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Abstract

The continuous patrolling game studied here was first proposed in Alpern et al. (2011),
which studied a discrete time game where facilities to be protected were modeled as
the nodes of a graph. Here we consider protecting roads or pipelines,modeled as the
arcs of a continuous network Q. The Attacker chooses a point of Q to attack during a
chosen time interval of fixed duration (the attack time, α). The Patroller chooses a unit
speed path on Q and intercepts the attack (and wins) if she visits the attacked point
during the attack time interval. Solutions to the game have previously been given in
certain special cases. Here, we analyze the game on arbitrary networks. Our results
include the following: (i) a solution to the game for any network Q, as long as α is
sufficiently short, generalizing the known solutions for circle or Eulerian networks and
the network with two nodes joined by three arcs; (ii) a solution to the game for all tree
networks that satisfy a condition on their extremities. We present a conjecture on the
solution of the game for arbitrary trees and establish it in certain cases.
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1 Introduction
Patrolling games were introduced at the end of Alpern et al. (2011) to model the operational
problem of how to optimally schedule patrols to intercept a terrorist attack, theft or infil-
tration. That paper, contrasting with earlier adversarial patrolling (Stackelberg) versions,
modeled the problem as a zero-sum game between an Attacker and a Patroller, who wish to
respectively maximize and minimize the probability of a successful attack.The domain on
which the game was played out was taken to be a graph, with attacks restricted to the nodes
and taking a given integer number of periods.A patrol is a walk on the graph, and intercepts
the attack if it visits the attacked node during the attack period. This could model a guard
in an art museum who enters a room while a thief is in the midst of removing a valuable
painting from the wall. That paper was able to make some key observations about their
game, giving bounds on the value, but was unable to find the value precisely or give optimal
strategies except in some very limited cases.Papadaki et al. (2016) solved the game for line
graphs, but the solution was very complicated even for this apparently simple graph.In the
Conclusion section of the original paper Alpern et al. (2011), an extension of the problem to
continuous space and time was suggested:

“It may be natural to consider a continuous-time formulation of this problem.
An attack takes place at any point of the network (not necessarily a node) on a
continuous time interval of fixed length.The Patroller uses a unit speed path and
wins if she is at the attacked point at some time during the attack interval.This
would model, for example, the defense of a pipeline system, and would resemble
to a greater extent the classical search game problem.” [p.1256]

The purpose of this paper is to carry out the suggestion in the quote above for an
arbitrary network. We allow attacks that have a prescribed duration α to occur at any point
of a continuous network Q. A unit speed patrol on Q is said to intercept the attack (and
win for the Patroller) if it arrives at the attacked point at some time during the attack. The
value of the game is the probability of interception, with best play on both sides. We find
that optimal play for the Attacker typically involves mixing pure attacks that take place at
different times.

After this type of continuous game was first proposed in 2011, it has been solved for some
special networks.The circle network (or any Eulerian network) is easy to solve:a periodic
traversal of the Eulerian tour, starting at a random point, is optimal for the Patroller;
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attacking starting at a fixed time at a uniformly random location is optimal for the Attacker
(see Alpern et al. (2016) and Garrec (2019)).The line segment network was solved in Alpern
et al. (2016). In Garrec (2019) a solution for some values of α is given for the network with
two nodes connected by three unit length arcs,and a complete formulation of the general
game is given, including a proof of the existence of the value.The present paper extends to
some extent all three of these prior results to general classes of networks:Eulerian networks
to networks without leaf arcs; the line segment network to trees; the three-arc network to
networks with large girth - for small attack times.

Our main results and chapter organization are as follows. Section 3 presents several
(mixed) strategies for the players that can be used or adapted to obtain solutions of the
game for various classes of networks in later sections.We note that Eulerian networks have
no leaves,and Section 4 generalizes the solution of the former to networks without leaves.
In particular, as long as the attack time is sufficiently short, we show that the attack strat-
egy that chooses a point uniformly at random is still optimal; an optimal strategy for the
Patroller is to follow a double cover tour of the network which never traverses an arc con-
secutively in opposite directions (as described in Theorem 4).We also give a new algorithm
for constructing such a tour in Theorem 3.In Section 5 we allow the network to have leaves,
and modify the optimal strategies of the previous section to generate optimal strategies for
arbitrary networks, as long as the attack time is sufficiently short (see Theorem 6).

Section 6 considers trees and in particular those that satisfy a condition we call the
Leaf Condition. We give a precise definition of the condition, which requires some delicacy
(Definition 8). In fact, any tree satisfies the Leaf Condition as long as the attack time is
sufficiently short. Star networks (trees with only leaf arcs) also satisfy the Leaf Condition for
sufficiently large attack times, and the only stars that do not satisfy the Leaf Condition are
those that have an arc that is longer than half the total length of the network.In Theorem 8
we solve the game for all trees in the case that the Leaf Condition holds, giving a simple
expression for the value of the game in terms of the length of the network, the attack time
and another parameter.In Section 7 Conjecture 1 states that this expression is always equal
to the value of the game on trees. We establish the conjecture for some stars that do not
satisfy the Leaf Condition.
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2 Literature Review
In addition to the papers discussed in the Introduction, which were the most relevant to
continuous patrolling, there is a more extensive literature on adversarial patrolling. The
problem of patrolling a perimeter has been analyzed by Zoroa et al. (2012) (where the
attack location can move to adjacent locations) and Lin (2019), the latter in a continuous
time context. Extensions of Alpern et al. (2016) where the costs ofsuccessfulattacks are
time and node dependent have been studied by Lin et al. (2013) (for random attack times),
Lin et al. (2014) (with imperfect detection) and Yolmeh and Baykal-Gürsoy (2019) (which
includes an application to an urban rail network).

Stackelberg approaches,with the Patroller as first mover, have been pioneered in an
artificial intelligence context by Basilico et al. (2012) (which includes an algorithm for large
cases) and Basilico et al. (2017) (where the optimal strategy in certain cases is for the
Patroller to stay in place until the sensor reveals an attack an unknown location).

More applied approaches to patrolling are of practical importance. Applications to
scheduling randomized security checks and canine patrols at Los Angeles Airport have been
developed and deployed in Pita et al. (2008). The United States Coast Guard also uses a
game-theoretic system to schedule patrols in the Port of Boston (An et al. 2013).Recently,
a game theoretic approach to schedule patrols to guard against poachers has been explored
in Fang et al. (2016) (where the novel algorithm PAWS was introduced) and Xu et al. (2019)
(where the success of deploying PAWS in the field is described).Patrolling to detect radi-
ation and consequently nuclear threats was modeled in the novel paper of Hochbaum  et al.

(2014).
The possibility that the Attacker could know when the Patroller is nearby (perhaps at

the same node), raised in Alpern et al. (2011), has recently been studied in Alpern and
Katsikas (2019) and Lin (2019) in different contexts. In the former this knowledge helped
the Attacker, in the latter, it did not. Multiple patrollers have been considered in the robotics
and computer science literatures, where an important paper with a similar network structure
to ours is Czyzowicz et al. (2017). A connection between patrols and inspection games is
made in Baston and Bostock (1991) and between patrols and hide-seek games in Garrec
(2019). Restricting the Patroller to periodic paths creates difficulties analyzed in Alpern et

al. (2018).
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3 Formal Definitions for Network and Game
In this section we define the continuous patrolling game and present definitions related to
the connected network Q on which it is played.For Q, standard graph theoretic definitions
must be modified for a network which is considered as a metric space and a measure space,
not simply a combinatorial object.

To define Q, we begin with the usual combinatorial structure of arcs and nodes,with
the addition of a length λ (a) assigned to each arc. We can then identify an arc a with
an open interval of length λ (a) , endowed with Lebesgue measure and Euclidean distance
d, and consider λ as a measure on Q, called length. The total length of Q is denoted by
µ =λ (Q) . The topology on the interval arcs gives a topology on their union Q. A path

in Q is a continuous function from a closed interval to Q. We take the metric d (x, y)

on Q as the minimum length of a path between x and y. A point x of Q is called a
regular point if it has a neighborhood homeomorphic to an open interval. Regular points
are the interior points of arcs. The remaining points of Q are the nodes, which are the
boundary points of the arcs. The degree of a node y can be defined either combinatorially
or topologically. Combinatorially, it is the number of adjacent nodes; topologically, it is the
number of components ofa neighborhood of y from which y has been deleted. Note that
this means that strictly speaking, nodes of degree two are not permitted.A node of degree
1 is called a leaf node, and its adjacent arc is called a leaf arc.To ensure that every leaf arc
has a single leaf node in its closure, we exclude the line segment network from consideration.
In any case the continuous patrolling game has been solved for the line segment in Alpern
et al. (2016).

A circuit in Q is a closed path (that is, with the same startpoint and endpoint) consisting
of distinct adjacent arcs. A tour of Q is a closed path visiting all points of Q, and a tour of
minimum length is called a Chinese Postman Tour (CPT). The length of this path is denoted
µ̄. It was shown by Edmonds and Johnson (1973) that a CPT can be found in polynomial
time, with respect to the number of nodes. A closed path which is a circuit and a tour is
called an Eulerian tour. As is well known, a connected network has an Eulerian tour if and
only if it is Eulerian, defined as having nodes all of even degree.If we double every arc of a
network Q, the resulting network is Eulerian with length 2µ, so Q has a tour of length 2µ

and hence µ̄ ≤2µ.
The continuous patrolling game is played on Q as follows.The Attacker chooses a point

x in Q to attack, and a closed time interval J of given length α during which to attack it.
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Since α is fixed, the attack interval J = [τ, τ + α] is determined by its starting time τ. The
game and its value are determined by the pair(Q, α) . The Patroller chooses a path S( t) ,
where t≥0, which we call a patrol, satisfying

d(S ( t) , S( t ′)) ≤ ∣t −t ′∣, for all t, t ′ ≥0. (1)

For simplicity, we shall call a path satisfying the 1−Lipshitz condition (1) a unit speed path.
We don’t specify an upper bound on the starting time of the attack, but in every case we
have studied there is an optimal mixed attack strategy in which all its (pure strategy) attacks
are over by time 4µ. A patrol is said to intercept an attack if it visits the attacked point
while it is being attacked. The game is very simply defined:the maximizing Patroller wins
(payoff P =1) if her patrol intercepts the attack. Otherwise, the Attacker wins (payoff P=0
to the Patroller). The payoffs to the Attacker are reversed, so the game has constant sum 1.
To put this more concisely, if the patrol is S and the attack is at point x during the interval
J = [τ, τ + α] , then the payoff P to the maximizing Patroller is given by

P (S,(x, J)) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈S (J ) ,

0 otherwise.

For mixed strategies, the expected payoff can be interpreted as the probability that the
attack is intercepted. The value of the game, denoted V , is the interception probability,
with best play on both sides.

Garrec (2019) used the fact that P is lower semicontinuous to establish the existence of
a value V for this infinite game. We note that if α =0 then the Attacker can win almost
surely by attacking uniformly on Q (according to λ) at a fixed time; if α ≥µ̄, the Patroller
can ensure a win by adopting a Chinese Postman Tour, starting anywhere at time 0 and
repeating the tour with period µ̄. So to avoid the trivial cases where one of the player can
always win, we assume 0< α < µ̄.

Throughout the paper the complement Q−Y of a set Y is denoted by Yc.

3.1 The Uniform and the Independent Attack Strategies

Some networks, as we shall see in later sections, require Attacker strategies specifically suited
to their structure, such as attacks on leaf nodes when the network is a tree.But there are
also some general strategies that are available on any network.Here we define two of these
and present the general bounds on the value that they give.
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Definition 1 (Uniform attack strategy) A uniform attack strategy is a mixture of
pure attacks that have a common attack time intervalJ = [M, M +α] . The attacked point is

chosen uniformly at random. That is, the probability that the attacked point lies in a set Y

is given by λ(Y ) /µ.

We restate a lemma from Alpern et al. (2016) for completeness (the proof is in the Online
Appendix).

Lemma 1 Against any patrol S, a uniform attack strategy is intercepted with probability not
more than α/µ. Consequently V≤α/µ for any network.

We now define independence for sets and strategies.

Definition 2 (Independent set) A subset I ofQ is called independent if the distance

between any two of its points is at least α.For any subset Y of Q, the set W≡W (Y ) is the

subset of Q consisting of allpoints at distance at most α/2 from Y .

Definition 3 (Independent attack strategy) Given an independent set I of cardinality
l and the set W ≡W ( I ) , the independent attack strategy is as follows for p =

lα
λ (W c)+ lα

.

1. With probability p attack at an element of I chosen equiprobably at a start time chosen

uniformly at random in J = [0, α] .

2. With probability 1−p attack uniformly on W c at start time α /2.

The independent attack strategy randomizes over both time and space, unlike the strategy
of the same name defined in Alpern et al. (2011) for the discrete patrolling game, which
randomizes only over space.The following result gives an upper bound on the strategy’s
interception probability.

Theorem 1 Let I be an independent subset of Q of cardinality l.Then

V ≤
α

λ (W c) +lα
,

which the Attacker can ensure by adopting the independent attack strategy.If λ (W c) =0 we
have V≤1/ l. Furthermore, if I is the set of leaf nodes, and leaf arcs have lengths exceeding

α/2, then
V ≤

α
µ + lα /2

.
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Proof: Let S denote any patrol and suppose the independent attack strategy is adopted.
If S remains in W during J , it intercepts the attack with probability at most p / l, where l is
the cardinality of I. Similarly, since S has unit speed, if it remains in Wc during time J , it
intercepts an attack with probability at most (1−p) (α/λ (W c)) . The chosen value of p is
the one that makes these probabilities both equal to α/ (λ (W c) +lα ) .

Finally, suppose the patrol S starts in Wc at time 0, reaches a point x∈I at some time
t, α ≤t ≤2α, early enough to intercept some attacks on I and late enough to intercept some
attacks on Wc. Since the latest such a patrol can leave Wc is at time t−α/2, it can cover a set
of length at most ( t −α/2) − (α/2) =t −α in W c after the attacks at time α/2, intercepting a
fraction ( t −α) /λ (W c) of the attacks there.In addition, the patrol can intercept the attacks
at x starting between t−α and α, so a fraction(2α−t) /α of the attacks at x, or (2α−t) /lα

of the attacks on I. Thus the maximum probability that a patrol arriving at I at time t can
intercept an attack is given by

(1−p)
t −α

λ(W c)
+ p2α−t

lα =
α

λ (W c) +lα.

By time symmetry, the same bound holds if the patrol starts at a point of I and ends up in
W c.

If λ (W c) =0 we have V≤1/ l trivially.
To prove the last assertion note that if I is the set of leaf nodes, and leaf arcs have lengths

exceeding α/2, then leaf nodes form an independent set I and λ(W ) =lα /2. ◻

3.2 A General Strategy Available to the Patroller

Some patrol strategies come from finding closed paths on the network with specific proper-
ties, and then have the Patroller go around them periodically starting at a random point.
Normally the closed path will be a tour, but we give a more generaldefinition in case it is
not.

Definition 4 (Randomized periodic extension) If S ∶ [0, L] →Q is a closed unit speed

path, we can extend it to various patrols S∆  ∶ [0,∞) → Q of period L by the definition

S∆ ( t) =S ( ( t + ∆ ) mod L ) , for all t ≥0.

Thus S∆ is a periodic patrol that starts at the point S (∆ ) at time 0. The randomized

periodic extension S̃ of S is defined as the random mixture of the pure patrols S∆ , with

∆ chosen uniformly in the interval (or circle) [0, L] . In the specialcase that S is a Chinese

Postman Tour, with L =µ̄, we call S̃ a Chinese Postman Tour strategy.
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3.3 A Theorem on k−covering Tours

If a network Q has an Eulerian tour, its randomized periodic extension makes an effective
patrolling strategy, because it visits all regular points equally often (once), so the Attacker is
indifferent as to where to attack. If there is no Eulerian tour (the general case), we can still
use this idea, if there is a tour which visits all regular points equally often. In Theorem 3
and Lemma 6, we will show that there is indeed such a tour which visits all regular points
twice (a 2−cover), with some additional properties.This idea is formalized in the following.

Theorem 2 Let S  ∶ [0, L] →Q be a closed unit speed tour that visits every point of Q at k

times which are separated by at least α (mod L) . Let S̃ be the randomized periodic extension

of S (from Definition 4). Then we have

(i) S̃ intercepts any attack with probability at least kα/L.

(ii) If L =kµ, then the randomized periodic extensioñS (for the Patroller) and a uniform

attack strategy (for the Attacker) are optimal and the value of the game is given by

α/µ.

Proof: For part (i), suppose the attack takes place at a point x in Q starting at some
time τ . Let t i , i =1, . . . , k be times,separated by at least α, such that S ( t i ) =x. The
attack will be intercepted by S∆ if ∆ is in the set Y = ∪i [ t i −τ −α, ti −τ ] (modulo L), since
in this case the Patroller will visit x =S ( t i ) at some time in [τ, τ + α] . The separation
assumption ensures that these intervals are disjoint,and since they all have length α, the
length (Lebesgue measure) of Y is given by∣Y∣ =kα. By the definition of S̃, the probability
that ∆ ∈Y is equal to ∣Y ∣ /L =kα /L, as claimed in (i), so we have V≥kα /L =kα /kµ =α/µ

under the assumption of part (ii). By Lemma 1, we also have that V ≤α/µ, so the two
inequalities give V=α/µ, with S̃ and the uniform attack strategy optimal. ◻

As suggested above in the introductory remarks of this subsection, taking k=1 in The-
orem 2 gives another proof of the following elementary result of Alpern et al. (2016) and
Garrec (2019).

Corollary 1 If Q is Eulerian, with Eulerian tour S, then for α ≤µ we have V =α/µ.

(V =1 if α ≥µ.) In this case the randomized periodic extensioñS and the uniform attack

strategy are optimal for the Patroller and Attacker, respectively.Furthermore, for a Chinese

Postman Tour S of any network Q, taking k=1 and L =µ̄ gives V ≥α/ µ̄.

9



It is useful to note for applications to patrolling by m robots, that if in Theorem 2
we require that S visits every point at k times separated by time intervals mα, then m

Patrollers can intercept any attack with probability at least mkα /L (or 1, if this is larger).
To see this, pick ∆ as above and let the path of the i’th Patroller (robot) be defined by
Si ( t) =S (∆ + i (L /m) +t) . The arrival times at any point of Q are then separated by at
least α. This shows that in our later lower bounds for V , these can be multiplied by the
number of Patrollers, with an upper bound of 1.

3.4 Identifying Points of Q Helps the Patroller

We conclude this section with an observation on the effect of identifying points of  Q on the
value. Alpern et al. (2011) considered the effect of identifying two nodes of a graph.Here,
we identify two points of the network Q, using the well known quotient topology.In Figure 1
we identify the arc midpoints C and D of the network Q to produce a new network Q′.

Figure 1: Identifying points C, D of Q to obtain Q ′.

We may first look at two cases which have already been solved, the line segment  Qline =

[0, 1] and the circle Q circle = [0, 1] mod 1 (which is obtained from the line segment by
identifying the endpoints), with say α=1/2. From Alpern et al. (2016), we have V(Qline ) =

α/ (µ + α) =1/3. However as the circle is Eulerian, we have V(Qcircle ) =α/µ =1/2, which is
larger. It is easy to show that identifying points cannot decrease the value.Of course if we
further identify points on the circle, we get new points of degree 4, so the resulting Eulerian
network retains the value of 1/2.

Lemma 2 Suppose Q′, d′ is the metric space obtained from Q, d by replacing the metric d

with a smaller metric d ′, that is, with 0 ≤d′ (x, y) ≤d(x, y) for all x, y ∈Q =Q′. Then

V (Q′, d′) ≥V (Q, d) . Furthermore, if Q ′ is obtained from Q by decreasing the length of an

arc or simply identifying two points x and y, the same result holds.

The proof of Lemma 2 is given in the Online Appendix. An application of it is given at
the end of Section 4.
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4 Networks Without Leaves
To extend Corollary 1 to general networks, we first note that Eulerian networks have no leaf
arcs, so we attempt to find such a tour S satisfying the hypothesis of Theorem 2 for networks
without leaf arcs. It turns out that taking k =2 in Theorem 2 is high enough.We can find
such a tour (see Theorem 4) if α is sufficiently small with respect to the girth g of Q, defined
for networks as the minimum length of a circuit in Q, and if Q has no circuits then g = ∞.
(For networks with unit length arcs, this coincides with the usual integer definition of the
girth of a graph.) Our first result is the following.

Theorem 3 For any network Q there is a tour S 2 which covers every arc twice and for

which no arc is traversed consecutively in opposite directions, except for leaf arcs.

The way we will prove Theorem 3 is to double every arc of Q to create an networkQ̂.
Then Q̂ is Eulerian and has an Eulerian tour. We note that in Euler’s Theorem (finding an
Eulerian tour in graphs of even degree),we can control to some extent the construction of
the tour. The following refinement of Euler’s Theorem (Lemma 3) is based on some simple
modifications of the traditional proof and shows that we can control the pairing of entered
and exited passages ofthe tour at every node. Formally, a passage at a node x is a pair
(x, a) , where a is an arc incident to x. So a node of degree d has d passages and every arc
is part of two passages.

Lemma 3 Let Q be a connected Eulerian network such that at every node the passages are
identified in pairs (they are “paired”). Then there is an Eulerian tour S of Q satisfying

S never enters and leaves a node via paired passages. (*)

Proof: This proof mimics the usual proof of Euler’s Theorem.We first construct a circuit
C satisfying condition (*), which we call a ∗-circuit, using the following rules:

1. Start at any node x and leave by any passage P (we let P′ be the paired passage of
P ).

2. Always leave a node by an untraversed passage not paired with the arriving passage.

3. If, after arriving at a node, there are three untraversed passages with exactly two of
them paired, leave by one of this pair.
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4. If, after arriving at node x, there are two untraversed passages, leave by passage P′, if
it is untraversed.

5. If there are no remaining untraversed passages after arriving at a node, stop.

To simply obtain a circuit (not necessarily satisfying (*)) starting and ending at  x, we
would follow the usual method of simply leaving a node by any untraversed passage, a simpler
form of Rule 2.The existence of an untraversed passage (at any node other than the starting
node x) follows from the fact the after arriving at a node an odd number of passages will
have been traversed, so an odd number (hence not 0) are untraversed.We show that the full
form of Rule 2 along with the other rules ensure that we can always leave a node in a way
that satisfies (*) whether the node is the initial node x or another node y.

We first check that after arriving at a node y other than the starting node x, there cannot
be only one remaining untraversed passage which is paired with the arriving passage.Since
every node has even degree and degree two nodes are not permitted, the node  y must have
been previously arrived at. After this previous arrival at y, there must have been three
untraversed passages with exactly two of them paired.But Rule 3 ensures the circuit left
by one of those two passages,so after arriving by the other one on the final visit, the last
untraversed passage must have a different label.

To check that the final arriving passage at the initial node x is not P′, note that if P ′ had
not been traversed before the penultimate visit to x, Rule 4 ensures that it will be traversed
on that visit, and it will not be the final arriving passage.

If C is a tour (contains all the arcs), we are done.Otherwise, since Q is connected, there
is a node z with some passages in C and some not in C (see Figure 2).Suppose that C leaves
z beginning via passage a and ends at z via passage b.We create a new∗-circuit starting
at z, called C′, using the same rules and using only passages not in C.Suppose C′ begins
with a passage called d (which we can choose) and ends with a passage called e (which we
cannot control). The combined circuit CC′ which starts at z and traverses C and then C′

will satisfy (*) except possibly for the transitions b, d and e, a between the two circuits,so
we need d≠b′ and e≠a′ (this means d is not paired with b and e is not paired with a) . The
arc d is chosen as follows.
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Figure 2: How to join two ∗-circuits at node z.

1. If a ′ is not in C, take d =a′. This ensures that d=a′ ≠b′ since a≠b. Also e≠d=a′.

2. If a ′ is in C, take d ≠b′. We know that also e≠a′ because a′ is in C.

If the circuit CC ′ is not a tour, we iteratively continue to add new circuits until we end
up with a tour, noting that the process is guaranteed to end since every new circuit contains
at least one new arc and there are a finite number of arcs. ◻

Now we are ready to prove Theorem 3.

Proof of Theorem 3.Let Q̂ be the Eulerian network obtained from Q by doubling every
arc. (This has the effect of replacing leaf arcs with loops of double the length, since degree
two nodes are not permitted.) At every node of Q̂ we pair passages that correspond to the
same passage of Q.Now apply Lemma 3 toQ̂ to obtain an Eulerian circuit Ŝ of Q̂ satisfying
condition (*). This corresponds to S2, a double cover of Q (a tour of Q where every arc is
traversed twice), in which consecutive arcs are distinct,except for leaf arcs. For loops, an
arc may be repeated consecutively, but always in the same direction both times. ◻

Theorem 3 is not new; it was proved by Sabidussi (1977). See also Klavzar and Rus
(2013) and Eggleton and Skilton (1984). Our proof based on the new result, Lemma 3, is
elementary.

The proof of Lemma 3 gives rise to an algorithm for constructing an Eulerian tour of
Q̂ satisfying condition (*), and hence a tour of Q of the form described in the statement
of Theorem 3 (named S2). Indeed, by following the rules listed in the proof of Lemma 3,
we obtain a circuit C in Q̂ satisfying (*); by recursively applying the rules to the connected
components ofQ̂−C and appending these circuits to C at appropriate points, we can obtain
an Eulerian tour of Q̂ satisfying (*).

We illustrate the creation of the ∗-circuit described above for the network K4 depicted
in Figure 3. Doubling each arc, we give the extra arc the same label as the original arc
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but with a prime. Applying the rules of the proof of Lemma 3, starting at the bottom left
node, we obtain a circuit: a, b, c, d, e, c′, a′, f, d′. Removing this circuit leaves the network
consisting of arcs b′, e′ and f ′, which is already a circuit. Adding this circuit at the first
possible opportunity, we obtain the Eulerian tour a, b′, e′, f ′, b, c, d, e, c′, a′, f, d′.

𝑏

𝑑

𝑐

𝑎

𝑑

𝑒

𝑓

Figure 3: The network K4.

Theorem 4 Let Q be a network without leaf arcs.Then for α ≤g, where g is the girth, we

have the following:

1. The value of the game is V=α/µ.

2. For the Attacker, any uniform attack strategy is optimal.

3. For the Patroller, the randomized periodic extensionS̃2 is optimal, for any tour S 2

given by Theorem 3.

Proof: Let S2 be a tour of Q given by Theorem 3. Note that it has length L =2µ. Since
there are no leaf arcs, any two consecutive arcs of S2 are distinct. Suppose some point x of
Q is reached by S2 at consecutive times t and s with t< s. Let Z denote the restriction of S2

to the interval [ t, s] . Then Z is a circuit of length s −t and hence s−t ≥g, by the definition
of girth. Hence V=α/µ, by Theorem 2(ii) with k =2 and since α≤g. ◻

For the network K4 depicted in Figure 3, assuming all arcs have length 1, the girth g is 3.
So for α≤3, the uniform attack strategy is optimal and the Patroller strategy S2 is optimal,
where S2 is the tour a, b′, e′, f ′, b, c, d, e, c′, a′, f, d′.

As a further example, consider Q to be a network with two nodes A and B connected by
three arcs of lengths a≤b≤c. Then g=a+b and µ=a+b+c, so we have by Theorem 4 that
the value is V(α) =α/ (a+ b+ c) for α ≤a+ b. This network, with a =b=c =1 (and hence
g =2), was studied by Garrec (2019), who found (among other results) that V (α) =α/3
for α ≤2 and V (α) ≤ f (α) ≡1− (1/3)( 2−α/2)2 for α ∈ [2, 10/3] . Since f (α) < α/3 for
α ∈ (2, 10/3] (f (α) =α/3 for a=2 and f ′(α) = (4−α)/ 6 < 1/3 for α > 2), the Patroller cannot
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obtain an interception probability of α/3 for α in this interval, so the bound α ≤g =2 in
Theorem 4 is tight.

However, it is useful to observe that we can sometimes improve on the upper bound  α≤g.
Suppose we have a network Q5 with two nodes connected by five arcs labeled as 1, 2, 3, 4, 5,
with arc i having length i. The girth is given by g=g(Q5) =1+2=3. However, suppose we
obtain a double cover (with k=2) S of Q described by the sequence[1, 2′, 3, 4′, 5, 1′, 2, 3′, 4, 5′] ,
where unprimed arcs go from,say,node A to node B and primed arcs go from node B to
node A. The shortest return time to a regular point is for a point x near node B on the
arc of length 5. After leaving x, going to nearby B, the patrol traverses arcs of lengths
1+ 2+ 3+ 4 =10 before going back to x from B. Note that S returns to A after gaps of
3, 7, 6, 5 and 9,so at two time points separated by 14 (at the start and after the gap of 6).
Also B is visited twice separated by a gap of 14.So for the network Q5 we have V=α/µ for
α ≤10 rather than just for α ≤3. This observation leads to combinatorialquestions about
the maximum shortest circuit in a k-cover of a network Q.As noted above based on Garrec’s
analysis of the three arc network, in certain cases V=α/µ fails for all α > g. We note that
our example Q5 generalizes easily to the following.

Theorem 5 Let Q be a network with two nodes connected by an odd number of arcs.Then

V =α/µ for α ≤µ −L, where L is the length of the longest arc.

If Q is a network with two nodes connected by an even number of arcs, then Q is Eulerian
and thus V =α/µ for all α.

We conclude this section with an application of our earlier result on identifying points.
Consider the two networks Q and Q′ drawn in Figure 1, with α =3. We would like to show
that V (Q′) =α/µ =3/6 =1/2. We know from Lemma 2 that V (Q′) ≤α/µ =1/2. So we
only need 1/2 as a lower bound on V (Q′) . However we cannot apply Theorem 4 because
it is not true that α is less than or equal to the girth of Q ′, which is 2. However we know
either from Garrec (2019) or from Theorem 4 (which applies because 3=α < g =4) that
V (Q) =α/µ =1/2. So by viewing Q ′ as coming from Q by identifying points C and D,
Lemma 2 gives V(Q′) ≥V (Q) =1/2.

5 Brief Attacks on Arbitrary Networks
We now extend Theorem 4 to networks with leaves. We begin with a modified Patroller
strategy based on the tour S2 of Theorem 3.

15



Definition 5 Let S2 be a tour given by Theorem 3.We denote by Sα
2 the tour that follows

the same trajectory as S2 but stops for time α whenever it reaches a leaf node.

Lemma 4 Let Q be a network with l leaf nodes and girth g.Then

V ≥
α

µ + lα /2
, for α ≤g.

Proof: Tour Sα
2 takes total time 2µ + lα. Note that every point of Q is visited by S α

2 at
two times differing by at least α. So by Theorem 2 part (i) with k =2, L =2µ + lα, we
have V≥2α/ (2µ+ lα ) . (We observe that instead of stopping for time α, the tour Sα

2 could
do anything in this time interval, such as going away from the node a distance α/2 and
returning.) ◻

Definition 6 (Generalized girth) We define the generalized girth g∗ of a network Q

by considering a leaf arc of length L to be a circuit of length 2L. So g∗ is the minimum of

circuit lengths of Q and twice the length of any leaf arc.

In particular g ∗ ≤g, with equality if there are no leaf arcs or if all leaf arcs have length
greater than g/2. Note that if α ≤g∗ we know in particular that all leaf arcs have length at
least α/2 and hence Theorem 1 applies.Thus we have the following Attacker estimate.

Lemma 5 Let Q be a network with l leaf nodes and generalized girth g∗. Then by adopting

the independent attack strategy on the set I of leaf nodes, the Attacker can ensure that the

interception probability is less than α
µ+lα / 2

for α ≤g∗. Hence,

V ≤
α

µ + lα /2
, for α ≤g∗.

Proof: As noted above, the assumption on α ensures that all leaf arcs have length at least
α/2, so the result follows from Theorem 1. ◻

Since g∗ ≤ g, Lemmas 4 and 5 apply when α ≤ g∗ and hence we have the following
extension of Theorem 4 to networks with leaf arcs.

Theorem 6 Let Q be a network with l leaf nodes and generalized girth g∗. Then

V =
α

µ + lα /2
, for α ≤g∗.

For the Patroller, an optimal strategy is Sα
2 as defined above.For the Attacker, an optimal

strategy is the independent attack strategy, taking I to be the independent set of leaf nodes.
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It is useful for later comparisons to specialize this result to trees.

Corollary 2 If Q is a tree with l leaf arcs, then

(i) V ≥
α

µ+lα / 2
,

(ii) with equality if all leaf arcs have length at least α/2.

Proof: To establish (ii), note that trees have no circuits, so the generalized girth g∗ is
twice the length of its smallest leaf arc, so by assumption,α ≤g∗. The result now follows
from Theorem 6. For (i), consider the patrol Sα

2 . Note that between any two visits by Sα2 to
a point of Q, a leaf node is visited.Hence the return times exceed the time α that Sα2 stops
at that node, and the result follows from Theorem 2(i) with k =2 and L =2µ+ lα. ◻

For example, consider the tree Q depicted in Figure 4.The number of leaf arcs is l=5,
the generalized girth is g∗ =2 and total length is µ =9, so by Theorem 6, the value of the
game is α/( 9+ 5α/2) for α ≤2.

Figure 4: The tree Q.

6 Solving the Game for Trees
In Corollary 2 we gave some preliminary results for trees.Lemma 4 gave a lower bound on
the value of the game based on the Patroller strategy Sα

2 . Furthermore, for α ≤g∗, where
g∗ is the generalized girth, we showed in Theorem 6 that the independent attack strategy
ensures that this lower bound is tight. Note that for a tree, g∗ is twice the length of the
shortest leaf arc. In this section, we extend these results and give optimal Patroller and
Attacker strategies for some values of α which are greater than g∗. We start by defining the
extremity set E, a subset of Q that is essential in describing optimal Patroller and Attacker
strategies.
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6.1 The Extremity Set E

The relationship between the network Q and the duration α of the attack interval determines
the type of optimal player strategies.In this section we define the extremity set E that helps
us explore this relationship for trees.

If B is a set of points then we denote by B̄ the topological closure of B. If Q is a tree
network, then its minimum tour time is 2µ, as every arc must be traversed twice.If x is a
regular point of tree network Q, then Q − {x} has two connected components Q1 =Q1(x)

and Q2 =Q2(x) , whose lengths satisfy λ(Q1) +λ(Q2) =λ(Q) =µ. We introduce a subset
E (Q) of Q.

Definition 7 (The extremity set E) Let Q be a tree.The extremity set E ≡E (Q, α) is

defined as the set of allregular points x∈Q such that

min
i=1,2

λ(Qi (x)) <α/2. (2)

Note that min i=1,2 λ(Qi ) ≤µ/2 and if additionally µ < α then (2) holds for all regular
points, which implies that Ē =Q. The extremity set E consists of regular points whose
minimum return time during a CPT is less than the attack duration α.It can be partitioned
into maximal connected sets that we call components of E and we denote by Ej .

Example 1 We illustrate the extremity set E on the tree network of Figure 4 that has µ=9.
Figure 5 shows how E changes for increasing values ofα on this network. As α increases

the components grow starting from points near the five leaf nodes of the tree.Initially there

are five components (cases α=1, 2, 3, 4);but eventually points near non-leafnodes become

members ofE and the number of components increase to seven (cases α=5, 6, 7, 8).Note

that in case α =8 the closure ofĒ of E is equal to the whole network.The results from the

previous sections (Theorem 6,Corollary 2) solve the game for cases α≤g∗ =2, but in this

section we extend the results to cover allcases of α≤4.
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Figure 5: The extremity set E (Q, α) , shown in thick red lines, for the tree Q of Figure 4
and α =1, . . . , 8.

Example 2 Figure 6 depicts a star network.We assume that the extremity set E is as it

appears on the figure in red thick lines; we make no assumptions on the value ofα or the

length of the arcs; from the shape of E we draw some conclusions.Here, E decomposes into

four components: (A, B) , (A, C) , (D, F ) , (E, G) . We claim that λ (DF ) =λ(EG ) =α/2;
this is because on leaf arc AD (similarly for AE) if λ (DF ) <α/2 there would be a point X
on the right of F whose distance from D would be< α/2, implying λ (DX ) < α/2 and thus
contradicting X ∉E. Similarly, if λ(DF ) > α/2 there would be a point X on the left of F

where λ(DX ) >α/2 contradicting X ∈E. Thus, components Ej that are strict subsets of a

leaf arc and whose closure contains the leaf node will have length α/2. However, components

E j whose closure is the entire leafarc (like AB and AC) must have length≤α/2; if they

had length > α/2 then there would be point X on the component AB near node A where

λ(BX ) >α/2 contradicting x∈E.

Figure 6: A tree, with its extremity set E in thick red.

6.2 The E-patrolling Strategy SE for Trees

We will see that for some trees, the uniform CPT strategy is still optimal for the Patroller,
but its optimality depends on the size of the attack duration, α.As mentioned earlier, for a
tree a CPT is simply any depth-first search which returns to its start point after completing
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its search, so that µ̄ =2µ; every point of the tree except the leaf nodes is visited at least twice
by a CPT. This means the leaf nodes and regular points near them are left “less protected”
by a uniform CPT than the other points, and for sufficiently small values of α, there will
be points in the tree whose two closest visit times (modulo µ̄) are at least time α apart,
meaning that they are, in a sense “twice as protected” as the leaf nodes.(In all that follows,
arithmetic on time will be performed modulo the length of the tour in question).

This motivates the introduction of a new Patroller strategy SE for trees that we call the
E-patrolling strategy. To describe it, we use the set extremity set E ≡E (Q, α) that we
defined earlier; in particular, we use the closure ofĒ of E and its components Ē1, . . . ,̄E k ,
each of which is a subtree of Q. We have λ(Ē ) = λ(E ) but by using the components
of Ē rather than the components of E, we include the nodes and thereby unite adjacent
components ofE into a single component of Ē. For example, in Figure 6 there are four
components of E but only three components ofĒ, since in Ē the lines AB and AC join to
form a single component BAC.

Let Q be a tree with Ē ≠Q. We first construct a CPT S with the additional property
that every component Ē j is searched in a single CPT of Ē j , which we call Cj ; note that
some CPTs of Q might search different subsets of̄E j during non-consecutive time intervals
- we exclude this possibility by construction.

To obtain a CPT of Q with this property, we begin at any regular point not in Ē and go
in either direction. When arriving at any node, we leave by a passage not already traversed,
if there is such a passage.(This is the usual depth-first construction and ensures we obtain
a CPT.) Furthermore, if the node belongs to some component̄E j and there are untraversed
passages staying in that component,we take one of these. For example, in Figure 6 if we
start on F A going right, and tour the leaf arc to B from A, we must then take the passage
to C (staying in component BAC) rather than the other untraversed passage out of  A going
to E. This ensures that the CPT say ABAEACADA (in which the component BAC of
Ē is not traversed in a single CPT of BAC) will not be constructed, but rather one like
[ABACA ]EADA, where the bracketed expression is a CPT of the component BAC.

Then we make two types of additions at every component. If λ ( Ē j ) ≥α/2, we follow
the CPT C j of Ē j in S by another identical one, before continuing with S. Note that this
local CPT takes time≥α, so the time between the first and second CPT of̄E j reaching any
(regular) point is at least α.

If λ(Ē j ) < α/2 then we cannot simply tour Ē j twice in succession because points of
Ē j will not be visited at least two times that are at least time α apart. Instead we wait
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until S returns to Ē j after the first occurrence of Cj in S, and then insert another Cj . We
must check that these two times that S visits Ē j are separated by time at least α. Let
[ t1, t2] be the time interval during which S tours Ē j so that that S ( t1) =S( t2) =x, say, and
t2 −t1 =2λ(Ē j ) . We claim that Q−Ē j has at least two components.If not, then x, which is
on the boundary of Ē j , must be in the interior of an arc. Let x ′ =S( t1 −ε) =S( t2 + ε) ∉E,
where d(x, x′) <α/2−λ(Ē j ) . Then S(( t1 −ε, t2 + ε)) is a component of Q−x′ with length
λ(Ē j ) +ε < α/2, so x′ ∈E, a contradiction.

Thus, Q −Ē j has at least two components and they must all have length greater than
α/2, since any component with length at most α/2 would be a subset ofĒ, and could not
be disjoint from Ē j . So the next time after t2 that S arrives at x is t 3 ≥t2 + α, and the next
time after t3 that S arrives at x is at least t3+α. Then S is updated by adding another tour
of Cj at time t 3.

Observe that each additional local CPT ofĒ j takes time 2λ( Ē j ) , so the total length of
the resulting tour SE is 2µ+2(∑j λ ( Ē j )) =2(µ + λ ( Ē )) and by construction it reaches every
point of Q at two times separated by at least α (modulo the length of the tour). Note that
if Ē =Q, we simply take SE =S. The optimal periodic strategy is thus SE . For the network of
Figure 6, taking S as ABACADAEA we could have SE =ABACAFD [FDF ][ ABACA ]GE [GEG ]A,
where the brackets indicate the three inserted local CPT’s of the components ofĒ. Note that
two of these are inserted right after their first occurrence, but the third one [ABACA] is in-
serted nonconsecutively.Our construction would not work directly on the CPT ABAEACADA.

Thus we have established the following result by explicit construction.

Lemma 6 LetQ be a tree. Then there is a tour S E , an E-patrolling strategy, of length

2(µ + λ(E )) such that every point x of Q is visited at least twice at times that differ by at

least α.

We conjecture that E-patrolling strategies are always optimal for trees, and we later
confirm the conjecture in some special cases.For now we give a general bound on the value
of the game obtained by using an E-patrolling strategy.Let v∗≡α/( µ + λ(E )) .

Theorem 7 Let Q be a tree.Any E-patrolling strategy intercepts any attack with probability

at least v∗.

Proof: Follows from Lemma 6 and Theorem 2 part (i) with k = 2, S =SE , and L =

2(µ + λ(E )) . ◻
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Note that when α ≤g∗ we have λ(E ) =lα /2, and the result of Theorem 7 becomes the
same as the result of Corollary 2. In that case, the patrolling strategy S α

2 gives the same
lower bound as an E-patrolling strategy.

6.3 The E-attack Strategy

In the previous section we showed that on a tree,any E-patrolling strategy intercepts any
attack with probability at least v ∗. Here, we define the E-attack strategy, whose attacks
are intercepted with probability at most v ∗ on some trees. The condition that allows this
strategy to be defined and to be optimal is given in Definition 8. It is useful to note that
while for patrolling strategies we looked at the components of the closureĒ of E, for the
attack strategy given here we look at the components of E itself.

Definition 8 (Leaf Condition) LetQ be a tree. We say that (Q, α) satisfies the Leaf

Condition if E consists of all points on every leaf arc within distance α/2 of its leaf node.

For example, in Figure 5 the cases that satisfy the Leaf Condition are the first four
(α =1, 2, 3, 4), where E consist of five components;all of these five components are subsets
of leaf arcs and they are within α /2 from the leaf node. Note that the Leaf Condition
implies that every component Ej of E corresponds to a leaf node; this is easy to check in
Figure 5. Cases α=5, 6, 7, 8 have seven components; five of these components are subsets of
leaf arcs but two of them are subsets of non-leaf arcs and thus(Q, α) does not satisfy the
Leaf Condition.

Definition 9 (E-attack strategy) Suppose(Q, α) satisfies the LeafCondition, where Q

is a tree. Let xj denote the leaf node contained in the closure of the component Ej of E, and

let ej =λ(E j ) and let M =maxj λ(E j ) be the maximum length ofa component ofE. We

define the E-attack strategy as follows:

1. With probability λ(E c)/( µ+λ(E )) , attack a uniformly random point of Ec at time M .

2. With probability 2ej /( µ+λ(E )) , attack at leaf node xj at a start time chosen uniformly

in the interval [M −ej , M + ej ] .

Note that the Leaf Condition implies that∑j ej =λ(E ) , therefore the sum of the probabilities
from 1. and 2. above sum to 1. Also, unlike the uniform attack strategy, the E-attack
strategy is not synchronous.That is, the attack does not start at a fixed, deterministic time.
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Example 3 We revisit Figure 6, where the leafarcs have lengths 2, 1, 6, 6 and α=6. We

illustrate the E-attack strategy on this star network in Figure 7. Here µ=15; the extremity
set E is shown in thick red lines. E consists of four components that are subsets of leaf arcs

and whose points are within α/2 from the leaf node, thus the Leaf Condition is satisfied.Also,

note that λ (E ) =9 and µ + λ(E ) =24. The E-attack strategy then attacks as follows:with

equalprobabilities 6/24 it attacks at nodes D and E with a starting time chosen uniformly
on [0, 6] ; with probabilities 4/24, 2/24 it attacks leaf nodes B, C with a starting time chosen
uniformly on [1, 5] , [2, 4] respectively; with probability 6/24 it attacks uniformly on set Ec at

time M =3.

Figure 7: The E-attack strategy on an asymmetric star with arcs lengths 2,1,6,6 with α=6.
The set E is shown in thick red lines.

We next prove that for trees Q, the E-attack strategy is optimal if (Q, α) satisfies the
Leaf Condition.

Lemma 7 Let Q be a tree and suppose(Q, α) satisfies the LeafCondition. Then the E-

attack strategy is intercepted by any patrolwith probability at most v∗=α/( µ + λ(E )) .

The proof of Lemma 7 is in the Online Appendix.If we combine the results of Theorem 7
and Lemma 7 on patrolling and attack strategies for trees, we obtain the following exact result
for the value of the game.

Theorem 8 LetQ be a tree and suppose(Q, α) satisfies the Leaf Condition. Then any

E-patrolling strategy is optimal, the E-attack strategy is optimal, and the value of the game

is V =v∗.

Example 4 We revisit the network Q from Figure 7 with α=6 and µ=15. We first consider

patrolling strategies.The Sα
2 patrolling strategy is ADDABBACCAEEA, where repeating a

node means it stays there for duration α; this tour has length 2µ+4(6) =54. From Corollary 2
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we have V ≥
α

µ+lα / 2 =6/27. An E-patrolling strategy is ADF DABACABACAEGEA with

length 2µ+ 2λ(E ) =48; from Theorem 7 we have V ≥v∗ =
α

µ+λ (E )
=6/24. As we can see,

an E-patrolling strategy, which is defined only for trees offers an improvement over the Sα2
patrolling strategy, which is a more generalstrategy.

Now, we consider attacker strategies. Let I be the set of leaf nodes. The sets E and

W ≡W ( I ) are shown in Figure 8 with solid thick red and dashed thick green lines respectively.

Note that (Q, α) satisfies the Leaf Condition. The E-attack strategy is demonstrated in

Figure 7 and it gives a lower bound, v∗ =
α

µ+λ (E )
=6/24, from Theorem 8, which is optimal.

The bound given by Theorem 1 α
λ (W c )+ lα =

α
µ+lα / 2 =6/27 does not hold in this case because I

is not an independent set or, equivalently, leaf arcs do not have lengths exceeding α/2.

Figure 8: Star with arc lengths 6,6,2,1 and α=6. The solid thick red line is the set E and
the thick dashed green line is the set W≡W ( I ) , where I is the set of leaf nodes; note that
here I is not an independent set.

A star is a network consisting entirely of leaf arcs. We call a star balanced if no arc
comprises more than half of its total length; otherwise we say that it is skewed.It is easy to
check that balanced stars satisfy the Leaf Condition.All symmetric stars (whose arcs are all
the same length) are balanced.An example of a skewed star is a star with arc lengths 1, 1, 6
as shown in Figure 9:µ =8 and one of the arcs has length 6, which is more than half of  µ.

It is also easy to see that if Q is a star (which may be balanced or skewed) whose longest
arc has length at most α /2, then Ē =Q and hence Q satisfies the Leaf Condition. So
Theorem 8 gives the following.

Corollary 3 Let Q be a star.Then the E-attack strategy and any E-patrolling strategy are

optimal and the value of the game is V=v∗=α/( µ + λ(E )) if either

(i) Q is balanced or

(ii) α is at least twice the length of the longest arc of Q.
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We study the skewed star of Figure 9 in Section 7.
Note that if Q is the line segment network, then by adding an artificial node in the center,

we can apply Corollary 3, part (i), recovering the result for the value of this game, given
previously in Alpern et al. (2016) (though the optimal strategies given here are different).

7 Trees Not Satisfying the Leaf Condition
In the last section we considered patrolling games on trees.We showed (Theorem 7) that
the E-patrolling strategy intercepts any attack with probability at least v ∗ =α/ (µ + λ (E ))

and that (Lemma 7) for trees satisfying the Leaf Condition, the E-attack strategy avoids
interception with probability at least v∗. Thus for trees we have V=v∗ if the Leaf Condition
is satisfied, but what happens when it is not satisfied? In this section we present some trees
Q and attack durations α for which the Leaf Condition fails but nevertheless V=v∗. We do
this by specifying particular attack strategies which are optimal on these trees.

We conjecture the following on trees:

Conjecture 1 Let Q be a tree network, then for any α the E-patrolling strategy is optimal
and the value of the game is V=v∗=α/( µ + λ(E )) .

In Section 7.1 we find such strategies for a range of values of α on a skewed star with
lengths 6, 1, 1 and µ=8 as shown in Figure 9.It is easy to see that this star satisfies the Leaf
Condition only for α ≤4 and α ≥12. In what follows we introduce attack strategies for this
star that guarantee v∗ for the attacker for 4≤α ≤8, and thus verify the conjecture.We refer
to this skewed star as the 6−1−1 star. Finally, in Section 7.2 we give an attack strategy
on a non-star tree that also guarantees the value v∗ for the attacker and thus verifies the
conjecture.

Figure 9: The 6−1−1 star. The extremity set E is shown in thick red lines and Ec in grey.
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7.1 Optimal Attack Strategies on the 6−1−1 Star, 4≤α ≤8

We define an attack strategy that we will show is optimal for the 6−1−1 star for 4≤α ≤8.
To aid notation we let θ =2(µ + λ(E )) ; this gives v∗ =2α/θ. Further, we note that for the
6−1−1 star with 4 ≤α ≤8 it is easy to check that λ(E ) =α. We denote the left and right
boundary points of Ec with E by u and v respectively; since 4≤α ≤8, both of these points
are on the long arc or on its boundary.

We note that the Leaf Condition for this star holds for α =4 but not for 4 < α ≤8, thus
the E-attack strategy is not defined for the latter set of values.Thus, we define a new attack
strategy. For α =4 both strategies can be used.

Definition 10 (6-1-1-attack) The 6-1-1-attack strategy is defined as follows:

Left attacks: With probability 2α /θ, attack equiprobably at nodes 1 and 2,starting

uniformly at times in [1, 1+ α] .

Middle attacks: With probability 2 λ(E c)/ θ, attack at a uniformly random point of

E c (set of points between u and v), starting equiprobably at times α/2 or α /2+ 2.

Right attacks: With probability 2α /θ, attack at node 9 at starting times in [0, α+ 2]
described as follows:conditional on the attack taking place here,the starting time is

given by the following cumulative probability distribution function,

f (y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y
2α if 0 ≤y ≤2,

1
α +

y−2
α if 2 ≤y ≤α,

α−1
α +

y−α
2α

if α ≤y ≤α + 2.

(This is uniform on [2, α] with conditional probability(α−2)/ α and uniform on [0, 2]∪
[α, α+ 2] , with conditional probability 2/α) .

Note that the total probability of attack is

2α
θ +

2λ(E c)

θ +
2α
θ =

4λ(E ) +2(µ −λ(E ))

θ =
2(µ + λ(E ))

θ =1

Proposition 1 For the 6−1−1 star, shown in Figure 9, with 4 ≤α ≤8, we have V=v∗ =

2α/θ. The 6−1−1-attack strategy avoids interception with probability v∗=α/( µ + λ(E )) .
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The proof of Proposition 1 can be found in the Online Appendix.Proposition 1 provides
a counterexample to a conjecture in Alpern et al. (2016). The conjecture was that for for
trees, if α is at least the diameter of the network, the value of the game is α/ µ̄ =α/( 2µ) . For
the 6-1-1 star, the diameter is 7, and by Proposition 1, for 7≤α < 8, the value is α/( µ+λ(E )) .
This is not equal to α/( 2µ) , since λ(E ) <µ in that range of α, disproving the conjecture.

The 6−1−1 strategy does not guarantee the value of v∗ for the attacker for α > 8. Note
that for α > 8 there are no middle attacks.Suppose that the Patroller stays at node 2 until
time α−1, then arrives at node 1 at time α+1 and goes back to node 2 at time α+3 and then
heads to node 9 and arrives there at time α+ 10. This patrol will intercept the left attacks
with conditional probability of 1. The attacks at node 9 end at time 2α+ 2 which is greater
than α + 10 if and only only α ≥8. Thus there will be positive probability p that the left
attacks are intercepted.Thus, the total interception probability will be 2α

θ 1+ 2α
θ

p> 2α
θ =v∗.

7.2 A Non-star Tree withĒ =Q satisfying Conjecture 1.

We now consider the tree depicted in Figure 10 with unit length arcs and α=6. This gives
Ē =Q and thus λ(E ) =µ. Here µ=6 and thus v∗=α/2µ=1/2.

Figure 10: A tree with µ =6.

We propose the following Attacker strategy for this specific tree with  α=6.

• At each leaf node 1 and 2 attack with probability 6/24 at a start time chosen uniformly
in the interval [0, 6] (total attack probability 12 /24).

• At leaf node 6 attack with attack start time uniformly: in the interval [0, 2] with
probability 2/24, in the interval [2, 4] with probability 4 /24, in the interval [4, 6] with
probability 2 /24 (total attack probability 8 /24).

• At leaf node 7 attack takes place with probability 4/24 at a start time chosen uniformly
in the interval [1, 5] (total attack probability 4 /24).
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It is easy to verify that the probability of interception guaranteed by this strategy is
v∗ =1/2, thus verifying the conjecture; the proof is along the same lines as that of Section
7.1.

8 Conclusions
This paper is the first to analyze continuous patrolling games on arbitrary networks.These
games model the problem of defending transportation networks, pipelines or other networks
which can be attacked anywhere along their length.In Section 3 we developed a number of
very general techniques which can be used by the players to estimate the efficacy of various
types of strategies on arbitrary networks. In Section 4 we solved the patrolling game for
all networks without leaves, using a periodic patrolling path which covers every arc exactly
twice (a double-cover), for attack lengths α not exceeding the girth g of the network.That
result (Theorem 4) was then extended in Section 5 to general networks (allowing leaves)
by considering a notion of generalized girth g∗ (Theorem 6). For trees, g∗ is simply twice
the length of the shortest leaf arc, so Theorem 6 may not be very useful for trees with a
short leaf arc. To remedy this, Section 6 developed a concept of the extremity set E of a
tree and strategies for both players which are defined in terms of E. We then defined the
Leaf Condition for a tree, which required (among other things) that the extremity set E
is a subset of the leaf arcs. Conjecture 1 says that the value of the patrolling game on a
tree is given by v∗ =α/( µ + λ(E )) and that the strategies mentioned above based on E are
optimal. Our main result for trees is that Conjecture 1 holds for all trees satisfying the Leaf
Condition (Theorem 8). We then showed that the Leaf Condition (and hence Conjecture 1)
holds for all stars where the length of any leaf arc is not more than half the total length of
the star. Some stars without this property, as well as a certain non-star tree, are shown to
satisfy Conjecture 1 (but not the Leaf Condition) by explicit construction of strategies in
Section 7.
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