
instanton string tranforms in irreducible spinor representation of the so(4n+ 16) global
symmetry algebra. This obstructs the existence of a Z, element of determinant —1
in the associated global symmetry group since it exchanges spinor and cospinor repre-
sentations of so(4n + 16), and thus is not a symmetry of the 6d SCFT. Consequently
(2.13) does not lead to any new 5d KK theory building blocks.

2.1 Associated CY3

In this subsection we will propose the resolved CY3 associated to new 5d KK theory
building blocks appearing in Table 1. The data for resolved CY3 will be presented in
terms of a graph. The vertices of the graph denote different irreducible compact Kahler
surfaces and the edges indicate intersections between these surfaces. An intersection



between two surfaces S7 and S5 can be described as a gluing of a curve 'y in .S to some
curve Cy in S,. We indicate the data of C; and C5 at the two ends of the corresponding
edge. We refer the reader to Sections 5.1, 5.2 and Appendix A of [11] for further
geometric details used throughout the rest of this paper. The proposed resolved CY3
are described below. We will use an integer v to parametrize different CY3s associated
to a single KK theory building block, with the CY3s for different values of v related
by flop transitions. This parameter v will be helpful for us when we discuss the gluing
rules in Section 3.1.
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where n > 3, and let us clarify that there is an edge between S; and S, gluing x,,_1_; —
Tp_o_; to fi for 1 < i < mn — 3. For n =2, we have
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for n > 4. For n = 3, we have
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(2.23)
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Let us also collect CY3s associated to some KK theory building blocks already

discussed in [11]. We are doing so because we will need some flop frames of these CY3s
(in Section 3.1) which were not described in [11].

e ]-2n+2—1/

f

2h—§ z; e h e
l’l’{ (1’1 — 1)671/ e 22n—1/
2n — v

h
h
. f-zi-yi

0(2n—y)+(2n—y)
2n+2—v (2 ) 32)

— 18 —



for n > 3. For n = 2, we have
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for n > 2. For n = 1, we have
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2.2 Reading the data of 5d KK theory from CY3

In this subsection, we review the method of [14] which allows one to identify the 5d
KK theory if the associated CY3 is presented in a specific form. In this form, all the
compact surfaces S; are presented as Hirzebruch surfaces, with fibers f;, such that the
intersection matrix

Lij=—fi-S; (2.38)
takes the form of Cartan matrix of an (untwisted or twisted) affine Lie algebra g(9.
Then, g is identified as the gauge algebra appearing on the tensor branch of the as-
sociated 6d SCFT and ¢ captures the order of outer automorphism acting on g while
compactifying the 6d SCFT on circle. ¢ = 1 indicates that there is no outer automor-
phism twist. All of the proposed CY3 appearing in Section 2.1 have been presented in
this specific form and the reader can check that the intersection matrix reproduces the
associated affine Lie algebra displayed there.

Moreover, every blowup = must satisfy

(Z diVSZ-> x =0 (2.39)

— 20 —



where dY are dual Coxeter numbers associated to g@. This condition captures and

generalizes the “shifting of prepotential” proposal of [11]. The reader can check that

every blowup appearing in every CY3 proposed in Section 2.1 satisfies this condition.
The GS coupling of the associated 6d SCFT is captured by

k=— (Z dXS,-) -é (2.40)

where € denotes the e curve of a specific Hirzebruch surface. This can be taken to
be the surface denoted by S,, for su(2n + 1)@ su(2n)@; the surface denoted by Ss for
50(10)®, ¢?); and the surface denoted by S; for s0(11)™, s0(12)®, e{"). The reader can
now verify that the GS coupling for each proposed CY3 in Section 2.1 matches the GS
coupling displayed there. For more details, we refer the reader to Sections 3.3 and 3.4
of [14].

Using the above information, one can determine a lot of information about the 5d
KK theory associated to a resolved CY3. This includes, as we have seen, the gauge
algebra arising on the tensor branch of the associated 6d SCFT and the GS coupling
associated to the 6d SCFT. In many cases, these two data are sufficient to uniquely
determine the matter content arising on the tensor branch of the 6d SCF'T. However, in
some cases, there exist multiple 6d SCFTs with the same associated GS coupling and
gauge algebra, but having different hypermultiplet content. To distinguish between
such 6d SCFTs, we need further analysis to which we turn in the next subsection.

2.3 Low energy effective 5d gauge theories from CY3

At certain locations in the extended Coulomb branch, the 5d KK theories under discus-
sion reduce at low-energies to non-Abelian 5d N' = 1 gauge theories. The hypermulti-
plet content of a particular such low-energy 5d gauge theory encodes the hypermultiplet
content of the parent 6d SCF'T. This particular low energy description is obtained by
contracting a maximal set of fibers and blowups to zero size when the CY3 associated
to a KK theory is presented in the form described in Section 2.2.

The (inverse of the) radius of compactification captures the volume of the curve
associated to the KK mode of the 5d KK theory. This curve f is a genus-one fiber that
can be written in terms of the fibers f; of S; as [11]

where d; are the Coxeter numbers associated to g(@. For a finite value of the radius,

the volume of f must be strictly positive, which implies that not all f; can be shrunk
to zero volume simultaneously.

- 921 —



Thus, the maximum number of fibers that can be contracted to zero size must
be one less than the total number of fibers in the CY3. Consequently, the Dynkin
diagram of the gauge theory obtained after contracting a maximal set of fibers can
be obtained by deleting one node from the Dynkin diagram of the affine algebra g(®.
Any such deletion leads to the Dynkin diagram of a finite semi-simple Lie algebra, thus
guaranteeing that the gauge algebra for the low-energy 5d gauge theory must be finite
and cannot be affine. This is a crucial consistency check since a gauge theory with an
affine gauge algebra would have a troublesome positive semi-definite kinetic matrix®.

Let us now study an example of 5d KK theory which was mentioned in Section 1.
Consider the 6d SCFT carrying su(5) with 10 fundamental hypers compactified with
an outer automorphism twist. According to [11], the associated resolved CY3 can be
expressed as

2h e 2h e-) Tj- i
21 _— ]-6 : Yi 02+5 5

(2.42)

which let us rewrite into the following form for our convenience

2, 2 c2umgp — 0 (2.43)
This form is achieved by flopping all the blowups in (2.42) and performing an isomor-
phism on S;. Let us choose to contract f; and fs to zero volume while keeping the
volume of fy non-zero. This gives rise to an sp(2) gauge algebra at low energies. More-
over, we can choose all z; to have zero volume as well, without any obstruction. Doing
this we obtain 5 massless hypermultiplets transforming in fundamental representation

of sp(2) [11]. That is, making a maximal number of BPS particles massless leads to a
location in the extended Coulomb branch of the 5d KK theory

su(5)?
2 (2.44)

where the low-energy effective theory is a 5d N = 1 gauge theory with gauge algebra
sp(2) and 5 fundamental hypers. The volumes of the e curves of S; and Sy capture the
gauge coupling of the low-energy sp(2) gauge theory.

Notice that sp(2) is the gauge algebra left invariant by the action of an outer au-
tomorphism of su(5), and projecting out by the action such an outer automorphism on

5The kinetic matrix is captured by the Killing form.
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10 fundamental hypers of su(5) in the 6d theory, we indeed are left with 5 fundamental
hypers (see Section 1) of su(5) which descend to 5 fundamental hypers of sp(2) under
the projection. Thus, the low-energy theory associated to (2.44) can be determined by
projecting out the tensor branch data of the associated 6d SCF'T by the action of the
discrete symmetry used for twisting. In fact, this was true for all KK theories studied in
[11], where this fact was used to obtain the prepotential for the 5d KK theory starting
from the prepotential of the associated low-energy 5d theory.

However, such a projection is not neatly defined (upon the hypermultiplet spec-
trum) for the twists of first type discussed in Section 1. An example for such a twist is
provided by the KK theory

su(5)?
1 (2.45)

as discussed in Section 1. Let us start from the CY3 (2.15) proposed for this KK theory
in Section 2.1, which we reproduce below after a flop and an isomorphism,

6 2h e
1$ 06

h—z z; /f

2

2e+f-x /
f-z-y,2-y

1+1
2o (2.46)

and determine the associated low-energy 5Hd gauge theory. Again, we would like to
contract f; and fy while keeping fy at non-zero size. However, this is not possible when
CY3 is presented in the form (2.46) since, according to one of the gluings

Jor~r fa—x—y (2.47)

which implies that f, must remain at a non-zero size as well. However, this problem
can be alleviated if we flop the blowup y living in S, to obtain the following form of

— 923 —



the associated CY3

(2.48)

Now, we can provide a volume to z,y living in Sy which is equal to the volume of fy,
thus contracting the curves fo — x, fo — y living in Sy. According to the gluings, this
implies that the curves f; — 2 and «x living in S must have zero volume, which can be
consistently achieved if both the curves f; and x living in S5 have zero volume. We
can also contract all the blowups z; living in S; without any obstruction. Thus, the
low-energy 5d gauge theory associated to the KK theory (2.45) is

sp(2) + 7F (2.49)

that is, sp(2) with 7 fundamental hypers. Six of the hypers arise from the six blowups
living in S and one hyper arises from the blowup z living in Sy [8, 14].
Comparing (2.49) with the data of the 6d theory

su(5) + A% + 13F (2.50)

(where A? denotes the irreducible two-index antisymmetric representation) we can see
that (2.49) is not a neat projection of (2.50). However, it is still possible to understand
(2.49) morally as a projection of (2.50). The action of outer automorphism exchanges
fields (in pairs) living inside hypermultiplets valued in A* + 13F, thus projecting it
to “2(A? + 13F)”, which descends to® “IA?” plus 7F of sp(2). Since A? is a strictly
real representation for sp(n), the degrees of freedom in “%/\2” should be completely
projected out, leaving us only with the matter content shown in (2.49). The finite
volume blowups z, y living in Sy can be thought of as the remnant of “%/\2” since they
lead to massive BPS particles transforming in A? of sp(2).

Similarly, we would expect the following low energy descriptions for those KK
theories in Table 1 that involve twist of the first type (see intoduction):

su(2n + 1)@

1 —— sp(n)+ (n+5)F (2.51)

6Upto singlets, F of su(5) descends to F of sp(2) and A? of su(5) descends to A2 + F of sp(2).
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(2.52)
su(2n + 1)@
1 —— sp(n)+ (n—3)F (2.53)
su(2n)®
1 —— sp(n) + (n—4)F (2.54)
su(6)
1 > 5p(3)+ LN 4 8F (2.55)
50(10)?
3 E— s0(9) + 3F (2.56)
50(10)?
1 ——  50(9)+5F+S (2.57)
o
5 ’ Fa (2.58)
o
3 ’ FatF (2.59)
o

where S and A3 denote the irreducible spinor and 3-index antisymmetric representations
respectively, and F of §, refers to the 26 dimensional irreduicble representation of §,.
Here, we emphasize that we have made a choice of outer automorphisms so that the
gauge algebras left invariant by them coincide with the algebras appearing on the right
hand side of the above equations.

We can also compute the low-energy theories associated to these KK theories ac-
cording to their respective resolved CY3 proposed in Section 2.1. The results are
collected in Table 2. Notice that the results match the above expectations except for
the case of su(6). This mismatch can be explained if we recall that an sp(3) N = 1
gauge theory in 5d cannot contain %/\3 +nF, but can carry %/\3 + @F. Thus an extra
1F should be projected out from the expectation (2.55).
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‘ KK theory ‘ Conditions ‘ Low-energy theory ‘

su(2n + D1 ns2 | spn)+(n+5)F

5“<21”>(2) n>3 | sp(n)+ (n+4)F

5“(2”1+ 1)@ n>4 sp(n) + (n — 3)F

ﬁu(%”)m n>4 sp(n) + (n —4)F

su(6)®
(1) sp(3) + 2A° + L2F

2
50(10)® 50(9) + 3F

s0(10)® s0(9) +5F +S

66 f4

% fat+F

66 f4 —+ 2F

Table 2. Low-energy 5d non-abelian gauge theories associated to 5d KK theory building
blocks involving twists of first type.

Now it can be understood how we associated the proposed CY3 (2.14) and (2.18)

to
su(2n + 1)
1 (2.61)
and
su(2n + 1)
1 (2.62)

respectively, despite the two CY3 having the same associated affine Lie algebra and
same associated GS coupling. The low-energy theory associated to CY3 (2.14) is the
low-energy theory expected for (2.61), and low-energy theory associated to CY3 (2.18)
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is the low-energy theory expected for (2.62). The same discussion holds true for the
CY3 (2.16) and (2.19) associated to

su(2n)®
1 (2.63)
and
su(2n)®
1 (2.64)

respectively, and for (2.17) and (2.20) associated to

su(6)®
1 (2.65)

and
su(6)?
1 (2.66)

respectively.

For KK theories containing twists of second type, we expect that the Zs holonomy
projects out a half-hyper, which can indeed be verified from the proposed CY3s. We
collect the low-energy theories associated to these KK theories in Table 3.

Out of these cases, the case of

s0(12)M

1z —1
(2.67)

is interesting since it allows one to obtain either

1 1
s0(12) + 7TF + §S+ 5C (2.68)
or 1

50(12) + 7F + QS (2.69)

after contracting a maximal set of fibers and blowups, depending on the choice of the
maximal set of fibers one decides to contract. As one can see from the CY3 (2.28)
associated to (2.67), there are multiple sets of fibers that can be contracted to yield
an s0(12) gauge theory. One could choose to contract all fibers except fy, or all fibers
except fi, or all fibers except f5 or all fibers except fs.
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KK theory ‘ Low-energy theory

so(11)M
7] (2) 50(11) + 5F + 1S
s0(12)M
7] <2 ) 50(12) + 6F + 35S
19)@)
70)] ol 1 ) 50(12) + 7F + 35S+ 1C
3(71) 1
_ZgQ)_ 6 44 + §F
o)
zP] —— 1 er + 3F
3(71) 5
_ZgQ)_ 9 44 + §F

Table 3. Low-energy 5d non-abelian gauge theories associated to 5d KK theory building
blocks involving twists of second type. C denotes the conjugate spinor representation of
$0(2n) and F for ¢7 denotes the 56 dimensional irreducible representation of e7.

Let us first choose to contract all fibers except fy. This will require that both x and
y in Sy remain at non-zero volume, which in turn implies that f; remains at non-zero
volume. So, it is not possible to perform this contraction in the frame (2.28). However,
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we can perform some flops and write (2.28) in the following form

e

(2.70)
in which it is possible to perform this contraction. We can contract all the blowups
except for the four blowups z,y, z,w living in Syp. This limit leads to (2.68) as the
low-energy description for (2.67).

Now, let us choose to contract all fibers except f;. For similar reason as above, it
is not possible to do so when the CY3 is expressed in the form (2.28). But, after doing
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some flops, and representing it as

f e
h+f 2

f/ h f-z
55 — dac: 4; - LR, 1
}iF\\\\\\\\\\\\\;:::T\{\\\\\\ \\\11\\ ,
2 2 9
Nyl
e
xr2-Y2, 21-W1

Z1-Y1, 22-W2 2424242
13

(2.71)
allows us to take this limit. We are also able to contract all the blowups except for
the eight blowups x;, y;, z;, w; living in S7. This limit leads to (2.69) as the low-energy
description for (2.67).

Similarly, choosing to contract all fibers except fg leads to the low-energy theory
(2.68), and choosing to contract all fibers except f5 leads to the low-energy theory
(2.69), as the reader can check. We propose that this existence of multiple low-energy
limits is simply a reflection of the fact that while twisting the 6d SCFT

—

s0(12)
1 (2.72)

carrying 7F +S + %C (in 6d) by the Zs element of determinant —1 in O(2) symmetry
rotating S, one can also include a holonomy in the O(1) ~ Zy symmetry rotating %C. If
this holonomy is included, we expect the low-energy description to be (2.69); while, if
this holonomy is not including, we expect the low-energy description to be (2.68). The
fact that these two low-energy theories are continuously connected inside the extended

Coulomb branch of the 5d KK theory

s0(12)M
1

@
] (2.73)
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means that the inclusion of this holonomy does not lead to a physically distinguishable
twist, as we already argued in Section 1.
We can test this proposal in other similar cases. For example, consider the CY3

for
so(11)®
3 (2.74)
which is [3, 4, 11]
44 e h 32 e e 2(1) e-xr e 01
2h+f fa e
e-Zzi-Zwi e
5(15+1+4+4 z-y f 1,

e

(2.75)
Contracting all fibers except fy leads to the low-energy 5d theory
so(11) + 4F + %s (2.76)
while contracting all fibers except f; leads to the low-energy 5d theory
so(11) +4F (2.77)

which can be explained as the absence or presence of a holonomy in Z, symmetry acting
by reflection on 1S in the associated 64 N = (1,0) theory so(11) + 4F + 1S.
Now consider the CY3 for
so(11)®
2 (2.78)
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which is [3, 4, 11]

44 e e e 22 erl e 00

2h+2f / /
e- Z Zi- Z w; e

T1-Y2,T2-Y1 s
52+2+5+5 5 1,
5

The reader can check that no matter whether one contracts all fibers except fy or

(2.79)

contracts all fibers except f;, one lands on the following low-energy 5d theory
so(11) +5F +S (2.80)

On the other hand, no matter whether one contracts all fibers except f, or contracts
all fibers except f in (2.26), one lands on the following low-energy 5d theory

50(11)+—5F<+-%S (2.81)

Thus, the absence or presence of holonomy in Zs, element of determinant —1 in O(2)
rotating S in the 6d gauge theory so(11) + 5F + S associated to the 6d SCFT

s0(11)
2 (2.82)
leads to two distinct low-energy 5d theories which are not connected to each other. The
low-energy theory (2.80) is found in the extended Coulomb branch of the KK theory

denoted by (3.29), while the low-energy theory (2.80) is found in the extended Coulomb
branch of the KK theory denoted by

so(11)W

@
2 (2.83)

This verifies the arguments presented in Section 1 in relation to the twists of second
type.
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3 Combining the building blocks

In this section, we describe how the new building blocks can be combined with new/old
building blocks to produce more general 5d KK theories. Let us first consider a 6d SCFT
of the form
su(2n)  su(2m)
k l (3.1)

which makes sense for k,1 € {1,2} and k +{ > 3. The GS coupling is a 2 x 2 matrix
whose diagonal entries are captrued by k& and [, while a single edge in (3.1) denotes that

both off-diagonal entries are —1. The mixed hypermultiplet content is a bifundamental
of su(2n) ®su(2m). We would like to perform an outer automorphism twist on su(2n),
which should project the degrees of freedom living inside the bifundamental by a factor
of half. If there is no outer automorphism twist acting on the su(2m) factor, then
we would expect a half-hyper in bifundamental of sp(n) @ su(2m) in the associated
low-energy effective 5d gauge theory. However, a half-hyper in bifundamental is not
allowed for this set of gauge algebras.

We can achieve a consistent projection if we also act by an outer automorphism
on su(2m), but we choose this outer automorphism such that it projects su(2m) to
50(2m) rather than sp(m). Then, we would expect the associated low-energy effective
5d gauge theory to contain a half-hyper in bifundamental of sp(n) & so(2m), which is
indeed an allowed matter content. This expectation is verified geometrically where we
observe that there is a consistent resolved CY3 associated to

su(2n)®  su(2m)®
k1 (3.2)

but no consistent resolved CY3 associated to

su(2n)®  su(2m)®
k1 (3.3)

We can compute from the CY3 associated to (3.2), presented later in this section,
that the associated low-energy theory indeed contains a half-hyper in bifundamental of
sp(n) @ so(2m).

Let us now consider the 6d SCFT

su(2n)  su(2m) su(2n)
2 2 2 (3.4)
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How many twists are possible for this 6d SCF'T? First of all, we can simultaneously act
by outer automorphism on all three algebras to obtain

su2n)@  su(2m)®  su(2n)®
2 2 2 (3.5)

Second, we can exchange the two su(n) (along with the two bifundamentals). The
corresponding KK theory was denoted in [11] as

su(2m)®  su(2n)®
2 22 (3.6)

which represents a folding of the graph (3.4), and describes that no outer automor-
phism is acting on either of the two algebras (the projection by the exchange operation
identifies the two su(2n)).
Another possibility is to perform the outer automorphism on su(2m) alone, while rep-
resenting the action of outer automorphism as an exchange of the two bifundamentals.
Since the action of outer automorphism is a permutation on the hypermultiplet spec-
trum, this twist was already considered in [11] where the corresponding KK theory was
denoted as
su(2m)®  su(2n)®
2 22 (3.7)

which represents a folding of the graph (3.4), and describes that an outer automorphism
is acting upon the su(2m) gauge algebra.
We claim that there is yet another possible twist which can be represented as

su(2m)®  su(2n)®
2 22 (3.8)

where along with an exchange, both the su(2m) and su(2n) algebras have an outer
automorphism acting upon them. This can be thought of as first reducing to (3.5)
whose associated low-energy theory contains

50(2m)

sp(n) sp(n) (3.9)

where each edge denotes a half-hyper in bifundamental. We can now add a further ex-
change symmetry to the twist, whose action on the above low-energy theory exchanges
the two half-bifundamentals and the two sp(n).
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In light of the above discussion, let us revisit the case of (3.1) when m = n and
k =1. The 6d SCFT can then be represented as

2 (3.10)

Are there any twists which involve the exchange of two su(2n)? If there is no outer auto-
morphism involved, then this twist was already discussed in [11] and the corresponding
KK theory was denoted as
su(2n)®
2

- (3.11)

However, if there is an outer automorphism involved, we don’t expect that the exchange
is a symmetry since the low-energy theory associated to

su(2n)®  su(2n)®
22— 2 (3.12)
contains
sp(n) s0(2n)

(3.13)

which does not admit any exchange symmetry. That is, we do not expect the existence
of a KK theory of the form
su(2n)®
2

O (3.14)

Correspondingly, we do not find any consistent CY3 that could be associated to such
a KK theory.

Using similar arguments, we can compile a list of possible ways in which the new
KK theory building blocks can be combined with other KK theory building blocks.
We present this list in Table 4. We note that we only need to study the possible
combinations of the new KK building blocks arising from twists of the first type (see
Section 1). The possible combinations for a KK building block arising from a twist of
the second type, say

g(q)

@]
2 g (3.15)
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5p(qa)(1)5u( Zﬁ)@) Na < 2ng; ng < 2ne + 7
sp(qa)(”w(zoﬂ?) e <6—k
i s
50(10)®  sp(1)™

32
5u(7ia)(2)5u(7;/3)(2) Ne < 2ng; ng <ng + 8
su('fia)(z)ﬁu(gﬁ)@) Ng < 2ng; ng < ng —8
ﬁu(f)wzﬁ)@) 3<ng <15
5u(7;a)(2)5u(7;ﬁ)(2) na < 2ng; ng < 2n,
5u(7; 8 2 50(26)(1) Na <ng— 8 ng < 2n,
su(ga)@) 2 50(22%)(2) ne < 2ng — 8 ng < ng,
5“'(7;04)(2) ) i(gﬁ)(z) ng < 2ng; eng < 2ny; e = 2,3

Table 4. List of all the new combinations of KK theory building blocks that can arise by
including new KK theory building blocks arising from twists of the first type.

are the same as the possible combinations for the KK building block

g(Q)
k (3.16)
which does not involve the extra Z, twist. This is because the Z, only affects hypers
transforming in spinor of so(11),s0(12) and F of e, but it is not possible to gauge the

global symmetries associated to these hypers and obtain a 6d SCFT. So, the Z, twist
acts on parts of the theory which does not affect possible combinations.
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Let us notice that the theory

sp(3)V  50(10)@
l—2—3 (3.17)

does not appear in our list even though the theory

50(10) sp(3) 50(10)
3 1 3 (3.18)

is a consistent 6d SCFT. The reason for the inconsistency of (3.17) can be found in the
itemized list appearing towards the end of Section 3.4 of [11].

3.1 Gluing rules for associated CY3

The CY3 associated to two KK theory building blocks o and [ connected by an edge is
obtained by gluing some curves (comprised of fibers and blowups) in the CY3 associated
a with some curves (comprised of fibers and blowups) in the CY3 associated /3. The
gluings are independent of the diagonal GS couplings associated to a and 3, and depend
only on the type of edge and the associated twisted affine algebras” [4, 11]. In the
following, we will present such gluing rules. Our notation would be to call the building
block appearing on the left as a and the building block appearing on the right as (.
We will denote the surfaces coming from CY3 associated to « as S;, and the surfaces
coming from CY3 associated to 3 as S; g, where ¢ is the labeling of different surfaces
which can be found in Section 2.1 for the new KK theory building blocks and Section
5.2 of [11] for the old KK theory building blocks.

Gluing rules for 5p("a)é1) 5u(2n5)® . We can take any geometry with 0 <

v < 2n,+8—2ng for sp(na)él), and any geometry with 0 < v < 2ng—n,, for su(2ng)®.
The gluing rules below work irrespective of the value of 8. The gluing rules are:

o f—ux— T2, Tong—1, Tan, 1N So.a are glued to f, f — 1, y1 in Sp .

® i — Tit1,Tong—i — Tonyt+1-i i Spq are glued to f, fin S;g fori=1,--- ng—1.
® T, — Tnzt1 in Soq is glued to fin Sy, .

® I, — Tit1,Yit1 — ¥ in Spp are glued to f, fin S; o for e =1,--- ny — 1.

® 2., — Yn, in Spp is glued to f in S, 4.

"They are independent of the matter content as well.
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Gluing rules for 5P(”a)é1) su(2ng +1)® . We can take any geometry with

1<v<2n,+7-—2ng for sp(na)él), and any geometry with 0 < v < 2ng+1—n, for
su(2ng + 1)@, The gluing rules below work irrespective of the value of §. The gluing
rules are:

o f— &y — T2, 11 — T2, Tansi1, Tang+1 0 Soq are glued to f, f, 21,41 in Spg.
® Tii1—Tit2, Tongt1—i—Tang+2—i N Soq are glued to f, fin S;gfori=1,--- ng—1.

® Tyl — Tngr2 0 S is glued to fin Sy, 4.

Tit1 — Ti, Yir1 — Y in Sp g are glued to f, fin S;, fori=1,--- ,n, — 1.
o f—x,,,f—Yn, in Spp are glued to f — 1,21 in Sy, a-

1)

Gluing rules for 5p(na)" 50(10)) ,

5p(na)M — 2 — 50(10)® apd $0(10)® — 2 — sp(1)™ . Same as the ones pro-
vided in [11].

Gluing rules for su(2nq)?

su(2n5)(2) : We can take any geometry with 0 <

v < max(v) — ng for su(2n,)?, and any geometry with 0 < v < max(v) — n, for
su(2n5)@, where max(v) denotes the maximum value of v allowed for that KK building
block. The gluing rules are:

o f—x1,y1, [ —x2,y2 In Sy are glued to yo,y1, f — 22, f — 1 in Spp.

® ¥, — Tit1,Yit1 — ¥ in Sy are glued to f, fin S; g fore=1,--- ,ng— 1.
® Ty — Yny I So,q 18 glued to f in Sy, 5.
® T, — Tit1,Yit1 — Y in Spp are glued to f, fin S; o for e =1,--- ny — 1.
® T, — Yn, in Sy pis glued to fin S, 4.

Gluing rules for su(2n, + 1)@ su(2n8)® . We can take any geometry with
0 < v < max(v) — ng for su(2n, + 1)@, and any geometry with 1 < v < max(v) — n,

for su(2ng)®, where max(v) denotes the maximum value of v allowed for that KK

building block. The gluing rules are:
® 1,Y1, T2, Yo In Soq are glued to y1,y1, f — z1, [ — 21 In Sop.

® T — X, Yit1 — Y in S are glued to f, fin S; g fore=1,--- ng— 1.
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® [ —Tny, [ — Yny In Sp is glued to f— xq, 21 in Sy p
® ¥, — Tit1,Yit1 — Y in Sy p are glued to f, fin S;, fore=1,--- ,ny, — 1.

® T, — Yn, in Spp is glued to f in S, 4.

Gluing rules for su(2n4 + 1)@ su(2ng + 1)@ . We can take any geometry

with 1 < v < max(v) — ng for su(2n, + 1)@, and any geometry with 1 < v <

max(v) — n, for su(2ng +1)?, where max(v) denotes the maximum value of v allowed
for that KK building block. The gluing rules are:

® 21,Y1,%1,Yy1 in Sy, are glued to yy,y1, 21, 21 in Spa.

® T — X, Yir1 — ¥ in Sy are glued to f, fin S;gfore=1,--- ng— 1.
® [ —Tny, [ — Yny In Sp is glued to f— xq, 21 in Sy p

® i1 — T, Yit1 — Y in Sp g are glued to f, fin S; o for e =1,--- ny — 1.

o f—xy,.f—Yn, In Sopis glued to f —x1, 21 in Sy, a-

Gluing rules for su(2n,)® — 2 — 50(2n3)" . We can take any geometry with ng <

v < 2n, for su(2n,)?, and any geometry with 0 < v < 2ng — 8 — 2n,, for so(2nsz)M.
The gluing rules are:

o f—x; —x2in S, 4 is glued to f in Sy g.
® ¥, — ;11 in S, isglued to fin S;gfori=1,--- ,ng—1.
® [ Tns 1,Tn, in Sy, o are glued to T2, — Yon,, [ — T1,y1 In Sy p.

O T;i—Ti+1,Yi+1 " Yis Long—i — L2ng+1—is Y2ona+1—i —Yona—i 111 SnB,B are glued to fa f7 f’ f
in Sy,—iqfori=1,--- ny,—1.

o Ina—l Ina-‘rla xna Ina+2> yna-i-l yna—la yna+2 yna in Sn B are glued to fa f7 f’ f
B
in SO,a-

Gluing rules for s5u(2n,)?® — 2 — 50(2n5 + 1) We can take any geometry with

ng+1<wv < 2n, for su(2n,)?, and any geometry with 0 < v < 2ng — 7 — 2n,, for
50(2ng + 1), The gluing rules are:

o f—x1 —x9in S, 4 is glued to f in Sy g.
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® z;, — ;11 in S, o is glued to f in S;gfori=1,--- ,ng—1.
® [ = Tpgi1, Tngi1s Tny, Tng N Sy, o are glued to f — Zon,, [ — Yon,, T1, Y1 in Snﬁ’g.

® Tit1—Ti, Yir1 —Yir T2ng+1—i —L2ng—is Y2na+1—i —Y2na—i 0 Sp, g arve glued to f, f, f, f
in Sy,—iafori=1,--- ny,—1.

O Tne+l " Tnag—15Tna+2 " Tngs Yna+1l ~ Yna—1s Yna+2 — Yn, in Sn,g,ﬁ are glued to fa f7 f’ f
in S(]’a.

Gluing rules for su(2n,)@ — 2 — 50(2n5)® . We can take any geometry with ng-+

1 < v < 2n, for su(2n,)®, and any geometry with 0 < v < 2nz—8—2n,, for s0(2ns)?.
The gluing rules are:

o f—xy —x9,21 — 2210 S, , are glued to f, f in Sy .

® i1 — Xipoin Sy, o s glued to fin S;gfori=1,--- ,ng— 2.

f ~ Tng+1ls Tng+1s Tngr Lng in Sna,oc are glued to f — L2nq s f —Y2nar L1, Y1 in Sng—l,/a“

® Titl — Ti,Yir1l — Yir Tonatl—i — T2ng—is Yonati—i — Y2na—i N Spy—14 are glued to
.faf).faf in Sna—i,oa for i = ]-7 ana_l'

Tnotl = Tna—15 Tna+2 — Tnas Ynatl — Yna—1s Yna+2 — Yna 1D Sng—l,ﬁ are glued to

fafafafin SO,a-

Gluing rules for su(2n, +1)® — 2 — 50(2n5)" ; We can take any geometry with

ng < v < 2n, + 1 for su(2n, +1)?, and any geometry with 0 < v < 2ng — 9 — 2n,, for
50(2ng). The gluing rules are:

o f—x; —x2in S, 4 is glued to f in Sy g.

® 1, — ;11 in Sy, o is glued to f in S;gfori=1,--- ,ng—1.

fs Tpy—1, Tny D She.o are glued to xon, 11 — Yona+1, f — 21,91 in Snﬂﬂ.

® Ui — Tit1, Yit1 — Yir Tona+1—i — L2na+2—i> Y2na+2—i — Y2na+1—i 1 Snﬁ,ﬁ are glued to

fofofofin Sy —igfori=1,--- ny,—1.

b xna _Ina‘l'l? xna _Ina'i‘l? xna+1_xna+27 xna+1_xna+27 yna"rl_yna’ yna+1_yna7 yna+2_
Yno+1s Yng+2 — Yno+1 111 Sng,ﬁ are glued to f7 f7 f7 fv fa f7 fa f m SO,a’
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Gluing rules for su(2nq + 1)® — 2 — s0(2ng + D . We can take any geometry

with ng+1 < v < 2n,+1 for 5u(2na+1)(2), and any geometry with 0 < v < 2ng—8-2n,
for s0(2ng + 1), The gluing rules are:

o f—x; —x9in S, 4 is glued to f in S g.

® x;, — 11 in S, o isglued to fin S;gfori=1,--- ,ng—1.

J = Tngt1, Tngi1, Tngs Tny 0 Sy, o are glued to f — Ton 41, [ — Yona+1, 71,41 in

Sns.6-

Tit1 — Tis Yit1 — Yis Long+2—i — L2nq+1—is Y2na+2—i — Y2n,+1—i 111 Snﬁ,ﬁ are glued to
.faf).faf in Sna—i,oa for i = ]-7 ana_l'

O Tna+1"Tngs Tng+1"Tngs Tnag+2 " Tna+1s Tng+2 " Tng+1s Yna+1 "Yna s Una+1"Ynar Yna+2—
Yna+1) Yna+2 — Yno+1 111 Sn,g,ﬁ are glued to fa f7 f’ f7 f’ f7 f’ f m SO,a-

Gluing rules for su(2nq + H® —2 — 50(2715)(2) : We can take any geometry with

ng+1 <v <2n,+1 for su(2n, + 1)) and any geometry with 0 < v < 2ng —9—2n,
for s50(2n)?

). The gluing rules are:
o f—xy —x9,21 — 2210 S, , are glued to f, f in Sy .

® i1 — Tipoin Sy, o s glued to fin S;gfori=1,--- ,ng— 2.

J = Tngt1, Tngi1, Tngs Tny 0 Sy, o are glued to f — Ton 1, [ — Yona+1, 71,41 in

S

® Tit1 — Tiy Yit1 — Yir Vonag+2—i — L2na+1—is Y2na+2—i — Y2ona+1—i 11 Snﬁ—l,ﬁ are glued to
.faf).faf in Sna—i,oa for i = ]-7 ana_l'

O Tna+l1"Tngs Tng+1"Tngs Tnag+2 " Lna+1s Tng+2 " Tng+1s Yna+1 " Yna s Una+1"Ynar Yna+2—
Yna+1) Yna+2 = Yno+1 111 Sng—l,ﬁ are glued to .fa f7 f’ f7 f’ f7 fa f m SO,a'

Gluing rules for su(2n,)® — 2 — 5’4(2”5)(2) : We can take any geometry with

2ng < v < 2n, for su(2n,)?, and any geometry with 0 < v < 2ng — n,, for su(2ng)®.
The gluing rules are:

o f—ux— T2, Tong—1, Tan, 10 She .o are glued to f, f —x1,y1 in Sy g.

® T — Tiy1,Tang—i — Tang1—i N She o are glued to f, fin S;gfori=1,--- ng—1.
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® Tn, — Tngr1 i Sy, o is glued to fin Sy, 4.
® T, — Tit1,Yi+1 — Y; in Sp g are glued to f, fin S, _jq fori=1,--- ny —1.

® Ty 1 = Ynus Tny — Yna—1 1 Sp g are glued to f, f in Sy 4.

Gluing rules for su(2n,)® —2 — su(2ng + 1)@ . We can take any geometry with

2ng+1<v <2n,—1 for su(2n,)?, and any geometry with 0 < v < 2ng+1—mn, for
su(2ng + 1)@, The gluing rules are:

o f—xy — T2, T — T2, Tans i1, Tang+1 N Sp, o are glued to f, f, 1,41 in Spg.

® Tii1—Tit2, Tongt1—i—Tong+2—i N Op, o are glued to f, fin S;gfori=1,--- ,ng—1.
® Tyyi1— Tpgro N Sy, o is glued to fin Sy, 4.

® T — X, Yi+1 — Y; in Sp g are glued to f, fin S, o fori=1,--- ny —1.
 f—Yno1, [ —Ynor [ —Tpo—1, [ — T, in Spp are glued to f — 1, y1, f —y1, 21 in

So.a-

)

Gluing rules for su(2nq + 1) — 2 — su(2n3)® . We can take any geometry with

2ng < v < 2n, + 1 for su(2n, + 1)@ and any geometry with 0 < v < 2ng —n,, — 1 for
su(2n5)@. The gluing rules are:

® [ — X1 — Ty, Tony 1, Tan, N Sy, o are glued to f, f — x1,y1 in Spp.
® T — Tit1,Tang—i — Tangt1—i 1N Sy, o are glued to f, f in Sj g fori=1,--- ,ng—1.

® Ty, — Tngr1 i Sy, o is glued to fin Sy, 4.

B

® ¥, —Tit1,Yir1 — Y in Sp g are glued to f, fin S, _jo fori=1--- n,—1.

L xna - xna‘l'l’ xna - yna+17 xna“l‘l - yna? yna+1 - yna in So,ﬁ are glued to f7 f7 f7 f in
So,a-

Gluing rules for su(2nq + 1)@ — 2 — su(2ns + 1) ; We can take any geometry

with 2ng +1 < v < 2n,, for su(2n, + 1)(2), and any geometry with 0 < v < 2ng —n,
for su(2ng + 1)@, The gluing rules are:

o f— &y — Ty, ¥ — T2, Tangi1, Tang+1 N Sp, o are glued to f, f, 1,41 in Spg.

® Ti{1—Tit2, Tong41—i—Tomgr2—i N Op, o areglued to f, fin S;gfori=1,--- ng—1.
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® Tyyi1 — Tngro N Sy, o is glued to fin Sy, 4.
® i1 — X, Yit1 — Y; in Sp g are glued to f, fin S, _jq fori=1,--- ny —1.

hd f - yna+17f - ynonf - xna+17f — Tngy Tng+1 — Tngs Yna+1 — YUna in Soﬁ are glued
to f_$1>ylaf_yl>zlaf7f in SO,ow

Gluing rules for su(2n,)? —3 — su(2n8)® . We can take any geometry with

3ng < v < 2n, for su(2n,)?, and any geometry with n, < v < 2ng for su(2ng)®.
The gluing rules are:

o f—m — T2, Tong—1 — L2ng+1; Tong — T2ng+2 in S, . are glued to f, f, f in Sp .

® T — iy, x2n5—i - x2n5+1—ia x2n5+i - x2n5+1+i in Sna,oz are glued to f7 fa f in Si,B
fori=1,--- ,ng— 1

® Tn, — Tpgil, Tn, iN Snea are glued to f,x,, in Sy, 5.
® Tyn,i— Tn,—it1in Sy, g are glued to f, fin Sy, o fori=1,--- n, — 1.

o f—x —x9in Sy, 5 is glued to f in Sp,-

Gluing rules for 5u(2n,)® — 3 — su(2n5 + 1) We can take any geometry with

3ng +2 < v < 2n, for su(2n,)?, and any geometry with n, < v < 2nz + 1 for
su(2ng + 1)), The gluing rules are:

o [—x1—Ty, 11—y, Tong+1—L2ng+2; T2ng+1 — L2ng+2; L2ng+2 ~ L2ng+3; L2ng+2 — L2ng+3

in Sy, o are glued to f, f, f, f, f, f in So .

® Tit1 — Tit2, Long+1—i — L2ng+2—ir Long+2+i — L2ng+3+i 11 Sna.a are glued to f, f, f
inS;gfori=1,--- ,ng—1.

® Tyl — Tngt2; Tangt2 i Sy, o are glued to f,x,, in Sy, .
® Tpy—i— Tn,—it1 10 Sy, g are glued to f, fin Sy, o fori=1,--- n, — 1.

o f—x—1x9in Sy, 5 is glued to f in Sp,.

Gluing rules for su(2n, +1)® — 3 — su(2n3)® . We can take any geometry with

3ng < v < 2n, + 1 for su(2n, + 1)@, and any geometry with n, + 1 < v < 2ng for

su(2n3)@. The gluing rules are:

o f—m — L2, Long—1 — L2ng+1; Tong — T2ng+2 in S, . are glued to f, f, f in Sp .
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® T — iy, x2n5—i - x2n5+1—ia x2n5+i - x2n5+1+i in Sna,oz are glued to f7 fa f in Si,B

fori=1,--- ,ng—1.

® Ty, — Tngil; T3ng N Sy, o are glued to f,x,, 11 in Sy 6.

® Tppt1oi — Tngt2—i i Sy, are glued to f, fin Sy, o fori=1,--- n, — 1.

o f—x1 — 9,71 — T2 in Sy, 5 are glued to f, f in Spa-

Gluing rules for su(2nq + 1)® — 3 — su(2ng + 1)@ . We can take any geometry

with 3ns+2 < v < 2n,+1 for s1(2n,+1)? and any geometry with n,+1 < v < 2ng+1

for su(2ng + 1)@, The gluing rules are:

L4 f_xl —X2,T1—T2, x2n3+1 _x2n5+27 x2n5+1 _x2n5+27 x2n5+2 _x2n5+37 x2n3+2 _I2n5+3

in Sy, o are glued to f, f, f, f, f, f in So .

® Tit1 — Tit2, Long+1—i — L2ng+2—ir Long+2+i — L2ng+3+i 11 Sna.a are glued to f, f, f

inS;gfori=1,--- ,ng—1.

® Tyl — Tngt2, Tangt2 N Sy, o are glued to f,x,, 41 in Sy, .

® Tpptl-i — Tngt2—i 0 Sy, are glued to f, fin Sy, o fori=1,--- n, — 1.

o f—x1— 9,71 — T2 in Sy, 5 are glued to f, f in Spa-

3.2 Reading the data of permutation twist from the gluing rules

As we have seen above, there are sometimes multiple ways to combine two KK building

blocks. For example,

and

can be combined to produce either

su(m)®  su(n)®
2———2

or

su(m)®  su(n)®
2—2—2
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or
su(m)®  su(n)®
2—3—2 (3.23)

The difference between these three combinations is captured in the corresponding gluing
rules. In this subsection, our aim is to review how one can recover the type of edge
joining two building blocks from the gluing rules associated to the edge [14].

The difference between (3.21), (3.22) and (3.23) can be captured by a matrix of
Chern-Simons couplings [€2,5] descending from the GS coupling of the underlying 6d
SCFT (see [11]). For a general KK theory, [Q4p] is an 7 x r matrix if the KK theory is
produced by gluing r building blocks. The type of edge between two building blocks «
and 3 is captured by the two off-diagonal 2,3 and g, of the matrix. This matrix is
encoded in the CY3 associated to the KK theory as follows [14]:

Let €, be the e curve of a specific Hirzebruch surface out of the surfaces \S; , for various
¢. This specific surface can be taken to be the affine surface Sy , if the associated affine
algebra g(@ is untwisted, that is has ¢ = 1. It can be taken to be the surface S, , for
su(2n) @ su(2n + 1)@; the surface S, 5 for s0(2n)?; the surface S, for 50(8)®); and
the surface Sy for e{? (the labeling of surfaces can be found in this paper and [11]).
Let us define a surface S, as

Sa =2 d}3Sia (3.24)

where dy, are the dual Coxeter numbers associated to gl
Then, we have the relationship
Qup = —S54 €3 (3.25)

Using (3.25) on the gluing rules proposed for (3.21), (3.22) and (3.23), we find that
the associated off-diagonal entries are respectively

Qop =gy = —1 (3.26)
Qup = =2, Qpo =—1 (3.27)

and
Qup = =3, Qpo =—1 (3.28)

These are precisely the off-diagonal entries in the matrix of CS couplings associated to
(3.21), (3.22) and (3.23) respectively [11].

Notice that the correspondence between these off-diagonal entries and the types
of edges shown in graphs (3.21), (3.22), (3.23) is precisely the correspondence between
the off-diagonal entries for a Cartan matrix and the type of edge in the associated
Dynkin graph. p number of directed edges from a node « to another node 3 in a
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Dynkin graph translate to the off-diagonal entries Q0,3 = —p and Qg, = —1 in the
associated Cartan matrix, and p number of undirected edges from « to S translate to
the off-diagonal entries Q,5 = 3, = —p. The reader can similarly check that this
correspondence between type of edge and off-diagonal entries 2,3, {23, holds true for
other combinations of building blocks shown in Table 4. This provides a non-trivial
consistency check on the proposed gluing rules.

3.3 Low energy effective gauge theory

Using the techniques of Section 2.3, it is also possible to study the impact of gluing
KK theory building blocks upon the associated low-energy theories, which is the topic
of discussion in this subsection.

Consider the KK theory

su(2n,)®  su(2n)®@
k1 (3.29)

According to the arguments at the beginning of this section, the gluing rules suggested
in Section 3.1 above should imply that, if the low-energy gauge algebras chosen for the
two building blocks are s0(2n,,) and sp(ng) respectively, then contracting a maximal set
of blowups should lead to a half-hyper charged in bifundamental of so(2n,) @ sp(ng).

This can be easily verified. To obtain the above low-energy limit, we can contract
all fibers to zero size except the fibers for S, o, and Sy g. This forces all blowups z; for
i=1,---,n, living in Sy (and participating in the gluing rules) to remain at non-
zero volume, while the blowups y; for ¢« = 1,---,n, living in Sy 3 can be contracted
to zero volume. On the other hand, all the blowups living in Sy, (and participating
in the gluing rules) can be consistently contracted to zero size. To read the matter
content in the low-energy theory, we restrict our attention only to those surfaces whose
corresponding fibers are contracted to zero volume. The gluing rules are then reduced
to:

® T, — Tit1,Yit1 — Y in S are glued to f, fin S; g fori=1,--- ,ng — 1.
® T, — Yn, I Spq is glued to f in S, 5.

In other words, the above gluing rules are telling us that a total of ns fundamental
hypers of s0(2n,) are gauged by an sp(ng). Thus, these blowups (living in Sp,) must
give rise to a half-hyper in bifundamental of so(2n,) @ sp(ng), as expected.

What happens if instead we choose the low-energy gauge algebra to be sp(n,) @
sp(ng)? In this case, since a half-hyper in bifundamental is not possible, we would
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expect to obtain no matter degrees of freedom charged under a mixed representation of
sp(ny) @ sp(ng). This can again be verified using the gluing rules presented in Section
3.1. To obtain the above low-energy limit, we can contract all fibers to zero size except
the fibers for Sy, and Sy g. The reader can verify that this limit forces all the blowups
living in Sy, and Spp (and participating in the gluing rules) to remain at positive,
non-zero volume. Since none of the blowups participating in the gluing rules give rise
to massless particles, the low-energy sp(n,) @ sp(ng) has no hypers charged in a mixed
representation of sp(n,) @ sp(ng), as expected.

In a similar way, one can check that the low-energy mixed hyper content for other
combinations of KK building blocks, as expected from the arguments presented at
the beginning of this section, is concretely reproduced by the gluing rules proposed
in Section 3.1, thus providing strong consistency checks between the arguments and
proposals presented in this paper.
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