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Abstract

With the increasing use of online interactive environments for
science and engineering education in grades K-12, there is a
growing need for detailed automatic analysis of student ex-
planations of ideas and reasoning. With the widespread adop-
tion of the Next Generation Science Standards (NGSS), an
important goal is identifying the alignment of student ideas
with NGSS-defined dimensions of proficiency. We develop a
set of constructed response formative assessment items that
call for students to express and integrate ideas across multi-
ple dimensions of the NGSS and explore the effectiveness of
state-of-the-art neural sequence-labeling methods for identi-
fying discourse-level expressions of ideas that align with the
NGSS. We discuss challenges for idea detection task in the
formative science assessment context.

Students in grades K-12 in the U.S. increasingly engage in
learning about science and engineering through online envi-
ronments that provide learning experiences with interactive
simulations and experiments. Teachers use these formative
assessments that involve short text responses from students
to assess student understanding and thereby fill in knowl-
edge gaps and build on productive ideas. While automated
scoring of student responses is a well-studied task (Bur-
rows, Gurevych, and Stein 2015; Pado 2016; Dzikovska,
Nielsen, and Leacock 2016; Shermis 2015), effective auto-
mated methods to analyze student responses in more detail
hold similar potential to reduce the burden on teachers to
exhaustively read student responses and allow them to in-
stead focus on targeted student support. For science educa-
tion, of particular interest is the capability to identify regions
of responses that express concepts or display skills that align
with standards such as the Next Generation Science Stan-
dards (NGSS; NGSS Lead States (2013)).

The NGSS call for the integration of three dimensions
of science learning: disciplinary core ideas (DCIs), cross-
cutting concepts (CCCs), and science and engineering prac-
tices (SEPs)1. In this work, we describe the design of con-
structed response items that formatively assess student un-
derstanding of multiple NGSS dimensions, namely, using
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SEPs while demonstrating integrated understanding of DCIs
and CCCs. We then explore the effectiveness of state-of-the-
art neural sequence-labeling methods for identifying the ex-
pression of high-level science and engineering concepts in
responses from U.S. middle school students interacting with
an online science education environment2.

Datasets
Students at 11 middle schools in the U.S. engaged in sci-
ence units in an online classroom and contributed written
responses to assessment questions as part of pre- and post-
tests in the units. We designed three free-response assess-
ment questions embedded in the units that aligned with the
NGSS. The questions were designed to elicit student rea-
soning about two or more NGSS dimensions of ideas and
concepts (DCIs and CCCs) and practices (SEPs) (Table 3 in
Appendix). Spans of student responses were annotated for
ideas related to each of these elicited dimensions.

The questions were from three units (Table 3). The three
science units and questions were as follows: (1) The Ther-
modynamics Challenge (TC) unit asked students to deter-
mine the best material for insulating a cold beverage using
an online experimentation model. The assessment question
asked students for both scientific concepts and to explain
proposed experiments. (2) In the unit on photosynthesis and
cellular respiration (PH), students interacted with dynamic
molecular models and wrote integrated explanations of how
photosynthesis supports the survival of both plants and an-
imals. (3) In Solar Radiation (SR), students were asked to
agree or disagree with a claim made by a fictional peer about
the functioning of a solar oven based on working with an in-
teractive model.

We designed annotation rubrics for each question corre-
sponding to the two question dimensions. The rubrics pro-
vided guidance for how the NGSS “performance expecta-
tion” for that dimension could be realized by students in
the context of answering the question. Specifically, we syn-
thesized the ideas, concepts, and practices described in the
NGSS Evidence Statement documents of each targeted per-
formance expectation to develop the annotation criteria. As

2https://wise.berkeley.edu/



# avg. # avg. len avg. %
unique wds

TC-Sci 160 0.28 22.2 1.94
TC-Exp 153 0.27 23.2 1.36
PH-CCC 417 0.84 54.3 1.58
PH-DCI 256 0.51 35.8 1.46
SR-Sci 91 0.19 20.8 4.73
SR-Eng 318 0.65 23.6 2.94

Table 1: Descriptive statistics for span annotation, in terms
of total number (#), average number per response (avg. #),
average number of tokens (avg. len) and average % unique
words per span.

baseline
(majority)

baseline
(O) word word+char

TC-Sci .104 .297 .519 .525
TC-Exp .105 .297 .557 .584
PH-CCC .256 .178 .616 .611
PH-DCI .098 .214 .539 .538
SR-Sci .073 .310 .552 .550
SR-Eng .219 .219 .704 .701

Table 2: Macro-averaged F1 scores for sequence labeling.

an example, Table 4 in the Appendix lists the specific con-
cepts for the TC question.

The statistics in Table 1 give an overview of the charac-
teristics of our data. The size of our datasets is comparable
to previous work (SR=492, TC=588, PH=499) (cf. Schulz
et al. (2018)). The data is challenging to model in several
respects. First, most of the dimensions’ data are relatively
sparse. The average number of concept spans per response
is less than 0.5 for all but one dimension (PH-CCC). Sec-
ond, all of the data is characterized by long idea spans, with
the shortest average span still greater than 20 words. Third,
there is significant lexical variability in some concept types
(SR-Sci, SR-Eng).

Methods
Task. We formulate the task of identifying spans of student
ideas as a token-level sequence labeling task (cf. Schulz et
al. (2018)). Spans are labeled with both type and boundaries
following the standard BIO scheme. We build independent
models for each span type (DCI, CCC, or SEP), aggregating
across targeted concepts, resulting in 6 models.
Network architecture. We explored the BIRNN-CRF fam-
ily of network architectures for this study, which has demon-
strated state-of-the-art performance for sequence labeling
on similar tasks (Schulz et al. (2018). A bidirectional re-
current network (here, GRU) processes the sequence of to-
kens. The contextualized representations produced for each
token are processed by a Conditional Random Field model
over the token labels. We explore the effectiveness of both
word- and character+word-based models to partially allevi-
ate noise from spelling variation.

For comparison, we implemented two baselines: (1) pre-

dict the O tag; (2) predict the most frequent non-O tag.
Data preparation and model training. We trained mod-
els with 5-fold cross validation with train/dev/test splits.
We split the data into 5 folds of 60% train, 20% dev, and
20% test. For hyperparameter tuning, we evaluated perfor-
mance only on the dev sets and recorded the best perfor-
mance across epochs. We evaluate performance with macro-
averaged F1 score (unweighted) (cf. MS metric in Schulz et
al. (2018)). For training final models after hyperparameter
tuning, we combined the training and dev sets and stopped
training at the average best epoch across dev folds rounded
to the nearest 5th epoch (cf. Johnson and Zhang (2017)).
The final test performance was the average test performance
across folds. Further details about the data and model are
provided in the Appendix.

Results and Discussion
Table 2 displays the models’ performance across questions
and NGSS dimensions. First, the models outperform the ma-
jority class and O-tag baselines. Second, the character+word
models perform competitively with – but often don’t exceed
– the performance of the token-based models, indicating that
character representations do not always provide an additive
benefit for noisy data on this task. Third, we see substantial
variation in F1 scores across NGSS dimensions within the
data for each question (e.g., among the word-based models,
SR-Sci=.552 while SR-Eng=.702).

As a first step in analyzing the reasons for model per-
formance, we fitted generalized linear mixed-effect models
(GLMMs) to the per-response macro-averaged F1 score data
with questions as random effects, aggregating across ques-
tions and NGSS dimensions. For each response, we com-
puted the response length in tokens, span length, and number
of unique tokens in spans (a measure of lexical variability).
Surprisingly, we found no significant effect of these predic-
tors. This may indicate that per-response prediction perfor-
mance may be affected less by high-level statistical prop-
erties of the data typically associated with task difficulty.
Instead, the interaction of the representations for individual
lexical items across the response may drive performance.

We also conducted a manual error analysis of exact span
matches. Results suggested that some of the models may
have suffered from exposure bias, i.e. often predicting the
extremely frequent O label. We find that the questions with
sparse annotations tended to lead to models with ‘missed de-
tections’, failing to predict most of the gold-labeled spans.
Conversely, in the questions with higher coverage, we find
that the models do tend to predict many more non-O labels,
and as a result many more spans, many of which overlap
completely or partially with the gold spans.

In this work, we described the development and annota-
tion of constructed response items for detecting students’
ideas aligned with NGSS-defined ideas, concepts, and prac-
tices. We found that neural sequence-labeling methods that
have proved successful on similar tasks can achieve moder-
ate performance on this task. Future work will explore ex-
plicit model features to improve accuracy and methods to
explain model predictions to support targeted feedback to
students and teachers in formative assessment applications.



ID Unit Question dimension 1 Question dimension 2

TC Thermodynamics Challenge Science: insulators, conductors
and heat energy transfer (DCI)

Experimentation: informative
experimental tests and comparisons (SEP)

PH Photosynthesis Energy transfer
drives matter cycling (CCC)

Photosynthesis and
producer/consumer relationships (DCI)

SR Solar Radiation Science: Heat energy transfer (CCC) Engineering (SEP)

Table 3: Datasets and NGSS dimensions.
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Appendix
Data
Here we provide more detail about one of the three datasets.
For the Thermodynamics Challenge unit, we designed a con-
structed response question that aligns with the NGSS per-

Science: insulators, conductors and heat energy transfer (DCI)

(1) Thermal energy is transferred from hotter objects to colder
objects
(2) Different materials have different properties AND/OR rates of
conductivity
(3) Insulators have a lower rate of conductivity/thermal energy
transfer AND/OR Conductors have a higher rate conductiv-
ity/thermal energy transfer

Experimentation: informative experimental tests and comparisons
(SEP)

(1) Need to test insulators (or materials that have a low rate
of conductivity or that minimize heat energy transfer)
(2) Need to run tests in a hot room

Table 4: Thermodynamics Challenge concepts for each
question dimension.

formance expectation MS-PS3-3 and assesses student per-
formance proficiency with the targeted DCIs in the perfor-
mance expectation, understanding of the SEP of planning
and carrying out an investigation, and the integration of
both of these to construct a coherent and valid explanation.
The constructed response question prompts students to ex-
plain the rationales behind their experiment plans with the
model, using both key conceptual ideas as well as their un-
derstanding of experimentation as a scientific practice: “Ex-
plain WHY the experiments you [plan to test] are the most
important ones for giving you evidence to write your report.
Be sure to use your knowledge of insulators, conductors and
heat energy transfer to discuss the tests you chose as well as
the ones you didn’t choose.” Table 4 provides the individual
concepts that were labeled for each question dimension.

Network details
For a succinct overview of neural CRF models with word
and character representations for sequence labeling, see
Zhang and Goldwasser (2019), Section 3.

The model with additional character representations rep-
resents each word with a sequence of 25-dimensional char-
acter embeddings (randomly initialized). A character en-
coder encodes these sequences, and the output for each to-
ken is concatenated with the token’s word embedding before
the word-level encoder.

The data was tokenized with the spaCy tokenizer. For the
word tokens, we used GloVe 100 dimension vectors (Pen-



nington, Socher, and Manning 2014) as pretrained embed-
dings and fine-tuned these during training. Word tokens that
were not found in the embeddings were mapped to a ran-
domly initialized UNK embedding.

Networks were trained to maximize the CRF loglikeli-
hood score (Lample et al. 2016). From experiments on our
dev sets, the best-performing optimizer was Adadelta with
learning rate of 1.0, using a batch size of 32 and gradient
clipping set to 1.0. During training, we maintain an exponen-
tial moving average of the model’s weights. The maximum
decay rate is set to 0.999.

Hyperparameter tuning
For the combined word-character encoder, we varied the en-
coder hidden dimensions in {100, 250}, number of layers in
{1, 2}, dropout on embeddings in {0.0, 0.25}. We obtained
the best results on average across all datasets with 2 layers,
100 dimensions, and variational dropout of 0.25.

For the character encoder, we used a CNN and varied the
number of filters in {50, 100} and the filter sizes in {3, 5,
(3,4,5)} (i.e. the concatenation of filter sizes 3, 4, and 5).
For these experiments, we used a combined word-character
encoder with the best hyperparameter settings from the word
encoder tuning experiments. The best character encoder re-
sults were achieved with 100 filters and filter sizes of (3,4,5).


