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Abstract

The study of intermittency for the parabolic Anderson problem usually focuses on the
moments of the solution which can describe the high peaks in the probability space. In
this paper we set up the equation on a finite spatial interval, and study the other part of
intermittency, i.e., the part of the probability space on which the solution is close to zero.
This set has probability very close to one, and we show that on this set, the supremum of the
solution over space is close to 0. As a consequence, we find that almost surely the spatial
supremum of the solution tends to zero exponentially fast as time increases. We also show
that if the noise term is very large, then the probability of the set on which the supremum of
the solution is very small has a very high probability.

Keywords Intermittency - Stochastic partial differential equations - White noise -
Dissipation

Mathematics Subject Classification Primary: 60H15 - Secondary: 35R60

1 Introduction, Background, and Main Results

Consider the solution u to the parabolic stochastic PDE (SPDE, for short),
du = 02u + o (u)& (1.1)

where u = u(t, x),t > 0, x lies in the torus T := [—1, 1], 0 : R — R is non-random and
Lipschitz continuous, and £ = &(¢, x) denotes space-time white noise. The initial profile
up(x) := u(0, x) is assumed to be non-random, and to satisfy
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0 < inf up(x) < supug(x) < oo. (1.2)
xeT xeT

The Laplace operator 8)% in (1.1) is endowed with periodic boundary conditions on T.
According to the standard theory of SPDEgs, there exists a unique almost surely continuous
random field u that satisfies

sup supE (lu(t,x)|k> <oo forallT >0andk > 2,
t€(0,T) xeT

that solves (1.1); see [7,16,28]. See also Sect. 2 below for further details.
In addition, we suppose that there exist two real numbers Lip, > L, > 0 such that!

o(a)

L, < < Lip, foreverya € R\ {0}. (1.3)

a

Because the cone condition (1.3) implies that o (0) = 0, the positivity principle for SPDEs
implies that

P{u(t,x) > 0foreveryt > 0andx € T} = 1;

see [23].

One of the interesting properties of (1.1) is that its solution is intermittent in the sense
of [2,10]. More precisely, intermittency (or moment intermittency) can be defined as the
property that

y (k)

(k)
k — = and/or k +— ZT is strictly increasing on [2, 00), (1.4)

where A [2,00) = [—00, 00] are given by

y (k) = liminf © inf logE <|u(t , x)|k) and 7(k) := lim sup + sup log E (|u(t , x)lk) .
- 1—oo t xeT t—oo I xeT
Here y and y are called lower and upper moment Lyapunov exponents respectively.

As aresult of Jensen’s inequality, it is easy to see that both k +— y (k)/k and k — Yy (k)/k
are monotonically nondecreasing. So the defining feature of intermittency is the strictness of
this monotonicity. Indeed, Jensen’s inequality for moments is strict iff the random variable is
not constant over the probability space. In the setting of this paper, intermittency is implied
by the following, more easy-to-check, weak intermittency condition:

0<yk) <y(k) <oo forallk >2; (1.5)

see [10] for the relation between (1.4) and (1.5) and also see [11,17,18,25,29] for the moments
and weak intermittency of the solution « to (1.1) on bounded intervals with various boundary
conditions. We have set things up so that (1.5) is in fact equivalent to the strict monotonicity
of both k > y (k)/k and k — Yy (k) /k.

In order to see intuitively how moments yield information about the peaks of the solution,
assume that ug(x) = constant for all x € T. It can be shown that this assumption implies
that the distribution of u (¢ , x) does not depend on x. We also suppose that y = 7y, and call
their common value y. This means that, for every k > 2, o

E (Iu(t : x)l") ~ eV B, (1.6)

! Clearly, (1.3) is equivalent to the condition that o (0) = 0 and inf, ¢ |o(a)/a| > 0. Therefore, we can
always choose Lip,; to be the Lipschitz constant of o. This remark also justifies the notation for Lip,; in (1.3).
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504 D. Khoshnevisan et al.

where ~ denotes logarithmic equivalence, i.e., f(t) ~ g(t) means lim;_,  (log f(¢) —
log g(1))/1 = 0.

Because k +— y (k)/k is strictly increasing on [2, 0c0), there exist constants 2 < k; <
ko < ---, all strictly increasing, and events Aj(t), A2(?), ... (one for every t > 0), and
constants Cy, Cy, ... > 0 such that:

(I.1) P(A,(t)) < exp(—C,t) foralln > 1 and all large r > 1; and
(1.2) Foralln > 1,E (Ju(t,x)|") ~ E (Ju(t, x)[%; A, ().
Indeed, by (1.4) we can find for every n > 1 real numbers a, such that

y (kn—1) <ay, < V(kn)’ (1.7)

knfl kn

then set
Ap(@) ={weQ: ™ < u(t,x) ()]},

and finally apply Chebyshev’s inequality to deduce (I.1):

P (An (1) < xp (~auko—10) E (Jutt, 1))

~ exp (—ankn—1t + y (ko)D) [see (1.6)]
~ exp(—Cy,t) for some C,, > 0 [see (1.7)].

We deduce (I.2) by noticing that

E <|M(t7x)|k” ; [An(t)]C> < exp (kpant)
L exp(yk,)t)  [see (1.7)]
%E(W(LX)Ik”) [see (1.6)],

where f(t) < g(t) denotes lim;_, »,(g(¢)/ f(¢)) = oo. From this simple heuristic about the
Lyapunov exponents, we learn a good deal about the high peaks of u, namely, that:

1. The moments of the solution grow exponentially rapidly as t — oo, and nearly all of
the contribution to the k,-th moment of u (¢, x) comes from a small part [A, (¢)] of the
probability space where u(z, x) is unduly large; and

2. The kj-th, ko-th, ...moments of u(t, x) are influenced by decreasing small parts of the
underlying probability space.

In other words, the high peaks tend to appear at large times, and they tend to be highly
localized in the probability space. This picture describes one part of “physical intermittency”
in probability space where physical intermittency usually refers to the property that the
solution u tends to develop “fall peaks,” “distributed over small islands,” and “separated by
large areas where u is small (voids)” (see [1-3,6,13,14,19,20,22,30-33]).

The main goal of the present paper is to study the part of physical intermittency that
does not seem to be a natural consequence of conditions such as (1.4) or (1.5). Namely, we
currently propose to analyze the “voids” (the event where u is small). One of the key steps
toward this goal is the following result, which is the counterpart to (1.5).

Theorem 1.1 There exist ty > 1, events B(t) for every t > ty, and constant ¢ > 0 which is
independent of t such that for every k > 2, there exist c1 k, ca x > 0 such that:

1. P(B(t)) 2 1 —c exp(—ct) forall t > ty; and
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2. Forallt > 1,

e M KB (ingr|u(t,x)|k; B(t)) <E (Sup|u(t,x)|k; B(;)) < o1 pe 2k
X€E

xeT

Loosely speaking, B(t) of Theorem 1.1 denotes the event that u(z, -) is exponentially small
in a sense that will be made precise in (8.4) below.

Theorem 1.1 will be proved in Sect. 8.

We learn from Theorem 1.1 the following property which contrasts with the earlier dis-
cussion about moment intermittency and its consequences: For large values of ¢, only a tiny
part of the probability space contributes to the moments of u(z , x). In some sense, this prop-
erty and moment intermittency give us a complete mathematical description of the “physical
intermittency” of the solution u in probability space.

In this connection, let us also mention a more precise result. The following is a non-trivial
pathwise variation of Theorem 1.1, which gives precise bounds on the a.s. dissipation of the
solution to (1.1), viewed as the solution to a semi-linear heat-flow problem in the random
environment &.

Theorem 1.2 With probability one,

o1 . . 1
—o00 < liminf — log inf u(z, x) < limsup —logsupu(t,x) <O.
t—>00 t  ©xeT =00 YeT
In particular; the positive random variable sup, . u(t , x) converges a.s. to zero [fast] as
t — oo.

Theorem 1.2 tells us that the solution to (1.1) decays exponentially rapidly as + — 00. One
can understand why this might happen intuitively as follows: Let us specialize (1.1) to the
case that o (x) = x for all x € R, and consider the SPDE,

ov(t,x) = afv(t,x) +ov(t,x)o,W() forallr >0, xeT,

with periodic boundary condition on T, where W = {W (¢)},>0 denotes a Brownian motion
that does not depend on the spatial index x. For simplicity, let us also assume that the initial
data is a constant vy # 0. In that case, it is possible to check that the [t6—Walsh type solution
to the preceding SPDE is

(t,x) = v(t) = voexp (W(t) — 41).

The law of large numbers for W immediately implies that v(f, x) — 0 exponentially fast
as t — oo. Here, the noise is much more regular than space-white noise. But since the state
space T is bounded, one might hope that the large-time behavior of v might be roughly similar
to that of u. Theorem 1.2 is a rigorous way to say that the preceding is indeed the case.

Remark 1.3 (SHE with a linear reaction term) Theorem 1.2 and its proof can teach us about
the asymptotic behavior of the solution to other type of SPDEs as well. For instance, consider
the following reaction-diffusion equation with multiplicative noise:

dv = 02v + b(v) + AV, (1.8)

where v(0, x) = 1 for all x € T, the reaction term b : R — R is Lipschitz continuous
functions, and »(0) < O (say). The SPDE (1.8) comes up, for example, in Zimmerman et
al [33] as a toy physical model for a random field that is predicted to have spatio-temporal
intermittency. Because b(z) < cz for all z € R, where ¢ denotes the Lipschitz constant of b,
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it follows from the comparison principle [27] that v(z , x) < V (¢, x) forall? > Oandx € T
a.s., where V satisfies the SPDE,

8V =032V +cV +AVE,

with initial condition V(0,x) = 1 forall x € T, and A > 0 is a nonrandom constant that
denotes the level of the noise. One can verify that V (¢, x) = e“u(t, x) for all x € T and
t > 0, where u solves the following specialization of (1.1):

o = afu + Aué&,
subject to #(0, x) = 1 for all x € T. The proof of Theorem 1.2 shows that, for all large ¢,
e C1f )1 <ult,x) <7czf20~)t’

where ¢; > 0, ¢; > 0 are nonrandom real numbers that do not depend on 2,
limy 0 f1 (A)/A4 = 1,and limy_,  f> ()»)/)»2 = 1. We can assemble these remarks as fol-
lows: On one hand, if A is large, then 0 < v(7, x) < exp[—(c2 f2(A)—c)t] — 0exponentially
fast as + — oo. On the other hand, if X is small, then v(¢, x) > exp[(c — c1 f1(X))t] = oo
exponentially rapidly as ¢+ — oo. This example yields partial rigorous proof of some of the
physical/computational predictions of Zimmerman et al [33].

Our analysis of Theorems 1.1 and 1.2 hinges on a novel L' /L interpolation inequality,
see Proposition 5.2, which is interesting in its own right. Roughly speaking, we can control
the supremum of our solution by its L' norm, and we can show using martingale arguments
that, with high probability, the L' norm declines exponentially.

Our analysis has other consequences too. For example, we can describe the system (1.1)
in the “high-noise” setting. That is, consider the SPDE (1.1) where we replace o () by Ao ()
for a large constant A > 0, as follows:

ou(t,x; A) = %Bfu(t,x A FAo(u(t,x; A)E(, x), (1.9)

with periodic boundary conditions on T and initial value u(, as before. In other words, we
simply replace the function o by Ao, and add X to the notation for u to help keep better track
of this change. Since Ao is also Lipschitz continuous and satisfies (1.3), all of this is merely
recording a change in the notation.

Now we can state a result about the large-noise behavior of the solution to (1.1), equiva-
lently the large-A behavior of the solution to (1.9). Roughly speaking, the following theorem
states that if the level A of the noise is high then voids take over rapidly, with very high
probability. More precisely, we have

Theorem 1.4 (Large-noise regime) For everyt > 0,

, 1 . P{ ¢x: 0 ( L§A21)} _ L2t
1m sup — 10g supu(t, x; >exp| — X T 4 -
Atoo 22 xeT 64 64

In particular, for every t > 0 fixed, the positive random variable sup, .1 u(t , x ; L) converges
in probability to zero [fast] as A — oo.

We conclude the Introduction by setting forth some notation that will be used throughout
the paper.

In order to simplify some of the formulas, we distinguish between the spaces L*(T) and
L¥(P) by writing the former as

LF=15T) [1<k< o]
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Thus, for example, if f € LK for some 1 < k < oo, then || f|;x = [fj1 |f (o) dx] k.
We will abuse notation slightly and write || f||z~ := sup,ct | f(x)[, in place of the more
customary essential supremum. The L*(P)-norm of a random variable Z € L*(P) is denoted
by | Z]lx := {E (1Z|*)}/* forall 1 < k < oo.

2 The Mild Solution

Consider the SPDEs (1.1) and (1.9). Because u(t,x) = u(t, x; 1), it suffices to consider
only the SPDE (1.9) for a general A > 0. We shall do so tacitly from here on.

Let W = {W(t,x)};>0,xeT denote a two-parameter Brownian sheet; that is, W is a
two-parameter, centered, generalized Gaussian random field with

Cov[W(t,x), W(s,y)] = min(s, t) min(x , y) foralls,t > 0andx,y e T.

It is well known (see [28, Theorem 1.1]) that W has continuous trajectories (up to a modifi-
cation). Therefore,

E(r,x) =00 W(r,x)

exists as a generalized random function. This & is space-time white noise, and was mentioned
already in the Introduction.

Let(t;x,y) — pr(x,y)denote the fundamental solution to the heat operator 9, — 83 on
(0, 00) x T with periodic boundary conditions and initial data po(x, y) = §(x — y), where
§ is the Dirac delta function. That is,

pr(x,y) = Z G (x —y+2n) [t >0, x,y €T, 2.1)

n=—00

where G is the heat kernel in free space; that is,
2
G:(a) = (47'rr)_1/2 exp <—Z—> forallt > Oanda € R. 2.2)
T

Also, let {P;};>0 denote the corresponding heat semigroup. That is, Py f := f for every
measurable and bounded function f : T — R4, and

1

(P f)(x) :=/lp;(x,y)f(y)dy, (2.3)

forall > 0and x € T.
With the preceding notation in place, we then follow Walsh [28, Chap. 3] and interpret
(1.9) in mild/integral form as follows:

u(t,x ;2 = (Pruo)(x) +Zi (x ; 1), 24
where 7 is defined pointwise as the Walsh stochastic integral,
Lon=n [ peyotus .y i) Wdsay), @5)
0,1)xT

for every , A > 0 and x € T. As was mentioned in the Introduction (for A = 1), it is well
known [28, Th. 3.2, p. 313, and Cor. 3.4, p. 318] that there exists a unique weak solution of
(1.9) that is continuous and satisfies (2.4), as well as the following moment condition:
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508 D. Khoshnevisan et al.

sup E(Iu(t,x;k)lk)<oo [0<T <o0, 1 <k < ool 2.6)
tex(S:ET]

Moreover, for every A > 0,

P{u(t,x;A) >0forallt >0andx € T} = 1. 2.7

In the case that o (z) := const - z for all z € R, this follows from Theorem 1 of Mueller [23].
The general case follows by making modifications to the proof of that theorem; see the proof
of Theorem 1.7 of Conus et al [5].

3 The Total Mass Process

We may integrate both sides of (2.4) [dx] in order to see that

(e, -5 M)l = lluolizr -H»/(O ] TU(M(S,y;A))W(dsdy) [r > 0]. 3.1
1%

The interchange of the integrals is justified by an appeal to a stochastic Fubini theorem [28,
Th. 2.6, p. 296]. Thus, it follows from (1.3), (2.6), (2.7) and (3.1) that t — |lu(t,-; A)| 11
defines a positive, continuous, Lz—martingale. The following result ensures that the said
martingale decays exponentially rapidly at rate not less than a fixed multiple of A2.

Proposition 3.1 Foreveryt,A > 0ande € (0, 1),

(1 —e)r2L2s e22 2121
Pylluts, s M)l 2 llugliprexp| ——————— | forsomes >t <exp|— )

4 16

The proof of Proposition 3.1 requires a basic lemma about continuous martingales, which
might be of independent interest.

Lemma3.2 Let X = {X;};>0 be a continuous L?(P) martingale, and suppose there is a
nonrandom ¢ > 0 such that (X); > ct forallt > 0, a.s. Then, for all nonrandom constants
e, T >0,

cTe?
P{X; > e(X); for somet > T} <exp|— > .
Proof Recall that a continuous local martingale such as X is a time-change of a Brownian
motion {B(s)}s>0 (see [26, Theorem 1.6, p. 181]), so that X; = B({X);) forallt > 0, a.s.
We first note that

B(s
P{X; > e(X); forsomes > T} < P{ sup ()28 .
s=cT S

Next we note that {B(s)/s}s~0 has the same law as {B(1/s)}s~0 thanks to Brownian time
inversion. Thus

P{Xt 2 €(X>l for some ¢ 2 T} g P sup B(r) 2 et
r<1/(cT)

Because (27)~1/2 faoo exp(—x2/2) dx < (1/2) exp(—a2/2) for all a > 0, the reflection
principle implies the result. O
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Armed with Lemma 3.2, we conclude the section with the following.

Proof of Proposition 3.1 In the case that o (z) = const - z for all z € R and the SPDE (1.1)
has Dirichlet—instead of periodic—boundary conditions, Mueller and Nualart [24, Theorem
2] have proved that E(Ju(z, x ; M*) < ocoforalll < k < oo, t > 0,and x € T. Their
argument, in fact, proves that, in the present setting,2

|

1
M,::||u(t,-;x)||L|=/ u(t,x;A)dx [t > 0],
-1

—k
ing‘u(t,x;}\) )<oo [t>0, 1<k <o0] (3.2)
xe

Let us define

and infer from (3.2) that
E (M;") <00 forallr >0and 1<k < oo, (3.3)

We will use (3.3) several times, sometimes tacitly, in the sequel.
We can apply It6’s formula in order to see that, a.s.,

t 1 t
log M, zlogMo+/ M7t dM, — 5/ M72d(M); forallz > 0.
0 0
Define
13
N; = / M;l dM; forall ¢+ > 0.
0

Let {#;};>0 denote the filtration generated by W(s,-) for s < t. Then, clearly, N :=
{N:, Z}1>0 is a continuous Lz-martingale with quadratic variation (N); = f(; M;2 d(M);
at time ¢ > 0. In other words, log M; = log My + N; — %(N), a.s. for all ¢+ > 0; this is
another way to say that

M; = Mg exp (N, — 3(N);)  as.forall ¢ > 0. (3.4)

That is, M is the exponential martingale of the martingale N, and M is initialized at M.
We examine the quadratic variation of N more closely next:

(N), 22 ["ds [! a2
_7/0 W/_Idy[a(u(s,y,k))]

t

)\‘2 t dS 1
> 7/0 W/IdyL?,m(s,y;x)F (3.5)
7/
N A2L2
= 2 bl

owing to Condition (1.3) and the Cauchy—Schwarz inequality. In light of (3.4),
P{I3s>1: My > Moe P} =P{3s >1: Ny > J(N)s — Bs} .

2 There is an extension of the method of Mueller and Mueller—Nualart [23,24]—see the proof of Theorem
1.7 of Conus et al [5]—that proves (3.2) in the present more general choices of o for SPDEs on R4 x R. The
latter argument works in exactly the same way in the present setting.
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for all B, ¢ > 0. Therefore, we may first use (3.5) and then appeal to Lemma 3.2 in order to
see that, as long as 0 < 8 < 12L§/4,

1 28
2 222

A2L2r (1 28 \?
Sexp(— 40 <2_A2L3>

2212 2
= exp (—tk_zL;Z (T” — ﬂ) ) .

Substitute 8 = %(1 — s))»zL(z7 to deduce Proposition 3.1. ]

P{EIsZt: MS>Moe_ﬂS}<P{N5>( )(N)S forsomes}t}

4 Regularity

In order to prove the announced regularity properties of the solution u to (1.9) we first require
a moment bound, with explicit constants, for the solution u.

Proposition 4.1 Choose and fix a real number ¢ > 48. Then, for all real numbers k > 2 and
A > 0 that satisfy kA> > (cLip2)~", the following holds: Uniformly for all t > 0,

48\ M2 2
supE <|u(t VX A)|k) < 2k/2 (1 — 7) IIuolllim - exp (—Lipik%“t) .
xeT c 2

Proposition 4.1 implies also (2.6).

Proof We modify some of the ideas of Foondun and Khoshnevisan [10], but need to make a
series of modifications. Define
9 = *Lipt k24, 4.1)

where, ¢ > 48 is large enough to ensure that ¥ > 1 whenever kr2 > (cLip(z,)‘1 holds.
Forallf > 0and —1 < x < 1,letu'” (x) := ug(x ; ) and define iteratively for all n > 0,

WD (s 2) = (Pag) (v) + T (), (4.2)

where {P;};>0 continues to denote the heat semigroup—see (2.3)—and

I ) =1 (x5 1) = A/ Pi—s(x, )o@ (y)) W(ds dy).
0,1)xT

The random field (¢,x) +— u?”)(x) is the nth-stage Picard-iteration approximation of
u(t,x;A).
It is well known (see [28, Chap. 3]) that

k
lim sup supE ( uﬁ”)(x) —u(t, x)’ > =0, 4.3)

=09 4¢(0,T] x€T

and

k
lim sup supE ( I,(”)(x) — T (x; )L)‘ ) =0,

=09 4¢(0,T] x€T

forall T € (0,00) and k € [1, 00).
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Since the semigroup {P;};>¢ is conservative, (P;ug)(x) < [lugllze for all + > 0 and
x € T. Therefore, (4.2) implies that for all integers n > 0 and real numbers k € [2, c0),
t >0,andx € T,

a0 < IR0+

)| < ol +

7 (x) Hk R

A Burkholder-Davis-Gundy-type inequality for stochastic convolutions (see [16, Pr. 4.4, p.
36]) then yields the following inequality:

| < \/4“2 / 4 /| 11 ay [pse 0 o on|

4.5)

‘ ! ! S IEVINL

< Lip, 4kk2f dS/ dy [pr—s(x, »)] ||us (J’)Hk'

0 -1
By the Chapman—Kolmogorov equation and symmetry,
1 5 1
/ [pi—s(x.y)]" dy 2/ Pi—s(x, Y)pi—s(y, x)dy = pag—s)(x, X)

! ! (4.6)

1
<2 +1);
(=)

the final estimate is justified by Lemma B.1 below. Let us define

Y (1) == sup

2
ufn) (x) H for all + > 0 and integers n > 0.
xeT k

We can combine (4.5) and (4.6) and use the elementary inequality (a + b)? < 242 +2b%to
see that

n : ! n 1
YD) <2l + 16L1p§k12/() v (s) («/ﬁ + 1) ds.

Multiply both sides by exp(—291) in order to see that

Wy 1= sup [y ()]
>0

satisfies

t 1
W11 < 2lluol?e + 16Lip2 W, kA% su / e P9 <7+1>ds
n+1 I 0||L Po ¥n t;% A m

o0 1
< 2llull7 + 16Lip§xpnm2/0 e " (ﬁ + 1) dr

. T 1
= 2|lugll7 + 16Lipz W,k (\/;Jr 5) .

Because ¥ > 1, we have / /0 + 91 g 3/\/5, and hence

48Lip2 k2>

NG

48
i1 < 2uol3 e + W, =2[lugll?~ + — Wy foralle > Tandn >0,
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512 D. Khoshnevisan et al.

The second line follows from the first, thanks to (4.1) and the fact that ¢ > 48. Because
Wy = sup, ¢ uo(x) is finite, the preceding implies that sup,, >, ¥, < oo, and

, 5 48\ !
limsup W, < 2llupllje (1 —— .
n—o00 C

According to (4.3) and Fatou’s lemma,

lim sup W, > supsup [e " [lu(r, x; M)7F].
n— 00 t>0xeT

Therefore, we may combine the preceding two displays, all the time remembering our choice
of ¢, in order to conclude that

2 2 vt 48 -
e x s IE < 2uolize” (1-=2)

uniformly for all -1 < x < land ¢ > 0, and all kK > 2 and A > O that ensure that ¢ > 1.
This is another way to state the proposition. O

We now use our moment bound [Proposition 4.1] to establish the regularity of A +—
u(t,x;A).

Proposition 4.2 Choose and fix a real number ¢ > 48. Then, for all real numbers k > 2 and
o, B > 0 that satisfy k(e v B)* > (cLip(zr)_], the following holds: Uniformly for all t > 0,

loo — Bk
(a AP

2
c .
supE (Ju(r, x5 @) = u(e x: HIF) < L uollf exp <5szj‘,k3<a v ﬂ)4t> :

xeT

with Le == (96/¢)(1 — (48/¢))~2.

Remark 4.3 Standard methods—see [28, Chap. 3]—show that (¢, x) — u(¢,x;2) has a
continuous modification for every A > 0. In fact, forevery e € (0,1),k 22, T > t) > 0
and A > 0,

lu(t,x; X)) —u(s,y;A)|
sup sup

2e(0.A) || —1<xty<t X = y|A78/2 |5 —g|1=e)/4
to<s#t<T k

One has to be somewhat careful here since, unlike the standard theory [28], we may not
choose 1y to be zero here. The details can be found in Proposition 5.1 below. In any case, we
can see from Proposition 4.2 and an appeal to the Kolmogorov continuity theorem [i.e., a
chaining argument] that: (i) (¢, x , A) — u(¢, x ; A) has a Holder-continuous modification on
R4 xTx (0, 00); and (ii) That modification satisfies the following forevery p, ¢, r € (0, 1),
k>22,A>A>0,and T > 19 > O:

sup lu@,x;0) —uls,y;p)l -
Ci<aty<t X = yIP2 s —t]9/4 4 |a = B
to<s A <T
A<aEBLA L
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To paraphrase Walsh [28], the process A +— u(t, x ; A) comes tantalizingly close to being
Lipschitz continuous. One can elaborate on this further as follows: Define

0
D, x;A) = a—)\u(r,x;k),

where the A-derivative is understood in the sense of distributions, and exists because u is
a continuous function of A [up to a modification]; see the preceding remark. According to
Rademacher’s theorem, because o is Lipschitz continuous, it has a weak derivative o/ €
L°°(T). Then, one can appeal to a stochastic Fubini argument in order to see that Z is the
unique solution to the A-a.e.-defined stochastic integral equation,

D(t,x; 1) = / Pi—s(x, y)o(u(s,y;r) W(dsdy)
0,H)xT

+k/ Pi—s(x, y)o'(u(s,y; M)2(s, y; 1) W(ds dy).
0,1)xT

It is not difficult to show that if o has additional regularity properties—for instance, if o’ is
Lipschitz continuous—then Z is almost surely Holder-continuous in its three variables [up
to a modification]. This proves the following:
Proposition. If ¢ € C!'(R) has a Lipschitz-continuous derivative, then A — u(f,x; X) is
a.s. continuously differentiable for every t > 0 and x € T.

We do not know whether the Lipschitz-continuity of o is really needed for this differen-
tiability result.

Proof of Proposition 4.2 Without loss of generality, we assume throughout that o« > .
We can write

ut,x ;o) —u(t,x;B)=Lx;a)—L(x; B) =1 + 1z,
where
7 :=a/(0 : Tpt-s(x,y) [ou(s,y;a) —o(u(s,y; BH]W(dsdy),
1) X

T :

(@ —p) Pr—s(x, y)o(u(s,y; B) W(dsdy).
0,6)xT

Although 77 and 7; both depend on (x , 7, ¢, B), we have not written those parameter depen-

dencies explicitly in order to ease the typography.
Define

D* :=supsup [e " lu(s, ys ) —uls,y: BI].
s>0yeT

where ¥ is defined as in (4.1), but with a small difference; namely,
Y= chipikzo/‘.
Our condition on c is that ¢ > 48 is large enough to ensure that ¥ > 1.
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514 D. Khoshnevisan et al.

We apply the Burkholder-Davis-Gundy-type inequality, [16, Pr. 4.4, p. 36], in order to see
that

t 1
173113 <4ka2Lip§f0 ds/ldy [pr—s(x, P Hluls, ys ) —uls, y; BIIE
t 1
< dka’Lip2 D%’ / e " ds / dy [ps(x. 1
0 —1

t
= 4ka’Lip2 D%e”! / pas(x, x)e " ds,
0

thanks to the Chapman—Kolmogorov equation and argument in Proposition 4.1. Lemma B.1
below ensures the following:

A
T 2<8k ZL' 2D2 l?t/ 7_’_1 719_\‘d
171y o Lipe e | NG e s

1
= 8ka2Lip2 D% | 4+ =
@ Mo e sty

24a’kLip2 D%e?
< P
Vi
_ ﬁpzem
: :

We proceed in like manner to estimate the moments of 7. First, note that, because & > S, a
Burkholder-Davis-Gundy bound and Proposition 4.1 together imply that

t 1
172117 < 4k(a — B)*LipZ / ds f dy [pr—s e, P lluts, y; BIIF
0 —1

48\ 7! _ t 1
< 8k (1—?) (o — BY2LipZ o2 / ds & f dy [pres (6, NI
0 —1

Therefore, after making a change of variables, we appeal first to the Chapman—Kolmogorov
and then to Lemma B.1 below in order to deduce the following:

48\ ! , o
12117 < 8(1 - 7) k(a—ﬂ)2L1p§||uo||%me“/ e pay(x, x)ds
0
438 ! 27 1.2 2 vt > —s 1
<l6(1—-— k(a — B)“Lip; |lugll7 € e —=+1])ds
C 0

J5
48 48\ !
< — (1 - ?> (@ — B)?llugllF~e’".

‘We can now collect terms to find that
lut, x5 0) —u(t,x; I <2077 + 2153
48 96 48\ !
< —=D%" + — (1 - —) (@ = B)lluol7~e”".
C

C co

This bound holds pointwise. Therefore, we can divide both sides by exp(#¢) and optimize
both sides over x € T in order to conclude that

48 96 48\ !
D2 —D*+ — <1 - —) (@ — B)lug|? oo
C ca Cc
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Dissipation in Parabolic SPDEs 515

Since « > B and ¥ > 1, we may appeal to Proposition 4.1—with A there replaced by o
here—in order to see that D < oo. In particular, because ¢ > 48, we find that

22 < lluollj (1 - 48)‘2 (@~ p)°

c c a?

This is another way to state the proposition. O

5 Improved Regularity via Interpolation

In this section we use interpolation arguments to improve the moments estimates of the
preceding sections and introduce new moment estimates that, among other things, justify
also Remark 4.3. One of the consequences of the matter that follows is this:

Proposition 5.1 The process (t , x , L) — u(t, x ; A) has a continuous modification, indexed
also by (0,00) x T x (0, 00), that weakly solves (1.9) outside of a null set that does not
depend on (t , x , A).

The following will be the main result of this section.

Proposition 5.2 There exists ¢g = eo(Lip,) € (0, 1), small enough, such that for every
e € (0,¢&0) and ty = 1 there exist finite constants C; = Ci(¢, Lip,) > 0 and C; =
Ca(Lip,) > O—neither depending on uo—such that uniformly for all real numbers A > 1,
k>2 andt > 1,

E(sup sup |u(s,x; A)|k>

xeT se(r,t]
Crk32%t
< CRRFP (1 |t = 10]) <272 exp (2872) leeo 15 g 15

For us, the key feature of the preceding formula is the particular way in which the expec-
tation on the left-hand side is controlled by the L' and L norms of uo on the right. Still,
we do have to be somewhat careful about the other intervening constants in order to be sure
that they are not too large for our later use [they fortunately are not].

We will use Proposition 5.2 and the related Proposition 5.9 in the following way. First we
shift time so that we canreplace ug by u (¢, - ; A) andreplace u (¢, - ; A) byu(¢+h, -; A). Then,
by using our propositions, we can control u (¢ +h , - ; A) by the productof ||u(t, -; A)|| L~ toa
small power, [lu(t, -; A)|| .1 to alarge power, and by exp(—Ch) for some positive constant C.
In fact, we would rather have a negative exponential involving ¢ + A, that is, exp{—C (¢t + h)}.
To move from A to ¢t + h, we let i be a multiple of 7. But we still need a negative exponent.
Proposition 3.1 shows that with high probability, [lu(z, - ; 1)|| ;1 declines exponentially fastin
t,and hence also in #+h. We also have to deal with |[u (¢, - ; A) || raised to a small power. But
here we can use Propositions 5.2 and 5.9 once more, and the small power of ||u(t, -; A)|| Lo
means that we have introduced a slowly-growing exponential exp(ct), which is comparable
to exp{c’(t + h)} for a small constant ¢’. We will see that the negative exponential wins out,
with the result that [[u(z, - ; A) || is small with high probability.

The proof of Proposition 5.2 hinges on a series of intermediary results, some of which
imply Proposition 5.1 as well. We will use the mild form (2.4) to estimate u(t , x ; A). Our
first technical result is an elementary interpolation fact about the heat semigroup {P,};>0,
defined earlier in (2.3). This result will allow us to estimate P;ug, the first term on the right
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side of (2.4). Then we will use an argument related to Gronwall’s lemma to estimate the
second term Z; (x ; A) on the right side of (2.4). In fact, Z;(x ; 1) is an integral containing
terms which also involve the heat semigroup.

Lemma5.3 Foreveryt > 0ande € (0, 1),
_ 1— _
IPaollzoe <2 (72 v 1) Hluollf oo lluoll} -
Proof We first observe that
Il Pruoll o < min (Jlugllzoe , 2[¢7% v 1] fluoli 1) - (5.1

Indeed, since the semigroup { P, };>0 is conservative, we clearly have (P;ug)(x) < |lugll
for every x € T. And Lemma B.1 below implies that (Prug)(x) < 2072 v Dluol| ;1 for
every x € T. Now that we have verified (5.1) we deduce the lemma from (5.1) and the
elementary fact that min(a , b) < a®b'~¢ for everya,b > 0and¢e € (0, 1). O

Next we establish an improvement to Proposition 4.1. The following is indeed an improve-
ment in the sense that it shows how one can control the moments of the solution to (1.9) by
using both the L and the L' norms of the initial data, and not just the L> norm of uo.
This added improvement does cost a little at small times. This latter fact is showcased by the
appearance of a negative power of ¢ in the following.

Proposition 5.4 Let ¢ := 208+/2 ~ 294.2. Then, for all real numbersk > 2, ¢ € (0, 1), and
A > 0 that satisfy kA> > g(cLip?,)_l, the following holds uniformly for all t > 0:

4k C2
k 4,. 4 k k(1—
swEQMnxmn)<;W;mem<§PAUmQuwm;wﬂ;8%

xeT

Proof Let {u(”)}fl"=0 be the Picard approximants of u (see (4.2)). Thanks to Lemma 5.3, we
can now write the following variation of (4.4): For all integers n > 0 and real numbers
kel2,00),t >0,and x € T,

The latter quantity is estimated in (4.5). If we use that estimate in (5.2), then the elementary
inequality, (a + b)? < 2a% 4 2b%, valid forall a, b € R, yields the following:

0 (s ) Hk <2 (1m0 v 1) o ol + |

M (x5 0) Hk . (5.2)

2
u§n+1)(x 3 Hk

—(1— 2(1—
<8 (1707 v 1) ol B o

t 1 2
. 2
+ 8k)»2L1p(27 /0 ds / 1 dy [pt,s (x, y)] ug")(y T A) Hk

—(1— 2(1—¢
<8 (1707 v 1) ol B o
1

2
n)(y, -
o
s O )k(ﬁt?

We have appealed to (4.6) in the last line. The preceding motivates us to consider the temporal
functions, U@, UM .. defined via

t
+16kk2Lip§/ sup
0 yeT

+ 1) ds. (5.3)

2
U™ (1) := sup uﬁ")(x i A) Hk [z = 0],

xeT
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in order to obtain a recursive inequality. We can see immediately from (5.3) that, foralln > 0
andt > 0,
Uy @+h (1)
<3 (f“*‘?) v 1) ol 25 o35~ + 16kA>Lip? /l v
< u u i —ds
0 0 Ps 0 \/ﬁ
t
+ 16kA*Lip2 / U™ (s)ds. (5.4)
0
In order to understand this recursion more deeply, let us first note that
t1=¢ 1
sup [ - (t_(l_e) Vv 1):| for all B > 0. (5.5)
t>0 ef ﬂ

This is true simply because ' ~¢e~* < 1 for all r > 0. Therefore, we may define

%™ (B) = sup [% U“"’(r)} 18 >0, m >0,
t>0L ©

in order to deduce the following recursive inequality from (5.4) and (5.5):

?/("+1)(/3)<8<1v ﬂl )IIMOII Slluoll 7 ™7 + 16kA*Lip2 [C(B) + DB %™ (B):

where we have defined, forall0 <& < land 8 > O,

e (YT paen g
C(ﬂ)'_fgg /0 (;> N s | an (ﬂ).—tS;g /()(;) e 5.

It is possible to check [see Lemma A.1 of the appendix] that

C(B)+D(B) < foralle € (0,1)and 8 > 1

13
VB
Thus, we obtain the recursive inequalities,

208kA>Lip?2
2D (B) < 8lluo | Fe luo 2~ + 2w ™ (p),
e/B

valid for all integers n > 0, and reals B > 1 and € € (0, 1). We can replace B with

_ 173056k*)*Lipg
E 8—2’
in order to see that for alln > 0,
2D (B < 8lluol e lluoll7y 7 + %™ (B, (5.6)

for all n > 0, provided that 8, > 1. Note that

2O (B) =sup[t'Fe "] luollFee < lluolFo,
t>0

forevery ¢ € (0, 1) and B > 1. In particular, (5.6) implies that: (i) SUp, >0 UM (B,) < 00;

and (ii) For all n > 0, and provided that 8, > 1,

tim sup % "D (B,) < 16]Juo |35 lluo 7~

n—oo
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The left-hand side is greater than or equal to #!~e A |u (¢ , x ; A) ||i uniformly forall # > 0.
This is thanks to Fatou’s lemma and (4.3). Therefore, for all x € T and ¢t > 0,

2(1—¢)

. 2 —1 W 2
(e, x5 WIIE < 1607 F5eP - flugl| 7 fluollyy ~,

provided that k is large enough to ensure that 8, > 1. This is equivalent to the assertion of
the proposition. O

For our next technical result, let us recall the random field Z from (2.5).

Lemma5.5 Let ¢ := 2082 ~ 294.2. For everye € (0,1)and § € (0, 1) there exists a
finite constant C = C(¢, 8, Lip,) > 0—not depending on up—such that uniformly for all
real numbers A > 0, x,y € T, k > 2, and t > 0 that satisfy k2> e(cLip[z,)_l,

E ('I’(x ) _It(y;)»ﬂk) < C*E2[x — y)*/% max
! ¢354y ke k(1—e)
l’tk7 exp 8—2k A" Lipgt | lluoll e lluollyy -

Proof We apply the Burkholder-Davis-Gundy-type inequality, as in the proof of Proposi-
tion 4.2, in order to see that

t 1
1G5 ) — To(ys MR < 4kA2 /0 ds / 02 [preae. 9 = prear DT lotuts 3 IR

t 1
. 2
< 4k)’Lip, / ds / dz [pr—s(x,2) = pr—s(v. ] s, 23 MIIE
0 —1

2(1—e)
Ll

tds !
/(; gl—¢ /le [Prfs(x,Z)—pzfs(y,z)]z.

The final inequality is a consequence of Proposition 5.4, which is why we need the condition
kA% > e(cLip2)~!. Apply Lemma B.4 to see that

t ds 1 5
/ I—¢ / dz [pl—S(x :2) — Pr—s(y, Z)]
0o s -1
<Clx—yl? /t ds
< y 0 s1I7¢ x ((t N N S)s/z)

T
< C//|);5/2_y£| max{l, 1/\/;}

: 2c? ,
< 64kLip2 exp (8—2k2A4L1p§t> lluo |35 Iluo |

< C|x =yl max {1, 1/1},

where C’ and C” are finite constants that depend only on ¢ and 8. The second inequality can
be obtained by split the integral into f(;/ ... dsand ftt/2 - -+ ds. The first integral is less than

t/2 ds
/O s1—=¢ min ((t/Z)(‘S'H)/Z , (t/2)5/2) ’

and the second one is less than the same bound by a similar argument. The last inequality
above comes from the fact that (§/2) — e + (1/2) < 1forall§ € (0,1)and e € (0, 1), so
that (1/7)%/2=¢+1/2 < 1/t fort < 1. We combine the preceding two displays to conclude the
proof of the proposition. O
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We can combine Lemmas B.5 and 5.5 together with (2.4) in order to deduce the following.

Proposition 5.6 Let c := 208+/2 ~ 294.2. For everye € (0,1) and 8 € (0, 1) there exists
a finite constant C = C(¢, §, Lip,;) > 0—not depending on uo—such that uniformly for all
real numbers .. > 0, x,y € T, k > 2, and t > 0 that satisfy k2> e(cLip?,)_l,

E(lu(. x50 —ut, y; 0IF)

< Ckkk? <|x _ y|8k/2 +lx— y|sk/2>
2
max 11, -2 exp (S04 Lipts llueo |16 [luo 2
k2 [P 2 Po ol e littolipy

The preceding is amoment continuity result about x +— u(z, x ; 1). The following matches
that result with a moment continuity estimate for ¢ — u(t, x; A).

Proposition 5.7 Let ¢ := 208+/2 & 294.2. For all real numbersk > 2, 1. > 0,8 € 0, 1/4),
e € (0,1), andt > 268 that satisfy k> > e(cLip2)~",

E(Iu(t—l—é,x;A)—u(t,x;k)|k>

k/2
8¢ A*k~/5Lip? c? _
< 74k [t1+8 + Tspo' exXp <?k3A4Llp§t>

k k(1—¢)
Nuollz e lluolly

Proof In accord with (2.4) we can write
I Zegs (x5 2) — Ze(es M <222 (1T + 172113 (5.7)

where

T = / Prsis(x, Do s, 23 1) W(ds dz),
(t,t+8)xT

T = / [Pros4s(x.2) = pr—s(x, )] o (u(s, z; 1)) W(ds dz).
0,t)xT

Now we apply the Burkholder-Davis-Gundy-type inequality, as in the proof of Proposi-
tion 4.2, in order to see that

t+48 1
. 2
71117 < 4kLip> / ds / dz [prosss (e, 2] s, 25 WIIE
t —1

64kLip2 2¢2 ) ey [T 1 )
<= Z exp (gkz)ﬁLlPﬁ’ leeo 135 lluo 12 S)/ dS/ dz [pios4s(x. )]s
t —1

consult Proposition 5.4 for the last line. We appeal first to the semigroup property of p; and
then to Lemma B.1 below in order to see from the bound § € (0, 1/4) that

t+4 1 E) 1
/ ds/ dz [proyssx, 2] < 2/ <7 + 1) ds < 4v5 +28 < 5V5,
t -1 0 \W/S

whence it follows that
320kLip?2 2¢2 , 21—
IT117 < ————Z exp <8—2k2x4Llp§r V5 - fluol 3 lluoll 75 ). (5.8)

tl—£
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Similarly, we have

t 1
I 72117 < 4kLip2 / ds f dz [prsis(r,2) = prs e, D] lluCs, 25 W13
o -l (5.9)

2 2
< 64kLip; exp (S%kzx“upit) o135 lluo 175~ x Q1 ().

t ds
0:/(8) := f =
[

Lemma B.6 below tells us that

! d §
Q1(8><,/5/ 7Smin<1,—)
sl=e/t =+ t—s
e (1/2)/ min ( 1, 5/t
V o rlmey/T—r l—r
If t > 26, then we write

1—(8/1) 1
T dr b4 dr

8) < /7&5_(3/2)/ . E— ,45_(1/2)/ S —
0 ( ) A A=e(1 — )32 2 YR eV

We can write the first integral as

/-1/2 dr +/1—(5/t) dr _ 23/2)—¢ +217€ /oo dr
0 rl=e(1 — r)3/2 12 rl=e(1 — r)3/2 = e 5/t 73/2

1(3/2)—¢
==+

where

1
/le [Prosss (. 2) = pros (. D]

< §(5/;)—1/2.
&

[We have used the bound ¢ > 2§ in the last line.] And the second integral is bounded from

above by
s\~te pd g s\ e
(1_,) / L=2(1_7> VTt < 491,
t 0 \/; t
This yields
6 /5
Q) < =1

We may apply this inequality in (5.9) in order to see that

1024k Lip?2 c 21—
||T2||§<ﬁexp< kzx“Llp(,)f leeo 175 o135~

We combine this with (5.8) and (5.7) in order to deduce the following:

2688kLip 2c2 , N 21—
[Zrest: ) =Tt ) < Az“exp(azkzk“hpé”)g-lluou% ol 2.

1—e
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This and the argument in Lemma B.7 below together yield
lu(t +8,x50) —u(t,x; 2|3
< 2[(Prgsug) (x) — (Prutg) (T + 2 1 Zeas (x5 1) — Ly (x5 M7

88°  5376k+/8 A2Lip> 2c2 , 21—
< [tm L <8—2k2A4Llp§t> Mueo 15 o35

This easily implies the result. O

Before we derive Proposition 5.2—the main result of this section—we pause and quickly
establish Proposition 5.1.

Proof of Proposition 5.1 We can combine Propositions 4.2, 5.6, and 5.7 together with the
Kolmogorov continuity theorem in order to see that (¢, x , A) — u(¢, x ; A) has a continuous
modification on (0, c0) x R x (0, co). The proofs of Propositions 4.2, 5.6, and 5.7 also
imply, implicitly, the fact that two quantities on the right-hand side of (2.4)—viewed as
random functions of (¢, x , A)—have continuous modifications on (0, co) x R x (0, 00). It
follows that (2.4) holds for all (r,x, ) € (0, 00) x R x (0, co) off a single null set. This
and a stochastic Fubini argument together imply the result. O

We are finally ready to prove Proposition 5.2. Before we commence, however, it might be
helpful to explicitly state the following well-known chaining argument [8]. It might help to
recall that an upright box in R™ has the form ]_[lN:l la; , b;], where a; < b; are real numbers
[1 <i<N]

Proposition 5.8 Suppose { X (t)}:er is a real-valued stochastic process, where T is a bounded
upright box in RN for some N > 1. Suppose also that there exists Q € (0, o0) such that for
every integer K > 2

Bk ::E(|X(s)|K) < oo forsomes €T and Ck := sup E(
s,teT

s#t

IX(I)—X(S)|K>

|t —s|KQ

’

where |t| denotes any one of the £ -norms on v € RN [0 < p < ool. Then, there exists a
finite constant D— depending also on the diameter of T, N, Q and K with QK > N,
—such that

E( sup |X (1) — X(s)|K> < DXCx and hence E (suplX(t)|K> < 2% (Bx + DX Cyg).

s,teT teT
S#EL
Proof of Proposition 5.2 Combine Propositions 5.6, 5.7, and 5.8, all the time keeping track of
the various [explicit] constants. ]

Let us observe also the following fixed-time result, which is proved exactly as Proposi-
tion 5.2 was, but without the #-uniformity.

Proposition 5.9 There exists ¢g = eo(Lip,) € (0, 1) such that for every ¢ € (0, gg) there
exist finite constants C1 = C1(¢, Lip,) > 0 and C» = Ca2(Lip,) > 0—not depending on
ug—such that uniformly for all real numbers % > 1, k > 2 that satisfy kA> > e(cLipU)_l,
and for every t > 0,

1 Cak3 24t -
E <sup (e, x; x)lk) < CHEH? <1 + W) exp (T) o1 o 5.

xeT
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Proof of Proposition 5.9 Combine Propositions 5.4, 5.6 and 5.8, all the time keeping track of
the various [explicit] constants. m]

6 Proof of Theorem 1.4

Define % := {55,0}»0 denote the filtration of sigma-algebras that is defined via

7! ::(7{/ $(s,y) W(dsdy) : ¢>6L2((0,t]x’ﬂ‘)},
0,1)xT

for every t > 0. Let P"° denote the law of the process {u(t, x ; A)};>0,xeT, conditional on
the initial state being u¢. Then we can define

Fr=(70 [t=0l, 6.1)

s>t

where .79 denotes the completion of .Z° with respect to the family {P“0},, 1 of probability
measures. Intuitively speaking, the filtration & := {%;},>¢ is the Brownian filtration that
corresponds to the infinite-dimensional Brownian motion ¢ — W(z, -).

It is well known, see [12, Theorem 9.15, p. 256], that the process t +— u(t,-; ) is a
Markov process, with values in C(T), with respect to the filtration .7 := {.%;},>0 and initial
measures {P"0}, . That is,

E[®u@+7,-:0) | Z]1=E"[®u(r,-;A)] as,

for every bounded functional ® : C(T) — R4, and all #, T > 0, where we have suppressed
the notational dependence on A to keep the notation simple. We can restate this fact as follows:
Choose and fix t > 0 and define v(t ,x) :=u(t +7v,x; ) forall t > 0 and x € T. Then,
conditioned on .%, the random field {v(7 , x)};>0,xeT solves the SPDE (1.9) [in law], started
atv(0, x) :=u(t, x; A), where now the noise W is replaced by a Brownian sheet W® thatis
independent of .%;. In particular, we may appeal to Proposition 5.9, conditionally, as follows:
There exists &g = ¢o(Lip,) € (0, 1/2) such that for every ¢ € (0, gp) there exist finite
constants C; = Cy(¢e, Lip;) > 0 and C» = C»(Lip,) > 0—not depending on up—such
that uniformly for all real numbers A > 2 and ¢ > O and 2 € (0, 1),

CleC2A4h/ez 1
f) S CAARERR] o LTCGRPA! 762

E <sup lu(t +h,x; )\)I2

xeT

almost surely.
Now consider the event,

A2t
A(t; 1) = :w €Q: flu(t, s M@l < lluollr exp (— S )} (6.3)

According to Proposition 3.1 [with ¢ := 1/2],

PA(t; 1) > 1 — e M Lat/64, (6.4)
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Also, (6.2) implies that

E (sup lu(t +h,x; A)Iz; A(r; A))

xeT

- (6.5)
C1eCX /e |y 3179 (1 — e)22L21 )
< exp (— z >E(||u(t,-;k)||Lio).
h 4
Since € € (0, g9) C (0, 1), Jensen’s inequality shows that
E (llutt, s M75) < [E (lute, -5 MIz)[ (6.6)
Proposition 5.9 implies the following [set k := 2 and ¢ := 1/2 in the statement of the

proposition]: There exists a positive and finite constant C3 such that for all #+ > 0 and
A2 > (4cLip,) ™',

4
C%eC3K t
. 2 E
E(Ju(t, ;M=) < ; lluollzoe lluoll -

We plug this estimate into (6.6), and then appeal to (6.5), and the fact that ¢ < g9 < 1/2, in
order to see that

e_’\ng’/S,

4 2 -
_ C4eCs* [(h/e)Fet] “uO”LlE”u(]”soc
= hte

E (sup|u(t +h,x: )P AG A
xeT

6.7)
where C4 := C1C5 and Cs := max(C>, C3). Note that the implied constants do not depend
on(t,h,A).

We now specialize the preceding to the following choice of ¢ and h:

L2 Lot
&= g and h = —2——.
32CsA2 (32C52%)3

This choice is permissible, provided that ¢ < g9 < 1/2; since if X is large enough so that
e < gpand h < 1. Because &g does not depend on ¢, it follows that for every ¢t > 0,

L2t

16 °

1
limsup — logE (sup |u (t + Cer "0, x; A)
Ao A xeT

2;A(t;)»)><

where Cg = L (32C5) ~3¢. By the Chebyshev inequality,

1 L2A%t L2t
limsup—logP{supu t+C6k_6,x;A >exp<— s >; A(t;)\)}g_i_
Moo )\.2 xeT ( ) 64 32

It is easy to see, after a change of variables in the preceding quantitative bounds [before we
apply the limsup], that the preceding holds also with (¢ , x ; 1) inplace of u(r+CeA =%, x ; 1).
For otherwise, we simply replace ¢ by t — C¢A~° in all of the formulas before we let A 1 o0o.
In this way, we can combine the above estimate with (6.4) in order to deduce the theorem.
O

7 Proof of Theorem 1.2

Proof of Theorem 1.2: Upper bound Throughout, we choose and hold A > 0 fixed.
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The proof of (6.2) shows also the following variation, thanks to Proposition 5.2: There
exists g = eo(Lip,) € (0, 1/2), small enough, such that for every ¢ € (0, o) there exist
finite constants C1 = C(e, Lip,) > 0 and C; = C2(Lip,) > O—mnot depending on uo—
such that uniformly for all real numbers A > 2 andn € (0, 1) and ¢t > 1y := 1,

)

4 2 2(1—
< CrlL A+ + DI e MDD o3 ud - 131,

E [ sup sup |u(t—i—h,x;)»)|2
x€T he[l,n(t+1)+1]

3

almost surely. We appeal to this bound with 1 := ¢ in order to see that for all real numbers

A>22,neO,),and?t > 1ty :=1,

3/2 4.2 4 —
< Cr[1+ 830+ D] TR D a0,

E [ sup sup |u(t+h,x;}»)|2
xe€T he[l,e3(t+1)+1]

almost surely. It follows from this inequality that, for the same set A(7 ; 1) as was defined in
(6.3), the following variation of (6.7) holds:

E ( sup sup lu(t +h,x; 0% A@;A)
x€T he[l,e3(t4+1)+1]

3/2 4 _ 3212
< Cr[t+ 8 + D] 2 ug |27 gl e~
3/2 L2 _
= [1+8@+ D] exp <—A2t [?" - 2C5A28:|> o137 o5 o

provided, additionally, that 0 < ¢ < ¢op; here, C; = C7(¢e, Lip,, A) is a positive and finite
constant, and Cs is the same constant that appeared in Sect. 6. We use the preceding inequality
with the following special choice:

. (€0 L2
g:=min| —, ——— ).
2 7 32C5A2

For this particular choice of €, we have
2. . 3 3/2 —12)2(41)/16
E ( sup sup lu(s,x;A)|%; A(t;A) <C3[1+8(t+1)] e o ,
x€T seft+1,(14+3)(+1)]

uniformly for all # > 1, where Cg := C7 exp(A*L2 /16) |uo|37* [ uoll%  is a finite constant
that does not depend on 7. Define

w:=log(1 + 83).

For large integers N, we replace ¢ by exp(N ) — 1 to get that

E ( sup sup lu(s, x; )% AN —1;2)
x€T selexp(Np),exp(IN+1]w)]

AN .
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In particular, Chebyshev’s inequality shows that for all p > 0,

u(s,x;A)
sup su m A(CNM , )»)
x€T se[exp(Nw),exp((N+1]n)]
_1252a(N+Dp
< P{sup sup lu(s,x;0)| = pe lo?e +‘/("‘;A(eN"—l;k)
x€T selexp(Nuw),exp(IN+1]u)]

Cs 3 N2 L2)2eNn
<=1 M:I [ cAbua—
2 [ +e7e exp 7

Combine this estimate with (6.4) to see that

o
Z P :sup sup

Zp
N=1 x€T selexp(Nw),exp((N+111)]

Cs — 3 a2 L2a2eVry & APLZ [eNH —1]
<?NZ_1|:1+86 M:I exp _T +Nz_lexp _6—4 < Q.

u(s,x;A)
o—L22s/64

We can conclude from this and the Borel-Cantelli lemma that

u(t,x;X)
Mm sup |~ es | = O @.1)
almost surely. This completes the first half of the proof of Theorem 1.2. O

The proof of the lower bound of Theorem 1.2 depends on the following large-deviations
bound for sums of dependent Bernoulli random variables. For a proof see Lemma 3.9 of
Khoshnevisan, Révész, and Shi [21].

Lemma 7.1 Suppose Ji, Ja, ...are {0, 1}-valued random variables that satisfy the following
for some non-random constant q¢ > 0: E(Ji41 | J1, ..., Jx) = q forallk > 1, a.s. Then,

2
P{/i4+ -+ J,<ng(l—¢)} <exp (—%) foreverye € (0,1)andn > 1.

We now proceed with the derivation of the lower bound of Theorem 1.2.

Proof of Theorem 1.2: Lower bound We appeal to a one-sided adaptation of a method of
Mueller [23]. Define Ty := 0 and then iteratively let

Tp41 := inf {t >T,: infu(,x; )< e !inf u(T, ,x; A)} foralln > 0,
xeT xeT

where inf @ := co. We have already proved in (7.1) that sup, . u(f,x;A) — 0 as. as
t — oo. Therefore, 7, < oo for all n > 0 almost surely. Moreover, the sample-function
continuity of u shows that the 7,,’s are stopping times with respect to the filtration .# :=
{Z1}1>0, defined earlier in (6.1). We may apply the strong Markov property of u, with respect
to ., at the stopping time 7}, in order to see that for all integers n > 0,

(n)) ’
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a.s., where v = {v® (¢, X)}1>0,xe[—1,17 solves (1.9) starting from the random initial

profile v(()") (x) :=v™0,x) =u(T,,x;N). By the very definition of the stopping time 7,,
and since T, is finite a.s.,

vé")(X) =u(Ty,x;0) e Vinf u(Tpoy, y;0) = -+ = e ™ inf ug(y) =: e "uy,
yeT yeT

a.s. for every x € T, and with identity for some x € T a.s. Because u, > 0 [see (1.2)],

it follows from a comparison theorem [4,23,27] that v® (¢, x) > w™(,x) foralls >0

and x € T as., where w™ solves (1.9) [for a different Brownian sheet] starting from
w" )(x) =w™(0,x)=e" "u,. In particular, for all integers n > 0 and reals T € (0, 1),

P(Tpe1 — T, <t |%r)<Plinf inf w™(@,x LW (x) = e 1y
( n+l1 n | T,,) {XET[E[O‘L’ ( ) 0 ( ) L0}
(1) N (O]
<P isup sup [w™(r,x) —w, (X)’ uy
xeTr€[0,7]

< e’E sup sup

2
w®(t, x)
xeTtel0,1]

wg” (0)

Now, 2™ (7, x) := w™(r, x)/w(")(O) solves (1.9), started at z(”)(x) =zM0,x) =1,
with o replaced by

(n) o _
@=L T’

T £, oy g

e’l

We may observe that the Lipschitz constant of o™ is Lip,,, uniformly for all n > 0. In this
way we find that there exists a finite constant C uniformly in n and K such that

Efﬂ%m—ﬂ%mﬁ
I(t,x) — (s, y) |5/

sup < (CK)K/ZLip[Ir(AKeCK)\“Lipét!
(t,x),(s,y)e(0,7)xT

SELXFEY
(see, e.g., [28, Corollary 3.4] or [8, Theorem 6.8]). Thanks to this and a quantitative form of
the Kolmogorov continuity theorem (see, e.g., Proposition 5.8), there exists a real number cg

such that, uniformly for all € [0, 1],

2
sup P (Tn+1 <7 ?Tn) e? sup E | sup sup z(”)(t,x) — z(()")(x)‘
n>1 n>1 xeT r€[0,7]

. 4y 4
< coA’Lip2 /70 HPaT,

a.s.. Because cp does not depend on 7 € [0, 1], we may choose a special T = t(A, Lip,, co)
by setting
82
(ALip,)* 7.2
where § = §(cp) is the unique strictly-positive solution to cod exp(cor32) = % This yields
P(Tys1 — Ty >7| Fr,) >3 foralln>1as., (7.3)
for the particular choice of 7 that is furnished by (7.2). We now apply Lemma 7.1 with

In = Ywe@: Tyt () —Tp(@)> 1)
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where 7 is given by (7.2) and ¢ = ¢ = 1/2 in order to deduce from (7.3) that

n
n
P {Z L7, —1i>1) < 4} <e 1% forall integers n > 1.
i=1

Because
n
Ty > ) (Tivt = TNy —1i20) 2 T ) Ly —T=0),
i=0 =
we find that
T
P{inf inf ut,x: ) < e—%} < P[Tn < l} <e 1 foralln>1. (74)
xeT0<t<tn/4 4
Since
£,x; A f,x; A
inf u(t,x;2) Cei u(t,x;2)

inf <einf inf _—
xeT t(n— l)/4<t<rn/4 exp(—n) xeT t(n— 1)/4<t<tn/4 exp (— 4t/1)’

the Borel-Cantelli lemma implies the remaining half of Theorem 1.2. O

8 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the proofs of Theorems 1.2 and 1.4.

Proof of Theorem 1.1 Let ¢t > 1. Define A|(¢) as was defined in (6.3) (i.e. Aj(¢) := A(t; L)
in (6.3)), then (6.4) says
P(A(1) > 1 — e *Lat/64, 8.1)

We can also get the following variation of (6.7):

o kAL31/16

431(h /2 k(1-e/2 ke/2
> CheCar 1 e et g H1 =2/ ]

E<sup|u(t+h,x;k)|k; A1(r) hkI2 ke

xeT
for some constants Cy, C2 > 0 which are independent of k and . We now choose
h ! d Lz A (&g is defined in P ition 5.9)
= — and &:= ——-— Agg (g is defined in Proposition 5.
2 T 320,k 00 P
to get that for some constant ¢; > 0 which only depends on &,
E (sup lu(t+1/2,x; M, A](t)) < Eke*“ZLge’/ﬁ.
xeT
Replacing ¢ + 1/2 by ¢ above and redefining A (¢) := A;(t — 1/2), we get
E <sup (e, x: w)|E A](t)> < GekLa/64 g —kALG1/32, (8.2)
xeT
Let us now define

A1) = {we Q:inf inf u(s,x;A)(w) =e /Ty }

xeT 0<s <t
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where 7 = (A, Lip,, ¢g) > 0 is the constant defined on (7.2) and u, := infyeT ug(y). By
(7.4), we get
P(Ax(1)) =1 —e /47, (8.3)

Let
B(t) := A1(t) N A (). (8.4)
By (8.1) and (8.3), we have
P(B(1)) = P(A1(2)) + P(A2(2)) — P(A1(r) U A2(1))

_ 212 42712 _
S 1= e AT _ ML/ /64 5y oot

’

. 2212 .
and by := min {ﬁ, o } Hence, there exists ¢ > 0 for

where by := 2 max {1, e)‘zLi/128}

some 1y large, if t > 19,
PB()=>1—ce ™ >1—ce 0 > 0.

This shows the first statement of Theorem 1.1. For the second statement, the upper bound
comes from (8.2) and the lower bound comes from the following:

E (im;r e, x; I B(r)) > e M TugP(B(1) = e /Ty (1 — ce™"),
X€E

which completes the proof. O

A A Real-Variable Inequality

We will have need for the following.

LemmaA.1 Foralle € (0,1), 2 €[0,1),and g > 1,

trp\ T8 e B9 (1 —a) + 1
sup - ds < —a
~0Jo \s$ (t —s)* (I —a)ep'~

where T denotes Gamma function.

Proof By scaling, we might as well assume that § = 1. Now, a change of variables yields

l—e . —(— _
/t E € e (t—s) ds:tl—ﬂffl e lr O
o \s (t — )~ o re(l —pr)l—e "’

whenever t > 0and 0 < ¢ < 1. If t < 1, then we merely bound ¢!~ and exp(—tr) by 1 in
order to see that the preceding is at most B(e , 1 — «), where B is beta function. On the other
hand, if # > 1, then we change variables a few more times in order to see that

t /¢ 1—e e~ (t=9) t e t/2 t
/ <7> 7ds:/ 7]ds:/ (-)ds+ [ (s,
o \s (t —s)™ 0 (1—5) —Fa 0 1)2

N
t

notation being obvious from context. Since (1—[s/t])1_8 >0t > 1/2forall0 < s < t/2,
/2
/ (---)ds <2I'(l — @).
0
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On the other hand,

! ! ds 1 dr
—t)2 Y pr—y) _
(---)ds <e / — e ! Ye / 7r“(l—r)1*8<B(8’l o),
12 12 ga (1 ) 1/2

where we have used the elementary bound, x!1=®e=%/2 < 1, valid for all x > 0.
The preceding argument yields the inequality,

t ¢ 1—¢ e—(t—S)
sup/ (,> ds <2T'(1 —a) +B(e, 1 —a),
1>0Jo \S (r—s)*

valid for all ¢ € (0, 1) and @ € [0, 1). This implies the lemma since a change of variables
yields

B(s,l—(x):s’l/

0

o0

1

o0
=Y (1 _ oY/ ¥ —1 =V (1 _ e V) ¥ —
e (1—e™/*) "dy<e /0 e (1—e™) “dy =)

foralle € (0,1) and @ € [0, 1), which is a well-known fact about the beta integral; see,
Dragomir et al. [9, (3.17)] for a different proof of the latter inequality. O

B The Heat Kernel

Recall G and p respectively from (2.2) and (2.1).

LemmaB.1 Forallx,y € [-1,1]andt > 0,

1
Gi(x —y) < pi(x,y) < 2max (71>

NG

Remark B.2 By Lemma B.1, SUP_| <y y<1 Pt (x,y) =2 G:(0) = Arr)~V2, pointwise. Also,

2supy pi(x,y) = f_ll pi(x,y)dy = 1,forallt > 0 and x € T. Therefore, Lemma B.1 has
the following consequence:

1 1 1
-—max | —,1) < sup p(x,y)éZmax(—,l),
4 («ﬁ ) x,ye[—1,1] ' «/E

forall r > 0.

Proof of Lemma B.1 The lower bound is immediate; we establish the upper bound.
Consider the summands in (2.1) for [z| < 1 and |n| > 2 separately in order to see that

3 1 (x—y—2n)2>
x,y) < + exp| ——-"—""—),
P S i i (-5

n>2

forallt > Oand x,y € [-1, 1]. Since (a — b)2 > %az — b2 foralla, b € R, the preceding
yields (x —y —2n)% > 2n> — (x — y)? > 2(n*—2) > n?, forallx, y € [—1, 1] and integers
n with |n| > 2. Thus, we obtain the bound,

1 -
pix.y) < $+7Z;exp (—"—), (B.1)
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forallt > Oand x, y € [—1, 1]. In particular,

sup  pi(x,y) < 1+Ze‘” /4
x,ye[—1,1]

7
uniformly for r € (0, 1]. If # > 1, then use

o 2 o) 2

Z;exp (—4—t> < /0 exp (—47) dz = /71,

in (B.1), to see that

1
sup  pi(x,y) < —=+1,
x,ye[—1,1] «/E

which is at most 2.

Lemma B.3 There exists a finite constant C such that

: 2 lx =yl
/ |pe(x, w) = pr(y, w)|"dw < C ,
-1 tANT
uniformly forall x,y € [-1,1]and t > 0O

Proof Choose and fix some ¢ > OQandx, y € [

1, 1]. Without loss of generality, we assume
that x > y. By the Chapman—Kolmogorov property, and thanks to the symmetry of py,

1
/ e, w) — p (v, w)Pdw = por(x, %) + par (v, ) — 2pa(x, y)
—1

=2 Y [Gu(@2n) — Gu@n+x—y)].

Because |G, (a)| = |a|G,(a)/2t,

|G (2n) — G( - )|<7I ﬁl / y| | —7( ’ (B.2)

G;(2n) — G;(2n +x < 2n + alex da, (B.2
t t y 132 P \r

for all n € Z. In particular,

)< xX—y r? s XY
— <——===sup|rexp| —— )| < .
NS g mer S0P\ Ty 4wt
The preceding is useful when |n| is not too large, say |n|

< 2. On the other hand, if |n] > 2
and 0 < a < 2,then 3|n| > |2n + a| > 2(|n| — 1) = |n| . Therefore, (B.2) implies that

G, (2n) — G, (2 )<=y "
tZn) —GZn+x—Yy \4\/7?t3/2||xp

m
We combine the preceding two displays to see that

|G:(2n) — G;(2n +x

! 3(x — 3
[l|pz<x,w)—pt(y,w>|2dw< (;ﬁ[y) 2(},3/2 Zlnlexp< )

|n|>2

The sum is at most ffo |w| exp(—wz/(St)) dw o ¢, and this implies the result
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LemmaB.4 Foreach s € (0, 1) there exists a finite constant C such that

: 24w < C lx —y/°
. [pr(x, w) — p(y, w)|"dw < 16+D/2 A 152
uniformly forallt > 0 and x,y € [—1,1].

Proof Since (a 4 b)*> < 2a* + 2b? for all a, b € R, the Chapman—Kolmogorov property
yields the following forallt > O and x, y € [—1, 1]:

1
1
/ Ipe(x s w) — p(y, w)* dw < 2po(x, x) +2p2 (v, y) < 8max (—ﬁ, 1) ;
—1

see Lemma B.1. Therefore, Lemma B.3 implies that we can find a finite constant C such that,
uniformly forall x,y € [-1, 1] and ¢ > O,

X,WwW)— , W dw\ ax s B
1 Pt pely \[ \/i

The lemma follows since min(A , B) < ASB1 = forall A, B> 0and$ € O, 1). O

Lemma B.5 There exists a finite constant C such that, uniformly for all ¢ € (0,1),t > 0,
x,yel[—1,11,andh e L' NL>,

|(Pth)(x) = (Ph)(y)| < C max {1 , } lx — Y2 A0S e Il 7F

<

t

Proof First, we use Lemma B.1 to get that
[(Prh)(x) — (Ph)())] < 4 {1 ! }Ilhll
X) — <4maxqyl, — .
t )Ly \/; Ll
We can also apply the Cauchy—Schwarz inequality and then Lemma B.3 to obtain
1 2
[(Prh)(x) — (PR (3> < (/ lpe(x, w) — pe(y, wl - [h(w)] dw)
-1
1
<207 / |pe (s w) = pr(y, w) dw
-1

lx — yl
< Clh|
< Clhllz WV

1
< Cllh|Folx —y|max{1 : ;}.

Now the lemma follows since min(A , B) < A*B'~¢ forall A, B > Oand e € (0, 1). O

LemmaB.6 Foreacht,s > 0,

1
5
izgﬁl |Pras(x, w) — pr(x, w)* dw < ,/%min (I’E)
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Proof Choose and fix some ¢, > 0 and x € T. By the Chapman—Kolmogorov property,
and thanks to the symmetry of p;,

1
/ |Pras(x, w) — pr(x, w)*dw = DP2+6) (X, X) + p2r(x, x) = 2parys(x, X)
—1

o0

= Y [Gos252n) + G2 (2n) — 2G5 (2n)] .

n=—0o0

Because the Fourier transform of F(x) := G;(2x) is F(z) = lér (z/2) = % exp(—rz2/4),
the Poisson summation formula [15, p. 161] implies that

1 o0
/ |pt+5(-x , w) _ pt(-x , w)|2 dw = % § e—mZ/Z (e—8n2/2 + 1— 26—6n2/4)
-1

n=—0oo
o 2
2 on
g e—tt’l /2 mi 1 — ),
; in Z

uniformly for all # > 0 and § € (0, 1). This readily implies the result since

> 2 o 2 T
Ze—tn /2 g/‘ e !1x /2 dx = [ =,
0 2t

n=1

and
o0
83 e 202 < S/sze‘”‘zﬂ =2/
ot A tV 2’
forallt > 0andé € (0, 1). ]

LemmaB.7 Foreveryt,§ >0,e € (0,1),andh € L'nL>™,

xeT

1 ) S e/2 B
sup [(Pr45h)(x) — (Prh)(x)] < 4 (1 + ﬁ) min (1 , [@] : IIhIIELooIIhlllLI ‘.
Proof We first use Lemma B.1, as we did in the proof of Lemma B.5, to get that

1
[(Pr5h)(x) — (Prh)(x)] < 4 max (1, ﬁ) Al

We now apply first the Cauchy—Schwarz inequality and then Lemma B.6 in order to deduce

1
|(Prsh)(x) — (P ()] < 2"h"2L°°/1 |Pras(x, w) — pr(x, ) dw

T 1)
<230,/ = min (1, —
ooy - mm( 4t)
1 5 . 8
<4max (1, - ) |lhlljeemin| 1, —].
t 4t

Now the lemma follows since max{A, B} < A + B and min(A, B) < A?B!~¢ for all
A,B>0ande € (0,1). O
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