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Abstract

Although models using contextual word em-
beddings have achieved state-of-the-art results
on a host of NLP tasks, little is known about
exactly what information these embeddings en-
code about the context words that they are un-
derstood to reflect. To address this question,
we introduce a suite of probing tasks that en-
able fine-grained testing of contextual embed-
dings for encoding of information about sur-
rounding words. We apply these tasks to exam-
ine the popular BERT, ELMo and GPT contex-
tual encoders, and find that each of our tested
information types is indeed encoded as contex-
tual information across tokens, often with near-
perfect recoverability—but the encoders vary
in which features they distribute to which to-
kens, how nuanced their distributions are, and
how robust the encoding of each feature is to
distance. We discuss implications of these re-
sults for how different types of models break
down and prioritize word-level context infor-
mation when constructing token embeddings.

1 Introduction

The field of natural language processing has re-
cently seen impressive performance gains associ-
ated with the use of “contextual word embeddings”:
high-dimensional vectors that have access to infor-
mation from the contexts of the words they repre-
sent. Models that use these contextual embeddings
achieve state-of-the-art performance on a variety of
natural language processing tasks, from question-
answering to natural language inference. As of
writing, nearly all of the models on the SuperGLUE
leaderboard (Wang et al., 2019) use contextual em-
beddings in their architectures, most notably mod-
els building on the BERT (Devlin et al., 2019) and
Transformer XL (Dai et al., 2019) models.
Despite the clear power afforded by incorporat-
ing context into word embeddings, little is known
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about what information these contextual embed-
dings actually encode about the words around them.
In a sentence like “The lawyer questioned the
judge”, does the contextual representation for ques-
tioned reflect properties of the subject lawyer? Of
the object judge? What determines the information
that a contextual embedding absorbs about its sur-
rounding words? In this paper, we address these
questions by designing and implementing a suite
of probing tasks, to test contextual embeddings
for information about syntactic and semantic fea-
tures of words in their contexts. We use controlled
sentences of fixed structure, allowing us to probe
for information associated with word categories,
and to avoid confounds with particular vocabulary
items. We then apply these tests to examine the
distribution of contextual information across token
representations produced by contextual encoders
BERT (Devlin et al., 2019), ELMo (Peters et al.,
2018b), and GPT (Radford et al., 2018).

The contributions of this paper are twofold. First,
we introduce a suite of novel probing tasks for test-
ing how encoders distribute contextual information
across sentence tokens. All datasets and code are
available for follow-up testing.! Second, we use
these tests to shed light on the distribution of con-
text information in state-of-the-art encoders BERT,
ELMo and GPT. We find that these models en-
code each of our tested word features richly across
sentence tokens, often with perfect or near-perfect
recoverability, but the details of how the models
distribute this information vary across encoders. In
particular, bidirectional models show more nuance
in information selectivity, while the deeper trans-
former models show more robustness to distance.
Follow-up tests suggest that the effects cannot be
chalked up to proximity, and that general word fea-
tures are encoded more robustly than word identity.

"Probing  datasets and code available  at

https://github.com/jklatka/context-probes.
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2 Our approach

Our tests address the following basic question: if
we probe the contextual representation of a given
token in a sentence, how much information can we
recover about the other words in that sentence? For
example, if we create a contextual embedding for
the word questioned in the sentence

The lawyer questioned the judge

how well can we extract information about the sub-
ject noun (lawyer)? What if we probe the object
noun (judge) or determiners (the)? We develop
tasks to probe representations of each word for var-
ious types of information about the other words
of the sentence, allowing us to examine with fine
granularity how contextual encoders distribute in-
formation about surrounding words. We complete
this investigation for each word in a set of fixed-
length sentences of pre-determined form, which
allows us to characterize behaviors based on word
categories (e.g., subjects versus verbs). Using this
approach, we can examine how the distribution of
context information is impacted by a) the type of
information being encoded, and b) the properties
of the word that the embedding corresponds to.

3 Related work

Much work has been done on analyzing the in-
formation captured by sentence encoders and lan-
guage models in general. Classification-based prob-
ing tasks have been used to analyze the contents of
sentence embeddings (Adi et al., 2016; Conneau
et al., 2018; Ettinger et al., 2016), finding that these
embeddings encode a variety of information about
sentence structure, content, length, etc., though
more tightly-controlled tasks suggest weaknesses
in capturing basic sentence meaning (Ettinger et al.,
2018). Our work uses the same classification-
based probing methodology, but focuses on probing
token-level embeddings for context information.
Other work has analyzed linguistic capacities
of language models by examining output probabil-
ities in context, emulating methods for studying
human language processing. Much of this work
has studied sensitivity to syntactic dependencies
in recurrent neural network language models (e.g.
Linzen et al., 2016; Wilcox et al., 2018; Chowd-
hury and Zamparelli, 2018; Gulordava et al., 2018;
Marvin and Linzen, 2018; Futrell et al., 2019). Us-
ing similar methods to test syntactic awareness in
BERT, Goldberg (2019) finds the model to perform

almost at ceiling on syntactic tests. Testing BERT’s
outputs on a range of semantic, syntactic and prag-
matic information, Ettinger (2020) finds strong sen-
sitivity to syntax, but clear limitations in areas of
semantics and pragmatic/commonsense reasoning.
We complement this work with a direct focus on the
contextual token representations learned by mod-
els pre-trained on language modeling, examining
the syntactic and semantic information that these
embeddings capture about surrounding words.
Most directly related to the present work are
studies using probing and other methods to analyze
information in contextual token embeddings. Some
of this research (e.g. Tenney et al., 2019a; Jawa-
har et al., 2019) finds that BERT encodes more
local, syntactic information at lower layers and
more global, semantic information at higher lay-
ers. Peters et al. (2018a) find that encoders differ
in encoding strength for semantic features but all
encode these features strongly where possible. He-
witt and Manning (2019) provide evidence that
contextual encoders capture sentence-level hierar-
chical syntactic structures in their representations.
Other work (Liu et al., 2019; Tenney et al., 2019b)
finds that contextual word encoders struggle to
learn fine-grained linguistic information in a variety
of contexts. These papers have focused primarily
on studying the ability of contextual embeddings
to capture information about the full sentence, or
about phrases or dependencies of which those con-
textual embeddings are a part. We focus on map-
ping the precise distribution of context information
across token embeddings, with a systematic, fine-
grained investigation of the information that each
token encodes about each of its surrounding tokens.

4 Probing for contextual information

For each of our probing tasks, we test for a particu-
lar information type, formulated as a query about a
particular target word in the sentence—for instance,
“What is the animacy of the subject?” or “What is
the tense of the verb?”. We then apply these queries
to probe the embeddings for each word of the sen-
tence in turn—we call this the probed word. For
example, a test with a probed word of verb, a target
word of subject noun, and an information type of
animacy would ask the question: “What does the
embedding of the verb tell us about the animacy
of the subject noun?” We implement each test as a
binary classification task (e.g., “animate” vs “inan-
imate”), and train and test a multi-layer perceptron
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Task Example Label
(subject) Number  The lawyer betrayed the judge. SINGULAR
The lawyers betrayed the judge. PLURAL
(subject) Gender The waiter betrayed the judge. =~ MASCULINE
The waitress betrayed the judge. ~ FEMININE
(subject) Animacy The car betrayed the judge. INANIMATE
The turtle betrayed the judge. ANIMATE

Table 1: Example items from probing tasks for each noun information type.

classifier using the embeddings of one probed word
category at a time as input for the task. In this sec-
tion, we describe the details of our probing datasets
and tested information types.

4.1 Dataset construction

We construct our datasets using generated transitive
sentences with a fixed five-word structure: “DET
SUBIJ-N VB DET OBIJ-N”, as in “The lawyer ques-
tioned the judge”. For generating these sentences,
we draw nouns and verbs from the intersection of
the single-word vocabularies of the four tested en-
coding models, from which we select a set of 100
target words for each task, along with a set of 100
of each other content word type. We select based
on the necessary properties for the individual prob-
ing tasks (for example, as shown in Table 1, the
gender task requires explicitly gendered nouns, and
the animacy task requires a balanced set of animate
vs inanimate nouns). We constrain our sample to
ensure balance between positive and negative la-
bels in training and test sets. The stimuli for each
task were checked by the first author, a native En-
glish speaker, to confirm plausibility of occurrence
in a corpus of English text. The exception to the
plausibility rule was the noun animacy task, which
required certain implausible noun-verb pairings.
We follow Ettinger et al. (2018) in employ-
ing controls to keep selected baselines at chance
performance—in our case, we ensure that non-
contextualized GloVe embeddings (Pennington
et al., 2014) are at chance on all tests, except when
the probed word is the target word (e.g., when test-
ing “what does the verb embedding tell us about
the verb”). This ensures that the tasks must be
solved by incorporating contextual information,
rather than by spurious cues in the words them-
selves. Controlling in this way requires attention to
inflectional marking. When targeting subject num-
ber we use only past tense transitive verbs (which
have the same form regardless of subject number)

to ensure that no word but the target noun indicates
the number information of interest.

For each task we generate 4000 training and
1000 test transitive sentences. We generate sep-
arate datasets for each target word within an in-
formation type—for example, generating separate
subject animacy and object animacy datasets.

4.2 Information types

We probe for three types of linguistic information
about nouns and three types of linguistic informa-
tion about verbs. We select these as reasonably
simple and fundamental syntactic and semantic
features at the word level, which are thus good can-
didates to be encoded in representations for other
words in the sentence. With our selections, we aim
for diversity in how syntactic or semantic the infor-
mation is, and in whether the targeted information
is overtly marked on the target word itself.

Noun information When probing for informa-
tion about subject and object nouns, we target three
types of information: number, gender, and ani-
macy. The number of a noun in English (whether
it is singular or plural) is a basic property that has
syntactic implications for verb agreement, and that
is directly encoded on the surface form of the noun.
Gender is a primarily semantic feature, and English
nouns sometimes indicate gender in their surface
forms (e.g. actor versus actress), but in other cases
they do not (e.g. brother versus sister). Recent
work has examined gender bias in word embed-
dings (e.g., Caliskan et al., 2017), further high-
lighting the importance of understanding how this
information is reflected in word representations.
Animacy is a semantic property that distinguishes
animate entities like humans from inanimate enti-
ties like cars, and impacts contextual factors like
the kind of verb frames a noun is likely to occur in.

Table 1 shows example items from probing tasks
for each of these noun information types—in this
case with the subject noun as the target word. The
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Task Example Label
Tense The lawyer betrayed the judge. PAST
The lawyer betrays the judge. PRESENT
Causative-inchoative  The warden melted the ice. (the ice melted) =~ YES ALTERNATION
alternation The warden bought the ice. (*the ice bought) NO ALTERNATION
Dynamic-stative The lawyer found the judge. DYNAMIC VERB
The lawyer observed the judge. STATIVE VERB

Table 2: Example items from probing tasks for each verb information type.

first line for each task shows an example of a posi-
tive label sentence, and the second line shows an
example of a negative label sentence. We also de-
sign probing tasks that target information about the
object noun. These tasks are nearly identical in
form to the subject tasks: the target word is simply
switched to the object, such that the positive and
negative labels are determined by the properties of
the object noun rather than the subject noun.

Verb information When probing for informa-
tion about verbs, we target three types of infor-
mation: tense, presence of a causative-inchoative
alternation, and classification of dynamic versus
stative verbs. Tense information in English is a
largely semantic property with some syntactic im-
plications, and it is marked by morphology on the
surface form of a verb. In our probing tasks, we
restrict to testing present versus past tense. In our
verb tense task, we only use singular subjects, to
avoid information about the subject influencing
variation in the verb form. Present verbs encoding
subject number is the only situation in which in-
formation about one word is explicitly marked on
another word in our tasks. For all other tasks, we
use only past tense verbs, which don’t have surface
marking of subject information. The causative-
inchoative alternation refers to whether a verb has
both a transitive and an intransitive meaning—this
is a syntactic/semantic feature that has essential
implications for the way that a verb can interact
with its context.” The dynamic-stative feature is
a primarily semantic feature referring to whether
a verb involves the subject producing a change in
the object (dynamic), or communicates a state of
the subject and the object (stative). The causative-
inchoative and dynamic-stative feature information
are not marked on the surface forms of the verb.
We have included examples for tasks testing each

2This task is derived from the verb alternation probe of the
same name in Warstadt et al. (2019).

of these verb information types in Table 2.

Determiner information While we do probe for
information encoded on our determiner words (the),
we do not design tests that treat these determin-
ers as target words. English determiners are a
small closed-class set, making it difficult to design
datasets with sufficient variety for probing. We
leave this problem for future work.

5 Experiments

We apply our probing tasks to test for the dis-
tribution of contextual information across to-
kens in three prominent contextual encoders:
BERTgAse (Devlin et al., 2019), ELMo (Peters
et al., 2018b), and GPT (Radford et al., 2018).

BERTRAsE is a bidirectional transformer archi-
tecture of 12 layers, trained on a novel masked
language modeling task of predicting randomly
masked tokens using left and right context, as well
as a next-sentence prediction task. We probe rep-
resentations from the model’s final layer, based on
results suggesting that BERT’s later layers contain
more semantic and abstract information (e.g. Jawa-
har et al., 2019). ELMo is composed of stacked
bidirectional LSTMs, trained by jointly optimiz-
ing backwards and forwards language modeling
objectives. We use the original version of ELMo
with two representation layers, and we probe rep-
resentations from the second layer, which has also
been found to encode more abstract and semantic
information (Peters et al., 2018b). GPT is a uni-
directional left-to-right 12-layer transformer, also
trained on language modeling. Consistent with
ELMo and BERT, we probe representations from
GPT’s final layer.’ We test the pre-trained versions
of these models without fine-tuning, to examine
their general-purpose encoding capacities, in line
with Peters et al. (2018a).

3We also test the second-to-last layers from each model,

and find that the results differ in magnitude from results on
the final layer, but show the same overall patterns.
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We use these models to embed each of our five-
word sentences, producing contextualized represen-
tations for each token. Then for each probing task
(e.g., subject animacy, verb tense) we train and test
classifiers on the embeddings for a single probed
word category (e.g., object noun) at a time.

We use several classifier architectures in our
probing tasks, in order to explore the impact of
classifier complexity on extraction of our target in-
formation types. We use a multilayer perceptron
classifier with a single hidden layer of 1024 units,
as well as a smaller classifier with three layers of 20
units each, and a larger classifier with three layers
of 1024 units each. We use the relevant contextual
or non-contextual token representations as input
for classification. The largest inputs we supply
to the classifiers are contextual embeddings with
dimension 1024, from ELMo.We use the relevant
contextual or non-contextual token representations
as input to the classifiers. Finding similar results
across classifier architectures, we follow precedent
in the literature (Adi et al., 2016; Ettinger et al.,
2018) and present results only for our classifier
with a single hidden layer. To quantify variance
across runs, we repeat this process 50 times for
each probed word category on each task.*

As a sanity-check baseline, we also test non-
contextual GloVe embeddings (Pennington et al.,
2014) on each of our tasks, to establish how well
each information type is captured by the non-
contextual representation for the relevant word
(e.g., does the GloVe embedding for waiters en-
code the information that waiters is plural? mascu-
line?). We also want to confirm that none of these
tasks can be performed by non-contextual embed-
dings for any of the other words of the sentence,
to ensure that the information being tested for is
truly contextual. We use 300-dimensional GloVE
embeddings, which prove generally adequate to
encode all of the targeted word information.

6 Probing task results

Figures 1-3 show the results for tasks with subject
noun, object noun, and verb target words, respec-
tively (note that although the plots include tokens
from an example sentence for purposes of clarity,
these are results across all test sentences). Each
cluster of adjacent bars of the same shade repre-

*Training intermittently produced outlier runs with chance-
level or below-chance test accuracy in settings with otherwise
strong performance—we omit such runs from consideration.

sents the three different tested information types,
with left-to-right order of number-gender-animacy
for noun target words, and tense-dynamic-causative
for verb target words.

Distribution of subject noun information Fig-
ure 1 shows the distribution of subject noun infor-
mation across sentence tokens, for all three infor-
mation types and for our four tested encoders.

First, we see that our sanity-check baselines in-
dicate that we control our datasets well: as desired,
GloVe embeddings are at chance performance for
every probed word apart from the target word
itself—on which GloVe performance is good—and
GPT is at chance to the left of the target word. This
suggests that we are successfully targeting contex-
tual information rather than spurious cues.

Once the subject noun is encountered, GPT
shows near-perfect recoverability of subject num-
ber, gender, and animacy on all of the subsequent
tokens, with the strength diminishing slightly as
the subject grows more distant. The exception to
this strong recoverability is in animacy encoding
on the subject noun itself, which is notably weaker:
GPT appears to encode more information about
subject animacy on the verb and object tokens than
on the subject itself. Apart from this, GPT appears
to distribute subject information fairly uniformly
regardless of information type or probed token.

BERT and ELMo, the bidirectional contextual
encoders, show more sensitivity to the interac-
tion of information type and probed token. Both
strongly encode subject number and animacy on all
tokens, though BERT’s encoding of animacy lags
behind ELMo’s in places, and both encode weaker
subject information on the object noun. As for gen-
der, BERT seemingly disregards subject gender as
context information—while subject gender is near
perfect recoverability on the subject noun itself,
its recoverability is only around 75% on all other
BERT tokens. In contrast, while ELMo shows
weak subject gender on the subject determiner and
subject noun itself, it strongly encodes subject gen-
der on the verb, object determiner, and object noun.

Distribution of object noun information Dis-
tribution of object noun information is shown in
Figure 2. Again, the validity and control of our
tests is supported by chance-level performance of
GloVe representations on all but the object noun,
and of GPT embeddings on every token prior to the
object noun. GPT shows surprisingly weak encod-
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Figure 1: Probing task results with subject noun as target word. Vertical ranges show 95% confidence intervals
computed with non-parametric bootstrap. Each cluster of adjacent bars of the same shade represents the three
different tested information types—from left to right: number, gender, animacy
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Figure 2: Probing task results with object noun as target word. Vertical ranges show 95% confidence intervals
computed with non-parametric bootstrap. Each cluster of adjacent bars of the same shade represents the three
different tested information types—from left to right: number, gender, animacy
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Figure 3: Probing task results with verb as target word. Vertical ranges show 95% confidence intervals computed
with non-parametric bootstrap. Each cluster of adjacent bars of the same shade represents the three different tested
information types—from left to right: tense, dynamic, causative

ing of object noun information even on the object
noun embedding—this pattern suggests that GPT
embeddings of the object noun actually encode
more information about the subject noun several
words away than about the object noun itself.
BERT shows strong encoding of object number
and animacy across tokens, but again sacrifices
gender information on tokens apart from the ob-
ject noun. ELMo also shows strong encoding of

object number (with the exception of the subject
noun), and of object animacy on the object noun,
determiner and verb—but encodes animacy more
weakly on the subject words. Unlike the case of
subject gender, ELMo joins BERT in showing con-
sistently weaker encoding of object gender.

Distribution of verb information Distribution
of information about the verb is shown in Fig-
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ure 3. Overall, encoding of verb information is
weaker and somewhat more uniform across the sen-
tence than encoding of noun information. BERT
and ELMo both strongly encode the causative-
inchoative alternation across all tokens of the sen-
tence. For GPT this is also the most strongly en-
coded feature, and as with subject animacy, it is
more strongly encoded on the later words than on
the verb itself. For ELMo, the dynamic-stative
property is the most weakly encoded property
across the sentence (except on the subject noun).
For BERT the verb’s tense is the most weakly en-
coded, consistently lagging behind ELMo’s encod-
ing of verb tense. Among ELMo embeddings, the
subject determiner shows surprisingly high perfor-
mance in encoding of all verb properties.

Interim summary GPT shows uniform strong
encoding of subject information and solid encod-
ing of verb information on the target and subse-
quent words—but weak encoding of object infor-
mation on the object noun. BERT and ELMo show
more nuance in their distribution of the informa-
tion types, with BERT heavily deprioritizing gen-
der information, but strongly encoding animacy
and maintaining rich number information for both
nouns across all words. ELMo too deprioritizes
object gender across tokens, but it shows strong
encoding of subject gender after the subject noun,
mostly strong encoding of animacy (apart from ob-
ject animacy on subject words), and consistently
rich encoding of number for both nouns. Encoding
of verb features is generally weaker than noun fea-
tures, with BERT weakest on tense, ELMo weak-
est on dynamic-stative, and all contextual models
strongest on the causative-inchoative distinction.

7 Distance manipulation tasks

Setup Because our sentences follow a fixed struc-
ture for category-specific probing, it is possible
that differences in encoding from word to word are
an effect of linear distance rather than the syntac-
tic/semantic relationships between the words. We
perform a follow-up analysis inspired by a task in
Zhang and Bowman (2018), in which the authors
investigate the effect of distance from the target
word as a factor in how richly recurrent neural net-
works encode syntactic information. For all of our
tasks, we introduce a manipulation to change lin-
ear distances between our target and probed words,
by splicing relative clauses after the subject and
adjectives before the object. For example:

The lawyer found the judge.

The lawyer who was hungry found the angry and
competent judge.

For reasons of space, we display only subject task
results, in Figure 4. All results may be found in our
GitHub repository linked in Footnote 1.

Results When we increase linear distances be-
tween words, the patterns remain similar to those
observed in the five-word sentences. GPT still con-
sistently encodes subject information on each of
the tokens after the subject noun is encountered,
with the exception of animacy encoding on the sub-
ject noun itself. BERT and ELMo still show strong
encoding of subject number and animacy across
tokens, with BERT dispreferring gender informa-
tion across tokens and ELMo dispreferring gender
only on subject determiner and noun. The main
difference is that ELMo shows a marked drop in
subject number information (and a bit of a drop in
gender and animacy) on the object noun.

These results suggest that the observed strong en-
coding of context information is not simply a func-
tion of the proximity of the words in our five-word
sentences, given that the strong encoding patterns
persist over the longer distances (with the slight
exception of ELMo losing some encoding on the
object noun). This may indicate syntactic aware-
ness in the models, which would be consistent with
the findings of, e.g., Hewitt and Manning (2019)
and Tenney et al. (2019b). The results further sug-
gest that the contextual encoders tag information
as relevant to specific categories of target words
in their contexts, operating flexibly across varying
linear distances with different structures.

8 Word identity tasks

Setup We aim to show whether the encoders in-
corporate only more coarse-grained linguistic in-
formation in their embeddings, or if encoding is
fine-grained enough to memorize the embedding
patterns for specific context word identities. We
use a variation of the word content task from Con-
neau et al. (2018) and Adi et al. (2016). The goal
of the original word content task is to determine
whether a sentence vector representation contains
a given word. We adapt this task to test the ex-
tent to which contextual embeddings can identify a
neighboring word at a given position. We formu-
late our word identity tasks as “What is the identity
of the subject” or “What is the identity of the verb”,
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Figure 4: Distance manipulation probing task results with subject as target word. Vertical ranges show 95%
confidence intervals computed with non-parametric bootstrap. Each cluster of adjacent bars of the same shade
represents the three different tested information types—from left to right: number, gender, animacy
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Figure 5: Word identity task: labeling identity of subject noun. Vertical ranges show 95% confidence intervals

computed with non-parametric bootstrap.

etc. As in Section 6, we probe each word position
independently, using our fixed five-word sentences.

For identity classification, we use a softmax k-
way classification task, similar to the word content
task in Conneau et al. (2018). The classifier for this
task must choose which of the k output words is in
the target position of the sentence. In pre-testing,
we found best overall performance with a 30-way
classification, for which we present the results here.
Smaller and larger k& produce similar patterns of
results, but performance overall decreases.

Results We display results for probing subject
noun identity (“what is the identity of the subject
noun”) in Figure 5.

This proves to be a challenging task, but we see
clear trends suggesting that our encoders pick up
on word identity signals. As before, GloVe em-
beddings are at chance on all but the target subject
noun, and GPT embeddings are at chance for to-
kens to the left of the subject noun, satisfying our
sanity checks. On the subject noun itself, encoders
show comparably high recoverability of word iden-
tity, with BERT standing out as the strongest. GPT

and ELMo see a slight boost in recoverability of
subject identity on the verb, and GPT surprisingly
shows the most subject identity information on
the object determiner. BERT representations re-
tain consistently strong subject identity encoding
throughout the sentence, as do GPT embeddings
starting with the subject noun itself—but ELMo
encoding of subject identity drops off sharply on
the determiners and object noun. This suggests that
information about surrounding word identities is
distributed fairly evenly across sentence tokens for
BERT and GPT, but ELMo keeps word identity
information fairly local to the word position itself.

Probing for the identity of the verb and of the
object produces analogous patterns of results. In
particular, GLoVe embeddings are at chance on all
words but the target word, while GPT embeddings
are at chance before the target word, and pattern
similarly to BERT afterwards in the object identity
task. BERT is strong throughout, while ELMo
shows more effect of distance from the target word.

While identity classification performance here
is far above chance, it is also well below 100%. It
is possible that performance will increase with a
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stronger classifier, but it is also likely that encoding
of context information at the granularity of word
identity is not practical or necessary for contextual
embeddings, such that they more strongly encode
relevant context word features rather than word
identities themselves, as these results suggest.

9 Discussion

The results presented here shed light on how dif-
ferent contextual encoders distribute information
across token embeddings of a sentence. While we
cannot draw strong conclusions about causal rela-
tions between model properties and the observed
patterns, we can make broad connections between
the two to inform future investigations.

Overall, the deeper, transformer-based architec-
tures of BERT and GPT do not produce dramatic
differences in distribution of information relative
to the shallower ELMo model—the main differ-
ence observed with ELMo’s shallower recurrent
architecture is a bit of a drop in information (par-
ticularly number and word identity) over longer
distances, where BERT and GPT retain strong en-
coding. This is not necessarily surprising, given the
potential of the self-attention mechanism to cap-
ture long-distance connections—it is perhaps more
surprising that ELMo shows so little difference
overall. These patterns suggest that deeper trans-
former models may not be critical for encoding
and distributing these types of context information,
except perhaps over substantial distances.

BERT and ELMo, the models that use bidirec-
tional context, generally pattern more similarly to
each other than to GPT, particularly in strongly
encoding number and animacy over gender, and
encoding number strongest overall for nouns; GPT
shows more uniformity in encoding noun informa-
tion (at least from the subject noun). This pattern
suggests that using bidirectional versus unidirec-
tional context has more impact on distribution of
context information than does depth or architecture
type. GPT’s poor encoding of object information
relative to subject and verb information further sug-
gests that the left-to-right architecture may priori-
tize earlier information over later information.

As for the two bidirectional models, what
BERT’s particular properties seem to give it over
ELMo, beyond more robustness to distance, is
slightly different selectivity—dropping subject gen-
der information earlier than ELMo does, while
keeping object animacy information at a longer

distance, and dropping verb tense information a
bit more. Given BERT’s generally stronger per-
formance on downstream tasks, this suggests that
BERT’s masked language modeling setup, in tan-
dem with its greater capacity to handle longer dis-
tances, allows for a more nuanced picture of how
bidirectional context information should be dis-
tributed across tokens for optimal predictive power.

10 Conclusion

In this paper we have begun to tackle a key question
in our understanding of the contextual embeddings
on which most current state-of-the-art NLP models
are founded: what is it that contextual embeddings
pick up about the words in their contexts? We
have introduced a novel probing approach and a
suite of tasks through which we have performed
systematic, fine-grained probing of contextual to-
ken embeddings for information about features of
their surrounding words. We apply these tests to
examine the distribution of contextual information
across sentence tokens for popular contextual en-
coders BERT, ELMo, and GPT.

We find that each of the tested word features
can be encoded in contextual embeddings for other
words of the sentence, often with perfect or near-
perfect recoverability. However, we see substantial
variation across encoders in how robustly each in-
formation type is distributed to which tokens. Dis-
tance manipulations indicate that the observed rich
contextual encoding is not an artifact of proximity
between words, and probing for information about
context word identities suggests a weaker encoding
of identity information than of more abstract word
feature information. Bidirectional context appears
to impact distribution patterns more than depth or
architecture, though the transformer models show
more robustness to distance. Overall, these results
help to clarify the patterns of distribution of con-
text information within contextual embeddings—
future work can further clarify the impact of more
diverse syntactic relations between words, and of
additional types of word features. We make all
datasets and code available for additional testing.
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