
Towards Real-Time DNN Inference on Mobile Platforms with Model Pruning and
Compiler Optimization

Wei Niu1∗ , Pu Zhao2∗ , Zheng Zhan2 , Xue Lin2 , Yanzhi Wang2 and Bin Ren1

1College of William and Mary
2Northeastern University

wniu@email.wm.edu, {zhao.pu, zhan.zhe}@husky.neu.edu,
{xue.lin, yanz.wang}@northeastern.edu, bren@cs.wm.edu

Abstract

High-end mobile platforms rapidly serve as pri-
mary computing devices for a wide range of Deep
Neural Network (DNN) applications. However, the
constrained computation and storage resources on
these devices still pose significant challenges for
real-time DNN inference executions. To address
this problem, we propose a set of hardware-friendly
structured model pruning and compiler optimiza-
tion techniques to accelerate DNN executions on
mobile devices. This demo shows that these opti-
mizations can enable real-time mobile execution of
multiple DNN applications, including style trans-
fer, DNN coloring and super resolution.

1 Introduction
There are two key phenomena in machine learning and mo-
bile computing fields. First, various Deep Neural Networks
(DNN) have served as the fundamental building block of a
broad spectrum of machine learning applications because of
its superior accuracy and self adaptiveness ability [Goodfel-
low et al., 2016]. Second, with the rapidly increasing pop-
ularity of mobile phones, high-end mobile platforms (rather
than desktops or servers) serve as primary computing devices,
especially for many DNN applications such as wearable de-
vices, video streaming, smart health devices, etc. [Philipp et
al., 2011; Lane et al., 2015].

It is desirable to deploy real-time DNN inference systems
on mobile platforms. However, due to the intensive compu-
tation and high memory storage requirements of state-of-the-
art DNN models, such as VGG-16 [Simonyan and Zisserman,
2014], ResNet-50 [He et al., 2016] and MobileNet [Howard
et al., 2017], it is quite challenging to achieve real-time DNN
executions on mobile devices.

Multiple end-to-end mobile DNN acceleration frameworks
have been developed, such as TVM [Chen et al., 2018],
TensorFlow-Lite (TFLite) [Tensorflow Lite, 2017], and Al-
ibaba Mobile Neural Network (MNN) [Mobile Neural Net-
work, 2019]. However, they still cannot satisfy the real-time
execution requirement on mobile devices. TVM takes 198

∗These authors contributed equally

ms to complete the inference of a video frame on an embed-
ded GPU (Adreno 640) with VGG-16, which is important in
transfer learning. It takes even longer by TFLite (268 ms).

This paper investigates DNN inference on mobile plat-
forms with an ultimate goal of real-time execution. The con-
tributions of this paper are summarized as follows:

• First, it proposes a set of hardware-friendly structured
model pruning and compiler optimization techniques to
accelerate DNN executions on mobile devices.

• Second, it implements and accelerates three interesting
and key DNN applications, style transfer [Gatys et al.,
2016], DNN coloring [Iizuka et al., 2016], and super
resolution [Dong et al., 2014] with the help of the pro-
posed model pruning and compiler optimizations.

• Third, it demonstrates that these three applications can
achieve real-time executions on mobile devices. To
the best of our knowledge, our implementations are the
fastest on mobile devices.

2 Structured Model Pruning
To satisfy the constraints of computation and storage on mo-
bile, various DNN model compression methods are proposed,
where weight pruning [Luo and Wu, 2017; Mao et al., 2017;
Wen et al., 2016] leads to a notable model size reduction.

The non-structured weight pruning [Luo and Wu, 2017;
Guo et al., 2016] is not friendly to modern hardware de-
signs as the indices of the sparse model weights result in stall
or complex workload on parallel (specifically, massive par-
allel) architectures [Wen et al., 2016]. We mainly explore
the more hardware-friendly structured weight pruning [Wen
et al., 2016], which stores the pruned model regularly in its
shape without any weight indices.

Multiple structured pruning approaches exist based on their
pruning dimensions, including filter pruning (that prunes the
whole filter), channel pruning (that prunes channels), col-
umn pruning (that prunes the same location in each filter of
each layer), and connectivity and pattern pruning (that prunes
both the channels and certain locations in each kernel si-
multaneously) [Liu et al., 2019; Ma et al., 2019]. Despite
the differences of these structured pruning methods, we sup-
port them on a uniform framework based on Alternating Di-
rection Method of Multipliers (ADMM) [Boyd et al., 2011;
Zhao et al., 2019b; Weng et al., 2020]. In general, the pruning



optimization problem is formulated as,

min
{Wi}

f({Wi}), subject to Wi ∈ Si, ∀i (1)

where f denotes the loss function, {Wi} represents the
model weights, and Si shows the constraint of the remaining
weights in the i-th layer to satisfy a certain structure (e.g.,
pre-defined patterns or certain columns/rows preservation).
Although the structure constraints make the problem non-
differentiable and more complicated, ADMM is able to split
the original problem into several easier sub-problems, and
iteratively solve them until convergence [Zhao et al., 2018;
Zhao et al., 2019a]. We apply column pruning for style trans-
fer and kernel pruning for coloring and super resolution.

3 Compiler Optimization
Compiler optimizations consist of three components:

DSL related optimization. A DNN model comprises mul-
tiple operators (layers) that may show varied computation
patterns. A new DSL (i.e. domain specific language) is
designed to represent DNN models. This DSL employs a
new LR (i.e. layer-wised representation) to represent each
layer. Essentially, this DSL is equivalent to the computational
graph. Some further computational graph transformation op-
timizations are also applied to this DSL (e.g. a combination
of Convolution layer/Depthwise Convolution layer + Batch-
Norm layer + Activation layer) to reduce the data movement
and increase instruction level parallelism.

Sparse model storage. To further improve data locality, the
weights of the sparse model are also stored in a more com-
pact format than well-known CSR. This sparse model stor-
age aims to avoid zero-weights storage as CSR with an even
better compression ratio by further removing redundant in-
dices generated by our structured pruning. It helps to save the
scarce memory-bandwidth of mobile devices.

Matrix reorder. Structured pruning eventually transforms
model kernel matrices into small blocks with different prun-
ing patterns. Without any further optimizations, well-know
challenges for sparse matrix multiplications still exist, i.e.
heavy load imbalance among each thread, and irregular mem-
ory accesses. To address this issue, a matrix reorder approach
is proposed by leveraging the structure information offered
by our pruning. For example, if a column (and row) pruning
is applied. Because this pruning removes all kernel weights
in certain columns and rows within a block, the remaining
weights only appear in other rows and columns with a certain
degree of regularity. Based on this insight, matrix reorder first
reorders the rows (e.g., filters in CNN) by arranging the ones
with the same or similar patterns together. Next, it compacts
the weights in the column direction (e.g., kernels in CNN).

4 Experiments and Demonstrations
This experiment demonstrates the efficacy of the proposed
pruning and compilation acceleration approach through three
interesting and important DNN applications, style trans-
fer [Gatys et al., 2016], DNN coloring [Iizuka et al., 2016],
and super resolution [Dong et al., 2014]. The style transfer

style transfer coloring super resolution

or
ig

in
al

im
ag

e
ap

pl
ic

at
io

n
ou

tp
ut

Figure 1: Examples of style transfer, coloring, and super resolution
implemented on our mobile device.

Inference time (ms) Style coloring Super resolution

Unpruned 283 137 269
Pruning 178 85 192

Pruning + compiler 67 38 73

Table 1: Average Inference Time on the Mobile Device

model is based on a generative network [Zhang and Dana,
2017] trained on Microsoft COCO [Lin et al., 2014]. DNN
coloring uses the Places scene [Zhou et al., 2014] dataset to
train a novel architecture that can jointly extract and fuse
global and local features to perform the final colorization.
The super resolution model mainly utilizes residual blocks
with wider activation and linear low-rank convolution [Yu
et al., 2018] trained on the DIV2K [Timofte et al., 2017]
dataset. With structured pruning and compiler optimization,
we implement the models on a Samsung Galaxy S10 mobile
phone. We demonstrate that our implementations are able to
achieve real-time inference on mobile with video demos.

Figure 1 shows sample input and output of three applica-
tions. Table 1 shows the average inference time of the appli-
cations on mobile device. Structured pruning and compiler
optimization accelerate the inference with speedups of 4.2×,
3.6×, and 3.7× for style transfer, coloring and super reso-
lution, respectively. These results demonstrate that our op-
timized implementation generates satisfied output with high
speed. More specifically, all inference can complete within
75 ms, showing the possibility of achieving real-time execu-
tions of complex DNN applications on mobile. Please find
more video demos at our YouTube or bilibili channel12.

5 Potential Impacts
Real-time DNN executions on mobile have great potential to
impact many fields. Take real-time super resolution as an ex-
ample. It enables users to enjoy high-resolution video streams
with limited network bandwidth and inexpensive data cost,
while saving providers storage and communication resources.

1www.youtube.com/channel/UCCKVDtg2eheRTEuqIJ5cD8A/.
2space.bilibili.com/573588276?from=search&seid=

13333469485394270447

 www.youtube.com/channel/UCCKVDtg2eheRTEuqIJ5cD8A/
space.bilibili.com/573588276?from=search&seid=13333469485394270447
space.bilibili.com/573588276?from=search&seid=13333469485394270447


Because only low resolution video streaming is required to
store and communicate, super resolution results in significant
video service improvement and commercial cost reduction.

Acknowledgments
This work is partly supported by the National Science
Foundation grants CNS-1932351, CCF-1919117, and CNS-
1909172.

References
[Boyd et al., 2011] Stephen Boyd, Neal Parikh, Eric Chu,

Borja Peleato, Jonathan Eckstein, et al. Distributed op-
timization and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends R© in
Machine learning, 3(1):1–122, 2011.

[Chen et al., 2018] Tianqi Chen, Thierry Moreau, Ziheng
Jiang, et al. {TVM}: An automated end-to-end optimiz-
ing compiler for deep learning. In 13th USENIX, pages
578–594, 2018.

[Dong et al., 2014] Chao Dong, Chen Change Loy, Kaiming
He, and Xiaoou Tang. Learning a deep convolutional net-
work for image super-resolution. In ECCV, 2014.

[Gatys et al., 2016] Leon A Gatys, Alexander S Ecker, and
Matthias Bethge. Image style transfer using convolutional
neural networks. In CVPR, pages 2414–2423, 2016.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep Learning. MIT Press, 2016.

[Guo et al., 2016] Yiwen Guo, Anbang Yao, and Yurong
Chen. Dynamic network surgery for efficient dnns. In
NeurIPS, pages 1379–1387, 2016.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pages 770–778, 2016.

[Howard et al., 2017] Andrew G Howard, Menglong Zhu,
Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mo-
bilenets: Efficient convolutional neural networks for mo-
bile vision applications. arXiv:1704.04861, 2017.

[Iizuka et al., 2016] Satoshi Iizuka, Edgar Simo-Serra, and
Hiroshi Ishikawa. Let there be color! joint end-to-end
learning of global and local image priors for automatic
image colorization with simultaneous classification. ACM
Trans. Graph., 35(4), July 2016.

[Lane et al., 2015] Nicholas D Lane, Sourav Bhattacharya,
Petko Georgiev, Claudio Forlivesi, and Fahim Kawsar. An
early resource characterization of deep learning on wear-
ables, smartphones and internet-of-things devices. In IoT-
App, 2015.

[Lin et al., 2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, et al. Microsoft coco: Common objects in context.
In ECCV, 2014.

[Liu et al., 2019] Ning Liu, Xiaolong Ma, et al. Autoslim:
An automatic dnn structured pruning framework for ultra-
high compression rates. arXiv:1907.03141, 2019.

[Luo and Wu, 2017] Jian-Hao Luo and Jianxin Wu. An
entropy-based pruning method for cnn compression.
arXiv:1706.05791, 2017.

[Ma et al., 2019] Xiaolong Ma, Fu-Ming Guo, Wei Niu,
Xue Lin, Jian Tang, Kaisheng Ma, Bin Ren, and Yanzhi
Wang. Pconv: The missing but desirable sparsity in dnn
weight pruning for real-time execution on mobile devices.
arXiv:1909.05073, 2019.

[Mao et al., 2017] Huizi Mao, Song Han, Jeff Pool, Wen-
shuo Li, et al. Exploring the regularity of sparse struc-
ture in convolutional neural networks. arXiv:1705.08922,
2017.

[Mobile Neural Network, 2019] Mobile Neural Network.
Mobile neural network. https://github.com/alibaba/MNN,
2019.

[Philipp et al., 2011] Damian Philipp, Frank Durr, and Kurt
Rothermel. A sensor network abstraction for flexible pub-
lic sensing systems. In MASS, pages 460–469. IEEE, 2011.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv:1409.1556, 2014.

[Tensorflow Lite, 2017] Tensorflow Lite. tensorflow lite.
https://www.tensorflow.org/mobile/tflite/, 2017.

[Timofte et al., 2017] Radu Timofte, Eirikur Agustsson, Luc
Van Gool, et al. Ntire 2017 challenge on single image
super-resolution: Methods and results. In Proceedings
of the IEEE conference on computer vision and pattern
recognition workshops, pages 114–125, 2017.

[Wen et al., 2016] Wei Wen, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In NeurIPS, 2016.

[Weng et al., 2020] Tsui-Wei Weng, Pu Zhao, Sijia Liu, Pin-
Yu Chen, et al. Towards certificated model robustness
against weight perturbations. In AAAI, 2020.

[Yu et al., 2018] Jiahui Yu, Yuchen Fan, Jianchao Yang, et al.
Wide activation for efficient and accurate image super-
resolution. arXiv:1808.08718, 2018.

[Zhang and Dana, 2017] Hang Zhang and Kristin Dana.
Multi-style generative network for real-time transfer.
arXiv:1703.06953, 2017.

[Zhao et al., 2018] Pu Zhao, Sijia Liu, Yanzhi Wang, and
Xue Lin. An admm-based universal framework for ad-
versarial attacks on deep neural networks. In ACM Multi-
media 2018, 2018.

[Zhao et al., 2019a] Pu Zhao, Sijia Liu, Pin-Yu Chen, Nghia
Hoang, et al. On the design of black-box adversarial exam-
ples by leveraging gradient-free optimization and operator
splitting method. In ICCV 2019, October 2019.

[Zhao et al., 2019b] Pu Zhao, Siyue Wang, Cheng Gongye,
et al. Fault sneaking attack: a stealthy framework for mis-
leading deep neural networks. In ICCAD, 2019.

[Zhou et al., 2014] Bolei Zhou, Agata Lapedriza, Jianxiong
Xiao, et al. Learning deep features for scene recognition
using places database. In NeurIPS, pages 487–495, 2014.

https://github.com/alibaba/MNN
https://www.tensorflow.org/mobile/tflite/

	Introduction
	Structured Model Pruning
	Compiler Optimization
	Experiments and Demonstrations
	Potential Impacts

