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Abstract—As the smart home IoT ecosystem flourishes, it
is imperative to gain a better understanding of the unique
challenges it poses in terms of management, security, and privacy.
Prior studies are limited because they examine smart home IoT
devices in testbed environments or at a small scale. To address
this gap, we present a measurement study of smart home IoT
devices in the wild by instrumenting home gateways and passively
collecting real-world network traffic logs from more than 200
homes across a large metropolitan area in the United States.
We characterize smart home IoT traffic in terms of its volume,
temporal patterns, and external endpoints along with focusing
on certain security and privacy concerns. We first show that
traffic characteristics reflect the functionality of smart home IoT
devices such as smart TVs generating high volume traffic to
content streaming services following diurnal patterns associated
with human activity. While the smart home IoT ecosystem seems
fragmented, our analysis reveals that it is mostly centralized due
to its reliance on a few popular cloud and DNS services. Our
findings also highlight several interesting security and privacy
concerns in smart home IoT ecosystem such as the need to
improve policy-based access control for IoT traffic, lack of use
of application layer encryption, and prevalence of third-party
advertising and tracking services. Our findings have important
implications for future research on improving management,
security, and privacy of the smart home IoT ecosystem.

I. INTRODUCTION

Smart home IoT devices are used for a variety of home
monitoring and automation tasks such as smart locks and door
bells, temperature and moisture sensors, and smart speakers
for home assistance or streaming music. The smart home
IoT market has seen rapid growth over the past few years.
More than 832 million smart home IoT devices are expected
to ship worldwide in 2019 [36]. Smart home IoT devices
connect to the Internet to perform many of their tasks, such
as accessing weather reporting services for home environment
control and accessing media streaming services for providing
entertainment. Perhaps unsurprisingly, IoT traffic is now a
major contributor to the overall Internet traffic. IoT traffic is
expected to account for more than half of the Internet traffic
by 2022. 48% all 10T traffic is expected to be contributed by
smart home IoT devices by 2022 [6].

The proliferation of smart home IoT has brought about
many challenges such as management (e.g. device identi-
fication [54], [44]), security (e.g. Mirai botnet [28], [16]),
and privacy (e.g. IoT devices leaking sensitive information
[60], [22]). Tackling these challenges drives research into
understanding how smart home IoT devices are designed,
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adopted, and used. However, conducting this research brings
its own set of challenges. First, the smart home IoT ecosystem
is fragmented with a wide variety of devices that are generally
not amenable to inspection through standardized interfaces.
To overcome this challenge, we leverage the home gateway
as the universal vantage point to inspect the network traffic
generated by smart home I[oT devices without needing to
individually instrument them. Second, the behavior of smart
home IoT devices is dependent on the environment they are
placed in. While smart home IoT devices may be studied in
controlled testbed environments [49], [60], [11], [55], [41],
it may not reflect their real-world behavior. Therefore, we
study smart home IoT devices in the wild through our home
gateway instrumentation. This allows us to capture real-world
smart home IoT device behavior. Finally, studying smart home
IoT behavior at scale is burdensome. The diversity in the
smart home IoT market in terms of the types of devices
and manufacturers makes it difficult for researchers to gain
insights or propose solutions applicable to the broader smart
home IoT ecosystem. We capture this diversity and scale by
recruiting more than 200 homes to install our instrumented
gateways and collect network traffic logs of smart home IoT
devices in situ. Our logs contain network traffic from 1,237
devices including 66 different types of smart home IoT devices
spanning categories such as smart assistants, smart TVs, and
smart cameras. To protect privacy of users, we anonymize any
personally identifiable information (e.g. IP addresses) and do
not collect packet payloads in our network traffic logs.

Our analysis of smart home IoT traffic in the wild highlights
three main characteristics:

e Device functionality drives how much, when, and with
whom smart home IoT devices communicate; media func-
tionality generates high volume traffic, device traffic time
series exhibit diurnal human activity patterns, and Internet
services related to device functionality (e.g. video streaming
services for smart TVs and online gameplay services for
game consoles) generate most traffic. By understanding
these behaviors, operators can better manage loT devices
on their networks such as by suitably provisioning inter-
connects to cloud networks hosting IoT back-ends.

o While the smart home IoT ecosystem seems fragmented on
the front-end, it is increasingly centralized on the back-
end. Back-ends for smart home IoT devices are typically
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hosted on a few major cloud providers such as Google
Cloud and Amazon AWS. These two account for 60-90% of
traffic for smart TVs, smart speakers, smart assistants, and
home automation devices. Smart home IoT devices are often
configured with hard-coded DNS servers such as Google
public DNS. 98% of smart assistants and 72% of smart TVs
use hard-coded Google DNS servers to resolve DNS queries
instead of using the default DNS server configured at the
home gateway.

o Smart home IoT devices present serious privacy issues
because of their lack of use of traffic encryption and
susceptibility to user behavior tracking. Some smart home
IoT devices still communicate over (plain) HTTP, which
leaves their traffic trivially vulnerable to eavesdropping
and manipulation by network adversaries. 20% of smart
assistant, smart TV, and health and wearable traffic is sent
over HTTP. We also observe that several smart home IoT
devices communicate with well-known third-party advertis-
ing and tracking services, complementing prior work [48].
5.9%, 3.1%, and 2.9% of the hostnames accessed by smart
TVs, game consoles, and smart assistants respectively were
associated with known advertising and tracking services.

Paper Organization: The rest of the paper is set as fol-
lows. We provide a brief background of the smart home IoT
ecosystem, discuss our instrumentation for data collection, and
present our dataset in Section II. Section III presents the our
characterization of smart home IoT traffic in the wild followed
by a study on security and privacy issues in smart home [oT in
Section IV. We then discuss related work in Section V before
concluding in Section VL

II. BACKGROUND & DATA COLLECTION
A. Background

The proliferation of ‘smart’ Internet-connected devices that
can be remotely accessed and controlled has lead to the coining
of the term ‘Internet of Things’ or IoT. Of particular note are
smart home IoT devices, such as light bulbs, thermostats, and
TVs that are commonly found in a home but were tradition-
ally not connected to the Internet. Smart home IoT device
shipments are expected to reach 832 million in 2019, to grow
to 1.6 billion shipped devices in 2023 [36]. These smart home
IoT devices lie on a spectrum of Internet-connected devices
based upon their functionality. On one end, there are single-
purposed devices such as smart light bulbs and thermostats
that are typically considered IoT. On the other end, there are
multi-purposed devices such as smartphones and laptops that
are typically not considered to be IoT. In between, there are
‘ToT-ish’ devices such as smart TVs and game consoles that
are multi-purposed but are closer to IoT devices based on their
main/core functionality. Figure 1 illustrates these devices on
the spectrum of Internet-connected devices. For the purpose
of this work, we refer to single-purposed home IoT and home
IoT-ish devices as smart home IoT devices.

Figure 2 illustrates a typical smart home environment,
outlining where each aspect of the smart home ecosystem
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Figure 1: Spectrum of Internet-connected devices.
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Figure 2: Overview of the smart home ecosystem. Smart
home IoT devices can communicate with devices on the
local network via different network technologies, coordinating
actions via integration platforms. Connection to cloud-based
services through communication protocols is mediated by the
home gateway which provides Internet connectivity.

lies. The smart home ecosystem comprises of the various
aspects (integration platforms, communication protocols, net-
work technologies, cloud back-end services) developed to sup-
port IoT devices in a smart home. Integration platforms such
as Apple’s HomeKit [17], Amazon’s Alexa [15], Google’s
Home [29], and Samsung’s SmartThings [50] allow smart
home IoT devices to implement their functionality in a co-
ordinated manner (e.g. allowing a light sensor detecting low
sunlight to turn on smart bulbs). Smart home IoT devices
use a variety of communication protocols such as Hyper-
Text Transport Protocol (HTTP/HTTPS), Message Queuing
Telemetry Transport (MQTT), Domain Name System (DNS),
and Universal Plug and Play (UPnP). Smart home IoT devices
also use physical-layer network technologies such as Zigbee
[10], Z-Wave [38], and Bluetooth Low Energy (BLE) [21]
for local communications, and Wi-Fi or Ethernet for Internet
connectivity. Finally, smart home IoT devices also rely on
cloud back-end services for data storage and backup, firmware
updates, remote access and integration, and other services for
media streaming, weather updates, and news reports.

B. Data Collection

The home gateway provides a central vantage point to
measure the characteristics of all devices in a smart home.
We can passively monitor network traffic generated by smart
home IoT devices in smart homes as they connect to their



cloud services and other third-party services on the Internet.
In this section, we discuss the instrumentation of the home
gateway for this task along with the challenges associated and
the dataset collected via this vantage point.

Home gateway instrumentation. We partner with a home
gateway management software company to utilize the home
gateway. The company provides a Web-based platform for
smart home users to manage their home gateway, providing
features such as Internet access control, device security and
bandwidth management. Off-the-shelf commodity gateway
routers are instrumented with a modified version of OpenWRT,
a Linux-based operating system for networking devices. This
instrumentation is designed to passively collect information
on network traffic and the devices connected to the gateway
router to provide the desired services.

Network traffic data. As commodity gateway routers are
typically limited in terms of processing power and memory,
the instrumentation for collecting such information has to be
lightweight to prevent negative impacts on the router’s primary
purpose of packet forwarding. To this end, the home gateways
are instrumented to collect flow-level summary information for
network traffic instead of detailed packet-level header and pay-
load information. A flow is defined as a time-contiguous data
transfer between two unique endpoints, where one endpoint
lies on the local network and the other is external to the local
network (e.g. on the Internet). The home gateway maintains
a table of such flows along with their summary information
and uploads this table after a fixed time interval (30 seconds)
to a secure cloud server designated for data collection, after
which the table is flushed from memory. It is noteworthy that
no Deep Packet Inspection (DPI) is performed when collecting
this data, so application-layer information (e.g. URLSs) is not
available, even when in cleartext. The summary information
includes data such as:

o External IP addresses.

o Hostname of the external IP address. This is de-
termined by querying the external IP address in the
gateway’s DNS cache.

« Direction of flow. Either to or from the local IP address.

o Bytes Transferred.

Network device fingerprinting. The home network manage-
ment platform also incorporates network device fingerprinting
into its services, providing users with information regarding
what devices connect to their network. The home gateway
is instrumented to upload Simple Service Discovery Protocol
(SSDP), Dynamic Host Configuration Protocol (DHCP) and
UPnP traffic to the cloud. This traffic is then matched to expert
rules crafted through analysis of such traffic by domain experts
to identify devices. This approach is similar to the expert
rule generation approach outlined by Kumar et al. [37]. The
user can cross-check this identification and inform customer
support if it is incorrect, in which case the rules are updated
to reflect the correct traffic-to-device mapping. These rules
may fail to correctly identify devices in cases where reported
values in SSDP and DHCP traffic correspond only to the

networking components employed by the devices, such as
wireless chipsets. We take into account such devices when
we count the number of devices in a smart home, but do not
study their behavior in further analysis.

Ethical Considerations. The company collects data from
its customers for not only providing current services, but
also for research and development purposes. Data for the
latter is collected from a special subset of users who have
consented to the use of their data for this purpose. These
users include early adopters as well as friends and family of
employees of the company. We analyze anonymized data from
these users about smart home IoT device behavior. We only
use the flow-level summary information outlined in Section
II-B, where personally identifiable information (such as MAC
addresses of devices or public-facing IP addresses of homes)
is not collected. Individual devices and home gateways are
anonymized using randomly generated IDs, so we can identify
which devices are connected to which gateway, but do not
identify who these gateways and devices belong to in the real
world. For each device in our dataset, we collect its device type
as identified by the fingerprinting approach outlined earlier.

C. Data Statistics

Dataset. Our analysis is performed on data collected during
a 19-day period in February 2018. The data is collected
from 220 homes spread across a large metropolitan area in
the United States, with traffic from 1237 unique network-
connected devices observed during data collection. We break
down these devices in terms of their functional categories,
numbers and the amount of traffic they generated in Table
I. We consider smart home IoT devices to include game
consoles, smart TVs (including video streaming devices),
smart speakers, smart assistants, smart cameras, work ap-
pliances, health devices & wearables, and home automation
devices. Also, we consider smartphones, computers/laptops,
networking devices and tablets as non-IoT devices. Overall we
observe 142 unique device types in our dataset, 66 of which we
classify as smart home IoT devices and 48 as non-IoT devices.
The fingerprinting approach outlined previously was unable to
identify 28 device types, which we label as Miscellaneous. In
all, we observed 240 smart home IoT devices, 958 non-IoT
devices and 32 Miscellaneous devices in our dataset.

Device distribution across homes. We first look at the
distribution of the number of devices per home in our dataset
in Figure 3, determined by the number of unique device IDs
associated with each home, with separate distributions when
all devices categories are considered and when only smart
home IoT devices are considered. We observe that around
51% of homes had less than 3 devices connected directly to
the instrumented gateway and 54% of homes did not have a
smart home IoT device connected directly to the instrumented
gateway. It is likely that such homes may have devices behind
another networking device such as a Wi-Fi router masking
their presence from our instrumented gateway, or they simply
do not have many devices. We however also observe a few
homes with more than 50 devices and more than 25 smart



Mean Mean
Device Home Unique download upload per
Device Category C Manufacturers . per day
ount | Count Device per Device ‘day per
Types (GB) Device (GB)
Smart TV 78 55 | Samsung, TCL, Vizio, LG, Sharp, Sony, Apple, Google, 29 3.53 0.06
Roku, Arcadyan, LiteOn
Game Console 45 38 | Nintendo, Microsoft, Sony 8 3.7 0.1
Smart Speaker 29 9 Sonos, Russound 10 0.06 0.002
Smart Assistant 28 21 | Google, Amazon 2 0.3 0.01
Smart Camera 16 5 | Belkin, Netgear, Nest 3 0.06 1.2
Work Appliance 14 14 | Canon, Epson, Brother, HP 8 0.0002 0.0005
Health & Wearable 14 12 | Apple, Fitbit, Peloton 3 0.0004 0.00009
Home Automation 16 5 Control4, Nest, Phillips, Solarcity, iRobot, LAMetric 7 0.001 0.002
Smartphone 473 173 Samsung, Nokia, Motorola, Apple, LG, ASUS, HTC, 31 0.4 0.05
Huawei, OnePlus, ZTE,
Computers/Laptops 372 148 | Apple, Intel, Microsoft, ASUS, Gigabyte, Samsung, HP, 9 0.3 0.1
Lenovo, PC, Raspberry Pi
Tablets 95 62 | Amazon, Apple 3 0.5 0.1
Unknown 32 27 | Xerox, Shenzen RF, China Dragon, Clover Network, 28 0.25 0.26
Espressif
Networking 18 5 | Netgear, QNAP, TP-Link, Western Digital, Plume Design 6 0.7 1.2
13 1237 220 142 Total

Table I: Basic statistics of smart home network-connected devices in our dataset. Devices are categorized based on their primary
functionality. We consider the first 8 categories as Smart Home IoT devices.
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Figure 3: Distribution of device counts across homes in
our dataset. We plot separate distributions when all device
categories are considered and when only smart home IoT
devices are considered.

home IoT devices connected to the gateway. Our dataset covers
a wide variety of homes which vary in terms of their adoption
of ‘smart’ home and is illustrative of the need to study smart
home IoT in the wild.

Manufacturer dominance. Users may exhibit preferences
for specific manufacturers when considering devices for their
smart home, due to familiarity and ease of integration with
other devices from the same manufacturer. As such, we study
whether there are any preferred or dominant manufacturers
amongst the homes in our dataset. We define a manufacturer
to be dominant in a home if it has the highest amount of
devices in the home or it is the only manufacturer in the home.
In cases where all devices belong to different manufacturers,
we divide that home equally across all present manufacturers.
We present manufacturer dominance across smart home IoT
devices in Figure 4. We observe 24 different manufacturers
presenting some form of dominance in our dataset. The most
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Figure 4: Manufacturer dominance in homes across smart
home IoT devices.

dominant manufacturer for smart home IoT devices is Amazon
at 14% of homes in our dataset, which produces the Echo
line of home voice assistants and the Fire TV line of video
streaming devices. Next, Sony at 11% of houses produces
the Bravia line of smart TVs and the PlayStation line of
consoles. At par with Sony is Apple, which produces the Apple
Watch wearable and the Apple TV amongst other smart home
IoT devices, Moving further ahead, we see manufacturers of
smart [oT device categories such as home automation devices
(Google, Nest), smart speakers (Sonos, Russound), smart TVs
and video streaming devices (Samsung, TCL, Vizio), and work
appliances (Brother, Canon, Epson, HP). Given such diversity
it becomes important to study smart home IoT devices in the
wild, where insights can be considered more representative of
how smart home [oT devices behave when used by real users.

III. SMART HOME IOT ACTIVITY IN THE WILD

In this section, we discuss our analysis of smart home IoT
device traffic. We frame our analysis to ascertain whether
the functionality provided by smart home [oT devices affects
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Figure 5: Flow size distributions for smart home IoT device
categories, with smartphones as baseline. Some categories
primarily less than a KB of traffic per flow, whiles others
generate significantly more traffic per flow.

characteristics of their traffic. To this end, our analysis answers
three main questions:

o How much do smart home IoT devices communicate
over the Internet? We shed light smart home IoT traffic
volumes to illustrate how device functionality may affect
device traffic volumes.

o When are smart home loT devices communicating over
the Internet? By examining the temporal nature of smart
home IoT traffic, we seek to understand if device func-
tionality reflects in temporal traffic patterns.

o Who are smart home loT devices communicating with?
By investigating whom different smart home IoT devices
communicate with over the Internet, we seek to under-
stand how device functionality determines what a device
communicates with over the Internet.

A. How much do smart home IoT devices communicate?

Traffic Volume. Table I shows the average traffic volume per
device per day for each device category. We observe that smart
home IoT devices such as smart cameras, game consoles, and
smart TVs account for vastly more traffic volume than other
categories because they download or upload media content.
Game consoles, smart TVs download much more data than
they upload, likely due to their main functionality to access
media content. Smart cameras upload much more data than
they download as they are capable of uploading video footage.
Home automation, work appliances, and health and wearable
devices account for less traffic volume because they only
download or upload control traffic.

Flow Size. Figure 5 plots distributions of flow traffic sizes for
smart home IoT device categories, with the distribution for
smartphones as baseline. We note that some device categories
such as home automation, smart assistants and work appliances

generate small flows. More than 85% of the flows generated
by these devices are less than one kilobyte. In comparison,
smartphones have only 50% of such small flows. Smart TVs,
game consoles, and health & wearables exhibited similar flow
distributions as smartphones. Smart cameras generate large
flows with over 25% of flows more than a megabyte. Such
flows likely correspond to uploading of video footage for
remote viewing and backup.

Takeaway. Functionalities provided by smart home IoT devices
play a pivotal role in the volume and flow size of the traffic they
generate. Devices that provide functionalities requiring high
data volumes such as accessing Web content or uploading
video data will generate high volumes of network traffic
reflected in high-volume flows.
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Figure 6: Smart home IoT device activity by category over
the week, with diurnal and non-diurnal patterns. Devices
with user-driven functionality exhibit diurnal activity patterns
corresponding to human activity patterns.

B. When do smart home IoT devices communicate?

We now look at smart home IoT device activity patterns to
understand the temporal nature of their activity.

Diurnality. Figure 6 plots per-hour activity time series for IoT
device categories over the course of a week, with smartphones
as baseline. We observe some device categories such as smart
TVs, health and wearables, and game consoles exhibit a daily
diurnal pattern that is driven by human activity patterns.
This diurnal pattern is characterized by lower activity in
the middle of the day when people are expected to be at
work, rising to a peak the end of the day when they return
home. We note device categories exhibiting such patterns have
functionalities involving direct user interactions i.e. turning on
the TV to watch video or using a game console to play games.
As a baseline, smartphones exhibit similar diurnal patterns.
We also observe that some other device categories do not
exhibit such daily diurnal patterns, which illustrates that they
are not dependent on user interactions. For example, smart
cameras and smart thermostats are designed to monitor home



Category AS 1 Org. AS 2 Org. AS 3 Org.
[% of flows] [% of flows] [% of flows]
Game MICROSOFT AMAZON-02 AMAZON-AES
Consoles [26.6%] [22.6%] [10.7%]
Smart GOOGLE AMAZON-AES  AMAZON-02
TVs [46.8%] [14.8%] [11.0%]
Smart AMAZON-AES  AMAZON-02 PANDORA
Speakers [64.1%] [16.8%] [10.3%]
Smart AMAZON-02 GOOGLE AMAZON-AES
Assistants [64.1%] [16.8%] [10.3%]
Smart GOOGLE AMAZON-AES  AMAZON-02
Cameras [48.5%] [45.7%] [5.5%]
Work HP-INTERNET  GOOGLE TANDEM
Appliance [91.5%] [8.2%] [0.1%)]
Health & APPLE- ERICYHOST COMCAST
ENGINEERING
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Figure 7: Auto correlation coefficient distributions for smart
home IoT device categories exhibiting periodicity. Devices
generating programmed ‘heartbeat’ traffic exhibit sub-hour
periodicity.

environments and as such remain equally active regardless of
time of day. For both groups, we observe higher device activity
on the weekend (Friday-through-Sunday) than during the rest
of the week because users are more likely to be at home
during the weekend. We specifically see a spike in traffic on
the weekend for health & wearable devices, which is due to
the Peloton exercise bikes. This fact further indicates that user
presence in the home has an impact on device activity.

Periodicity. We compute the normalized auto correlation
coefficient [45] for per-minute activity time series. Since
some device categories did not exhibit any diurnality in their
per-hour activity time series, we hypothesize that their per-
minute activity time series may exhibit sub-hour periodicity.
The distribution of auto correlation coefficient over successive
shifts can indicate the presence of periodic signals in the time
series. The length of the period is indicated by the distance
between successive peaks in the auto correlation distribution.
Figure 7a plots the auto-correlation distribution for outbound

Table II: Top 3 ASes for each smart home IoT device category.

traffic. We observe periods of 15 minutes for smart speakers
and home automation services, and 1 hour for work appliances
in outbound traffic. However, this periodicity disappears when
we consider inbound traffic in Figure 7b. Smart home IoT
devices are often designed to generate outbound periodic
‘heartbeat’ traffic that does not depend on user interaction.
As a baseline comparison, smartphones did not exhibit any
sub-hour periodicity in traffic in either direction.

Takeaway. Functionalities provided by smart home IoT devices
determine their temporal activity patterns. Devices with func-
tionality requiring direct user interactions will exhibit daily
diurnal patterns correlated with human activity patterns. De-
vices with functionality not requiring direct user interactions
may exhibit sub-hour periodicity due to “heartbeat” traffic.

C. Who are smart home IoT devices communicating with?

To answer this question, we analyze smart home IoT device
activity in terms of the network hosts they communicate with.

Autonomous Systems. We first look at the Autonomous
Systems (ASes) that smart home [oT devices communicate
with. We list the top 3 ASes by traffic for each smart
home IoT device category in Table II. We observe specific
organizations for specific categories, such as Microsoft for
game consoles, HP for work appliances, Pandora for smart
speakers, and Apple and Comcast for health and wearable
devices. Such organizations provide specific services such
as online gameplay via Xbox Live for Microsoft or music
services by Pandora. However, we also note that nearly all
categories have their top ASes belong to either Google or
Amazon, often accounting for 70-90% of all traffic for the
category. Both organizations provide general-purpose cloud
services such as Amazon Web Services (AWS) and Google
Cloud. Devices manufactured by either company such as the
Amazon Echo or the Google Chromecast would be expected
to leverage these cloud services. However other manufacturers
also opt for these services to avoid setting up their own due
to cost and efficiency issues. For instance, Belkin uses AWS



to provide cloud services for their Wemo line of products [5].
While the smart home IoT ecosystem may seem heterogeneous
from the diversity of manufacturers and products available,
there is a centralization of service delivery for smart home
IoT, where most services are being provided through Google
Cloud or AWS.

SLDs. We next analyze hostnames across different smart
home IoT categories. For simplicity, we map hostnames to
Second Level Domain (SLD). Figure 8 plots the top-10 SLDs
for different smart home IoT categories. We note that top-
10 SLDs generally reflect device functionality. For example,
smart cameras connect to SLDs such as xbcs.net (owned
by Belkin) to backup video footage, game consoles connect
to gaming services such as xboxlive.com, and smart TVs
connect to video streaming services such as netflix.com. It
is interesting to note that game consoles also accessed video
streaming services indicating their dual-use as media stream-
ing devices. For smart TVs, along with video streaming SLDs
we also observe samsungacr.com, which is associated with
Samsung’s Automatic Content Recognition (ACR) service.
ACR services are used to track users’ viewing behavior on
smart TVs and leveraged for ad targeting [51], [3]. Some smart
home IoT devices periodically send ‘heartbeat’ traffic to SLDs
owned by their manufacturers such as lametric.com (smart
clock), control4.com (home automation), and SOnos.com
(smart speaker).

Takeaway. Smart home loT devices communicate with services
that are centralized on major cloud providers, which are
adopted due to cost and efficiency for device manufacturers.
These services are tied with device functionality, such as
gaming services for game consoles and media streaming
services for smart TVs, control services for home automation
devices and smart assistants. Furthermore, there is interest
from smart TV manufacturers to leverage their devices to track
user behavior for advertising and tracking.

IV. SECURITY & PRIVACY ISSUES IN SMART HOME 10T

In this section, we investigate smart home IoT traffic with
respect to specific cases. These cases primarily highlight
security and privacy concerns that arise with the proliferation
of smart home IoT.

A. Securing Smart Home IoT via Internet Access Control

As smart home IoT devices and IoT in general become
more ubiquitous, concerns have been raised with regards to
how network access by such devices be controlled to prevent
security issues such as device compromise. Manufacturer
Usage Description [39] (MUD) is a recently approved IETF
standard (RFC 8520) that provides a standardized method
for smart home IoT device manufacturers to specify the
ports, protocols and network hosts that their devices will
communicate with. These MUDs can then be used by network
administrators or gateway routers to develop Internet Access
Control Lists (ACLs) to firewall smart home IoT devices to
improve their security posture. Researchers have built tools
that can generate MUDs for devices given traffic traces [32]

to facilitate manufacturers, and utilized MUDs to propose
methods for detecting attacks on smart home IoT devices [31].
Furthermore, industry is also providing tools for manufacturers
and network administrators to incorporate MUD-based IoT
device management [56].

These proposals and tools rely on the ability of device
manufacturers to define MUDs that describe any legitimate
traffic generated by smart home IoT devices. MUDs for
devices with well-defined functionality such as smart cameras
and smart thermostats would be fairly easy to define. However,
MUDs for devices such as game consoles and smart TVs
which access hosts not under manufacturer control may be
difficult to define. We illustrate this issue by evaluating the
effectiveness of MUDs in-the-wild through analysis of traffic
in our dataset. Since MUDs are not currently deployed by
manufacturers, we generate them by adapting MUDgee [32].
For every smart home IoT device in our dataset, we generate
a MUD using MUDgee’s methodology over first 72 hours of
traffic data for the the device. We then test the MUD over that
device’s subsequent traffic, noting the amount of flows that
would have been passed the MUD-based ACL for the device.
We plot the results of this test in Figure 9, which shows the
average percentage of flows that would have passed the ACL
over the course of multiple days.

We observe high acceptance rates across all device cate-
gories, with smart speakers and home automation achieving
100% acceptance for long periods of time. Smart assistants,
smart TVs and game consoles achieved high acceptance rates
that fluctuated between between 85-95%. Heath & wearables
saw two days where acceptance rates fell to 64% and 72%.
These drops happened due to Apple Watch devices, which
accessed hostnames not observed during the traffic used for
MUD generation. These results illustrate that while MUDs can
aid network administrators in developing solutions to secure
smart home IoT devices through Internet access control, they
require further work on how they are generated to account
for cases where legitimate traffic is not accounted for in the
MUD.

B. Advertising and Tracking in Smart Home loT

Across the smart home IoT ecosystem, smart TVs have
been found to track user behavior for targeted advertising,
which for some manufacturers has become their main revenue
stream [42], [51]. This has become a serious regulatory
concern because smart TV users are tracked without their
knowledge and consent. For example, Vizio was fined by
the Federal Trade Commission (FTC) for collecting channel
viewing history of users using ACR without user consent [27].
Recall from Section III-C that we observed the presence of
samsungacr.com in smart TV traffic. Recent research has
also highlighted the prevalence of tracking in smart TVs [41].
We surmise that smart home [oT devices in general can be
leveraged for tracking user behavior by manufacturers and
third-parties whose services are accessed through these IoT
devices. Our goal in this section is to determine whether such
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Figure 9: Average percentage of flows allowed by MUDs
generated from device traffic from the first 72 hours per smart
home IoT category.

tracking already exists in smart home IoT devices, including
but not limited to smart TVs.

To this end, we use Pi-hole which is a tool for blocking
advertisers and trackers across the whole network by monitor-
ing DNS queries for hostnames and domains associated with
them. We use the default set of lists available in Pi-hole [9] to
check the hostnames accessed by the devices in our dataset and
count the number of hostnames that were found in the lists.
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(f) Smart Speakers
Total unique Found in
Category hosts  Pihole list ° °f total
Game Consoles 32,259 992 3.1%
Smart TV 9,684 576 5.9%
Smart Assistant 2,091 48 2.9%
Smart Camera 708 0 0%
Health & Wearables 257 5 1.9%
Home Automation 185 0 0%
Smart Speaker 184 1 0.5%
Work Appliance 37 1 2.7%
Smartphones 65,625 2,796 4.3%

Table III: The number and percentage of hosts detected by
Pi-Hole as associated with ad/tracking.

We count the total number of unique hostnames for each smart
home IoT device category and the number of hostnames that
were found on Pi-Hole’s lists in Table III. This allows us to
understand the prevalence of advertising and tracking in smart
home IoT. We also count such hostnames for smartphones as
a baseline comparison.

We note that 6 out of 8 smart home IoT categories accessed
an ad or tracker hostname as marked by Pi-hole, indicating
that some form of tracking or ad delivery is present in
these categories. Smart TVs communicated the most with ads
and tracker hostnames at 5.9% of all hostnames accessed
by such devices. Next, game consoles, smart assistants, and
health & wearable devices had 3.1%, 2.9% and 1.9% of their
hostnames marked as an ad or tracker. Smart speakers and
work appliances only accessed a singular ads/tracking host-
name, which were msmetrics.ws.sonos.com and a google-
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Figure 10: Percentage of devices that accessed public DNS
servers across smart home IoT categories. Google DNS servers
and OpenDNS servers were most prevalent.

analytics.com hostname respectively. Note that while the Pi-
hole list may capture many advertising and tracking services
[48], it may miss others that are unique to smart home IoT
ecosystem [41].

For 3 smart home IoT categories (game consoles, smart TVs
and smart assistants) that accessed more than 10 ads/tracking
hostnames, we extract the domains of such hostnames and
determine the top 15 domains with respect to the number of
devices they were accessed by. We first note that the list of
top 15 domains is very similar across these devices, with most
ad/tracking hosts originating from Google owned domains,
such as doubleclick.com and googlesyndication.com. This
indicates the capability of Google to possibly track user
behavior in some form on smart home IoT. Other track-
ing domains include imrworldwide.com (owned by Nielsen
Online), casalemedia.com (owned by Casale Media) and
invitemedia.com (owned by Invite Media), which would also
gain the ability to track user behavior on smart home IoT
devices.

The presence of these hostnames is indicative of the fact that
tracking has reached smart home IoT devices. To mitigate such
tracking, users may use network-level blocking solutions such
as Pi-hole [46] which block DNS requests for advertising and
tracking services using block lists. However these block lists,
which are manually curated based on informal crowdsourced
user reports, are prone to mistakes and trivial circumvention
by advertisers and trackers [12].

C. Use of Public DNS by Smart Home loT

Our gateways are instrumented to run a DNS server that
is assigned via DHCP and is responsible for answering DNS
queries sent by local network devices. However, devices may
be configured to use hard-coded public DNS servers. We
analyze device traffic data to determine the prevalence of
this practice across smart home IoT devices. Our gateways

% of Web flows
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Game Console
Health&Wearables
Home Automation
Smart Assistant
Smart Camera
Smart Speaker
Smartphone
Work Appliance

Figure 11: Percentage of Web traffic flows sent over HTTP or
HTTPS by smart home IoT devices.

do not log flows to the local DNS server hosted on it, but
logs DNS queries to public DNS servers as UDP or TCP
flows on port 53. We plot the percentage of devices which
accessed an public DNS server for each smart home IoT device
category with smartphones as baseline in Figure 10. All smart
home IoT categories except health & wearables and smart
speakers access had devices which accessed an public DNS
server. Smart assistants were the most prevalent, with 98% of
devices accessing Google DNS servers including all Google
Home devices. Google DNS was also popular amongst smart
cameras, smart TVs and game consoles with 68%, 68% and
46% of such devices accessing it. We also note that OpenDNS
servers were accessed by smart assistants and smart TVs by
Amazon-manufactured devices.

Devices may choose to use hard-coded public DNS servers
due to various reasons. For instance, the Google Chrome-
cast is hard-coded with Google DNS server addresses to
prevent access to geo-locked content on services such as
Netflix and Hulu [1]. Such behavior has also been noted in
recent work [35] where Netflix hostnames were exclusively
resolved through Google DNS on Roku-based smart TVs.
Other reasons include preemptively avoiding problems caused
by mismanaged DNS servers hosted by ISPs [8], which leads
to users blaming the device for the problems. While such
reasons may be valid, they take away control from the user on
how devices on their networks communicate with the Internet.
Furthermore, the use of hard-coded DNS also renders network-
level blocking solutions [46], [4] invalid as they would not be
used to resolve DNS queries.

D. Prevalence of Unencrypted Traffic in Smart Home IoT

Many smart home IoT devices are designed to access the
Web for various services, which may be available via HTTP or
HTTPS. Since HTTP traffic is typically not encrypted, access
to services over HTTP can leak sensitive information about the
user to a passive network observer. To this end, we explore



the proportion of Web traffic for smart home IoT categories
that is accessed through HTTP and HTTPS by analyzing
traffic destined for port 80 and port 443 for either protocol
respectively in Figure 11 with smartphones as baseline. We
note that all smart home [oT devices except smart cameras
access the Web over HTTP for some portion of traffic, with
health & wearables, smart assistants, and smart TV generating
around 20% of their traffic over HTTP, more than that accessed
by smartphones. A closer inspection of flow data for these
categories reveals that such flows are mostly associated with
ads and tracking SLDs such as scorecardresearch.com
and imrworldwide.com across all three categories. Health &
wearables also accessed SLDs such as fitbit.com which relate
to device functionality, while smart assistants and smart TVs
accessed media streaming SLDs for services such as Netflix,
Hulu and Spotify.

There may be various reasons for services to be still
provided over HTTP. As noted by Englehardt and Narayanan
[25], services may be hesitant to move to HTTPS if they use
any third-party resources that are HTTP-only. These resources
are typically ads and trackers, which were also found to be
predominantly over HTTP in our own analysis. Hill and Mattu
[34] noted in their study that smart TVs sent information on
use of Hulu services to tracking hostnames, leaking informa-
tion about user viewing behaviors. Smart home IoT devices
may also access services over HTTP due to limitations in the
device itself. For instance, fitbit.com was accessed over HTTP
by a Fitbit Aria smart scale that is no longer supported by the
manufacturer with firmware updates, with the last update being
a security patch in 2016 [2]. While the current Fitbit API [7]
is restricted to HTTPS only, it is likely that HTTP support
is retained for backwards compatibility. A key concern with
smart home 10T is how devices that are no longer supported
by the manufacturer are handled with regard to issues such
as reliability and security. As proposed by Fagan et al. [26],
features for IoT devices should be designed to account for
their lifespan and as such manufacturers should ensure that
their devices can be updated to maintain sufficient reliability
and security.

V. RELATED WORK

The growth of smart home IoT devices has brought interest
to such devices by malicious actors as a viable target. One
famous instance is the Mirai botnet[16] composed mostly of
smart cameras, used in Distributed Denial of Service (DDoS)
attacks against Dyn and KrebsOnSecurity[28]. Recognizing
this threat, researchers have focused on not only studying
smart home IoT devices from the lens of security and pri-
vacy, but also understanding how they are being adopted by
consumers. We discuss some of this prior work here.

Smart home IoT in testbed environments. Much of ini-
tial work on understanding smart home IoT device behavior
through passive network observation at the home gateway [14],
[19], [34], [52], [60] focuses on understanding the implica-
tions of such behavior from a user privacy perspective. More
recently, Ren et al. [49] conducted experiments on smart home

IoT device behavior on 81 devices spread across an US-based
and an UK-based testbed environment. Their experiments
showed that smart home IoT devices in their dataset routinely
expose information to eavesdroppers via plaintext flows or to
destinations not owned by manufacturers, and routinely com-
municate with destinations outside their privacy jurisdictions.
Note that we also found cases of possible information exposure
via HTTP flows as well as connections to ad and tracking
hostnames. These studies leverage the home gateway as a
vantage point, which is able to provide fine-grained insights
into device behavior. However these studies are limited by
their use of testbed environments and their selections of loT
devices, which cannot be considered representative insights for
all smart home IoT devices.

Tools for studying smart home IoT at scale. Researchers
have aimed to build tools that allow them to collect data
from smart home IoT devices on large scales. These tools are
designed to collect data through in-path passive monitoring of
network traffic, or through off-path active probing of devices to
collect responses. Huang et al. designed IoT-Inspector [35] as
an in-path tool designed to collect crowd-sourced information
on smart home IoT device behavior in the wild, using Ad-
dress Resolution Protocol (ARP) spoofing to capture network
traffic generated by smart home IoT devices. loT-Inspector is
primarily targeted towards users looking to understanding how
their smart home IoT devices communicate with the Internet.
Based on data collected from 8,131 devices, Huang et al.
find devices that communicated over HTTP and used weak
cipher suites for Transport Layer Security (TLS). Furthermore
they also found smart TVs in their dataset to connect to
advertising and tracking domans, as well as use hard-coded
DNS servers, both of which we also show in our case study
analysis. While IoT-Inspector collects data passively it does
so when a user initiates it, which limits the ability of this
data to reflect trends in smart home IoT behavior. Work has
also focused on studying smart home 10T through Internet-
scale measurements. To this end, tools such as Internet-wide
active scanners of network hosts have been leveraged for such
work. Shodan [40] is a search engine developed to identify IoT
devices using probe traffic to known ports for services such
as HTTP/HTTPS, SSH and FTP. Similarly, Censys [24] also
provides internet-wide scanning for services and devices but
also supports crowd-sourced annotation of device information.
Such services have been used to search the Internet for smart
home IoT devices which are compromised by malware [16],
[33]. Active probing measurements only provide information
on how IoT devices respond to them, providing no insight on
passively observed behavior.

In the wild measurements. There has been prior work on
how smart home IoT devices or Internet-connected devices
behave in-the-wild i.e. when they are used by normal users
in their homes. Hill and Mattu [34] conducted a 2-month
study on smart home IoT devices placed in Hill’s home. They
studied how traffic behavior from certain devices can be used
to infer user behavior and preferences, and how this infor-



mation may be leveraged by third-parties. Unfortunately, their
insights may not be representative of general smart home IoT
behavior in the wild given the sample size of only one home.
Grover et al. [30], [57] studied home networks in 100 homes
across 21 countries via deployed routers instrumented with
custom firmware to conduct active and passive measurements.
They highlight differences between homes in developing and
developed countries through the lens of the availability, in-
frastructure, and usage patterns of home networks. They note
that home networks in developing countries experience more
Internet interruptions, but are similar to home networks in
developed countries in terms of the number of connected
devices. They also analyze traffic data from 25 houses to
observe usage patterns. This work is mainly limited to studying
network performance in home networks and does provide
insight into the behaviors of individual devices including
IoT. More recently, Kumar et al. [37] presented an active
measurement study of 83 million devices in 16 million home
networks around the world. Their analysis primarily focused
on the presence of various IoT device types on home networks,
noting that significant amounts of homes in North America,
Western Europe and Oceania have at least one IoT device
present. They also note that many IoT devices still exhibit bad
security posture through the exposure of services, such as FTP
and Telnet, or the use of default credentials in administration
interfaces. While this work provides a valuable large-scale
survey of different IoT devices, it does not passively capture
behavior and usage characteristics of smart home IoT devices
in the wild.

Our work advances the research by conducting passive mea-
surement and in-depth behavioral characterization of a diverse
set of smart home IoT devices in the wild. As we discuss next,
we highlight several new and interesting characteristics of the
smart home IoT ecosystem that warrant further research.

VI. CONCLUSION AND DISCUSSION

In this paper, we presented a characterization of smart
home IoT traffic in the wild. We deployed instrumented home
gateways to gather and analyze network traffic logs from more
than 200 homes containing a wide variety of IoT devices. As
we discuss next, our characterization of different aspects of
smart home IoT traffic uncovers several interesting findings
that warrant future investigation.

We find that device functionality clearly influences smart
home IoT traffic—devices that access media over the Web
exhibit high-volume diurnal traffic that matches human activity
patterns while devices that provide automation functionalities
exhibit low-volume traffic with sub-hour periodicity. These
findings show that IoT traffic patterns can be leveraged to not
only improve device identification approaches [44] but also
assess the effectiveness of IoT device activity fingerprinting
[19], where user activities may be inferred through analysis of
smart home IoT traffic. Our insights can also help in develop-
ing better methods to evade IoT device activity fingerprinting
through traffic shaping techniques [18].

We also find that smart home IoT traffic reflects significant
centralization towards major cloud providers and public DNS
providers. While centralization of the cloud brings benefits
such as higher availability, redundancy, and ease of implemen-
tation, it also brings risks due to monopolization as well as
the possibility of malicious intentions (e.g. censorship, surveil-
lance) by the cloud provider. Multi-cloud solutions to address
these concerns caused by relying on a single cloud provider
are an active research area [13], [58], [61]. Centralization of
DNS also brings its own dangers by presenting a single point
of failure, as evident from the Dyn DDoS attack [20]. Devices
with hard-coded DNS servers could cease to function if the
DNS server is down or could be compromised if the DNS
server is compromised. Device manufacturers should ensure
that their devices are designed with suitable countermeasures
to prevent such failures.

Our findings also raise privacy concerns by providing evi-
dence of unencrypted traffic over HTTP. To prevent leakage
of personal information through unencrypted traffic, prior
work has investigated using Virtual Private Network (VPN)
at the home gateway to encrypted and wrap traffic into a
single flow between source and destination IP addresses of
VPN endpoints [18], [43], [53]. Unfortunately, VPNs only
prevent eavesdropping of unencrypted network traffic from
an adversary at the access ISP but not beyond the external
VPN endpoint [18]. Furthermore, using a VPN comes with
a performance penalty as the traffic is first routed to VPN
servers before being sent to the actual destination. Recent work
[59], [47] has focused on improving VPN performance while
maintaining the security and privacy guarantees provided by
them.

We also find prevalence of third-party advertising and
tracking services in smart home IoT traffic. To prevent tracking
from smart home IoT devices, users can deploy network-
level blocking tools such as Pi-hole [46]. However, existing
network-level blocking tools are mainly geared towards web
and mobile, and are known to suffer from significant blind
spots for smart home IoT traffic [41]. Moreover, it is inherently
challenging for network-level blocking to block first-party
tracking [23]. Our work highlights the need for further research
to improve the effectiveness of network-level blocking tools
for smart home IoT traffic.
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