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Abstract
The study of intermittency for the parabolic Anderson problem usually focuses on the
moments of the solution which can describe the high peaks in the probability space. In
this paper we set up the equation on a finite spatial interval, and study the other part of
intermittency, i.e., the part of the probability space on which the solution is close to zero.
This set has probability very close to one, and we show that on this set, the supremum of the
solution over space is close to 0. As a consequence, we find that almost surely the spatial
supremum of the solution tends to zero exponentially fast as time increases. We also show
that if the noise term is very large, then the probability of the set on which the supremum of
the solution is very small has a very high probability.

Keywords Intermittency · Stochastic partial differential equations · White noise ·
Dissipation

Mathematics Subject Classification Primary: 60H15 · Secondary: 35R60

1 Introduction, Background, andMain Results

Consider the solution u to the parabolic stochastic PDE (SPDE, for short),

∂t u = ∂2x u + σ(u)ξ (1.1)

where u = u(t , x), t > 0, x lies in the torus T := [−1 , 1], σ : R → R is non-random and
Lipschitz continuous, and ξ = ξ(t , x) denotes space-time white noise. The initial profile
u0(x) := u(0, x) is assumed to be non-random, and to satisfy
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0 < inf
x∈T u0(x) � sup

x∈T
u0(x) < ∞. (1.2)

The Laplace operator ∂2x in (1.1) is endowed with periodic boundary conditions on T.
According to the standard theory of SPDEs, there exists a unique almost surely continuous

random field u that satisfies

sup
t∈(0,T )

sup
x∈T

E
(
|u(t , x)|k

)
< ∞ for all T > 0 and k � 2,

that solves (1.1); see [7,16,28]. See also Sect. 2 below for further details.
In addition, we suppose that there exist two real numbers Lipσ � Lσ > 0 such that1

Lσ �
∣∣∣∣
σ(a)

a

∣∣∣∣ � Lipσ for every a ∈ R \ {0}. (1.3)

Because the cone condition (1.3) implies that σ(0) = 0, the positivity principle for SPDEs
implies that

P {u(t , x) > 0 for every t � 0 and x ∈ T} = 1;
see [23].

One of the interesting properties of (1.1) is that its solution is intermittent in the sense
of [2,10]. More precisely, intermittency (or moment intermittency) can be defined as the
property that

k �→ γ (k)

k
and/or k �→ γ (k)

k
is strictly increasing on [2 ,∞), (1.4)

where γ , γ : [2 ,∞) → [−∞ ,∞] are given by

γ (k) := lim inf
t→∞

1

t
inf
x∈T log E

(
|u(t , x)|k

)
and γ (k) := lim sup

t→∞
1

t
sup
x∈T

log E
(
|u(t , x)|k

)
.

Here γ and γ are called lower and upper moment Lyapunov exponents respectively.
As a result of Jensen’s inequality, it is easy to see that both k �→ γ (k)/k and k �→ γ (k)/k

are monotonically nondecreasing. So the defining feature of intermittency is the strictness of
this monotonicity. Indeed, Jensen’s inequality for moments is strict iff the random variable is
not constant over the probability space. In the setting of this paper, intermittency is implied
by the following, more easy-to-check, weak intermittency condition:

0 < γ (k) � γ (k) < ∞ for all k � 2; (1.5)

see [10] for the relation between (1.4) and (1.5) and also see [11,17,18,25,29] for themoments
and weak intermittency of the solution u to (1.1) on bounded intervals with various boundary
conditions. We have set things up so that (1.5) is in fact equivalent to the strict monotonicity
of both k �→ γ (k)/k and k �→ γ (k)/k.

In order to see intuitively how moments yield information about the peaks of the solution,
assume that u0(x) = constant for all x ∈ T. It can be shown that this assumption implies
that the distribution of u(t , x) does not depend on x . We also suppose that γ = γ , and call
their common value γ . This means that, for every k � 2,

E
(
|u(t , x)|k

)
≈ etγ (k), (1.6)

1 Clearly, (1.3) is equivalent to the condition that σ(0) = 0 and infa �=0 |σ(a)/a| > 0. Therefore, we can
always choose Lipσ to be the Lipschitz constant of σ . This remark also justifies the notation for Lipσ in (1.3).
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504 D. Khoshnevisan et al.

where ≈ denotes logarithmic equivalence, i.e., f (t) ≈ g(t) means limt→∞(log f (t) −
log g(t))/t = 0.

Because k �→ γ (k)/k is strictly increasing on [2 ,∞), there exist constants 2 � k1 <

k2 < · · · , all strictly increasing, and events A1(t), A2(t), . . . (one for every t > 0), and
constants C1,C2, . . . > 0 such that:

(I.1) P(An(t)) � exp(−Cnt) for all n � 1 and all large t � 1; and
(I.2) For all n � 1, E

(|u(t , x)|kn ) ≈ E
(|u(t , x)|kn ; An(t)

)
.

Indeed, by (1.4) we can find for every n � 1 real numbers an such that

γ (kn−1)

kn−1
< an <

γ (kn)

kn
, (1.7)

then set

An(t) := {
ω ∈ � : eant � |u(t , x)(ω)|} ,

and finally apply Chebyshev’s inequality to deduce (I.1):

P (An(t)) � exp (−ankn−1t)E
(
|u(t , x)|kn−1

)

≈ exp (−ankn−1t + γ (kn−1)t) [see (1.6)]
≈ exp(−Cnt) for some Cn > 0 [see (1.7)].

We deduce (I.2) by noticing that

E
(
|u(t , x)|kn ; [An(t)]

c
)

� exp (knant)

� exp (γ (kn)t) [see (1.7)]
≈ E

(
|u(t , x)|kn

)
[see (1.6)],

where f (t) � g(t) denotes limt→∞(g(t)/ f (t)) = ∞. From this simple heuristic about the
Lyapunov exponents, we learn a good deal about the high peaks of u, namely, that:

1. The moments of the solution grow exponentially rapidly as t → ∞, and nearly all of
the contribution to the kn-th moment of u(t , x) comes from a small part [An(t)] of the
probability space where u(t , x) is unduly large; and

2. The k1-th, k2-th, …moments of u(t , x) are influenced by decreasing small parts of the
underlying probability space.

In other words, the high peaks tend to appear at large times, and they tend to be highly
localized in the probability space. This picture describes one part of “physical intermittency”
in probability space where physical intermittency usually refers to the property that the
solution u tends to develop “tall peaks,” “distributed over small islands,” and “separated by
large areas where u is small (voids)” (see [1–3,6,13,14,19,20,22,30–33]).

The main goal of the present paper is to study the part of physical intermittency that
does not seem to be a natural consequence of conditions such as (1.4) or (1.5). Namely, we
currently propose to analyze the “voids” (the event where u is small). One of the key steps
toward this goal is the following result, which is the counterpart to (1.5).

Theorem 1.1 There exist t0 � 1, events B(t) for every t � t0, and constant c > 0 which is
independent of t such that for every k � 2, there exist c1,k, c2,k > 0 such that:

1. P(B(t)) � 1 − c exp(−ct) for all t � t0; and
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2. For all t � t0,

c2,ke
−c1,k t � E

(
inf
x∈T |u(t , x)|k ; B(t)

)
� E

(
sup
x∈T

|u(t , x)|k ; B(t)

)
� c1,ke

−c2,k t .

Loosely speaking, B(t) of Theorem 1.1 denotes the event that u(t , ·) is exponentially small
in a sense that will be made precise in (8.4) below.

Theorem 1.1 will be proved in Sect. 8.
We learn from Theorem 1.1 the following property which contrasts with the earlier dis-

cussion about moment intermittency and its consequences: For large values of t , only a tiny
part of the probability space contributes to the moments of u(t , x). In some sense, this prop-
erty and moment intermittency give us a complete mathematical description of the “physical
intermittency” of the solution u in probability space.

In this connection, let us also mention a more precise result. The following is a non-trivial
pathwise variation of Theorem 1.1, which gives precise bounds on the a.s. dissipation of the
solution to (1.1), viewed as the solution to a semi-linear heat-flow problem in the random
environment ξ .

Theorem 1.2 With probability one,

−∞ < lim inf
t→∞

1

t
log inf

x∈T u(t , x) � lim sup
t→∞

1

t
log sup

x∈T
u(t , x) < 0.

In particular, the positive random variable supx∈T u(t , x) converges a.s. to zero [fast] as
t → ∞.

Theorem 1.2 tells us that the solution to (1.1) decays exponentially rapidly as t → ∞. One
can understand why this might happen intuitively as follows: Let us specialize (1.1) to the
case that σ(x) = x for all x ∈ R, and consider the SPDE,

∂tv(t , x) = ∂2x v(t , x) + v(t , x)∂tW (t) for all t > 0, x ∈ T,

with periodic boundary condition on T, where W = {W (t)}t�0 denotes a Brownian motion
that does not depend on the spatial index x . For simplicity, let us also assume that the initial
data is a constant v0 �= 0. In that case, it is possible to check that the Itô–Walsh type solution
to the preceding SPDE is

v(t , x) = v(t) = v0 exp
(
W (t) − 1

2 t
)
.

The law of large numbers for W immediately implies that v(t , x) → 0 exponentially fast
as t → ∞. Here, the noise is much more regular than space-white noise. But since the state
spaceT is bounded, onemight hope that the large-time behavior of v might be roughly similar
to that of u. Theorem 1.2 is a rigorous way to say that the preceding is indeed the case.

Remark 1.3 (SHE with a linear reaction term) Theorem 1.2 and its proof can teach us about
the asymptotic behavior of the solution to other type of SPDEs as well. For instance, consider
the following reaction-diffusion equation with multiplicative noise:

∂tv = ∂2x v + b(v) + λvξ, (1.8)

where v(0 , x) = 1 for all x ∈ T, the reaction term b : R → R is Lipschitz continuous
functions, and b(0) � 0 (say). The SPDE (1.8) comes up, for example, in Zimmerman et
al [33] as a toy physical model for a random field that is predicted to have spatio-temporal
intermittency. Because b(z) � cz for all z ∈ R, where c denotes the Lipschitz constant of b,
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506 D. Khoshnevisan et al.

it follows from the comparison principle [27] that v(t , x) � V (t , x) for all t > 0 and x ∈ T

a.s., where V satisfies the SPDE,

∂t V = ∂2x V + cV + λV ξ,

with initial condition V (0 , x) = 1 for all x ∈ T, and λ > 0 is a nonrandom constant that
denotes the level of the noise. One can verify that V (t , x) = ect u(t , x) for all x ∈ T and
t > 0, where u solves the following specialization of (1.1):

∂t u = ∂2x u + λuξ,

subject to u(0 , x) = 1 for all x ∈ T. The proof of Theorem 1.2 shows that, for all large t ,

e−c1 f (λ)t � u(t , x) �−c2 f2(λ)t ,

where c1 > 0, c2 > 0 are nonrandom real numbers that do not depend on λ,
limλ→0 f1(λ)/λ4 = 1, and limλ→∞ f2(λ)/λ2 = 1. We can assemble these remarks as fol-
lows: On one hand, if λ is large, then 0 � v(t , x) � exp[−(c2 f2(λ)−c)t] → 0 exponentially
fast as t → ∞. On the other hand, if λ is small, then v(t , x) � exp[(c − c1 f1(λ))t] → ∞
exponentially rapidly as t → ∞. This example yields partial rigorous proof of some of the
physical/computational predictions of Zimmerman et al [33].

Our analysis of Theorems 1.1 and 1.2 hinges on a novel L1/L∞ interpolation inequality,
see Proposition 5.2, which is interesting in its own right. Roughly speaking, we can control
the supremum of our solution by its L1 norm, and we can show using martingale arguments
that, with high probability, the L1 norm declines exponentially.

Our analysis has other consequences too. For example, we can describe the system (1.1)
in the “high-noise” setting. That is, consider the SPDE (1.1) where we replace σ(u) by λσ(u)

for a large constant λ > 0, as follows:

∂t u(t , x ; λ) = 1
2∂

2
x u(t , x ; λ) + λσ(u(t , x ; λ))ξ(t , x), (1.9)

with periodic boundary conditions on T and initial value u0, as before. In other words, we
simply replace the function σ by λσ , and add λ to the notation for u to help keep better track
of this change. Since λσ is also Lipschitz continuous and satisfies (1.3), all of this is merely
recording a change in the notation.

Now we can state a result about the large-noise behavior of the solution to (1.1), equiva-
lently the large-λ behavior of the solution to (1.9). Roughly speaking, the following theorem
states that if the level λ of the noise is high then voids take over rapidly, with very high
probability. More precisely, we have

Theorem 1.4 (Large-noise regime) For every t > 0,

lim sup
λ↑∞

1

λ2
log P

{
sup
x∈T

u(t , x ; λ) > exp

(
−L2

σ λ2t

64

)}
� −L2

σ t

64
.

In particular, for every t > 0 fixed, the positive random variable supx∈T u(t , x ; λ) converges
in probability to zero [fast] as λ → ∞.

We conclude the Introduction by setting forth some notation that will be used throughout
the paper.

In order to simplify some of the formulas, we distinguish between the spaces Lk(T) and
Lk(P) by writing the former as

Lk := Lk(T) [1 � k < ∞].
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Dissipation in Parabolic SPDEs 507

Thus, for example, if f ∈ Lk for some 1 � k < ∞, then ‖ f ‖Lk = [∫ 1
−1 | f (x)|k dx]1/k .

We will abuse notation slightly and write ‖ f ‖L∞ := supx∈T | f (x)|, in place of the more
customary essential supremum. The Lk(P)-norm of a random variable Z ∈ Lk(P) is denoted
by ‖Z‖k := {E (|Z |k)}1/k for all 1 � k < ∞.

2 TheMild Solution

Consider the SPDEs (1.1) and (1.9). Because u(t , x) = u(t , x ; 1), it suffices to consider
only the SPDE (1.9) for a general λ > 0. We shall do so tacitly from here on.

Let W = {W (t , x)}t�0,x∈T denote a two-parameter Brownian sheet; that is, W is a
two-parameter, centered, generalized Gaussian random field with

Cov [W (t , x) , W (s , y)] = min(s , t)min(x , y) for all s, t � 0 and x, y ∈ T.

It is well known (see [28, Theorem 1.1]) that W has continuous trajectories (up to a modifi-
cation). Therefore,

ξ(t , x) = ∂t∂xW (t , x)

exists as a generalized random function. This ξ is space-time white noise, and was mentioned
already in the Introduction.

Let (τ ; x , y) �→ pτ (x , y) denote the fundamental solution to the heat operator ∂t −∂2x on
(0 ,∞) × T with periodic boundary conditions and initial data p0(x, y) = δ(x − y), where
δ is the Dirac delta function. That is,

pτ (x , y) :=
∞∑

n=−∞
Gτ (x − y + 2n) [τ > 0, x, y ∈ T], (2.1)

where G is the heat kernel in free space; that is,

Gτ (a) := (4πτ)−1/2 exp

(
− a2

4τ

)
for all τ > 0 and a ∈ R. (2.2)

Also, let {Pt }t�0 denote the corresponding heat semigroup. That is, P0 f := f for every
measurable and bounded function f : T → R+, and

(Pt f )(x) :=
∫ 1

−1
pt (x , y) f (y) dy, (2.3)

for all t > 0 and x ∈ T.
With the preceding notation in place, we then follow Walsh [28, Chap. 3] and interpret

(1.9) in mild/integral form as follows:

u(t , x ; λ) = (Ptu0)(x) + It (x ; λ), (2.4)

where I is defined pointwise as the Walsh stochastic integral,

It (x ; λ) := λ

∫

(0,t)×T

pt−s(x , y)σ (u(s , y ; λ))W (ds dy), (2.5)

for every t, λ > 0 and x ∈ T. As was mentioned in the Introduction (for λ = 1), it is well
known [28, Th. 3.2, p. 313, and Cor. 3.4, p. 318] that there exists a unique weak solution of
(1.9) that is continuous and satisfies (2.4), as well as the following moment condition:
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508 D. Khoshnevisan et al.

sup
x∈T

t∈(0,T ]
E
(
|u(t , x ; λ)|k

)
< ∞ [0 < T < ∞, 1 � k < ∞]. (2.6)

Moreover, for every λ > 0,

P {u(t , x ; λ) > 0 for all t � 0 and x ∈ T} = 1. (2.7)

In the case that σ(z) := const · z for all z ∈ R, this follows from Theorem 1 of Mueller [23].
The general case follows by making modifications to the proof of that theorem; see the proof
of Theorem 1.7 of Conus et al [5].

3 The Total Mass Process

We may integrate both sides of (2.4) [dx] in order to see that

‖u(t , · ; λ)‖L1 = ‖u0‖L1 + λ

∫

(0,t]×T

σ(u(s , y ; λ))W (ds dy) [t � 0]. (3.1)

The interchange of the integrals is justified by an appeal to a stochastic Fubini theorem [28,
Th. 2.6, p. 296]. Thus, it follows from (1.3), (2.6), (2.7) and (3.1) that t �→ ‖u(t , · ; λ)‖L1

defines a positive, continuous, L2-martingale. The following result ensures that the said
martingale decays exponentially rapidly at rate not less than a fixed multiple of λ2.

Proposition 3.1 For every t, λ > 0 and ε ∈ (0 , 1),

P

{
‖u(s , · ; λ)‖L1 � ‖u0‖L1 exp

(
− (1 − ε)λ2L2σ s

4

)
for some s � t

}
� exp

(
−ε2λ2L2σ t

16

)
.

The proof of Proposition 3.1 requires a basic lemma about continuous martingales, which
might be of independent interest.

Lemma 3.2 Let X = {Xt }t�0 be a continuous L2(P) martingale, and suppose there is a
nonrandom c > 0 such that 〈X〉t � ct for all t � 0, a.s. Then, for all nonrandom constants
ε, T > 0,

P {Xt � ε〈X〉t for some t � T } � exp

(
−cT ε2

2

)
.

Proof Recall that a continuous local martingale such as X is a time-change of a Brownian
motion {B(s)}s�0 (see [26, Theorem 1.6, p. 181]), so that Xt = B(〈X〉t ) for all t � 0, a.s.
We first note that

P {Xt � ε〈X〉t for some t � T } � P

{
sup
s�cT

B(s)

s
� ε

}
.

Next we note that {B(s)/s}s>0 has the same law as {B(1/s)}s>0 thanks to Brownian time
inversion. Thus

P {Xt � ε〈X〉t for some t � T } � P

{
sup

r�1/(cT )

B(r) � ε

}
.

Because (2π)−1/2
∫∞
a exp(−x2/2) dx � (1/2) exp(−a2/2) for all a > 0, the reflection

principle implies the result. 
�
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Dissipation in Parabolic SPDEs 509

Armed with Lemma 3.2, we conclude the section with the following.

Proof of Proposition 3.1 In the case that σ(z) ≡ const · z for all z ∈ R and the SPDE (1.1)
has Dirichlet—instead of periodic—boundary conditions, Mueller and Nualart [24, Theorem
2] have proved that E(|u(t , x ; λ)|−k) < ∞ for all 1 � k < ∞, t > 0, and x ∈ T. Their
argument, in fact, proves that, in the present setting,2

E

(∣∣∣∣ infx∈T u(t , x ; λ)

∣∣∣∣
−k
)

< ∞ [t � 0, 1 � k < ∞]. (3.2)

Let us define

Mt := ‖u(t , · ; λ)‖L1 =
∫ 1

−1
u(t , x ; λ) dx [t � 0],

and infer from (3.2) that

E
(
M−k

t

)
< ∞ for all t � 0 and 1 � k < ∞, (3.3)

We will use (3.3) several times, sometimes tacitly, in the sequel.
We can apply Itô’s formula in order to see that, a.s.,

logMt = logM0 +
∫ t

0
M−1

s dMs − 1

2

∫ t

0
M−2

s d〈M〉s for all t � 0.

Define

Nt :=
∫ t

0
M−1

s dMs for all t � 0.

Let {Ft }t�0 denote the filtration generated by W (s , ·) for s � t . Then, clearly, N :=
{Nt ,Ft }t�0 is a continuous L2-martingale with quadratic variation 〈N 〉t = ∫ t

0 M−2
s d〈M〉s

at time t > 0. In other words, logMt = logM0 + Nt − 1
2 〈N 〉t a.s. for all t > 0; this is

another way to say that

Mt = M0 exp
(
Nt − 1

2 〈N 〉t
)

a.s. for all t > 0. (3.4)

That is, M is the exponential martingale of the martingale N , and M is initialized at M0.
We examine the quadratic variation of N more closely next:

〈N 〉t
t

= λ2

t

∫ t

0

ds

M2
s

∫ 1

−1
dy [σ(u(s , y ; λ))]2

� λ2

t

∫ t

0

ds

M2
s

∫ 1

−1
dy L2

σ |u(s , y ; λ)|2

� λ2L2
σ

2
,

(3.5)

owing to Condition (1.3) and the Cauchy–Schwarz inequality. In light of (3.4),

P
{∃s � t : Ms � M0e

−βs} = P
{∃s � t : Ns � 1

2 〈N 〉s − βs
}
,

2 There is an extension of the method of Mueller and Mueller–Nualart [23,24]—see the proof of Theorem
1.7 of Conus et al [5]—that proves (3.2) in the present more general choices of σ for SPDEs on R+ × R. The
latter argument works in exactly the same way in the present setting.
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for all β, t > 0. Therefore, we may first use (3.5) and then appeal to Lemma 3.2 in order to
see that, as long as 0 < β < λ2L2

σ /4,

P
{∃s � t : Ms � M0e

−βs} � P

{
Ns �

(
1

2
− 2β

λ2L2
σ

)
〈N 〉s for some s � t

}

� exp

(
−λ2L2

σ t

4

(
1

2
− 2β

λ2L2
σ

)2
)

= exp

(
−tλ−2L−2

σ

(
λ2L2

σ

4
− β

)2
)

.

Substitute β = 1
4 (1 − ε)λ2L2

σ to deduce Proposition 3.1. 
�

4 Regularity

In order to prove the announced regularity properties of the solution u to (1.9) we first require
a moment bound, with explicit constants, for the solution u.

Proposition 4.1 Choose and fix a real number c > 48. Then, for all real numbers k � 2 and
λ > 0 that satisfy kλ2 � (cLip2σ )−1, the following holds: Uniformly for all t > 0,

sup
x∈T

E
(
|u(t , x ; λ)|k

)
� 2k/2

(
1 − 48

c

)−k/2

‖u0‖kL∞ · exp
(
c2

2
Lip2σ k

3λ4t

)
.

Proposition 4.1 implies also (2.6).

Proof We modify some of the ideas of Foondun and Khoshnevisan [10], but need to make a
series of modifications. Define

ϑ := c2Lip4σ k
2λ4, (4.1)

where, c > 48 is large enough to ensure that ϑ � 1 whenever kλ2 � (cLip2σ )−1 holds.

For all t � 0 and−1 � x � 1, let u(0)
t (x) := u0(x ; λ) and define iteratively for all n � 0,

u(n+1)
t (x ; λ) = (Ptu0)(x) + I(n)

t (x), (4.2)

where {Pt }t�0 continues to denote the heat semigroup—see (2.3)—and

I(n)
t (x) = I(n)

t (x ; λ) := λ

∫

(0,t)×T

pt−s(x , y)σ (u(n)
s (y))W (ds dy).

The random field (t , x) �→ u(n)
t (x) is the nth-stage Picard-iteration approximation of

u(t , x ; λ).
It is well known (see [28, Chap. 3]) that

lim
n→∞ sup

t∈(0,T ]
sup
x∈T

E

(∣∣∣u(n)
t (x) − u(t , x)

∣∣∣
k
)

= 0, (4.3)

and

lim
n→∞ sup

t∈(0,T ]
sup
x∈T

E

(∣∣∣I(n)
t (x) − It (x ; λ)

∣∣∣
k
)

= 0,

for all T ∈ (0 ,∞) and k ∈ [1 ,∞).
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Since the semigroup {Pt }t�0 is conservative, (Ptu0)(x) � ‖u0‖L∞ for all t � 0 and
x ∈ T. Therefore, (4.2) implies that for all integers n � 0 and real numbers k ∈ [2 ,∞),
t > 0, and x ∈ T,

∥∥∥u(n+1)
t (x)

∥∥∥
k

� ‖(Ptu0)(x)‖k +
∥∥∥I(n)

t (x)
∥∥∥
k

� ‖u0‖L∞ +
∥∥∥I(n)

t (x)
∥∥∥
k
. (4.4)

A Burkholder-Davis-Gundy-type inequality for stochastic convolutions (see [16, Pr. 4.4, p.
36]) then yields the following inequality:

∥∥∥I(n)
t (x)

∥∥∥
k

�

√
4kλ2

∫ t

0
ds

∫ 1

−1
dy

[
pt−s(x , y)

]2 ∥∥∥σ(u(n)
s (y))

∥∥∥
2

k

� Lipσ

√
4kλ2

∫ t

0
ds

∫ 1

−1
dy

[
pt−s(x , y)

]2 ∥∥∥u(n)
s (y)

∥∥∥
2

k
.

(4.5)

By the Chapman–Kolmogorov equation and symmetry,

∫ 1

−1

[
pt−s(x , y)

]2 dy =
∫ 1

−1
pt−s(x , y)pt−s(y , x) dy = p2(t−s)(x , x)

� 2

(
1√
t − s

+ 1

)
;

(4.6)

the final estimate is justified by Lemma B.1 below. Let us define

ψ(n)(t) := sup
x∈T

∥∥∥u(n)
t (x)

∥∥∥
2

k
for all t � 0 and integers n � 0.

We can combine (4.5) and (4.6) and use the elementary inequality (a + b)2 � 2a2 + 2b2 to
see that

ψ(n+1)(t) � 2‖u0‖2L∞ + 16Lip2σ kλ
2
∫ t

0
ψ(n)(s)

(
1√
t − s

+ 1

)
ds.

Multiply both sides by exp(−ϑ t) in order to see that

�n := sup
t�0

[
e−ϑ tψ(n)(t)

]

satisfies

�n+1 � 2‖u0‖2L∞ + 16Lip2σ �nkλ
2 sup
t�0

∫ t

0
e−ϑ(t−s)

(
1√
t − s

+ 1

)
ds

� 2‖u0‖2L∞ + 16Lip2σ �nkλ
2
∫ ∞

0
e−ϑr

(
1√
r

+ 1

)
dr

= 2‖u0‖2L∞ + 16Lip2σ �nkλ
2
(√

π

ϑ
+ 1

ϑ

)
.

Because ϑ � 1, we have
√

π/ϑ + ϑ−1 � 3/
√

ϑ , and hence

�n+1 � 2‖u0‖2L∞ + 48Lip2σ kλ
2

√
ϑ

�n = 2‖u0‖2L∞ + 48

c
�n for all α � 1 and n � 0.
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The second line follows from the first, thanks to (4.1) and the fact that c > 48. Because
�0 = supx∈T u0(x) is finite, the preceding implies that supn�0 �n < ∞, and

lim sup
n→∞

�n � 2‖u0‖2L∞

(
1 − 48

c

)−1

.

According to (4.3) and Fatou’s lemma,

lim sup
n→∞

�n � sup
t�0

sup
x∈T

[
e−ϑ t‖u(t , x ; λ)‖2k

]
.

Therefore, we may combine the preceding two displays, all the time remembering our choice
of ϑ , in order to conclude that

‖u(t , x ; λ)‖2k � 2‖u0‖2L∞eϑ t
(
1 − 48

c

)−1

,

uniformly for all −1 � x � 1 and t > 0, and all k � 2 and λ > 0 that ensure that ϑ � 1.
This is another way to state the proposition. 
�

We now use our moment bound [Proposition 4.1] to establish the regularity of λ �→
u(t , x ; λ).

Proposition 4.2 Choose and fix a real number c > 48. Then, for all real numbers k � 2 and
α, β > 0 that satisfy k(α ∨ β)2 � (cLip2σ )−1, the following holds: Uniformly for all t > 0,

sup
x∈T

E
(
|u(t , x ;α) − u(t , x ;β)|k

)
� Lk/2

c ‖u0‖kL∞ exp

(
c2

2
Lip4σ k

3(α ∨ β)4t

)
· |α − β|k
(α ∧ β)k

,

with Lc := (96/c)(1 − (48/c))−2.

Remark 4.3 Standard methods—see [28, Chap. 3]—show that (t , x) �→ u(t , x ; λ) has a
continuous modification for every λ > 0. In fact, for every ε ∈ (0 , 1), k � 2, T > t0 > 0
and � > 0,

sup
λ∈(0 ,�)

∥∥∥∥∥∥∥
sup

−1�x �=y�1
t0<s �=t<T

|u(t , x ; λ) − u(s , y ; λ)|
|x − y|(1−ε)/2 + |s − t |(1−ε)/4

∥∥∥∥∥∥∥
k

< ∞.

One has to be somewhat careful here since, unlike the standard theory [28], we may not
choose t0 to be zero here. The details can be found in Proposition 5.1 below. In any case, we
can see from Proposition 4.2 and an appeal to the Kolmogorov continuity theorem [i.e., a
chaining argument] that: (i) (t , x , λ) �→ u(t , x ; λ) has a Hölder-continuousmodification on
R+×T×(0 ,∞); and (ii) That modification satisfies the following for every p, q, r ∈ (0 , 1),
k � 2, � > λ > 0, and T > t0 > 0:

∥∥∥∥∥∥∥∥∥∥
sup

−1�x �=y�1
t0�s �=t�T
λ�α �=β��

|u(t , x ;α) − u(s , y ;β)|
|x − y|p/2 + |s − t |q/4 + |α − β|r

∥∥∥∥∥∥∥∥∥∥
k

< ∞.
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To paraphrase Walsh [28], the process λ �→ u(t , x ; λ) comes tantalizingly close to being
Lipschitz continuous. One can elaborate on this further as follows: Define

D(t , x ; λ) := ∂

∂λ
u(t , x ; λ),

where the λ-derivative is understood in the sense of distributions, and exists because u is
a continuous function of λ [up to a modification]; see the preceding remark. According to
Rademacher’s theorem, because σ is Lipschitz continuous, it has a weak derivative σ ′ ∈
L∞(T). Then, one can appeal to a stochastic Fubini argument in order to see that D is the
unique solution to the λ-a.e.-defined stochastic integral equation,

D(t , x ; λ) =
∫

(0,t)×T

pt−s(x , y)σ (u(s , y ; λ))W (ds dy)

+λ

∫

(0,t)×T

pt−s(x , y)σ ′(u(s , y ; λ))D(s , y ; λ)W (ds dy).

It is not difficult to show that if σ has additional regularity properties—for instance, if σ ′ is
Lipschitz continuous—then D is almost surely Hölder-continuous in its three variables [up
to a modification]. This proves the following:
Proposition. If σ ∈ C1(R) has a Lipschitz-continuous derivative, then λ �→ u(t , x ; λ) is
a.s. continuously differentiable for every t � 0 and x ∈ T.

We do not know whether the Lipschitz-continuity of σ is really needed for this differen-
tiability result.

Proof of Proposition 4.2 Without loss of generality, we assume throughout that α > β.
We can write

u(t , x ;α) − u(t , x ;β) = It (x ;α) − It (x ;β) = T1 + T2,

where

T1 := α

∫

(0,t)×T

pt−s(x , y) [σ(u(s , y ;α)) − σ(u(s , y ;β))]W (ds dy),

T2 := (α − β)

∫

(0,t)×T

pt−s(x , y)σ (u(s , y ;β))W (ds dy).

Although T1 and T2 both depend on (x , t , α, β), we have not written those parameter depen-
dencies explicitly in order to ease the typography.

Define

D2 := sup
s�0

sup
y∈T

[
e−ϑs ‖u(s , y ;α) − u(s , y ;β)‖2k

]
,

where ϑ is defined as in (4.1), but with a small difference; namely,

ϑ := c2Lip4σ k
2α4.

Our condition on c is that c > 48 is large enough to ensure that ϑ � 1.
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We apply the Burkholder-Davis-Gundy-type inequality, [16, Pr. 4.4, p. 36], in order to see
that

‖T1‖2k � 4kα2Lip2σ

∫ t

0
ds

∫ 1

−1
dy [pt−s(x , y)]2 ‖u(s , y ;α) − u(s , y ;β)‖2k

� 4kα2Lip2σD2eϑ t
∫ t

0
e−ϑs ds

∫ 1

−1
dy [ps(x , y)]2

= 4kα2Lip2σD2eϑ t
∫ t

0
p2s(x , x)e−ϑs ds,

thanks to the Chapman–Kolmogorov equation and argument in Proposition 4.1. Lemma B.1
below ensures the following:

‖T1‖2k � 8kα2Lip2σD2eϑ t
∫ ∞

0

(
1√
s

+ 1

)
e−ϑs ds

= 8kα2Lip2σD2eϑ t
(√

π

ϑ
+ 1

ϑ

)

� 24α2kLip2σD2eϑ t

√
ϑ

= 24

c
D2eϑ t .

We proceed in like manner to estimate the moments of T2. First, note that, because α > β, a
Burkholder-Davis-Gundy bound and Proposition 4.1 together imply that

‖T2‖2k � 4k(α − β)2Lip2σ

∫ t

0
ds

∫ 1

−1
dy [pt−s(x , y)]2‖u(s , y ;β)‖2k

� 8k

(
1 − 48

c

)−1

(α − β)2Lip2σ ‖u0‖2L∞

∫ t

0
ds eϑs

∫ 1

−1
dy [pt−s(x , y)]2.

Therefore, after making a change of variables, we appeal first to the Chapman–Kolmogorov
and then to Lemma B.1 below in order to deduce the following:

‖T2‖2k � 8

(
1 − 48

c

)−1

k(α − β)2Lip2σ ‖u0‖2L∞eϑ t
∫ t

0
e−ϑs p2s(x , x) ds

� 16

(
1 − 48

c

)−1

k(α − β)2Lip2σ ‖u0‖2L∞eϑ t
∫ ∞

0
e−ϑs

(
1√
s

+ 1

)
ds

� 48

cα2

(
1 − 48

c

)−1

(α − β)2‖u0‖2L∞eϑ t .

We can now collect terms to find that

‖u(t , x ;α) − u(t , x ;β)‖2k � 2‖T1‖2k + 2‖T2‖2k
� 48

c
D2eϑ t + 96

cα2

(
1 − 48

c

)−1

(α − β)2‖u0‖2L∞eϑ t .

This bound holds pointwise. Therefore, we can divide both sides by exp(ϑ t) and optimize
both sides over x ∈ T in order to conclude that

D2 � 48

c
D2 + 96

cα2

(
1 − 48

c

)−1

(α − β)2‖u0‖2L∞ .
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Since α > β and ϑ � 1, we may appeal to Proposition 4.1—with λ there replaced by α

here—in order to see that D < ∞. In particular, because c > 48, we find that

D2 �
96‖u0‖2L∞

c

(
1 − 48

c

)−2
(α − β)2

α2 .

This is another way to state the proposition. 
�

5 Improved Regularity via Interpolation

In this section we use interpolation arguments to improve the moments estimates of the
preceding sections and introduce new moment estimates that, among other things, justify
also Remark 4.3. One of the consequences of the matter that follows is this:

Proposition 5.1 The process (t , x , λ) �→ u(t , x ; λ) has a continuous modification, indexed
also by (0 ,∞) × T × (0 ,∞), that weakly solves (1.9) outside of a null set that does not
depend on (t , x , λ).

The following will be the main result of this section.

Proposition 5.2 There exists ε0 = ε0(Lipσ ) ∈ (0 , 1), small enough, such that for every
ε ∈ (0 , ε0) and t0 � 1 there exist finite constants C1 = C1(ε ,Lipσ ) > 0 and C2 =
C2(Lipσ ) > 0—neither depending on u0—such that uniformly for all real numbers λ � 1,
k � 2, and t � t0,

E

(
sup
x∈T

sup
s∈[t0,t]

|u(s , x ; λ)|k
)

� Ck
1k

k/2(1 + |t − t0|)(εk+2)/2 exp

(
C2k3λ4t

ε2

)
‖u0‖kεL∞‖u0‖k(1−ε)

L1 .

For us, the key feature of the preceding formula is the particular way in which the expec-
tation on the left-hand side is controlled by the L1 and L∞ norms of u0 on the right. Still,
we do have to be somewhat careful about the other intervening constants in order to be sure
that they are not too large for our later use [they fortunately are not].

We will use Proposition 5.2 and the related Proposition 5.9 in the following way. First we
shift time so thatwe can replace u0 by u(t , · ; λ) and replace u(t , · ; λ) by u(t+h , · ; λ). Then,
by using our propositions, we can control u(t+h , · ; λ) by the product of ‖u(t , · ; λ)‖L∞ to a
small power, ‖u(t , · ; λ)‖L1 to a large power, and by exp(−Ch) for some positive constantC .
In fact, we would rather have a negative exponential involving t +h, that is, exp{−C(t +h)}.
To move from h to t + h, we let h be a multiple of t . But we still need a negative exponent.
Proposition 3.1 shows that with high probability, ‖u(t , · ; λ)‖L1 declines exponentially fast in
t , and hence also in t+h.We also have to dealwith ‖u(t , · ; λ)‖L∞ raised to a small power. But
here we can use Propositions 5.2 and 5.9 once more, and the small power of ‖u(t , · ; λ)‖L∞
means that we have introduced a slowly-growing exponential exp(ct), which is comparable
to exp{c′(t + h)} for a small constant c′. We will see that the negative exponential wins out,
with the result that ‖u(t , · ; λ)‖∞ is small with high probability.

The proof of Proposition 5.2 hinges on a series of intermediary results, some of which
imply Proposition 5.1 as well. We will use the mild form (2.4) to estimate u(t , x ; λ). Our
first technical result is an elementary interpolation fact about the heat semigroup {Pt }t�0,
defined earlier in (2.3). This result will allow us to estimate Ptu0, the first term on the right
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side of (2.4). Then we will use an argument related to Gronwall’s lemma to estimate the
second term It (x ; λ) on the right side of (2.4). In fact, It (x ; λ) is an integral containing
terms which also involve the heat semigroup.

Lemma 5.3 For every t > 0 and ε ∈ (0 , 1),

‖Ptu0‖L∞ � 2
(
t−1/2 ∨ 1

)1−ε ‖u0‖ε
L∞‖u0‖1−ε

L1 .

Proof We first observe that

‖Ptu0‖L∞ � min
(‖u0‖L∞ , 2

[
t−1/2 ∨ 1

] ‖u0‖L1
)
. (5.1)

Indeed, since the semigroup {Pt }t�0 is conservative, we clearly have (Ptu0)(x) � ‖u0‖L∞
for every x ∈ T. And Lemma B.1 below implies that (Ptu0)(x) � 2(t−1/2 ∨ 1)‖u0‖L1 for
every x ∈ T. Now that we have verified (5.1) we deduce the lemma from (5.1) and the
elementary fact that min(a , b) � aεb1−ε for every a, b > 0 and ε ∈ (0 , 1). 
�

Next we establish an improvement to Proposition 4.1. The following is indeed an improve-
ment in the sense that it shows how one can control the moments of the solution to (1.9) by
using both the L∞ and the L1 norms of the initial data, and not just the L∞ norm of u0.
This added improvement does cost a little at small times. This latter fact is showcased by the
appearance of a negative power of t in the following.

Proposition 5.4 Let c := 208
√
2 ≈ 294.2. Then, for all real numbers k � 2, ε ∈ (0 , 1), and

λ > 0 that satisfy kλ2 � ε(cLip2σ )−1, the following holds uniformly for all t > 0:

sup
x∈T

E
(
|u(t , x ; λ)|k

)
� 4k

tk(1−ε)/2
exp

(
c2

ε2
k3λ4Lip4σ t

)
‖u0‖kεL∞‖u0‖k(1−ε)

L1 .

Proof Let {u(n)}∞n=0 be the Picard approximants of u (see (4.2)). Thanks to Lemma 5.3, we
can now write the following variation of (4.4): For all integers n � 0 and real numbers
k ∈ [2 ,∞), t > 0, and x ∈ T,

∥∥∥u(n+1)
t (x ; λ)

∥∥∥
k

� 2
(
t−(1−ε)/2 ∨ 1

)
‖u0‖ε

L∞‖u0‖1−ε

L1 +
∥∥∥I(n)

t (x ; λ)

∥∥∥
k
. (5.2)

The latter quantity is estimated in (4.5). If we use that estimate in (5.2), then the elementary
inequality, (a + b)2 � 2a2 + 2b2, valid for all a, b ∈ R, yields the following:

∥∥∥u(n+1)
t (x ; λ)

∥∥∥
2

k

� 8
(
t−(1−ε) ∨ 1

)
‖u0‖2εL∞‖u0‖2(1−ε)

L1

+ 8kλ2Lip2σ

∫ t

0
ds

∫ 1

−1
dy

[
pt−s(x , y)

]2 ∥∥∥u(n)
s (y ; λ)

∥∥∥
2

k

� 8
(
t−(1−ε) ∨ 1

)
‖u0‖2εL∞‖u0‖2(1−ε)

L1

+ 16kλ2Lip2σ

∫ t

0
sup
y∈T

∥∥∥u(n)
s (y ; λ)

∥∥∥
2

k

(
1√
t − s

+ 1

)
ds. (5.3)

We have appealed to (4.6) in the last line. The precedingmotivates us to consider the temporal
functions, U (0),U (1), . . ., defined via

U (n)(t) := sup
x∈T

∥∥∥u(n)
t (x ; λ)

∥∥∥
2

k
[t � 0],
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in order to obtain a recursive inequality.We can see immediately from (5.3) that, for all n � 0
and t > 0,

U (n+1)(t)

� 8
(
t−(1−ε) ∨ 1

)
‖u0‖2εL∞‖u0‖2(1−ε)

L1 + 16kλ2Lip2σ

∫ t

0

U (n)(s)√
t − s

ds

+ 16kλ2Lip2σ

∫ t

0
U (n)(s) ds. (5.4)

In order to understand this recursion more deeply, let us first note that

sup
t>0

[
t1−ε

eβt

(
t−(1−ε) ∨ 1

)]
� 1 ∨ 1

β1−ε
for all β > 0. (5.5)

This is true simply because t1−εe−t � 1 for all t � 0. Therefore, we may define

U (m)(β) := sup
t�0

[
t1−ε

eβt
U (m)(t)

]
[β > 0, m � 0],

in order to deduce the following recursive inequality from (5.4) and (5.5):

U (n+1)(β) � 8

(
1 ∨ 1

β1−ε

)
‖u0‖2εL∞‖u0‖2(1−ε)

L1 + 16kλ2Lip2σ [C(β) + D(β)]U (n)(β);

where we have defined, for all 0 < ε < 1 and β > 0,

C(β) := sup
t�0

[∫ t

0

(
t

s

)1−ε e−β(t−s)

√
t − s

ds

]
and D(β) := sup

t�0

[∫ t

0

(
t

s

)1−ε

e−β(t−s) ds

]
.

It is possible to check [see Lemma A.1 of the appendix] that

C(β) + D(β) � 13

ε
√

β
for all ε ∈ (0 , 1) and β � 1.

Thus, we obtain the recursive inequalities,

U (n+1)(β) � 8‖u0‖2εL∞‖u0‖2(1−ε)

L1 + 208kλ2Lip2σ
ε
√

β
U (n)(β),

valid for all integers n � 0, and reals β � 1 and ε ∈ (0 , 1). We can replace β with

β∗ := 173056k2λ4Lip4σ
ε2

,

in order to see that for all n � 0,

U (n+1)(β∗) � 8‖u0‖2εL∞‖u0‖2(1−ε)

L1 + 1
2U

(n)(β∗), (5.6)

for all n � 0, provided that β∗ � 1. Note that

U (0)(β) = sup
t�0

[
t1−εe−βt ] ‖u0‖2L∞ � ‖u0‖2L∞ ,

for every ε ∈ (0 , 1) and β � 1. In particular, (5.6) implies that: (i) supn�0 U
(n)(β∗) < ∞;

and (ii) For all n � 0, and provided that β∗ � 1,

lim sup
n→∞

U (n+1)(β∗) � 16‖u0‖2εL∞‖u0‖2(1−ε)

L1 ,
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The left-hand side is greater than or equal to t1−εe−β∗t‖u(t , x ; λ)‖2k uniformly for all t > 0.
This is thanks to Fatou’s lemma and (4.3). Therefore, for all x ∈ T and t � 0,

‖u(t , x ; λ)‖2k � 16t−1+εeβ∗t · ‖u0‖2εL∞‖u0‖2(1−ε)

L1 ,

provided that k is large enough to ensure that β∗ � 1. This is equivalent to the assertion of
the proposition. 
�

For our next technical result, let us recall the random field I from (2.5).

Lemma 5.5 Let c := 208
√
2 ≈ 294.2. For every ε ∈ (0 , 1) and δ ∈ (0 , 1) there exists a

finite constant C = C(ε , δ ,Lipσ ) > 0—not depending on u0—such that uniformly for all
real numbers λ > 0, x, y ∈ T, k � 2, and t > 0 that satisfy kλ2 � ε(cLip2σ )−1,

E
(
|It (x ; λ) − It (y ; λ)|k

)
� Ckkk/2|x − y|δk/2 max

{
1 ,

1

tk/2

}
exp

(
c2

ε2
k3λ4Lip4σ t

)
‖u0‖kεL∞‖u0‖k(1−ε)

L1 .

Proof We apply the Burkholder-Davis-Gundy-type inequality, as in the proof of Proposi-
tion 4.2, in order to see that

‖It (x ; λ) − It (y ; λ)‖2k � 4kλ2
∫ t

0
ds

∫ 1

−1
dz

[
pt−s(x , z) − pt−s(y , z)

]2 ‖σ(u(s , z ; λ))‖2k

� 4kλ2Lip2σ

∫ t

0
ds

∫ 1

−1
dz

[
pt−s(x , z) − pt−s(y , z)

]2 ‖u(s , z ; λ)‖2k

� 64kLip2σ exp

(
2c2

ε2
k2λ4Lip4σ t

)
‖u0‖2εL∞‖u0‖2(1−ε)

L1

·
∫ t

0

ds

s1−ε

∫ 1

−1
dz

[
pt−s(x , z) − pt−s(y , z)

]2
.

The final inequality is a consequence of Proposition 5.4, which is why we need the condition
kλ2 � ε(cLip2σ )−1. Apply Lemma B.4 to see that

∫ t

0

ds

s1−ε

∫ 1

−1
dz

[
pt−s(x , z) − pt−s(y , z)

]2

� C ′|x − y|δ
∫ t

0

ds

s1−ε × (
(t − s)(δ+1)/2 ∧ (t − s)δ/2

)

� C ′′ |x − y|δ
tδ/2−ε

max
{
1 , 1/

√
t
}

� C ′′|x − y|δ max {1 , 1/t} ,

where C ′ and C ′′ are finite constants that depend only on ε and δ. The second inequality can
be obtained by split the integral into

∫ t/2
0 · · · ds and ∫ t

t/2 · · · ds. The first integral is less than
∫ t/2

0

ds

s1−ε min
(
(t/2)(δ+1)/2 , (t/2)δ/2

) ,

and the second one is less than the same bound by a similar argument. The last inequality
above comes from the fact that (δ/2) − ε + (1/2) < 1 for all δ ∈ (0 , 1) and ε ∈ (0 , 1), so
that (1/t)δ/2−ε+1/2 � 1/t for t < 1. We combine the preceding two displays to conclude the
proof of the proposition. 
�
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We can combine Lemmas B.5 and 5.5 together with (2.4) in order to deduce the following.

Proposition 5.6 Let c := 208
√
2 ≈ 294.2. For every ε ∈ (0 , 1) and δ ∈ (0 , 1) there exists

a finite constant C = C(ε , δ ,Lipσ ) > 0—not depending on u0—such that uniformly for all
real numbers λ > 0, x, y ∈ T, k � 2, and t > 0 that satisfy kλ2 � ε(cLip2σ )−1,

E
(
|u(t , x ; λ) − u(t , y ; λ)|k

)

� Ckkk/2
(
|x − y|δk/2 + |x − y|εk/2

)

max

{
1 ,

1

tk/2

}
exp

(
c2

ε2
k3λ4Lip4σ t

)
‖u0‖kεL∞‖u0‖k(1−ε)

L1 .

Thepreceding is amoment continuity result about x �→ u(t , x ; λ). The followingmatches
that result with a moment continuity estimate for t �→ u(t , x ; λ).

Proposition 5.7 Let c := 208
√
2 ≈ 294.2. For all real numbers k � 2, λ > 0, δ ∈ (0 , 1/4),

ε ∈ (0 , 1), and t > 2δ that satisfy kλ2 � ε(cLip2σ )−1,

E
(
|u(t + δ , x ; λ) − u(t , x ; λ)|k

)

� 74k
[

δε

t1+ε
+ λ2k

√
δ Lip2σ

εt1−ε

]k/2

exp

(
c2

ε2
k3λ4Lip4σ t

)

· ‖u0‖kεL∞‖u0‖k(1−ε)

L1 .

Proof In accord with (2.4) we can write

‖It+δ(x ; λ) − It (x ; λ)‖2k � 2λ2
(‖T1‖2k + ‖T2‖2k

)
, (5.7)

where

T1 :=
∫

(t,t+δ)×T

pt−s+δ(x , z)σ (u(s , z ; λ))W (ds dz),

T2 :=
∫

(0,t)×T

[
pt−s+δ(x , z) − pt−s(x , z)

]
σ(u(s , z ; λ))W (ds dz).

Now we apply the Burkholder-Davis-Gundy-type inequality, as in the proof of Proposi-
tion 4.2, in order to see that

‖T1‖2k � 4kLip2σ

∫ t+δ

t
ds

∫ 1

−1
dz

[
pt−s+δ(x , z)

]2 ‖u(s , z ; λ)‖2k

� 64kLip2σ
t1−ε

exp

(
2c2

ε2
k2λ4Lip4σ t

)
‖u0‖2εL∞‖u0‖2(1−ε)

L1

∫ t+δ

t
ds

∫ 1

−1
dz

[
pt−s+δ(x , z)

]2 ;

consult Proposition 5.4 for the last line. We appeal first to the semigroup property of pt and
then to Lemma B.1 below in order to see from the bound δ ∈ (0 , 1/4) that

∫ t+δ

t
ds

∫ 1

−1
dz

[
pt−s+δ(x , z)

]2 � 2
∫ δ

0

(
1√
s

+ 1

)
ds � 4

√
δ + 2δ < 5

√
δ,

whence it follows that

‖T1‖2k � 320kLip2σ
t1−ε

exp

(
2c2

ε2
k2λ4Lip4σ t

)√
δ · ‖u0‖2εL∞‖u0‖2(1−ε)

L1 . (5.8)
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Similarly, we have

‖T2‖2k � 4kLip2σ

∫ t

0
ds

∫ 1

−1
dz

[
pt−s+δ(x , z) − pt−s(x , z)

]2 ‖u(s , z ; λ)‖2k

� 64kLip2σ exp

(
2c2

ε2
k2λ4Lip4σ t

)
‖u0‖2εL∞‖u0‖2(1−ε)

L1 × Qt (δ),

(5.9)

where

Qt (δ) :=
∫ t

0

ds

s1−ε

∫ 1

−1
dz

[
pt−s+δ(x , z) − pt−s(x , z)

]2
.

Lemma B.6 below tells us that

Qt (δ) �
√

π

2

∫ t

0

ds

s1−ε
√
t − s

min

(
1 ,

δ

t − s

)

=
√

π

2
tε−(1/2)

∫ 1

0

dr

r1−ε
√
1 − r

min

(
1 ,

δ/t

1 − r

)
.

If t > 2δ, then we write

Qt (δ) �
√

π

2
δtε−(3/2)

∫ 1−(δ/t)

0

dr

r1−ε(1 − r)3/2
+
√

π

2
tε−(1/2)

∫ 1

1−(δ/t)

dr

r1−ε
√
1 − r

.

We can write the first integral as

∫ 1/2

0

dr

r1−ε(1 − r)3/2
+
∫ 1−(δ/t)

1/2

dr

r1−ε(1 − r)3/2
� 2(3/2)−ε

ε
+ 21−ε

∫ ∞

δ/t

dr

r3/2

= 2(3/2)−ε

ε
+ 22−ε(δ/t)−1/2

� 8

ε
(δ/t)−1/2.

[We have used the bound t > 2δ in the last line.] And the second integral is bounded from
above by

(
1 − δ

t

)−1+ε ∫ δ/t

0

dr√
r

= 2

(
1 − δ

t

)−1+ε √
δ/t < 4

√
δ/t .

This yields

Qt (δ) � 16

ε
·

√
δ

t1−ε
.

We may apply this inequality in (5.9) in order to see that

‖T2‖2k � 1024kLip2σ
ε · t1−ε

exp

(
2c2

ε2
k2λ4Lip4σ t

)√
δ · ‖u0‖2εL∞‖u0‖2(1−ε)

L1 .

We combine this with (5.8) and (5.7) in order to deduce the following:

∥∥It+δ(x ; λ) − It (x ; λ)
∥∥2
k � λ2

2688kLip2σ
t1−ε

exp

(
2c2

ε2
k2λ4Lip4σ t

) √
δ

ε
· ‖u0‖2εL∞‖u0‖2(1−ε)

L1 .
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This and the argument in Lemma B.7 below together yield

‖u(t + δ , x ; λ) − u(t , x ; λ)‖2k
� 2‖(Pt+δu0)(x) − (Ptu0)(x)‖2k + 2 ‖It+δ(x ; λ) − It (x ; λ)‖2k
�
[
8δε

t1+ε
+ 5376k

√
δ λ2Lip2σ

εt1−ε
exp

(
2c2

ε2
k2λ4Lip4σ t

)]
· ‖u0‖2εL∞‖u0‖2(1−ε)

L1 .

This easily implies the result. 
�
Before we derive Proposition 5.2—the main result of this section—we pause and quickly

establish Proposition 5.1.

Proof of Proposition 5.1 We can combine Propositions 4.2, 5.6, and 5.7 together with the
Kolmogorov continuity theorem in order to see that (t , x , λ) �→ u(t , x ; λ) has a continuous
modification on (0 ,∞) × R × (0 ,∞). The proofs of Propositions 4.2, 5.6, and 5.7 also
imply, implicitly, the fact that two quantities on the right-hand side of (2.4)—viewed as
random functions of (t , x , λ)—have continuous modifications on (0 ,∞) × R × (0 ,∞). It
follows that (2.4) holds for all (t , x , λ) ∈ (0 ,∞) × R × (0 ,∞) off a single null set. This
and a stochastic Fubini argument together imply the result. 
�

We are finally ready to prove Proposition 5.2. Before we commence, however, it might be
helpful to explicitly state the following well-known chaining argument [8]. It might help to
recall that an upright box in R

N has the form
∏N

i=1[ai , bi ], where ai � bi are real numbers
[1 � i � N ].

Proposition 5.8 Suppose {X(t)}t∈T is a real-valued stochastic process, where T is a bounded
upright box in R

N for some N � 1. Suppose also that there exists Q ∈ (0 ,∞) such that for
every integer K � 2

BK := E
(
|X(s)|K

)
< ∞ for some s ∈ T and CK := sup

s,t∈T
s �=t

E

( |X(t) − X(s)|K
|t − s|KQ

)
< ∞,

where |τ | denotes any one of the �p-norms on τ ∈ R
N [0 < p < ∞]. Then, there exists a

finite constant D— depending also on the diameter of T , N , Q and K with QK > N,
—such that

E

(
sup
s,t∈T
s �=t

|X(t) − X(s)|K
)

� DKCK and hence E

(
sup
t∈T

|X(t)|K
)

� 2K (BK + DKCK ).

Proof of Proposition 5.2 Combine Propositions 5.6, 5.7, and 5.8, all the time keeping track of
the various [explicit] constants. 
�

Let us observe also the following fixed-time result, which is proved exactly as Proposi-
tion 5.2 was, but without the t-uniformity.

Proposition 5.9 There exists ε0 = ε0(Lipσ ) ∈ (0 , 1) such that for every ε ∈ (0 , ε0) there
exist finite constants C1 = C1(ε ,Lipσ ) > 0 and C2 = C2(Lipσ ) > 0—not depending on
u0—such that uniformly for all real numbers λ � 1, k � 2 that satisfy kλ2 � ε(cLipσ )−1,
and for every t > 0,

E

(
sup
x∈T

|u(t , x ; λ)|k
)

� Ck
1k

k/2
(
1 + 1

tk/2

)
exp

(
C2k3λ4t

ε2

)
‖u0‖kεL∞‖u0‖k(1−ε)

L1 .
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Proof of Proposition 5.9 Combine Propositions 5.4, 5.6 and 5.8, all the time keeping track of
the various [explicit] constants. 
�

6 Proof of Theorem 1.4

Define F := {F 0
t }t>0 denote the filtration of sigma-algebras that is defined via

F 0
t := σ

{∫

(0,t)×T

φ(s , y)W (ds dy) : φ ∈ L2((0 , t] × T)

}
,

for every t � 0. Let Pu0 denote the law of the process {u(t , x ; λ)}t�0,x∈T, conditional on
the initial state being u0. Then we can define

Ft :=
⋂
s>t

F 0
s [t � 0], (6.1)

whereF 0
s denotes the completion ofF 0

s with respect to the family {Pu0}u0∈L∞ of probability
measures. Intuitively speaking, the filtration F := {Ft }t�0 is the Brownian filtration that
corresponds to the infinite-dimensional Brownian motion t �→ W (t , ·).

It is well known, see [12, Theorem 9.15, p. 256], that the process t �→ u(t , · ; λ) is a
Markov process, with values in C(T), with respect to the filtrationF := {Ft }t�0 and initial
measures {Pu0}u0∈L∞ . That is,

E [�(u(t + τ , · ; λ)) | Ft ] = Eut [�(u(τ , · ; λ))] a.s.,

for every bounded functional � : C(T) → R+, and all t, τ � 0, where we have suppressed
the notational dependence on λ to keep the notation simple.We can restate this fact as follows:
Choose and fix t � 0 and define v(τ , x) := u(t + τ , x ; λ) for all τ � 0 and x ∈ T. Then,
conditioned onFt , the random field {v(τ , x)}τ�0,x∈T solves the SPDE (1.9) [in law], started
at v(0 , x) := u(t , x ; λ), where now the noiseW is replaced by a Brownian sheetW (t) that is
independent ofFt . In particular, we may appeal to Proposition 5.9, conditionally, as follows:
There exists ε0 = ε0(Lipσ ) ∈ (0 , 1/2) such that for every ε ∈ (0 , ε0) there exist finite
constants C1 = C1(ε ,Lipσ ) > 0 and C2 = C2(Lipσ ) > 0—not depending on u0—such
that uniformly for all real numbers λ � 2 and t > 0 and h ∈ (0, 1),

E

(
sup
x∈T

|u(t + h , x ; λ)|2
∣∣∣∣ Ft

)
� C1eC2λ

4h/ε2

h
‖u(t , · ; λ)‖2εL∞‖u(t , · ; λ)‖2(1−ε)

L1 , (6.2)

almost surely.
Now consider the event,

A(t ; λ) :=
{
ω ∈ � : ‖u(t , · ; λ)(ω)‖L1 � ‖u0‖L1 exp

(
−λ2L2

σ t

8

)}
. (6.3)

According to Proposition 3.1 [with ε := 1/2],

P(A(t ; λ)) � 1 − e−λ2L2
σ t/64. (6.4)
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Also, (6.2) implies that

E

(
sup
x∈T

|u(t + h , x ; λ)|2 ; A(t ; λ)

)

�
C1eC2λ

4h/ε2‖u0‖2(1−ε)

L1

h
exp

(
− (1 − ε)λ2L2

σ t

4

)
E
(‖u(t , · ; λ)‖2εL∞

)
.

(6.5)

Since ε ∈ (0 , ε0) ⊂ (0 , 1), Jensen’s inequality shows that

E
(‖u(t , · ; λ)‖2εL∞

)
�
∣∣E (‖u(t , · ; λ)‖2L∞

)∣∣ε . (6.6)

Proposition 5.9 implies the following [set k := 2 and ε := 1/2 in the statement of the
proposition]: There exists a positive and finite constant C3 such that for all t > 0 and
λ2 � (4cLipσ )−1,

E
(‖u(t , · ; λ)‖2L∞

)
� C3eC3λ

4t

t
‖u0‖L∞‖u0‖L1 .

We plug this estimate into (6.6), and then appeal to (6.5), and the fact that ε < ε0 < 1/2, in
order to see that

E

(
sup
x∈T

|u(t + h , x ; λ)|2 ; A(t ; λ)

)
�

C4eC5λ
4[(h/ε2)+εt]‖u0‖2−ε

L1 ‖u0‖ε
L∞

htε
e−λ2L2

σ t/8,

(6.7)
where C4 := C1Cε

3 and C5 := max(C2 ,C3). Note that the implied constants do not depend
on (t , h , λ).

We now specialize the preceding to the following choice of ε and h:

ε := L2
σ

32C5λ2
and h := L6

σ t

(32C5λ2)3
.

This choice is permissible, provided that ε < ε0 < 1/2; since if λ is large enough so that
ε < ε0 and h < 1. Because ε0 does not depend on t , it follows that for every t > 0,

lim sup
λ↑∞

1

λ2
log E

(
sup
x∈T

∣∣u (t + C6λ
−6 , x ; λ

)∣∣2 ; A(t ; λ)

)
� −L2

σ t

16
,

where C6 = L6
σ (32C5)

−3t . By the Chebyshev inequality,

lim sup
λ↑∞

1

λ2
log P

{
sup
x∈T

u
(
t + C6λ

−6, x ; λ
)

� exp

(
−L2

σ λ2t

64

)
; A(t ; λ)

}
� −L2

σ t

32
.

It is easy to see, after a change of variables in the preceding quantitative bounds [before we
apply the limsup], that the precedingholds alsowithu(t , x ; λ) in place ofu(t+C6λ

−6 , x ; λ).
For otherwise, we simply replace t by t −C6λ

−6 in all of the formulas before we let λ ↑ ∞.
In this way, we can combine the above estimate with (6.4) in order to deduce the theorem.


�

7 Proof of Theorem 1.2

Proof of Theorem 1.2: Upper bound Throughout, we choose and hold λ > 0 fixed.
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The proof of (6.2) shows also the following variation, thanks to Proposition 5.2: There
exists ε0 = ε0(Lipσ ) ∈ (0 , 1/2), small enough, such that for every ε ∈ (0 , ε0) there exist
finite constants C1 = C1(ε ,Lipσ ) > 0 and C2 = C2(Lipσ ) > 0—not depending on u0—
such that uniformly for all real numbers λ � 2 and η ∈ (0 , 1) and t � t0 := 1,

E

(
sup
x∈T

sup
h∈[1,η(t+1)+1]

|u(t + h , x ; λ)|2
∣∣∣∣∣ Ft

)

� C1 [1 + η(t + 1)]3/2 eC2λ
4(η(t+1)+1)/ε2‖u(t , · ; λ)‖2εL∞‖u(t , · ; λ)‖2(1−ε)

L1 ,

almost surely. We appeal to this bound with η := ε3 in order to see that for all real numbers
λ � 2, η ∈ (0 , 1), and t � t0 := 1,

E

(
sup
x∈T

sup
h∈[1,ε3(t+1)+1]

|u(t + h , x ; λ)|2
∣∣∣∣∣ Ft

)

� C1
[
1 + ε3(t + 1)

]3/2
eC2λ

4/ε2eC2λ
4ε(t+1)‖u(t , · ; λ)‖2εL∞‖u(t , · ; λ)‖2(1−ε)

L1 ,

almost surely. It follows from this inequality that, for the same set A(t ; λ) as was defined in
(6.3), the following variation of (6.7) holds:

E

(
sup
x∈T

sup
h∈[1,ε3(t+1)+1]

|u(t + h , x ; λ)|2 ; A(t ; λ)

)

� C7
[
1 + ε3(t + 1)

]3/2
e2C5λ

4εt‖u0‖2−ε

L1 ‖u0‖ε
L∞e−λ2L2

σ t/8

= C7
[
1 + ε3(t + 1)

]3/2
exp

(
−λ2t

[
L2

σ

8
− 2C5λ

2ε

])
‖u0‖2−ε

L1 ‖u0‖ε
L∞ ,

provided, additionally, that 0 < ε < ε0; here, C7 = C7(ε ,Lipσ , λ) is a positive and finite
constant, andC5 is the same constant that appeared in Sect. 6.We use the preceding inequality
with the following special choice:

ε := min

(
ε0

2
,

L2
σ

32C5λ2

)
.

For this particular choice of ε, we have

E

(
sup
x∈T

sup
s∈[t+1,(1+ε3)(t+1)]

|u(s , x ; λ)|2 ; A(t ; λ)

)
� C8

[
1 + ε3(t + 1)

]3/2
e−L2

σ λ2(t+1)/16,

uniformly for all t � 1, where C8 := C7 exp(λ2L2
σ /16)‖u0‖2−ε

L1 ‖u0‖ε
L∞ is a finite constant

that does not depend on t . Define

μ := log(1 + ε3).

For large integers N , we replace t by exp(Nμ) − 1 to get that

E

(
sup
x∈T

sup
s∈[exp(Nμ),exp([N+1]μ)]

|u(s , x ; λ)|2 ; A(eNμ − 1 ; λ)

)

� C8

[
1 + ε3eNμ

]3/2
e−L2

σ λ2eNμ/16.
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In particular, Chebyshev’s inequality shows that for all ρ > 0,

P

{
sup
x∈T

sup
s∈[exp(Nμ),exp([N+1]μ)]

∣∣∣∣
u(s , x ; λ)

e−L2
σ λ2s/64

∣∣∣∣ � ρ ;A(eNμ − 1 ; λ)

}

� P

{
sup
x∈T

sup
s∈[exp(Nμ),exp([N+1]μ)]

|u(s , x ; λ)| � ρe−L2
σ λ2e(N+1)μ/64 ;A

(
eNμ − 1 ; λ

)}

� C8

ρ2

[
1 + ε3eNμ

]3/2
exp

(
−L2

σ λ2eNμ

64

)
.

Combine this estimate with (6.4) to see that

∞∑
N=1

P

{
sup
x∈T

sup
s∈[exp(Nμ),exp([N+1]μ)]

∣∣∣∣
u(s , x ; λ)

e−L2
σ λ2s/64

∣∣∣∣ � ρ

}

� C8

ρ2

∞∑
N=1

[
1 + ε3eNμ

]3/2
exp

(
−L2

σ λ2eNμ

64

)
+

∞∑
N=1

exp

(
−λ2L2

σ

[
eNμ − 1

]

64

)
< ∞.

We can conclude from this and the Borel–Cantelli lemma that

lim
t→∞ sup

x∈T

∣∣∣∣
u(t , x ; λ)

e−λ2L2
σ t/64

∣∣∣∣ = 0, (7.1)

almost surely. This completes the first half of the proof of Theorem 1.2. 
�

The proof of the lower bound of Theorem 1.2 depends on the following large-deviations
bound for sums of dependent Bernoulli random variables. For a proof see Lemma 3.9 of
Khoshnevisan, Révész, and Shi [21].

Lemma 7.1 Suppose J1, J2, . . . are {0 , 1}-valued random variables that satisfy the following
for some non-random constant q > 0: E(Jk+1 | J1, . . . , Jk) � q for all k � 1, a.s. Then,

P {J1 + · · · + Jn � nq(1 − ε)} � exp

(
−nqε2

2

)
for every ε ∈ (0 , 1) and n � 1.

We now proceed with the derivation of the lower bound of Theorem 1.2.

Proof of Theorem 1.2: Lower bound We appeal to a one-sided adaptation of a method of
Mueller [23]. Define T0 := 0 and then iteratively let

Tn+1 := inf

{
t > Tn : inf

x∈T u(t , x ; λ) < e−1 inf
x∈T u(Tn , x ; λ)

}
for all n � 0,

where inf ∅ := ∞. We have already proved in (7.1) that supx∈T u(t , x ; λ) → 0 a.s. as
t → ∞. Therefore, Tn < ∞ for all n � 0 almost surely. Moreover, the sample-function
continuity of u shows that the Tn’s are stopping times with respect to the filtration F :=
{Ft }t�0, defined earlier in (6.1).Wemay apply the strongMarkov property of u, with respect
to F , at the stopping time Tn in order to see that for all integers n � 0,

P
(
Tn+1 − Tn � τ | FTn

)
� P

(
inf
x∈T inf

t∈[0,τ ] v
(n)(t , x) � e−1 inf

x∈T v
(n)
0 (x)

∣∣∣∣ v
(n)
0

)
,
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a.s., where v(n) := {v(n)(t , x)}t�0,x∈[−1,1] solves (1.9) starting from the random initial

profile v
(n)
0 (x) := v(n)(0 , x) = u(Tn , x ; λ). By the very definition of the stopping time Tn ,

and since Tn is finite a.s.,

v
(n)
0 (x) = u(Tn , x ; λ) � e−1 inf

y∈T u(Tn−1 , y ; λ) � · · · � e−n inf
y∈T u0(y) =: e−nu0,

a.s. for every x ∈ T, and with identity for some x ∈ T a.s. Because u0 > 0 [see (1.2)],
it follows from a comparison theorem [4,23,27] that v(n)(t , x) � w(n)(t , x) for all t � 0
and x ∈ T a.s., where w(n) solves (1.9) [for a different Brownian sheet] starting from
w

(n)
0 (x) := w(n)(0 , x) = e−nu0. In particular, for all integers n � 0 and reals τ ∈ (0 , 1),

P
(
Tn+1 − Tn � τ | FTn

)
� P

{
inf
x∈T inf

t∈[0,τ ] w
(n)(t , x) � e−1w

(n)
0 (x) ≡ e−1−nu0

}

� P

{
sup
x∈T

sup
t∈[0,τ ]

∣∣∣w(n)(t , x) − w
(n)
0 (x)

∣∣∣ � e−1−nu0

}

� e2E

⎛
⎝sup

x∈T
sup

t∈[0,τ ]

∣∣∣∣∣
w(n)(t , x)

w
(n)
0 (0)

− 1

∣∣∣∣∣
2
⎞
⎠ .

Now, z(n)(t , x) := w(n)(t , x)/w(n)
0 (0) solves (1.9), started at z(n)

0 (x) := z(n)(0 , x) = 1,
with σ replaced by

σ (n)(a) := σ (w0(0)a)

w0(0)
= en

u0
σ
(u0a
en

)
[a ∈ R].

We may observe that the Lipschitz constant of σ (n) is Lipσ , uniformly for all n � 0. In this
way we find that there exists a finite constant C uniformly in n and K such that

sup
(t,x),(s,y)∈(0,τ )×T

s �=t,x �=y

E

(∣∣z(n)(t , x) − z(n)(s , y)
∣∣K

|(t , x) − (s , y)|K/4

)
� (CK )K/2LipKσ λK eCKλ4Lip4σ τ ,

(see, e.g., [28, Corollary 3.4] or [8, Theorem 6.8]). Thanks to this and a quantitative form of
the Kolmogorov continuity theorem (see, e.g., Proposition 5.8), there exists a real number c0
such that, uniformly for all τ ∈ [0 , 1],

sup
n�1

P
(
Tn+1 − Tn � τ | FTn

)
� e2 sup

n�1
E

(
sup
x∈T

sup
t∈[0,τ ]

∣∣∣z(n)(t , x) − z(n)
0 (x)

∣∣∣
2
)

� c0λ
2Lip2σ

√
τec0λ

4Lip4σ τ ,

a.s.. Because c0 does not depend on τ ∈ [0 , 1], we may choose a special τ = τ(λ ,Lipσ , c0)
by setting

τ := δ2

(λLipσ )4
∧ 1, (7.2)

where δ = δ(c0) is the unique strictly-positive solution to c0δ exp(c0δ2) = 1
2 . This yields

P
(
Tn+1 − Tn > τ | FTn

)
� 1

2 for all n � 1 a.s., (7.3)

for the particular choice of τ that is furnished by (7.2). We now apply Lemma 7.1 with

Jn := 1{ω∈�: Tn+1(ω)−Tn(ω)>τ },
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where τ is given by (7.2) and q = ε = 1/2 in order to deduce from (7.3) that

P

{
n∑

i=1

1{Ti+1−Ti>τ } � n

4

}
� e−n/16 for all integers n � 1.

Because

Tn �
n−1∑
i=0

(Ti+1 − Ti )1{Ti+1−Ti>τ } � τ

n∑
i=1

1{Ti+1−Ti>τ },

we find that

P

{
inf
x∈T inf

0�t�τn/4
u(t , x ; λ) � e−nu0

}
� P

{
Tn � τn

4

}
� e−n/16 for all n � 1. (7.4)

Since

inf
x∈T inf

τ(n−1)/4�t�τn/4

u(t , x ; λ)

exp(−n)
� e inf

x∈T inf
τ(n−1)/4�t�τn/4

u(t , x ; λ)

exp (−4t/τ)
,

the Borel–Cantelli lemma implies the remaining half of Theorem 1.2. 
�

8 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the proofs of Theorems 1.2 and 1.4.

Proof of Theorem 1.1 Let t � 1. Define A1(t) as was defined in (6.3) (i.e. A1(t) := A(t ; λ)

in (6.3)), then (6.4) says

P(A1(t)) � 1 − e−λ2L2
œt/64. (8.1)

We can also get the following variation of (6.7):

E

(
sup
x∈T

|u(t + h , x ; λ)|k ; A1(t)

)
�

Ck
1e

C2λ
4k3[(h/ε2)+εt]‖u0‖k(1−ε/2)

L1 ‖u0‖kε/2L∞

hk/2tkε/2
e−kλ2L2

σ t/16

for some constants C1,C2 > 0 which are independent of k and t . We now choose

h := 1

2
and ε := L2

σ

32C2k2λ2
∧ ε0 (ε0 is defined in Proposition 5.9)

to get that for some constant c̃k > 0 which only depends on k,

E

(
sup
x∈T

|u(t + 1/2 , x ; λ)|k ; A1(t)

)
� c̃ke

−kλ2L2
œt/32.

Replacing t + 1/2 by t above and redefining A1(t) := A1(t − 1/2), we get

E

(
sup
x∈T

|u(t , x ; λ)|k ; A1(t)

)
� c̃ke

kλ2L2
œ/64 e−kλ2L2

œt/32. (8.2)

Let us now define

A2(t) :=
{
ω ∈ � : inf

x∈T inf
0�s�t

u(s , x ; λ)(ω) � e−4t/τu0

}
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where τ = τ(λ,Lipσ , c0) > 0 is the constant defined on (7.2) and u0 := inf y∈T u0(y). By
(7.4), we get

P(A2(t)) � 1 − e−t/4τ . (8.3)

Let
B(t) := A1(t) ∩ A2(t). (8.4)

By (8.1) and (8.3), we have

P(B(t)) = P(A1(t)) + P(A2(t)) − P(A1(t) ∪ A2(t))

� 1 − e−t/4τ − eλ2L2
œ/128e−λ2L2

σ t/64 � 1 − b1e
−b2t ,

where b1 := 2max
{
1, eλ2L2

œ/128
}
and b2 := min

{
1
4τ ,

λ2L2
œ

64

}
. Hence, there exists c > 0 for

some t0 large, if t � t0,

P(B(t)) � 1 − ce−ct � 1 − ce−ct0 > 0.

This shows the first statement of Theorem 1.1. For the second statement, the upper bound
comes from (8.2) and the lower bound comes from the following:

E

(
inf
x∈T

|u(t , x ; λ)|k ; B(t)

)
� e−4t/τu0 P(B(t)) � e−4t/τu0

(
1 − ce−ct0

)
,

which completes the proof. 
�

A A Real-Variable Inequality

We will have need for the following.

Lemma A.1 For all ε ∈ (0 , 1), α ∈ [0 , 1), and β � 1,

sup
t>0

∫ t

0

(
t

s

)1−ε e−β(t−s)

(t − s)α
ds � 2�(1 − α) + 1

(1 − α)εβ1−α
,

where � denotes Gamma function.

Proof By scaling, we might as well assume that β = 1. Now, a change of variables yields
∫ t

0

(
t

s

)1−ε e−(t−s)

(t − s)α
ds = t1−α

∫ 1

0

e−tr

rα(1 − r)1−ε
dr ,

whenever t > 0 and 0 < ε < 1. If t � 1, then we merely bound t1−α and exp(−tr) by 1 in
order to see that the preceding is at most B(ε , 1− α), where B is beta function. On the other
hand, if t > 1, then we change variables a few more times in order to see that

∫ t

0

(
t

s

)1−ε e−(t−s)

(t − s)α
ds =

∫ t

0

e−s

(
1 − s

t

)1−ε

sα

ds =
∫ t/2

0
( · · · ) ds +

∫ t

t/2
( · · · ) ds,

notation being obvious fromcontext. Since (1−[s/t])1−ε � 2−1+ε � 1/2 for all 0 < s < t/2,
∫ t/2

0
( · · · ) ds � 2�(1 − α).
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On the other hand,
∫ t

t/2
( · · · ) ds � e−t/2

∫ t

t/2

ds

sα
(
1 − s

t

)1−ε
= t1−α e−t/2

∫ 1

1/2

dr

rα(1 − r)1−ε
� B(ε , 1 − α),

where we have used the elementary bound, x1−αe−x/2 � 1, valid for all x � 0.
The preceding argument yields the inequality,

sup
t>0

∫ t

0

(
t

s

)1−ε e−(t−s)

(t − s)α
ds � 2�(1 − α) + B(ε , 1 − α),

valid for all ε ∈ (0 , 1) and α ∈ [0 , 1). This implies the lemma since a change of variables
yields

B(ε , 1 − α) = ε−1
∫ ∞

0
e−y (1 − e−y/ε)−α

dy � ε−1
∫ ∞

0
e−y (1 − e−y)−α

dy = 1

ε(1 − α)
,

for all ε ∈ (0 , 1) and α ∈ [0 , 1), which is a well-known fact about the beta integral; see,
Dragomir et al. [9, (3.17)] for a different proof of the latter inequality. 
�

B The Heat Kernel

Recall G and p respectively from (2.2) and (2.1).

Lemma B.1 For all x, y ∈ [−1 , 1] and t > 0,

Gt (x − y) � pt (x , y) � 2max

(
1√
t
, 1

)
.

Remark B.2 By Lemma B.1, sup−1<x,y<1 pt (x , y) � Gt (0) = (4π t)−1/2, pointwise. Also,

2 supy pt (x , y) �
∫ 1
−1 pt (x , y) dy = 1, for all t > 0 and x ∈ T. Therefore, Lemma B.1 has

the following consequence:

1

4
max

(
1√
t
, 1

)
� sup

x,y∈[−1,1]
pt (x , y) � 2max

(
1√
t
, 1

)
,

for all t > 0.

Proof of Lemma B.1 The lower bound is immediate; we establish the upper bound.
Consider the summands in (2.1) for |n| � 1 and |n| � 2 separately in order to see that

pt (x , y) � 3√
4π t

+ 1√
4π t

∑
n∈Z:|n|�2

exp

(
− (x − y − 2n)2

4t

)
,

for all t > 0 and x, y ∈ [−1 , 1]. Since (a − b)2 � 1
2a

2 − b2 for all a, b ∈ R, the preceding
yields (x − y−2n)2 � 2n2− (x − y)2 � 2(n2−2) � n2, for all x, y ∈ [−1 , 1] and integers
n with |n| � 2. Thus, we obtain the bound,

pt (x , y) � 1√
t

+ 1√
π t

∞∑
n=2

exp

(
−n2

4t

)
, (B.1)
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for all t > 0 and x, y ∈ [−1 , 1]. In particular,

sup
x,y∈[−1,1]

pt (x , y) � 1√
t

(
1 +

∞∑
n=2

e−n2/4

)
� 2√

t
,

uniformly for t ∈ (0 , 1]. If t > 1, then use

∞∑
n=2

exp

(
−n2

4t

)
�
∫ ∞

0
exp

(
− z2

4t

)
dz = √

π t,

in (B.1), to see that

sup
x,y∈[−1,1]

pt (x , y) � 1√
t

+ 1,

which is at most 2. 
�
Lemma B.3 There exists a finite constant C such that

∫ 1

−1
|pt (x , w) − pt (y , w)|2 dw � C

|x − y|
t ∧ √

t
,

uniformly for all x, y ∈ [−1 , 1] and t > 0.

Proof Choose and fix some t > 0 and x, y ∈ [−1 , 1]. Without loss of generality, we assume
that x > y. By the Chapman–Kolmogorov property, and thanks to the symmetry of pt ,

∫ 1

−1
|pt (x , w) − pt (y , w)|2 dw = p2t (x , x) + p2t (y , y) − 2p2t (x , y)

= 2
∞∑

n=−∞
[G2t (2n) − G2t (2n + x − y)] .

Because |G ′
t (a)| = |a|Gt (a)/2t ,

|Gt (2n) − Gt (2n + x − y)| � 1

4
√

π t3/2

∫ x−y

0
|2n + a| exp

(
− (2n + a)2

4t

)
da, (B.2)

for all n ∈ Z. In particular,

|Gt (2n) − Gt (2n + x − y)| � x − y

4
√

π t3/2
sup
r�0

[
r exp

(
−r2

4t

)]
� x − y

4
√

π t
.

The preceding is useful when |n| is not too large, say |n| � 2. On the other hand, if |n| � 2
and 0 � a � 2, then 3|n| � |2n + a| � 2(|n| − 1) � |n| . Therefore, (B.2) implies that

|Gt (2n) − Gt (2n + x − y)| � 3(x − y)

4
√

π t3/2
· |n| exp

(
−n2

4t

)
.

We combine the preceding two displays to see that
∫ 1

−1
|pt (x , w) − pt (y , w)|2 dw � 3(x − y)

2
√

π t
+ 3(x − y)

2
√

π t3/2
·
∑
|n|�2

|n| exp
(

−n2

4t

)
.

The sum is at most
∫∞
−∞ |w| exp(−w2/(8t)) dw ∝ t , and this implies the result. 
�
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Lemma B.4 For each δ ∈ (0 , 1) there exists a finite constant C such that

∫ 1

−1
|pt (x , w) − pt (y , w)|2 dw � C

|x − y|δ
t (δ+1)/2 ∧ tδ/2

,

uniformly for all t > 0 and x, y ∈ [−1 , 1].

Proof Since (a + b)2 � 2a2 + 2b2 for all a, b ∈ R, the Chapman–Kolmogorov property
yields the following for all t > 0 and x, y ∈ [−1 , 1]:

∫ 1

−1
|pt (x , w) − pt (y , w)|2 dw � 2p2t (x , x) + 2p2t (y , y) � 8max

(
1√
t
, 1

)
;

see Lemma B.1. Therefore, Lemma B.3 implies that we can find a finite constantC such that,
uniformly for all x, y ∈ [−1 , 1] and t > 0,

∫ 1

−1
|pt (x , w) − pt (y , w)|2 dw � C

|x − y|√
t

max

{
1√
t
, 1

}
,

The lemma follows since min(A , B) � AδB1−δ for all A, B � 0 and δ ∈ (0 , 1). 
�

Lemma B.5 There exists a finite constant C such that, uniformly for all ε ∈ (0 , 1), t > 0,
x, y ∈ [−1 , 1], and h ∈ L1 ∩ L∞,

|(Pth)(x) − (Pth)(y)| � C max

{
1 ,

1√
t

}
|x − y|ε/2‖h‖ε

L∞‖h‖1−ε

L1 .

Proof First, we use Lemma B.1 to get that

|(Pth)(x) − (Pth)(y)| � 4max

{
1 ,

1√
t

}
‖h‖L1 .

We can also apply the Cauchy–Schwarz inequality and then Lemma B.3 to obtain

|(Pth)(x) − (Pth)(y)|2 �
(∫ 1

−1
|pt (x , w) − pt (y , w)| · |h(w)| dw

)2

� 2‖h‖2L∞

∫ 1

−1
|pt (x , w) − pt (y , w)|2 dw

� C‖h‖2L∞
|x − y|
t ∧ √

t

� C‖h‖2L∞|x − y|max

{
1 ,

1

t

}
.

Now the lemma follows since min(A , B) � AεB1−ε for all A, B � 0 and ε ∈ (0 , 1). 
�

Lemma B.6 For each t, δ > 0,

sup
x∈T

∫ 1

−1
|pt+δ(x , w) − pt (x , w)|2 dw �

√
π

2t
min

(
1 ,

δ

4t

)
.
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Proof Choose and fix some t, δ > 0 and x ∈ T. By the Chapman–Kolmogorov property,
and thanks to the symmetry of pt ,

∫ 1

−1
|pt+δ(x , w) − pt (x , w)|2 dw = p2(t+δ)(x , x) + p2t (x , x) − 2p2t+δ(x , x)

=
∞∑

n=−∞

[
G2t+2δ(2n) + G2t (2n) − 2G2t+δ(2n)

]
.

Because the Fourier transform of F(x) := Gτ (2x) is F̂(z) = 1
2 Ĝτ (z/2) = 1

2 exp(−τ z2/4),
the Poisson summation formula [15, p. 161] implies that

∫ 1

−1
|pt+δ(x , w) − pt (x , w)|2 dw = 1

2

∞∑
n=−∞

e−tn2/2
(
e−δn2/2 + 1 − 2e−δn2/4

)

�
∞∑
n=1

e−tn2/2 min

(
1 ,

δn2

4

)
,

uniformly for all t > 0 and δ ∈ (0 , 1). This readily implies the result since

∞∑
n=1

e−tn2/2 �
∫ ∞

0
e−t x2/2 dx =

√
π

2t
,

and

δ

∞∑
n=1

e−tn2/2n2 � δ

∫ ∞

0
x2e−t x2/2 dx = δ

t

√
π

2t
,

for all t > 0 and δ ∈ (0 , 1). 
�
Lemma B.7 For every t, δ > 0, ε ∈ (0 , 1), and h ∈ L1 ∩ L∞,

sup
x∈T

|(Pt+δh)(x) − (Pth)(x)| � 4

(
1 + 1√

t

)
min

(
1 ,

[
δ

4t

]ε/2
)

· ‖h‖ε
L∞‖h‖1−ε

L1 .

Proof We first use Lemma B.1, as we did in the proof of Lemma B.5, to get that

|(Pt+δh)(x) − (Pth)(x)| � 4max

(
1,

1√
t

)
‖h‖L1 .

We now apply first the Cauchy–Schwarz inequality and then Lemma B.6 in order to deduce

|(Pt+δh)(x) − (Pth)(x)|2 � 2‖h‖2L∞

∫ 1

−1
|pt+δ(x , w) − pt (x , w)|2 dw

� 2‖h‖2L∞

√
π

2t
min

(
1 ,

δ

4t

)

� 4max

(
1 ,

1

t

)
‖h‖2L∞ min

(
1 ,

δ

4t

)
.

Now the lemma follows since max{A , B} � A + B and min(A , B) � AεB1−ε for all
A, B � 0 and ε ∈ (0 , 1). 
�
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