
Distributed, Automated Calibration of Agent-based Model
Parameters and Agent Behaviors

Extended Abstract

Matteo D’Auria
Università degli Studi di Salerno

Fisciano, Italy

matdauria@unisa.it

Eric O. Scott
George Mason University

Washington, D.C.

escott8@gmu.edu

Rajdeep Singh Lather
George Mason University

Washington, D.C.

rlather@gmu.edu

Javier Hilty
George Mason University

Washington, D.C.

jhilty2@gmu.edu

Sean Luke
George Mason University

Washington, D.C.

sean@cs.gmu.edu

ABSTRACT

Agent-based models can present special challenges to model cal-

ibration due in part to their high parameter count, tunable agent

behaviors, complex emergent macrophenomena, and potentially

long runtimes. However, due to this difficulty, these models are

most often calibrated by hand, or with hand-coded optimization

tools customized per-problem if at all. As simulations increase in

complexity, we will require general-purpose, distributed model cal-

ibration tools tailored for the needs of agent-based models. In this

paper, we present the results of a system we have developed which

combines two popular tools, the MASON agent-based modeling

toolkit, and the ECJ evolutionary optimization library. This system

distributes the model calibration task over many processors, pro-

vides many stochastic optimization algorithms well suited to the

calibration needs of agent-based models, and offers the ability to

optimize not just model parameters but agent behaviors.

KEYWORDS

Agent-basedModels, Model Calibration, Evolutionary Computation

ACM Reference Format:

Matteo D’Auria, Eric O. Scott, Rajdeep Singh Lather, Javier Hilty, and Sean

Luke. 2020. Distributed, Automated Calibration of Agent-based Model Pa-

rameters and Agent Behaviors. In Proc. of the 19th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland,

New Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION

Agent-based models (ABMs) are widely used in research areas such

as computational biology, the social sciences, multi-agent systems,

and robotics. One of the most challenging steps in the development

of an ABM is the calibration of the model’s parameters and agent

behaviors. ABM calibration is challenging due to the number of

agents, their heterogeneity, and the complex interaction among

them. Suchmodels are also often slow and consequently the number

of possible calibration trials can be low. Because of these difficulties,

many ABMs are not calibrated at all or ad hoc solutions are applied.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

For example, in Heppenstall et al. [1] half of the examined AMBs

do not show any sort of calibration.

In this paper we address the need for a general tool that allows for

the calibration and optimization of ABMs in an assisted, automatic,

and distributed fashion. Given the importance and difficulty of

calibrating agent-based models, this is an important item: yet there

are surprisingly few existing facilities available at this time.We then

demonstrate some basic capabilities of the system in distributed

model optimization and in optimization of agent behaviors.

2 APPROACH

Calibration is essentially an optimization process, but as testing is

done in simulation, we do not have a formal objective function nor

its gradient; thus wemust rely on stochastic optimization techniqies.

To do ABM calibration, we have combined two tools popular in their

respective fields: the MASON agent-based simulation toolkit [4]

and the ECJ evolutionary optimization library [6]. Themethodology

is not reliant on either of them: but both make it easy to implement.

The calibration process is as follows. The modeler first builds the

simulation and sets those parameter values he knows or assumes to

be correct. The model is then given to the calibration system, which

optimizes the parameters, or behaviors, according to an objective

function specified by the modeler. The modeler then examines the

results obtained, and based on these results, determines if there are

errors in the model, incorrect assumptions, etc. The modeler then

improves the simulation and fixed parameter values and resubmits

the simulation to the calibration system in the next iteration.

In our distributed and assisted calibration approach, the modeler

must define an ECJ process called themaster, which runs a top-level

model optimization algorithm. This process maintains a population

of candidate solutions (or individuals), which are tested by pack-

aging them and sending them to remote processes called workers.

Each candidate solution is simply a set of parameter values or be-

haviors which define a possible complete model definition. Each

worker creates a MASON simulation using these parameters, runs

it several times, and evaluates its performance. Then the worker

returns the performance results to the master, which uses them in

its resampling procedure on the population.

By default the modeler need only provide the ranges of parame-

ters to be optimized. But if the modeler has special needs (a special



(a) Strong Scalability (b) Weak Scalability

Figure 1: Scalability Analysis, Refugee model

representation of agent behaviors, for example), he can completely

customize the optimization procedure using ECJ, but it will require

more work. ECJ has a great many stochastic optimization facilities

available to use. We discuss this latter scenario in Section 3.

3 EXPERIMENTS

Our experiments were performed using a cluster of 24 machines.

Each node had a Dual Intel Xeon E5-2670 @ 2.60GHz with 24 GB

RAM and an Intel 82575EB Gigabit Ethernet network adapter. On

each node we installed Red Hat Enterprise Linux Server 7.7 (Maipo)

and OpenJDK 1.8.0. All of the experimental results were statistically

significantly different from one another (p < 0.01) as verified by a

one-way ANOVA with a Bonferroni post-hoc test. These methods

use evolutionary algorithms: the details of these algorithms are

described in more detail in [3].

Speedup Demonstration. For this demonstration we used the

Refugee model, part of the collection of contributed models in the

GeoMASON distribution,1 and which explores the pattern of mi-

gration in the Syrian refugee crisis. We calibrated this model over

four real-valued parameters (so-called DangerCare, FamilyAbroad-

Care, EconomyCare, and PopulationCare), each ranging [0...1], and

compared the number of arrivals in each city in the model against

real-world data. The model ran for 10,000 steps. We used a gen-

erational genetic algorithm with a tournament selection of size 2,

one-point crossover, and Gaussian mutation with a 100% probability

and a standard deviation of 0.01. The results are shown in Figure 1.

Strong scalability analysis: we fixed the problem to ten genera-

tions, each with 32 individuals. In our case, the strong scalability

efficiency came to 71.88%, using 32 workers to solve the problem.

Weak scalability analysis: we varied the problem difficulty by

adjusting the population size such that, regardless of the num-

ber of workers, each worker was responsible for four individ-

uals per generation. For each optimization process the number

of generations was fixed to 10 and the population size varied in

{4, 8, 16, 32, 64, 128, 256, 512}, and thus the number of workers var-

ied as p ∈ {1, 2, 4, 8, 16, 32, 64, 128}. In our case, the weak scalability

efficiency was 83.18%.

Asynchonous Evolution Experiment. In this experiment we

considered an asynchronous evolutionary algorithm (that is, the

distributed version of a so-called steady-state algorithm) to improve

efficiency when the model runtimes varied greatly. We compared

the generational genetic algorithm discussed earlier against an

asynchronous evolutionary algorithm using a standard steady-state

1http://cs.gmu.edu/∼eclab/projects/mason/extensions/geomason/

Figure 2: Mean best-so-far performance, over 30 runs, of ge-

netic programming on the Serengeti model (lower is better).

genetic algorithm as its foundation. There were 128 workers and

the population size was set to 128. To simulate varying runtimes in

the Refugee model, we randomly varied the number of simulation

steps each time: 1/4 the time we halved the steps and half the time

we doubled them. The results were as follows:

Method Mean Runtime (Seconds)

Asynchronous Evolution 293.77

Generational Evolution 437.77

Optimizing Agent Behaviors. Agent behaviors are essentially

programs that dictate how the agents operate in the environment

and interact with one another. This is more complex than simple

parameter optimization, because when calibrating agent behaviors

the modeler must specify both the nature of the representation of

these agent behaviors, and must also write the simulation code

which, when given an individual, evaluates its behaviors in the

simulation proper.

An agent behavior may take different representations, such as

neural networks or automata, but for demonstration we will focus

here on the classic “Koza style” genetic programming style, where

behaviors take the form of executable Lisp parse trees [2].

Our example is drawn from the Serengeti model [5], in which

four “lion” agents are tasked to capture a “gazelle” in a real-valued

toroidal environment. Each individual consists of four parse trees,

one per lion. We used a genetic-programming facility closely fol-

lowing the approach in Luke and Spector [5]. We ran the genetic

programming algorithm as described, but with a population size of

5760 spread over 276 workers: each worker was thus assigned 20

individuals per generation. Assessment of an individual’s behaviors

was done over 10 random trials. The results are shown in Figure 2.

4 CONCLUSION

Like all models, calibration of ABMs is very important, but as ABMs

continue to increase in complexity and run length, model calibra-

tion becomes more and more difficult to do. ABM calibration is

also unusual because agent behaviors, as well as global or agent

parameters, may be optimized during the calibration process. These

and other reasons motivate the use of massively distributed evolu-

tionary optimization tools aimed at agent-based model calibration.

We have developed a tool of this kind which combines MA-

SON and ECJ, both popular libraries in their respective fields. We

have shown how their combination can produce a powerful, fully-

featured model calibration facility with special capabilities of inter-

est to the agent-based modeler. This facility will soon be available

as open source.



REFERENCES
[1] Allison Heppenstall, Nick Malleson, and Andrew Crooks. 2016. “Space, the Final

Frontier”: How Good are Agent-Based Models at Simulating Individuals and
Space in Cities? Systems 4, 1 (2016).

[2] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

[3] Sean Luke. 2013. Essentials of Metaheuristics (second ed.). Lulu. Available for
free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[4] Sean Luke, Robert Simon, Andrew Crooks, Haoliang Wang, Ermo Wei, David
Freelan, Carmine Spagnuolo, Vittorio Scarano, Gennaro Cordasco, and Claudio

Cioffi-Revilla. 2018. The MASON Simulation Toolkit: Past, Present, and Future.
In International Workshop on Multi-Agent-Based Simulation (MABS).

[5] Sean Luke and Lee Spector. 1996. Evolving Teamwork and Coordination with
Genetic Programming. In Genetic Programming 1996: Proceedings of the First
Annual Conference. 141–149.

[6] Eric Scott and Sean Luke. 2019. ECJ at 20: Toward a General Metaheuristics
Toolkit. In GECCO ’19 Companion.


