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Abstract

The adaptive momentum method (AdaMM), which uses past gradients to update
descent directions and learning rates simultaneously, has become one of the most
popular first-order optimization methods for solving machine learning problems.
However, AdaMM is not suited for solving black-box optimization problems,
where explicit gradient forms are difficult or infeasible to obtain. In this paper,
we propose a zeroth-order AdaMM (ZO-AdaMM) algorithm, that generalizes
AdaMM to the gradient-free regime. We show that the convergence rate of ZO-

AdaMM for both convex and nonconvex optimization is roughly a factor of O(+/d)
worse than that of the first-order AdaMM algorithm, where d is problem size. In
particular, we provide a deep understanding on why Mahalanobis distance matters
in convergence of ZO-AdaMM and other AdaMM-type methods. As a byproduct,
our analysis makes the first step toward understanding adaptive learning rate
methods for nonconvex constrained optimization. Furthermore, we demonstrate
two applications, designing per-image and universal adversarial attacks from black-
box neural networks, respectively. We perform extensive experiments on ImageNet
and empirically show that ZO-AdaMM converges much faster to a solution of high
accuracy compared with 6 state-of-the-art ZO optimization methods.

1 Introduction

The development of gradient-free optimization methods has become increasingly important to solve
many machine learning problems in which explicit expressions of the gradients are expensive or
infeasible to obtain [1-7]. Zeroth-Order (ZO) optimization methods, one type of gradient-free
optimization methods, mimic first-order (FO) methods but approximate the full gradient (or stochastic
gradient) through random gradient estimates, given by the difference of function values at random
query points [8, 9]. Compared to Bayesian optimization, derivative-free trust region methods,
genetic algorithms and other types of gradient-free methods [10—13], ZO optimization has two main
advantages: a) ease of implementation, via slight modification of commonly-used gradient-based
algorithms, and b) comparable convergence rates to first-order algorithms.

Due to the stochastic nature of ZO optimization, which arises from both data sampling and random
gradient estimation, existing ZO methods suffer from large variance of the noisy gradient compared
to FO stochastic methods [14]. In practice, this causes poor convergence performance and/or function
query efficiency. To partially mitigate these issues, ZO sign-based SGD (ZO-signSGD) was proposed
by [14] with the rationale that taking the sign of random gradient estimates (i.e., normalizing gradient
estimates elementwise) as the descent direction improves the robustness of gradient estimators
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to stochastic noise. Although ZO-signSGD has faster convergence speed than many existing ZO
algorithms, it is only guaranteed to converge to a neighborhood of a solution. In the FO setting,
taking the sign of a stochastic gradient as the descent direction gives rise to signSGD [15]. The use
of sign of stochastic gradients also appears in adaptive momentum methods (AdaMM) such as Adam
[16], RMSProp [17], AMSGrad [18], Padam [19], and AdaFom [20]. Indeed, it has been suggested
by [21] that AdaMM enjoy dual advantages of sign descent and variance adaption.

Considering the motivation of ZO-signSGD and the success of AdaMM in FO optimization, one
question arises: Can we generalize AdaMM to the ZO regime? To answer this question, we develop
the zeroth-order adaptive momentum method (ZO-AdaMM) and analyze its convergence properties
in both convex and nonconvex settings for constrained optimization.

Contributions Theoretically, for both convex and nonconvex optimization, we show that ZO-

AdaMM is roughly a factor of O(v/d) worse than that of the FO AdaMM algorithm, where d is the
number of optimization variables. We also show that the Euclidean projection based AdaMM-type
methods could suffer non-convergence issues for constrained optimization. This highlights the
necessity of Mahalanobis distance based projection. And we establish the Mahalanobis distance
based convergence analysis, which makes the first step toward understanding adaptive learning rate
methods for nonconvex constrained optimization.

Practically, we formalize the experimental comparison of ZO-AdaMM with 6 state-of-the-art ZO
algorithms in the application of black-box adversarial attacks to generate both per-image and universal
adversarial perturbations. Our proposal could provide an experimental benchmark for future studies
on ZO optimization. Code to reproduce experiments is released at the link https://github. com/
KaidiXu/Z0-AdaMM.

Related work Many types of ZO algorithms have been developed, and their convergence rates have
been rigorously studied under different problem settings. We highlight some recent works as below.
For unconstrained stochastic optimization, ZO stochastic gradient descent (ZO-SGD) [9] and ZO

stochastic coordinate descent (ZO-SCD) [22] were proposed, which have O(v/d/+/T) convergence
rate, where T is the number of iterations. Compared to FO stochastic algorithms, ZO optimization

suffers a slowdown dependent on the variable dimension d, e.g., O(v/d) for ZO-SGD and ZO-SCD.

In [23], the tightness of the dimension-dependent factor O(v/d) has been proved in the framework
of ZO stochastic mirror descent (ZO-SMD). In order to further improve the iteration complexity of
Z0 algorithms, the technique of variance reduction was applied to ZO-SGD and ZO-SCD, leading
to ZO stochastic variance reduced algorithms with an improved convergence rate in 7', namely,
O(d/T) [24-26]. This improvement is aligned with ZO gradient descent (ZO-GD) for deterministic
nonconvex programming [8]. Moreover, ZO versions of proximal SGD (ProxSGD) [27], Frank-Wolfe
(FW) [28, 2, 29], and online alternating direction method of multipliers (OADMM) [1, 30] have been
developed for constrained optimization. Aside from the recent works on ZO algorithms mentioned
before, there is rich literature in derivative-free optimization (DFO). Traditional DFO methods can
be classified into direct search-based methods and model-based methods. Both the two types of
methods are mostly iterative methods. The difference is that direct search-based methods refine their
search directions based on the queried function values directly, while a model-based method builds
a model that approximates the function to be optimized and updates the search direction based on
the model. Representative methods developed in DFO literature include NOMAD [31, 32], PSWarm
[33], Cobyla [34], and BOBYQA [35]. More comprehensive discussions on DFO methods can be
found in [36, 37].

2 Preliminaries: Gradient Estimation via ZO Oracle

The ZO gradient estimate of a function f is constructed by the forward difference of two function
values at a random unit direction:

VF(x) = (d/p)]f(x+ pu) — f(x)]u, (1)

where u is a random vector drawn uniformly from the sphere of a unit ball, and x > 0 is a small step
size, known as the smoothing parameter. In many existing work such as [8, 9], the random direction
vector u was drawn from the standard Gaussian distribution. Here the use of uniform distribution
ensures that the ZO gradient estimate (1) is defined in a bounded space rather than the whole real
space required for Gaussian. As will be evident later, the boundedness of random gradient estimates
is one of important conditions in the convergence analysis of ZO-AdaMM.
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The rationale behind the ZO gradient estimate (1) is that although it is a biased approximation to
the true gradient of f, it is unbiased to the gradient of the randomized smoothing version of f with
parameter p [23, 24, 30], i.e.,

fu(%) =Bunug [f(x + pua)], @)

where u ~ Uy denotes the uniform distribution over the unit Euclidean ball B. We review properties
of the smoothing function (2) and connections to the ZO gradient estimator (1) in Appendix 1.

3 AdaMM from First to Zeroth Order

Consider a stochastic optimization problem of the generic form

mi f(x) = Eel/(x;€)) )

where x € R? are optimization variables, &’ is a closed convex set, f is a differentiable (possibly

nonconvex) objective function, and £ is a certain random variable that captures environmental

uncertainties. In problem (3), if £ obeys a uniform distribution built on empirical samples {&,}7;,
1

then we recover a finite-sum formulation with the objective function f(x) = = >°" | f(x;§;).

First-order AdaMM in terms of AMSGrad [18]. We specify the algorithmic framework of
AdaMM by AMSGrad [18], a modified version of Adam [16] with convergence guarantees for
both convex and nonconvex optimization. In the algorithm, the descent direction m, is given by
an exponential moving average of the past gradients. The learning rate r; is adaptively penalized
by a square root of exponential moving averages of squared past gradients. It has been proved in

[18, 20, 38, 39] that AdaMM can reach O(1/ VT )? convergence rate. Here we omit its possible
dependency on d for simplicity, but more accurate analysis will be provided later in Section 4 and 5.

Z0-AdaMM. By integrating AdaMM with .
the random gradient estimator (1), we obtain Algorithm 1Z0-AdaMM
Z0O-AdaMM in Algorithm 1. Here the square Input: x; € X, step sizes {a;}1_1, B+, B2 €

root, the square, the maximum, and the divi- (0,1], and set myg, v and ¥

sion operators are taken elementwise. Also, fort — 1.2.... T do

ITx m(a) denotes the projection operation un- S S o )
der Mahalanobis distance with respect to H, let gi*ﬁ V fo(x:) byl(l)’gt (x¢) i= f(xe: &)
ie., argmingey [|[VH(x - a)l3. If ¥ = RY, mt__ﬁ l,tmt:a‘i B_)Alit)gt

the projection step simplifies to x; 11 = x; — Vi = P2Vi-1 2)8¢

atvt_l/th. Clearly, atV;1 % and m; can be Vi = max(V;_1,vy), and V; = diag(vy)

interpreted as the adaptive learning rate and the X4l = HX W(xt — atV; Y 2m,f)
momentum-type descent direction, which adopt VT

: . end for
exponential moving averages as follows,

t

m; = Z |:<H ﬂl,tk+1> (1- ,Bl,j)éj:| , vi = (1 — fB2) Z( E—Jg?) )

=1

Here we assume that my = 0, vo = 0 and 0° = 1 by convention, and let g, = V f; (x¢) by (1) with
fr(xe) = f(x4:€,)-

Motivation and rationale behind ZO-AdaMM. First, gradient normalization helps noise reduction
in ZO optimization as shown by [6, 14]. In the similar spirit, ZO-AdaMM also normalizes the descent
direction m; by \/¥;. Particularly, compared to AdaMM, ZO-AdaMM prefers a small value of
(2 in practice, implying a strong favor to normalize the current gradient estimate; see Fig Al in
Appendix. In the extreme case of 31 ; = B2 — 0 and V; = v¢, ZO-AdaMM could reduce to ZO-

signSGD [14] since V, 1 th =my/\/Vi = &/ \/g? = sign(g;) known from (4). However, the
downside of ZO-signSGD is its worse convergence accuracy than ZO-SGD, i.e., it only converges to
a neighborhood of a stationary point even for unconstrained optimization. Compared to ZO-signSGD,
Z0-AdaMM is able to cover ZO-SGD as a special case when 31, =0, S = 1,vo =1and vy <1
from Algorithm 1. Thus, we hope that with appropriate choices of ; + and 32, ZO-AdaMM could
enjoy dual advantages of ZO-signSGD and ZO-SGD. Another motivation comes from the possible
presence of time-dependent gradient priors [40]. Given this, the use of past gradients in momentum
also helps noise reduction.

’In the paper, we could omit log(7") in Big O notation.



Why is ZO-AdaMM difficult to analyze? The convergence analysis of ZO-AdaMM becomes
significantly more challenging than existing ZO methods due to the involved coupling among
stochastic sampling, ZO gradinet estimation, momentum, adaptive learning rate, and projection
operation. In particular, the use of Mahalanobis distance in projection step plays a key role on
convergence guarantees. And the conventional variance bound on ZO gradient estimates is insufficient
to analyze the convergence of ZO-AdaMM due to the use of adaptive learning rate. In the next
sections, we will carefully study the convergence of ZO-AdaMM under different settings.

4 Convergence Analysis of ZO-AdaMM for Nonconvex Optimization

In this section, we begin by providing a deep understanding on the importance of Mahalanobis
distance used in ZO-AdaMM (Algorithm 1), and then introduce the Mahalanobis distance based
convergence analysis for both unconstrained and constrained nonconvex optimization. Our analysis
makes the first step toward understanding adaptive learning rate methods for nonconvex constrained
optimization. Throughout the section, we make the following assumptions.

Al: fi(-) := f(-;&,) has Ly-Lipschitz continuous gradient, where L, > 0.
A2: f; has n-bounded stochastic gradient ||V f;(x)]|cc < 7.

4.1 Importance of Mahalanobis distance based projection operation

Recall from Algorithm 1 that ZO-AdaMM takes the projection operation HX \/\7() onto the con-

straint set X under Mahalanobis distance with respect to (w.r.t.) V. In some recent adversarial
learning algorithms [41, 42], the Euclidean projection IIx (-) was used in both FO and ZO AdaMM-
type methods rather than the Mahalanobis distance based projection in Algorithm 1. However, such
an implementation could lead to non-convergence: Proposition 1 shows the non-convergence issue of
Algorithm 1 using the Euclidean projection operation when solving a simple linear program subject
to ¢1-norm constraint. This is an important point which is ignored in design of many algorithms on
adversarial training [43].

Proposition 1 Consider the following problem

minimize —2x1 — x2; subject to |m1 + x2| <1, 5)
x=[z1,z2]T
then Algorithm 1, initialized by x = [0.5,0.5], using the Euclidean projection T x () converges to a
fixed point [0.5,0.5]7 rather than a stationary point of (5).

Proof: The proof investigates a special case of Algorithm 1, projected signSGD; See Appendix 2.1.

Proposition 1 indicates that replacing the Mahalanobis distance based projection in Algorithm 1
with Euclidean projection will lead to a divergent algorithm, highlighting the importance of using
Mahalanobis distance. However, the use of Mahalanobis distance based projection complicates the
convergence analysis, especially in constrained optimization. Accordingly, we define a Mahalanobis
based convergence measure that can simplify the analysis and can be converted into the traditional
convergence measure.

Letxt =x;411,X =%, g=my,w=0a;and H = th/Q, the projection step of Algorithm 1 can
be written in the generic form

x* = arg min (g, ) + (1/2) D (%)), (®)

where Dy(x,x~) = ||[H'/?(x — x7)||?/2 gives the Mahalanobis distance w.r.t. H, and || - || denotes
£5 norm. Based on (6), the concept of gradient mapping [27] is given by

Pru(x",gw) = (x" —x")/w. ©)

The gradient mapping Px i (X, g, w) yields a natural interpretation: a projected version of g at the
point x~ given the learning rate w, yielding x* = x~ — wPy u(x~!, g, w). We note that different
from [27, 44], the gradient mapping in (7) is defined on the projection under the Mahalanobis distance
Dy (-, -) rather than the Euclidean distance.




With the aid of (7), we propose the Mahalanobis distance based convergence measure for ZO-AdaMM:
IGGe)[1* = 1V Py, g7 (0, W (x2), ). ®)
If ¥ = RY, then the convergence measure (8) reduces to

VA ()12, ©

which corresponds to the squared Euclidean norm of gradient in a linearly transformed coordinate

systemy; = th /4 x;. As will be evident later, the measure (9) can be transformed to the conventional
measure ||V f(x;)||? for unconstrained optimization.

We remark that Mahalanobis (M-) distance facilitates our convergence analysis in an equivalently
transformed space, over which the analysis can be generalized from the conventional projected
gradient descent framework. To get intuition, let us consider a simpler first-order case with the

x-descent step given by Algorithm 1 as 8; ; = 0and X = R x4 = X — aV;l/QVf(Xt). Note
that the ZO case is more involved but follows the same intuition. Upon defining y, £ th / '
the x-update can then be rewritten as the update rule in y: y;11 = y¢ — aV; iy f(x¢). Since

Vy. f(x:) = (%)TVf(xt) — V; 4V f(x;), the y-update, y; 11 = y; — aVy f(x;), obeys the
gradient descent framework. In the constrained case, a similar but more involved analysis can be
made, showing that the M-projection in the x-coordinate system is equivalent to the Euclidean
projection in the y-coordinate system which makes projected gradient descent applicable to the
update in y. By contrast, the direct use of Euclidean projection in the x-coordinate system leads to

divergence in ZO-AdaMM (Proposition 1).

4.2 Unconstrained nonconvex optimization

We next demonstrate the convergence analysis of ZO-AdaMM for unconstrained nonconvex opti-
mization. In Proposition 2, we begin by exploring the relationship between the convergence measure
(9) and ZO gradient estimates; See Appendix 2.2 for proof.

Proposition 2 Suppose that A1-A2 hold and let X = R?, 03/2 > cl, fu(x1) — ming f,(x) < Dy,
B =P, v:=p01/B2 <1, p=1/VTd, and o, = 1/VTd in Algorithm 1, then ZO-AdaMM Yyields

d Vd Ly(4+583)(1—B1) Vd

Z 19D ~ye
2P T A B2 B - ) VT
2 NMaXi¢| ]{”gtHoo} d
+2E {2’7 s T (1o

5 {H 1A f(xn H ] <J

where x  is picked uniformly randomly from {x;}L_,, and g; = @ft (x¢) by (1).

Proposition 2 implies that the convergence rate of ZO-AdaMM has a dependency on ZO gradient
estimates in terms of G, := max;c[77{||&¢ || }. Moreover, if we consider the FO AdaMM [20, 38]
in which the ZO gradient estimate g, is replaced with the stochastic gradient, then one can simply
assume maxyc|7]{||g¢/|oc } to be a dimension-independent constant under A2. However, in the
ZO0 setting, G,, is no longer independent of d. For example, it could be directly bounded by

IVF(x)||2 < (d/p)]|f(x 4 pu) — f(x)|]2 < dL. under the following assumption:
A3: f; is L.-Lipschitz continuous.
In Proposition 3, we show that the dimension-dependency of GG, can be further improved by using

sphere concentration results; See Appendix 2.3 for proof.

Proposition 3 Under A3, max{d,T} > 3, and given 6 € (0, 1), then with probability at least 1 — 6,

max{||gt\|oo} < 2Lc+/dlog(dT/$). (11)

te[T]

Here we provide some insights on Proposition 3. Since the unit random vector used to define

&, is uniformly sampled on a sphere, ||&;||s can be improved to O(v/d) with high probability.
This is a tight bound since when the function difference is a constant, the lower bound satisfies

&¢]/00 = Q(+/d) by sphere concentration. It is also not surprising that our bound (11) grows with 7'



since we bound the maximum ||g; ||, over T realizations with high probability. The time-dependence
is required to compensate the growth of the probability that there exists an estimate with the extreme
£ value versus time. Note that as long as 7" has polynomial rather than exponential dependency on d,
we then always have max;c(71{||&¢|lc } = O(1/dlog (d)). Based on Proposition 2 and Proposition 3,
the convergence rate of ZO-AdaMM is provided by Theorem 1; See Appendix 2.4 for proof.

Theorem 1 Suppose that A1 and A3 hold. Given parameter settings in Proposition 2 and 3, then
with probability at least 1 — 1/(T~/d), ZO-AdaMM vyields

E {Hv;/“vjf(xR)Hz} =0 (Va/NT+d?r). (12)

We can also extend the convergence rate of ZO-AdaMM in Theorem 1 using the measure
E[||V f(xg)|?]. Since V,, 125 1/maxc(71{|&¢|loo } (by the update rule), we obtain from (11) that

t,i%
B (1976 ) <2Ley/lon@ /e | [V 9 1xm)] (3

Theorem 1, together with (13), implies O(d/+/T + d?/T) convergence rate of ZO-AdaMM under
the conventional measure. We remark that compared to the FO rate O(v/d/v/T + d/T) [38] of
AdaMM for unconstrained nonconvex optimization under A1-A2, ZO-AdaMM suffers O(1/d) and
O(d) slowdown on the rate term O(1/+/T) and O(1/T), respectively. This dimension-dependent

slowdown is similar to ZO-SGD versus SGD shown by [9]. We also remark that compared to
FO-AdaMM, ZO-AdaMM requires additional A3 to bound the ¢, norm of ZO gradient estimates.

4.3 Constrained nonconvex optimization

To analyze ZO-AdaMM in a general constrained case, one needs to handle the coupling effects from
all three factors: momentum, adaptive learning rate, and projection operation. Here we focus on
addressing the coupling issue in the last two factors, which yields our results on ZO-AdaMM at
B1,¢ = 0. This is equivalent to the ZO version of RMSProp [17] with Reddi’s convergence fix in [18].
When the momentum factor comes into play, the scenario becomes much more complicated. We leave
the answer to the general case 31 ; # 0 for future research. Even for SGD with momentum, we are
not aware of any successful convergence analysis for stochastic constrained nonconvex optimization.

It is known from SGD [27] that the presence of projection induces a stochastic bias (independent of
iteration number 7") for constrained nonconvex optimization. In Theorem 2, we show that the same
challenge holds for ZO-AdaMM. Thus, one has to adopt the variance reduced gradient estimator,
which induces higher querying complexity than the estimator (1); See Appendix 2.5 for proof.

Theorem 2 Suppose that A1-A2 hold, v, A1/2 > cl, fu(x1) —ming f,(x) < Dy, oy = a < Li‘g,

= \/ﬁ’ and 1 = 0 in Algorithm 1, then the convergence rate of ZO-AdaMM under (8) satisfies
6Dy 3L2d  6n° 3

2 2 c+9 N 2
l1G0xr) ) <508 + 28 4 O Bl £ 171+ )+ 22 ol — e,

where X is picked uniformly randomly from {x;}{_,, G(x) has been defined in (8), and f,, is the
smoothing function of f defined in (2).

Theorem 2 implies that regardless of the number of iterations 7', ZO-AdaMM only converges to
a solution’s neighborhood whose size is determined by the variance of ZO gradient estimates

maxec () E[||& — f.(x¢)||?]. To make this term diminishing, we consider the following variance
reduced gradient estimator built on multiple stochastic samples and random direction vectors [14],

- L Z va M €)Y, i dlf (xe + pui; §5) — f(x15€;)] w14

]EItz 1 H

where 7, is a mini-batch containing b stocahstic samples at time ¢, and {u;, t} _, are ¢ random
direction vectors at time ¢. We present the variance of (14) in Lemma 1, whose proof is induced from
[14, Proposition 2] by using ||V f;||3 < d||V fi||%, = dn? in A2.



Lemma 1 Suppose that AI-A2 hold, then for n < 1/ Vd, the variance of (14) yields
E (g — V/u(xo)llz] = O (d/b+d*/q) . (15)

Based on Lemma 1, the rate of ZO-AdaMM in Theorem 2 becomes E[||G(xz)||?] = O(d/T + d/b +
d?/q). Note that if A3 holds, then the dimension-dependency can be improved by O(d) factor
based on Lemma 1. To the best of our knowledge, even in the FO case we are not aware of existing
convergence rate analysis on adaptive learning rate methods for nonconvex contrained optimization.

S Extended Analysis of ZO-AdaMM

Z.0-AdaMM for constrained convex optimization Different from the nonconvex case, the con-
vergence of ZO-AdaMM for convex optimization is commonly measured by the average regret

Rr=E [% Zthl fe(xe) — % Zthl ft(x*)} [18, 19], where recall that f;(x;) = f(xy;&;), and x*
is the optimal solution. We provide the average regret with the ZO gradient estimates by leveraging
its connection to the smoothing function of f; in Proposition 4; see Appendix 3.1 for proof.

Proposition 4 Suppose that o, = a//t, Biy = Bi/t with 11 = B, B1,B2 € [0,1), v =
B1/+v/ B2 < 1 and X has bounded diameter D, then ZO-AdaMM for convex optimization yields

1 & 1 &
Rr, :=E [T foﬂu(Xt) T th,u(X*)]
D, z;LIE[v”ﬂ 8 E[v ov/TH1ogT 5oL, Elgur.|
< A 1 — ﬂl T ZZ . N -

(16)

T a(l-BVT 2ot - AR VI BT
where f;,, denotes the smoothing function of f defined by (2), Uy ; denotes the ith element of the
vector v, defined in Algorithm 1, and §1.7,; := [G1, - - - ,QTJ-]T.

We remark that Proposition 4 would reduce to [18, Theorem 4] by replacing ZO gradient estimates
g1.7,; and 9, ; with FO gradients g;.7 and v¢. However, it was recently shown by [39] that the
proof of [18, Theorem 4] is problematic. To address the proof issue, in Proposition 4 we present a
simpler fix than [39, Theorem 4.1] and show that the conclusion of [18, Theorem 4] keeps correct.
In the FO setting, the rate of AdaMM under A2 for constrained convex optimization is given by

O(d//T) [19, Corollary 4.4]. Here A2 provides the direct 77-upper bound on | 9ti| and 9, ; 1/2 , and we

consider worst-case rate analysis without imposing extra assumptions like sparse gradients®. In the
ZO setting, we need further bound |g; ;| and 0, ; and link R ,, to Ry, where the former is achieved
by Proposition 3 and the latter is achieved by the relationship between f; and its smoothing function
ft.,, shown in Lemma A1-(a), yielding f;(x;) — fi(x*) < fi.,(x¢) — fi.,u(x*) + 2pL.. Thus, given
w<d/ VT and assuming conditions in Proposition 3 hold, then the rate of ZO-AdaMM becomes
Ry < 2uL.+ Ry, = O(d*°/v/T), which is O(v/d) worse than the AdaMM.

Comparison with other ZO methods Since the existing convergence analysis for different ZO
methods is built on different problem settings and assumptions. The direct comparison over the
convergence rates might not be fair enough. Thus, in Table 1 we compare ZO-AdaMM with others ZO
methods from 4 perspectives: a) the type of gradient estimator, b) the setting of smoothing parameter
1, ¢) convergence rate, and d) function query complexity.

Table 1 shows that for unconstrained nonconvex optimization, the convergence of ZO-AdaMM
achieves worse dependency on d than ZO-SGD [9], ZO-SCD [22] and ZO-signSGD [14]. However,
it has milder choice of p than ZO-SGD, less query complexity than ZO-SCD, and no T'-independent
convergence bias compared to ZO-signSGD. Also, for constrained nonconvex optimization, ZO-
AdaMM yields the similar rate to ZO-ProxSGD [27], which also implies ZO projected SGD (ZO-
PSGD). For constrained convex optimization, the rate of ZO-AdaMM is O(d) worse than ZO-SMD
[23] but ours has the significantly improved dimension-dependency in p. We also highlight that at
the first glance, ZO-AdaMM has a worse d-dependency (regardless of choice of i) than ZO-SGD.
However, even in the FO setting, AdaMM has an extra O(\/&) dependency in the worst case due to
the effect of (coordinate-wise) gradient normalization when bounding the distance of two consecutive

3The work [40] showed the lack of sparsity in gradients while generating adversarial examples.



updates. Thus, in addition to comparing with different ZO methods, Table 1 also summarizes the

convergence performance of FO AdaMM. Note that our rate yields O(\/ﬁ) slowdown compared to
FO AdaMM though bounding ZO gradient estimate norm requires stricter assumption.

Method Assumptions Cfr_adlent Smoothing Rate Query
estimator parameter i
1 1 2 1 1 Vd d
ZO-SGD [9] NC!, UCons', A1, A3 GauGE 0 (ﬁ) 0 (ﬁ + 7) 0(T)
Z0-SCD [22] NC, UCons, A1, A3? CooGE' | O (ﬁ + %) 0 (% + %) 0 (dT)
. . . 1 Vvd | Vd d_\:
ZO-signSGD [14] | NC, UCons, AL, A3 | sign-UniGE! 0 (?) O(YE + ¥ 4 —L)b | O (bgT)
Z0O-ProxSGD / 4 ' 1 d2 d
70500 [27] NC, Cons®, A1, A3 GauGE 0(A) o0& +1) 0 (qT)
Z0-SMD [23] C, Cons, A3 GauGE/UniGE | O (2) o (%) o(T)
AdaMM [20, 38] NC, UCons, A1, A2 SGE! n/a o (% n %) n/a
AdaMM [18, 19, 39] C. Cons, A2 SGE n/a 0 (%) n/a
. 1 d d?
Z0-AdaMM NC, UCons, A1, A3 UniGE 0 (A7) 0(&+%) O(T)
NC, Cons, Al, A3 . 1 d 1, d
Z0-AdaMM B0 UniGE 0 (47) O(f+3+4) | 0D
. d dl.ﬁ
Z0-AdaMM C. Cons, A3 UniGE 0 (ﬁ) 0 (ﬁ) 0(T)

! Abbreviations. NC: Nonconvex; UCons: Unconstrained; GauGE: Gaussian random vector based gradient estimate; UniGE: Uniform
random vector based gradient estimate; CooGE: Coordinate-wise gradient estimate; SGE: stochastic (first-order) gradient estimate

2 Assumption of bounded variance of stochastic gradients is implied from A3.

3 Convergence of ZO-signSGD is measured by E[||V f (x)||2] rather than its square used in other algorithms for nonconvex optimization.

Table 1: Summary of convergence rate and query complexity of various ZO algorithms given 7" iterations.

6 Applications to Black-Box Adversarial Attacks

In this section, we demonstrate the effectiveness of ZO-AdaMM by experiments on generating
black-box adversarial examples. Our experiments will be performed on Inception V3 [45] using
ImageNet [46]. Here we focus on two types of black-box adversarial attacks: per-image adversarial
perturbation [47] and universal adversarial perturbation against multiple images [5, 6, 48, 49]. For
each type of attack, we allow both constrained and unconstrained optimization problem settings. We
compare our propos ed ZO-AdaMM method with 6 existing ZO algorithms: ZO-SGD, ZO-SCD and
Z0-signSGD for unconstrained optimization, and ZO-PSGD, ZO-SMD and ZO-NES for constrained
optimization. The first 5 methods have been summarized in Table 1, and ZO-NES refers to the
black-box attack generation method in [6], which applies a projected version of ZO-signSGD using
natural evolution strategy (NES) based random gradient estimator. In our experiments, every method
takes the same number of queries per iteration. Accordingly, the total query complexity is consistent
with the number of iterations. We refer to Appendix 4 for details on experiment setups.

Per-image adversarial perturbation In Fig. 1, we present the attack loss and the resulting ¢5-
distortion against iteration numbers for solving both unconstrained and constrained adversarial attack
problems, namely, (94) and (93) in Appendix 4, over 100 randomly selected images. Here every
algorithm is initialized by zero perturbation. Thus, as the iteration increases, the attack loss decreases
until it converges to 0 (indicating successful attack) while the distortion could increase. At this sense,
the best attack performance should correspond to the best tradeoff between the fast convergence
to 0 attack loss and the low distortion power (evaluated by /5 norm). As we can see, ZO-AdaMM
consistently outperforms other ZO methods in terms of the fast convergence of attack loss and
relatively small perturbation. We also note that ZO-signSGD and ZO-NES have poor convergence
accuracy in terms of either large attack loss or large distortion at final iterations. This is not surprising,
since it has been shown in [14] that ZO-signSGD only converges to a neighborhood of a solution,
and ZO-NES can be regarded as a Euclidean projection based ZO-signSGD, which could induce
convergence issues shown by Prop. 1. We refer readers to Table A3 for detailed experiment results.

Universal adversarial perturbation We now focus on designing a universal adversarial perturba-
tion using the constrained attack problem formulation. Here we attack M = 100 random selected
images from ImageNet. In Fig.2, we present the attack loss as well as the /5 norm of universal
perturbation at different iteration numbers. As we can see, compared with the other ZO algorithms,
Z0-AdaMM has the fastest convergence speed to reach the smallest adversarial perturbation (namely,
strongest universal attack). Moreover, in Table 2 we present detailed attack success rate and /o distor-
tion over 7' = 40000 iterations. Consistent with Fig. 2, ZO-AdaMM achieves highest success rate
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Figure 1: The attack loss and adversarial distortion v.s. iterations. Each box represents results from 100 images.

with lowest distortion. In Fig. A2 of Appendix A2, we visualize patterns of the generated universal
adversarial perturbations which further confirm the advantage of ZO-AdaMM.
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Figure 2: Attack loss and distortion of universal attack. 100 images under 7' = 40000 iterations.

7 Conclusion

In this paper, we propose ZO-AdaMM, the first effort to integrate adaptive momentum methods
with ZO optimization. In theory, we show that ZO-AdaMM has convergence guarantees for both
convex and nonconvex constrained optimization. Compared with (first-order) AdaMM, it suffers a
slowdown factor of O(+/d). Particularly, we establish a new Mahalanobis distance based convergence
measure whose necessity and importance are provided in characterizing the convergence behavior of
Z0-AdaMM on nonconvex constrained problems. To demonstrate the utility of the algorithm, we
show the superior performance of ZO-AdaMM for designing adversarial examples from black-box
neural networks. Compared with 6 state-of-the-art ZO methods, ZO-AdaMM has the fastest empirical
convergence to strong black-box adversarial attacks that require the minimum distortion strength.
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