Time and Order: Towards Automatically Identifying Side-Channel Vulnerabilities
in Enclave Binaries

Wubing Wang

Yingian Zhang

Zhigiang Lin

Department of Computer Science and Engineering
The Ohio State University

Abstract

While Intel SGX provides confidentiality and integrity guar-
antees to programs running inside enclaves, side channels
remain a primary concern of SGX security. Previous works
have broadly considered the side-channel attacks against SGX
enclaves at the levels of pages, caches, and branches, using a
variety of attack vectors and techniques. Most of these stud-
ies have only exploited the “order” attribute of the memory
access patterns (e.g., sequences of page accesses) as side
channels. However, the other attribute of memory access pat-
terns, “time”, which characterizes the interval between two
specific memory accesses, is mostly unexplored. In this paper,
we present ANABLEPS, a tool to automate the detection of
side-channel vulnerabilities in enclave binaries, considering
both order and time. ANABLEPS leverages concolic execution
and fuzzing techniques to generate input sets for an arbitrary
enclave program, constructing extended dynamic control-flow
graph representation of execution traces using Intel PT, and
automatically analyzing and identifying side-channel vulner-
abilities using graph analysis.

1 Introduction

Intel Software Guard eXtension (SGX) is a hardware addition
that is available in recent Intel processors. It offers both in-
tegrity and confidentiality to application software running in
a shielded execution environment—a secure enclave—even
when the entire operating system is untrusted. Recent work
has explored the use of Intel SGX for a variety of applications
such as secure cloud data analytics [25], smart contracts [44],
anonymity network [18], game hacking protection [7], and
unmodified code execution [8, 31], which have outlined a
promising future of SGX’s broad adoption in both server-end
and client-side computation.

Computer micro-architecture related side channels are not
new. Side-channel attacks that exploit micro-architectural re-
sources shared by mutually distrusting computing entities
(e.g., processes or threads) date back to the era of Pentium

USENIX Association

4 [23,24]. A malicious program or a virtual machine may
manipulate the shared micro-architectural resources, such
as CPU caches, branch prediction units, or function units,
to learn the pattern with which these resources are used
by the victim program and thereby infer secrets that dictate
such a usage pattern. Over the past decades, computer micro-
architecture has evolved drastically, but the issues of side
channels remain. What differ in the SGX context are two
fold: First, as SGX is designed to protect the confidential-
ity of applications that demand high levels of security, side
channels become a major security threats. Second, because
the adversary against SGX enclaves is assumed to have OS
system-level privileges, a wider range of attacks are enabled.
Particularly, over the past a few years, researchers have demon-
strated that secrets can be leaked from a variety of attack vec-
tors, such as branch prediction units [20], CPU caches [17],
paging structures [35,38,43], and DRAM row buffers [38].

Completely eliminating side channels from CPU chips
is unrealistic. Admitting this decades-old security concern,
Intel recommends developers take special care to avoid side-
channel vulnerabilities when writing enclave code [6]. How-
ever, developers are not experts of side channels and relying
on regular program developers to solve side-channel issues
is less promising. Moreover, there is no tool available that
helps the developers automatically identify improper coding
patterns in their enclave binaries.

In this paper, we aim to explore principles and techniques
that automatically identify side-channel vulnerabilities in en-
clave binaries that allow a side-channel attacker who is able
to observe execution traces of the control flow of an enclave
program to infer sensitive information inside the enclave. The
root cause of the vulnerability is the secret-dependent control
flows that are inherent in the enclave code. More specifically,
since side-channel attacks observe the runtime behavior of the
enclave programs, an intuitive approach for the vulnerability
identification would be to find a large set of secret values (e.g.,
input of the enclave program), run the enclave program with
these secret values, and collect the enclave’s execution traces
with respect to the control flow transfers (CFTs). The diversity

22nd International Symposium on Research in Attacks, Intrusions and Defenses 443

of the collected execution traces for different secret values is a
viable indicator of the side-channel vulnerabilities—if all se-
cret values correspond to the same execution trace, the enclave
code is not vulnerable. With respect to the execution traces,
there are both spatial (i.e., order) and temporal (i.e. time)
differences. A comprehensive solution should include both.

However, it is non-trivial to develop such a comprehen-
sive approach for a number of reasons. First, how to generate
the valid secret values (e.g., program input) to expose the
execution traces at different granularity (e.g., branch, cache,
or page). Second, how to collect the execution traces, espe-
cially the temporal information associated with the traces.
We cannot use static analysis as it will not be able to resolve
secret-dependent CFTs, and meanwhile cannot collect the pre-
cise time information. While we can use dynamic analysis, we
still need to solve the coverage issues. Third, how to represent
the execution traces and perform the cross-comparison, espe-
cially when there are multiple execution traces. Finally, how
to quantitatively analyze the information leakage due to the
detected vulnerabilities. Fortunately, we have addressed these
challenges and built a tool dubbed ANABLEPS, by leveraging
concolic execution and fuzzing techniques to generate input
sets for an arbitrary enclave program, constructing extended
dynamic control-flow graph representation of execution traces
using Intel PT, and automatically analyzing and identifying
side-channel vulnerabilities using graph analysis.

We have tested ANABLEPS with 8 programs and libraries,
including text rendering, image processing, gnomic process-
ing, and deep learning. Our tool has discovered numerous
input leakage execution points for these programs. Our study
also suggests automated tools can identify the side-channel
vulnerabilities based on syntactic inputs and execution traces.
However, the semantics (i.e., the meaning) of the input is also
of critical importance especially for the exploitation of the
side-channel vulnerabilities.

Contributions. To summarize, the contributions of this paper
are as follows:

e A novel and comprehensive approach to detecting both
time-based and order-based control-flow side-channel
vulnerabilities for enclave binaries.

e A practical implementation integrating fuzzing, sym-
bolic execution, and hardware supported execution trac-
ing.

o The first large-scale analysis of sensitive control-flow
vulnerabilities for real world enclave binaries.

Roadmap. The rest of the paper is organized as follows. §2
presents necessary background knowledge including related
works to facilitate our discussion of the problem and our moti-
vation. In §3, we present the problem statement and a running
example to highlight our key insights. We detail our design
of ANABLEPS in §4. Then, we present how we implement

444 22nd International Symposium on Research in Attacks, Intrusions and Defenses

ANABLEPS and evaluate its effectiveness in §5. We also made
a number of case studies to understand the exploitability of
the vulnerabilities in §6. §7 discusses the limitation of the
approach and future research directions. Finally, §8 concludes
the paper.

2 Background and Related Work

Intel SGX. At a high level, Intel SGX is a set of new instruc-
tions for the x86 architecture. These instructions allow appli-
cation developers to protect sensitive code and data by utiliz-
ing a secure container called enclave [13]. The trusted hard-
ware establishes an enclave by protecting isolated memory
regions within the existing address space called Processor Re-
served Memory (PRM) to assure confidentiality and integrity
against other non-enclave memory accesses, including kernel,
hypervisor, and other privileged code. The confidentiality of
regions outside the PRM is protected by the memory encryp-
tion engine (MEE). Enclave programs with memory footprints
larger than that is allowed by RPM can make use of memory
regions outside the PRM via page swapping. Memory pages
swapped out of the RPM need to be encrypted by MEE.

SGX Side-Channel Attacks. Side channels are the Achilles’
Heel of Intel SGX’s confidentiality guarantees. In the past
few years, a variety of side-channel attacks have been demon-
strated against SGX enclaves, particularly from the CPU’s
memory management perspective. For instance, it has been
demonstrated that by controlling the present flag or the re-
served flags of the page table entries (PTEs) [29, 43], the
adversary could force the enclave program to trigger page
faults when accessing a memory page, thus extracting suf-
ficient amount of secrets (e.g., image contours, user input,
cryptographic keys). Most recently, it was shown that the
page table access patterns can also leak the enclave secrets
without actively triggering the page fault [35,38], which can
be achieved by monitoring the accessed flag of the PTEs.

Other micro-architectural side-channel attack vectors
that have been studied on traditional hardware have also
been found exploitable in SGX. It has been demonstrated
that cache-based side-channel attacks can be migrated on
SGX [9, 15, 17, 26], which can be more powerful than
non-SGX settings. Branch prediction units have been demon-
strated to leak the branch history inside the enclaves [20].
DRAM row buffer contention has been exploited to steal
secrets from enclaves [38].

Most recently, Spectre [19], Meltdown [21], Fore-
shadow [32], and SGXPectre [10] attacks have been
demonstrated to leverage speculative execution and out-of-
order execution to read memory content protected by MMU
isolation. These attacks are out of scope of this paper as they
are micro-architecture vulnerabilities which cannot be solely
addressed from software.

USENIX Association

Existing Defenses. A number of enclave hardening tech-
niques have been proposed to mitigate these side-channel
attacks. To defeat page-level side-channel attacks, T-
SGX [28] uses the Transactional Synchronization Extensions
(TSX), DéJa Vu [12] relies on the execution time of the
enclave program path, SGX-LAPD [14] explores the internal
enclave data structures. To guard against cache side channels,
Gruss et al. [16] encapsulates snippets of enclave code into
hardware-supported memory, HyperRace [11] implements
contrived data races. Varys [22] also proposes to reserve
physical cores for secure enclave computation.

Closely related works to ours are Stacco [42], Mi-
croWalk [40], and DATA [39], all of which detect side-channel
vulnerabilities due to secret-dependent control flows. Particu-
larly, Stacco [42] uses Intel Pin tools to detect vulnerabilities
in SSL/TLS implementations, and it manually generates input
to the SSL libraries, and MicroWalk [40] focuses on vulnera-
bilities in Intel IPP and Microsoft CNG. Similarly, DATA [39]
only focuses on differential address trace analysis for crypto-
graphic primitives. In contrast, as ANABLEPS works on arbi-
trary enclave binary, it must generate the large volume of in-
put automatically and conduct vulnerability analysis without
known semantics. These new design challenges differentiate
our work and Stacco, DATA and MicroWalk. Outside the SGX
context, CacheD [37] is also relevant to our work. However,
in contrast to these works, ours considers more attack vectors.

3 Overview

3.1 Problem Statement and Definitions

The key objective of this work is to automatically identify the
side-channel vulnerabilities caused by the secret-dependent
control-flow transfers in the enclave programs. As enclave
programs are typically shipped to the hosting services in
the form of plaintext binary code, we anticipate the primary
secret that the enclave developer would like to hide is the
input to the enclave code. Therefore, the goal of the attacks
is to learn, through a variety of side channels (e.g., page
accesses [29, 35,38, 43], cache eviction [9, 15,17,26,33], and
branch prediction [20]), the input to the enclave programs.

However, most of these prior studies on SGX side channels
only consider the order attribute of memory access patterns,
i.e., which memory page (or cache set) has been accessed and
in what order. Few has exploited the time of memory accesses
as a side-channel vector. In fact, the first observation that time
and order are the two key attributes of a side (and covert)
channel can date back to the early 1990s [41]. As such, in our
work, we consider both, and broadly define that an enclave
program is vulnerable to side-channel attacks if different input
can lead to different traces from either the executing order
of each execution unit (e.g., an instruction) or the timing at
which each unit is visited.

USENIX Association

Defining Side-Channel Vulnerabilities. More formally,
given an enclave binary program p, a concrete input to p
will lead to a concrete execution trace r, which is defined
as [(mo, 1), (my,t1),(ma,t2),- -, (my,)], where m; is the ad-
dress of the j" execution unit and t; is its timestamp relative to
the beginning of the execution. When the memory addresses
are normalized to be free of effects of randomization, for each
input, there is a corresponding trace r.

Definition 1 Given an enclave program p and an input I;, the
mapping function ‘E(p,I;) = r;, where r; is the execution trace
of p under the input I;. Similarly, for a set of input I, we define
the mapping function E(p, 1) = {ri|ri = E(p,L;),VI; € I)}.
The entire input space is denoted Ispace. Therefore, the entire
space of execution traces R = E(p, Ispace).

The mapping function E generates a program’s execution
trace under a specific input or a set of inputs, which allows us
to define side-channel vulnerabilities as follows.

Definition 2 Given an enclave program p and a set of input
1, the program is considered to be vulnerable to side-channel
attacks (under the input set I) if and only if |’E(p, I)| > 1; the
input set can be completely leaked through the side channels
ifand only if |E(p, I)| = |1I|.

Informally, we define an enclave program p is vulnerable
to side-channel attack if not all the input maps to the same
trace. That is, the enclave program’s execution is not input
oblivious. However, even though the program is vulnerable to
side-channel attack, the amount of leaked information can be
different. The complete leakage captures the case that every
input can be uniquely identified from the execution trace. It is
worth noting that the set of input [is a subset of the entire in-
put space Ispace, i.€., I € Ispace. In most practical scenarios, it
is impossible to obtain Ispce. Therefore, the definition of side-
channel vulnerabilities is only meaningful when the program
and its input set is fixed. In this paper, we consider two types
of input set I: Igyntactic, the set of input generated automat-
ically from program analysis, and Isepantic, the set of input
provided by developers that are semantically meaningful.

Representing Execution Traces. To facilitate cross com-
parison of execution traces and directly pinpoint the secret-
dependent control flow transfer (CFT) that leaks the informa-
tion through side channels, execution traces need to be repre-
sented in proper data structures. String, in the form of linear
trace [(mo, o), (m1,t1), (ma,t2),- -+, (Mg,)], however, is not
an optimal choice as it will be quite challenging to identify the
alignment (i.e., anchor) point from the string. In our design,
we choose to use a graph representation of the linear traces.

Definition 3 An extended dynamic control-flow graph (ED-
CFG) of a program p under input I; € I is defined as a di-
rected graph G =<N,E>, where n; € N is a node of the
graph that represents a basic block of the CFG; and e; € E is
a directed edge of the graph connecting two nodes that repre-
sents the dynamic CFT when p is executed with the input I;.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 445

Also, each edge (e; € E) has a counter w; (i.e., weight) to in-
dicate how many times the edge is executed. The information
of the program’s execution order and time is embedded in
each node n; € N. Each n; € N has two ordered lists: Order
= [n},nb,- - ,n], where n’j is the j™* successor of node n;
during the execution of p with input I; Time = [t],25, - ,1t],
where t} is the execution time to reach node n’]

An ED-CFG of an enclave program uniquely specify the
execution trace of the program under a given input. More
specifically, G' represents the execution trace in a graph rep-
resentation for the input I;.

Execution Units in Side-Channel Attacks. An execution
unit in the context of a side-channel attack is defined as the
minimal single execution trace observable by attackers. For
the enclave program execution, an attacker can mostly achieve
the minimal execution unit at either cache level, or at page
level. Typically, it is hard to observe the single instruction
execution or basic block execution, but an attacker might be
able to do so at certain scenario (e.g., the branch shadowing
attack [20] and the Nemesis attack [34]). Therefore, in our
work we focus on the execution unit at page level (address
aligned with 4K bytes), at cache level (address aligned with
64 bytes)!, and at branch level.

Definition 4 A page-level ED-CFG, G, is a variant of G,
where each node of G, contains the page execution unit (i.e.,
all the executed instructions that belong to a particular page,
aligned with 2'? bytes), and each edge connects the CFTs
between the pages. Similarly, we define the cache-level ED-
CFG, G, where each node contains the cache execution unit
and edge captures the CFTs at cache level.

Therefore, eventually for each input /;, we will build G I first,
from which to derive G}, and G_. To detect the vulnerabilities,
we will then cross compare G, QI’, or G, respectively, for
all input ; € I. If a trace is different (in terms of time or
order of the specific execution units) among different user
input, we conclude the enclave program is vulnerable to the
corresponding side-channel attacks at different levels such as
at branch, cache, or page. Further analysis can be performed
on the graphs to quantify the vulnerability, or to identify the
leaking code segments.

3.2 A Running Example

Next, we would like to use a simple running example to illus-
trate how to use G, to detect the time and order side-channel
vulnerabilities at the page granularity for the software running
inside the SGX enclave. Detecting basic block-granularity and
cacheline-granularity vulnerabilities is similar when given G,.
In particular, we use the code snippet shown in Figure 1(d) as

'In this work, we simply model cache-based side-channel attacks on SGX
assuming that the attacker is able to monitor the execution of the enclave
program at the granularity of a 64-byte memory block. Interested readers can
refer to Wang et al. [38] for more detailed discussion on attack techniques.

446 22nd International Symposium on Research in Attacks, Intrusions and Defenses

a running example. This code snippet is a simplified version
of a barcode image processing function.

We notice in Figure 1(d) that this program takes three types
of inputs: character ‘1’, ‘2°, or an illegal input. The program
outputs two types of barcode, or an error message, accordingly.
More specifically, function main () calls function DrawBar ()
if the input character is ‘1’ or ‘2’, otherwise returns an error
(and exit). Function DrawBar () is used to draw a barcode
on the canvas, and the weight of the canvas is decided by the
length of the barcode. Then for each column of the barcode, it
calls function DrawLine (), which calls the function Paint ()
in a loop if the given position is to draw a line.

Trace Construction. By providing input /; with ‘1°, I with
2’, and an invalid input /;pya114, We get the corresponding
execution traces E(p,5), E(p,L), and E(p,linvaiia)s
from which to build G', G?, and G**"214. As shown
in Figure 1(a)(b)(c), each node represents the executed basic
block, and each edge represents the CFT between the basic
blocks. We also assigned an index for each node for easier
locating them in the graph (e.g., n; and ny). Two ordered
lists, Order and Time, associated with each node record
the successor nodes (in execution order) and the execution
time (in nanosecond ns) to reach them during execution.
For instance, in Figure 1(a), the Order list of node ng is
[n4,n4,--- ,n7,--+ 07, -], which suggests that the execution
of the program will first follow the edge from ng — ns
multiple times, then follow the edge from ng — n7. The first
element of the Time list suggests the mean execution time
to reach node ny4 for the first time is 0.8ns.

The corresponding page-level ED-CFGs (g;, QI% and
G,""*9) are illustrated in Figure 1(e)(f)(g). For instance,
the ED-CFG in Figure 1(a) can be converted to the page-level
ED-CFG in Figure 1(e) in the following steps: First, node
n1 and n7 of the original ED-CFG are both placed on page
0x804a , they are merged to a single node n; in the page-
level ED-CFG. Similarly, node ny, ng4, ns, and ng are merged
into node n; in page-level ED-CFG. Edges between nodes
of the same page are removed in the page-level ED-CFG;
those crossing page boundaries are preserved or merged. For
instance, the edge ny — n3 becomes the new edge n, — n3
in g,i and the edges n3 — ng and n3 — n4 merges into the
new edge n3 — ny in g;. We point out that it is not always
straightforward to convert ED-CFG to page-level ED-CFG.
Some basic blocks in ED-CFG may cross the page boundary.
Dealing with these pages require additional efforts, which we
will discuss in more details in §4.

Vulnerability Identification. By comparing the G,s (Gs or
G.s), one can easily identify the side-channel vulnerabilities.
For instance, by comparing Figure 1(e) and Figure 1(f), it
can be seen that the two input values, ‘1’ and 2°, leads
to different page-level execution orders: the sequence of
ny — np — n3 — ny — ny is repeated one more time when
the input is ‘1°. Figure 1(g) is very different from the other

USENIX Association

n0
‘main()
0x8049000

Time: {1200}

nl
DrawBar()
08042000
Order: (n2, n2, n2, n2, n2)
Time: (08,0.7.0.9,0.7,08)

n2 06
DrawLine() DrawLine() DrawBar()
0x804b000 0x8046090 08042080

Order: [n3, 3, n3, n3, 03] Order: [nd, .. 7,07, 04, ... 07, 04, .. 07, 07} Order: (nl,nl, ni,nl,nl}

Time: (09, 0.8,0.9,1.2,09) Time: {03, .., 07,09, 0.8, . 0.6,0.7, ., 05,09} Time: {1.3,15.1.4, 14, 1.5}

4
DrawLine()
08046030

Order: [0S, 05, ... n5)

Time: (32,30, 3.1}

n3
ShouldDrawLine()
X804c00

Order: (14, 06, nd, nd, 16}
Time: (20,23,2.1,2.1,22)

Order: (06,6, . n6}
Time: (11,12, ., 1.0}

DrawLine() DrawBar()
0804000 0x80409 08042080
Order: (n3, n3, n3, n3} Order: (n7, nd, ..., 17, nd, ...,n7, n7} Order: (nl, nl,nl,nl}
Time: (0.9, 08,09, 1.2} Time: (08,07, ... 0.8,09, . 0.6, 0.8) Time: (1.3, 1.5, 1.4, 1.4}

n0
0x8049000

Time: {1200}

nl
DrawBar()
0x804a000

Order: {n2, n2, n2, n2)

Time: (08,0.7,0.9,0.7)

6 7

n
DrawLine()

3 nd ns n8
ShouldDrawLine() DrawLine) Paint) Invalidinput()
0x804c000 0:8040030 Ox804b500
Order: (n6, nd, nd, n6} Order: [n5, 1S, ...,n5) Order: (n6, n6, ..., n6} Order: {}

Time: (2.0,2.3,2.1, 2.1} Time: (3.2,3.0, .. 3.1) Time: (1.1, 1.2, .. 10} Time: {20}

@) (b) ©

1 void DrawLine(int x, int content, charAA 0

canvas) { main()
2 if (ShouldDrawLine (content)) { 0x8049
3 for (i=0; i<100; i++){ Order: {nl
4 Paint(canvas, x, i); Time: {1200}
5 }
6 }
7 |1

9 | void DrawBar(charA barcode, int len, charAA
canvas) {

nl
-0 . 0x804a DrawBar()
%(1) for(x = 03 x<len; x++){ . Order: {n2. n2. n2, n2, n2} 0x804a
DrawLine(x, barcode[x], canvas); Time: {0.8, 0.7, 0.9, 0.7, 0.8} Order: {n2, n2, n2, n2}
12 } Time: {0.8, 0.7, 0.9, 0.7, 0.8}
13 |}

15 void main(int arge, charAA argv){ (‘;";‘(;’g
e X
{g lf:’mpn‘: == “;’)‘() Lo Order: {n4}
arcode = H 4 .
18) o e DrawLine() & Paint() DrawLi ‘ﬁ&P im0 Time: {1200}
rawLine() & Paint
19 else if (input == ¢2°){ Order: {n3,nl,n3,nl,n3,nl,n3,nl,n3,nl} Onder: (n3. nl (:“g‘ﬁblﬁ Al nl)
= {0, 1, 1, 0} + 108,320, 0.6,0.7, 0.8, 310,08, 315, 0.7, 0. Time: (0.8, 0.8, 0.7, 310, 0.8, 315, 0.7, 0.6)
%(l)) barcode = {0, 1, 1, 0} Time: {0.8, 320, 0.6, 0.7, 0.8, 310, 0.8, 315, 0.7, 0.6}
22 else{
23 Invalidinput ();
24 exit(1);
25 } N n4
3 3 "
26 aee ShouldDrawLine() ShouldDrawLine() I"V(‘)‘]'gtl;%m()
27 len = sizeof (barcode) / sizeof(barcode[0]) 0x804c 0x804c 02 0
28 DrawBar (b de, | vas) Order: {n2, n2, n2, n2, n2} Order: {n2, n2, n2, n2} Order:
29 1) rawBar (barcode, len, canvas) Time: {2.0,2.3,2.1,2.1,22) Time: {2.0,2.3,2.1,2.1,2.2} Time: {20}

(d) (e)

nl
DrawBar()

n0

() (2

Figure 1: (a) G', (b) G, (c) G"™% _(d) Code snippet of our running example, (e) G () gg, and (g) g;',”valid

two Gps, easily differentiating I;nya114 from other input. We
can validate this vulnerability by scrutinizing the code in
Figure 1(d): Function DrawLine () is called five times when
input value is ‘1°, but four times when the value is ‘2’; the
main () exits directly with invalid input.

Interestingly, an adversary can also infer more useful knowl-
edge about whether a column in the barcode is a black line or
white line. More specifically, according to the implementation
of function DrawLine (), it will call function Paint () 100
times to draw a black line. Therefore, the execution time of
function DrawLine () is much longer when it draws a black
line in given position that of drawing a white line. With this
information, the adversary can successfully recover the con-
tent of barcode by collecting the execution time of the page
node on which function DrawLine () is placed. This vulner-
ability can be detected by scrutinizing the Time list of node

USENIX Association

ny. Let np.Time[k] denote the k' element of the Time list of
node n; (the index of an element starts with 1). The execution
time to reach node n; from n, i.e., np.Time[2], np.Time|6],
ny.Time[8] of graph g; are significantly larger (> 300 ns)
than ny.Time[4] and n.Time[10] (< 1ns). Therefore, it can
be inferred that the painted barcode is [1,0,1,1,0], which
correspond to input ‘1°.

3.3 Threat Model, Scope, and Assumptions

We assume the knowledge of at least the enclave binary code,
especially the code layout and mapping. We assume there
is no address space layout randomization (ASLR) with the
enclave binaries (such as SGX-Shield [27]). We assume the
adversary is capable of launching, resetting, and terminating
the targeted enclaves, and is in control of the entire operating

22nd International Symposium on Research in Attacks, Intrusions and Defenses 447

system. This threat model is consistent to the controlled side-
channel attacks [43] and also many other side-channel attacks
against SGX enclaves [9,15,17,26,33].

Not all of the side channels are of our focus in this paper. In
particular, we focus on identifying the side channels through
branch, cache, page access behaviors, and timing information.
Other side channels such as hardware architecture caused side
channels (e.g., Meltdown [21] and Spectre [19]) are out of the
scope. Also, we focus on the side channels from code access,
and data access pattern caused side channel is out of scope.

4 Design

4.1 Input Generation

Since ANABLEPS uses dynamic analysis, it is important to
generate the concrete input that covers as much as possible
of the input space Ispace. Fortunately, we are not the first to
encounter such a problem, and many of the existing vulner-
ability identification tools all faces similar challenge. The
state of the art is to combine both concolic execution (a.k.a,
dynamic symbolic execution) and evolution fuzz testing (e.g.,
AFL [1]) together to generate the best set of Lsyntactic (€.g.,
Driller [30]). Therefore, when design ANABLEPS, we use the
Driller approach and extend it for our purpose.

In particular, to start our analysis, we first use AFL [1] to
execute the enclave program. The input generated by AFL
is called Ity,,. When fuzzing gets stuck and cannot explore
the program path further, we use concolic execution to solve
the path constraints and generate new input, which is called
I.onco1ic- With the new input, we again let fuzzing execute
first and only when fuzzing gets stuck, we invoke the concolic
execution. When both fuzzing and concolic execution cannot
explore the program path further, we terminate the input
generation analysis.

During this stage execution, we have collected as many
as possible of the program traces, which are the best effort
to approximate R in the state of the art. and the minimal
possible concrete input Isyntactic = Jruzz U leoncoric WE USE
to expose these traces, denoted as E(p, Isyntactic), Where
E(p, Isyntactic) C R. At this stage, for each I; € Lyntactics
we have a corresponding r; € E(p, syntactic). While we do
know | Isyntactic)| (since each J; is unique), we do not know
|E(p, Isyntactic)| yet, since we do not know whether each r;
is unique or not.

4.2 Trace Construction

Next, we describe how the concrete execution traces
E(p, Isyntactic) were collected when running the enclave
program with each given input /; € Iyntactic, and also de-
scribe how we construct various ED-CFG representations
(e.g.. G', G), and G}) that are suitable for the vulnerability
identification from E(p, Isyntactic)-

448 22nd International Symposium on Research in Attacks, Intrusions and Defenses

Trace Collection. ANABLEPS requires collecting informa-
tion regarding both the execution order and time of an exe-
cution trace. There are a variety of approaches to collecting
these traces, such as using Intel Processor Trace (PT) and Last
Branch Records (LBR). The issue with LBR is that it only
has limited number of entries and branch records can be lost
if not collected in timely manners. Therefore, we use Intel PT
to conduct dynamic analysis. Intel PT is a hardware feature
available on recent Intel processors (i.e., Broadwell or later
families) to facilitate program debugging and performance
profiling. It collects the information of the CFTs of a program
with very small performance overhead. A useful feature of
PT is that it also records timestamps together with the CFTs,
and thus it perfectly fits the purpose of our design.

Although PT provides timestamps information of control
flow transfers, it does not provide fine-grained time informa-
tion of each execution unit, e.g., an instruction. Moreover,
because the Cycle Count (CYC) packets are generated right
before the event packets such as Taken NotTaken (TNT) pack-
ets, which may include taken or not taken information of up to
6 consecutive conditional branches, precisely recording exe-
cution time is not even possible at the basic-block granularity.
As such, ANABLEPS only approximates the execution time
in its construction of ED-CFGs, which will be detailed later.
Also, ANABLEPS sets the memory buffer large enough so that
no packet is lost during the dynamic analysis. The recorded
packets are then parsed and recorded in a log file, which will
be used for ED-CFG construction.

ED-CFG Construction. We generate the ED-CFG g" , fora
given input /; and trace r;, based on the execution order and
time of each basic block tracked in the trace files by Intel
PT. Eventually, a D-CFG will be firstly built according to the
PT trace file, where each node represents a basic block, each
edge represents the CFT between the blocks, and the weight
of each edge represents how many times the corresponding
CFT has been executed.

Next, we add the execution order and time information into
D-CFG to make it become ED-CFG, namely G, for input I;.
More specifically, in each node, we use two lists to record
the execution order and time for every basic block. The order
list records the next node to jump to, and time list records the
execution time every time when current node gets executed.
The execution order is acquired by traversing the PT trace file
again. However, for the execution time of each basic block
each time when it gets executed, we have to approximate it
(get a lower bound and upper bound) since PT does not offer
fine-grained time recording for each basic block.

Resolving the execution time for each basic block. To get
the execution time for basic blocks, we have to rely on the
CYC packet, which is generated before each Mini Times-
tamp Counter (MTC) packet, TNT and Target IP (TIP) packet.
However, not all of CFTs between basic blocks will generate
a CYC packet as one TNT packet can capture up to six ba-

USENIX Association

sic block execution. Therefore, we have to approximate the
execution time for each basic block.

We take the following strategies to estimate the upper
bound and lower bound of the CPU cycles for a basic block.
The upper bound is an over-estimated execution time for each
basic block with the CPU cycles recorded in the CYC packet,
and the lower bound is the shortest CPU cycles in theory.

e Upper Bound. The upper bound of a basic block execu-
tion time is the CPU cycles recorded in the CYC packet,
regardless of the number of basic blocks the CYC packet
has covered.

e Lower Bound. The lower bound of a basic block execu-
tion time is the sum of the latency of the instructions that
belong to the basic block. The latency for each individual
instruction is acquired from [4].

While we cannot provide precise estimate of the execution
time for each basic block, fortunately, we will get the precise
PT recorded information for many of the basic blocks when
we merge them to generate g;; and G, based on page or cache
level execution unit if the basic blocks recorded by the TNT
packets actually belong to these execution units.

G}, and G! Generation. Once we have built G’ for each in-
put J;, next we would like to derive G} and G/ such that our
vulnerability identification can be performed. Since the dif-
ference between page level execution unit and cache level
execution unit is only the address alignment is different (2!
vs. 28), in the following we just describe how we convert G
to g;, (G' to G! is similarly converted).

The conversion is straightforward, we need to combine all
the basic block nodes that belong to the same page into just
a single page node, and add the corresponding edges when
there is a CFT between the pages. Also, we have to split the
basic block that crosses two pages. To make our algorithm
simple, we just first get all of the page numbers for all of the
executed basic blocks by traversing G', and then we traverse
G' again to add the edges between the pages, and to add
orders and timing on the page node. Especially, for timing
information, we discard our lower and upper bound timing
estimation for each basic block that was captured by the TNT
packet if they all belong to the same page.

We take a two step approach to convert G to G The first
step is to generate the corresponding node and edge for g;
by traversing G', and the second step is to traverse G’ again
to generate the execution order and timing information.

e Generating nodes and edges. We design an algorithm
shown in algorithm 1 to illustrate this. At a high level,
we need to combine all the basic block nodes that belong
to the same page into just a single page node, and add the
corresponding edges when there is a control flow transfer
between the pages. Also, we have to split the basic block
that crosses two pages. To make our algorithm simple,

USENIX Association

Algorithm 1: Generating the nodes and edges for g;
from G'

begin

GiN 0

G, E«0

foreach n € G'.node () do

P&uun ¢ n.StartAddr() / 4096

Gy N < GLN U {pgaum)

if n.StartAddr () / 4096 # n.EndAddr () / 4096 then
P&nun < n.EndAddr () / 4096
G;JN — g;,N U {pgnun}
GiE + GLEU (< pgom — 1, Pgaun >}
W(pgnum - 1spgnum) — W(Pgnum - lvpgnum) +1

end

end
Nemp + {G"Entry()}
repeat
n < head(Negp)
P8nun < n.StartAddr () / 4096
foreach n; € n.successor() do

P8next < Ng.StartAddr () / 4096

if pgnum # Pgnext then

GE + GLEU (< pgoun, Pénext >}

W(P8nun: P&next) <= W(Pgnun, Penext) + 1
end

end
Nimp 4= Nenp \ {n}
Nimp = Niemp U {n.successor()}

until Ny # 0;
return G\,

end

we just first get all of the page numbers for all of the
executed basic blocks by traversing G', and then we
traverse G' again to add the edges between the pages.
The weights are updated accordingly when there is a
cross-page control flow transfer.

o Generating the order and timing. Once we have gen-
erated the nodes and edges for g;',, we then generate
the order and timing information. The algorithm works
similar to algorithm 1 with the differences that we need
to record the new page order information, based on the
original order recorded in G while traversing G'. Also,
for timing information, we will accumulate the recorded
timing information of the basic blocks that belong to the
same page based on the execution order. We will discard
our lower and upper bound timing estimation for each
basic block that was captured by the TNT packet if they
all belong to the same page.

4.3 Vulnerability Identification

ANABLEPS detects both order-based and time-based side-
channel vulnerabilities by cross comparing the corresponding
ED-CFGs. More specifically, comparing G,s reveals vulner-
abilities at the page-level, which can be exploited by an ad-
versary that monitors the enclave program’s page accesses
(through page faults or page table entry updates). Comparing
G.s reveal vulnerabilities at the cache-level, which can be ex-

22nd International Symposium on Research in Attacks, Intrusions and Defenses 449

ploited by an adversary that monitors the enclave program’s
cache accesses. Directly comparing Gs reveal vulnerabilities
at the basic-block level, which can be exploited by monitoring
the branch prediction units [20]. In the following, we use G,
as examples to illustrate the process of vulnerability detection.

Order-based Vulnerability Detection. We compare every
g;’, with each other, the program is not vulnerable to page level
attack if the order information of every edge been accessed
in all g,’,s are the same. Otherwise, the attacker can infer
the secret based on the differences. The algorithm for graph
comparison is straightforward: g;', = Gy if and only if the
sets of node and edges are identical, including the Order
list in each node, and the execution counts in the edges. In
Figure 1(d)(e)(f), with different input, the execution order of
the nodes are different. For instance, by comparing nodes
ny in g[} and g,%, the length of their Order lists is different,
which can clearly differentiate the two graphs.

Time-based Vulnerability Detection. When any two graphs
g[’) and Gj, VI;,1; € I, are not vulnerable to order-based side
channels. ANABLEPS needs to further investigate time-based
vulnerabilities, by comparing the Time lists of the correspond-
ing nodes. The comparison of the Time lists is as follows:
The k' element of n;.Time in node n; in graph g;', is com-

pared with the k'’ element of n;.Time in graph G- However,
unlike comparison of the Order lists, where any difference
can directly conclude the comparison, comparing the Time
lists is more subtle. The execution time of a program can
be influenced by many reasons, such as on-demand paging,
caching, interrupts, efc.. In practice, each n;.Time[k] is a 2-
tuple (fnean,fsta), rather than a single value. The first element
of the 2-tuple is the mean execution time to reach the succes-
sor node from multiple runs and the second element is the
one standard deviation. With enough number of samples, the
impact from side effects can be reduced.

To generate (fmean,tsra) for the list Time of each node, the
program is executed with the same input /; € I L times; so
each n;.Time[k] (the k' element of n;) is also executed L
times. The mean and standard deviation are calculated using
these L execution time between node n; and its k' successor.
In our implementation, L = 10.

Determining the Input Space for G'. Since the edge in G,
(and G/) can correspond to the jumps in different locations
in the program, we can only use the one-to-one mapping
relationship between G’ and ; to determine the input space for
G i In particular, for each concrete input /gyntactic € {Ituzz U
ILconcolic }» We run the concolic execution with this seed input
again, but we also track the corresponding path constraints for
this seed input. Once we have collected the path constraints,
we then use a constraint solver to solve the constraints. If no
other input satisfies (or the execution time of the solver takes
too much time to solve.2), it means the input is unique (/; is

2We currently set up this time to be 90 minutes.

450 22nd International Symposium on Research in Attacks, Intrusions and Defenses

completely leakable). Otherwise, we have to use application-
specific knowledge to determine the leakage.

5 Evaluation

We have implemented ANABLEPS to detect the side-channel
vulnerabilities for x86 and x86-64 ELF binaries by integrating
and extending a number of open source tools. In particular,
we extend Driller [30], which is built atop of AFL [1] and
concolic execution, for Input Generation, and we use perf
to configure Intel PT and dynamically collect the runtime
information of each input. We built the PT packets decoder
based on the open source library, 1ibipt [3]. The ED-CFG
construction and cross-comparison tool is built using python
scripts by analyzing the PT packets, and matching the de-
coded address to the binary code with pyelftools library [5].
To quantify the input space for a given trace, we extended
angr [36], an easily extensible python-based symbolic execu-
tion tool, to negate the constraints of the input we provide and
calculate the input space. The prototype of ANABLEPS will
be public available at github.com/0SUSecLab/ANABLEPS.

In this section, we present our evaluation results. We first
describe how we set up the experiment in §5.1, and then de-
scribe the experimental results in §5.2. All of our evaluations
are performed in Ubuntu Desktop 16.04LTS, running atop
Intel i7-7700 CPU, with 32G physical memory.

5.1 Experiment Setup

Benchmark Selection. Ideally we would like to use the SGX
programs for the test. However, there are not that many SGX
programs available, and therefore we run the legacy applica-
tions with library OS (e.g., Grephane-SGX [2]) support for
the evaluation. In particular, we selected 8 programs from a
variety of applications such as data analytics and machine
learning, image processing, and text processing. The name of
these programs is presented in the first column of Table 1.

Functionality Under Test. Each of the tested benchmark pro-
gram contains quite sophisticated functionalities. Certainly,
we cannot test all of their functionalities; we only tested the
functionality of our interest (shown in the 2nd column of
Table 1), based on our best understanding with the bench-
marks. For instance, when testing Genometools, we know
the genomic related program usually takes two types of input:
bed format and gff3 format. Converting between these two
formats is a widely used operation in genomes. Therefore, we
test the genome library 1ibgenometools.so by converting
bed format to gf £3 format.

Input Generation. To launch each of the testing program
with Driller [30], we provide the seed inputs based on our best
understanding of the program. Even with both AFL and con-
colic execution, we still cannot explore all the program paths.
We therefore configure Driller [30] to run 48 hours for each

USENIX Association

of the testing program. The number of syntactic inputs even-
tually generated are presented in the 3rd column of Table 1.

Trace Collection. With the input generated above, we run the
tested program traced by Intel PT. The tested program is run
outside of SGX in a debug mode. The execution time would
be similar to that of executing inside enclaves, because instruc-
tions executed in the enclave-mode and non-enclave-mode
have the same timing constraints (the main timing difference
happens at ECalls/OCalls). Each input generated a separate
trace file. The total size of the decoded PT trace file for each
program is presented in the 4th column of Table 1. Depending
on the size and input to the program, this size varies from a
few Gigabytes to several hundreds of Gigabytes.

5.2 Experimental Results

Next, we present how ANABLEPS detects the branch level,
page level, and cache level side-channel vulnerabilities based
on each individual trace and their corresponding input. As
we have described, from each input (and its corresponding
execution trace), we first built their ED-CFGs, namely G's,
which are used to detect the branch level side channels. The
total number of such ED-CFGs is presented in the 5th column
of Table 1. Compared to the 3rd column of Table 1, we can
notice that except for three benchmarks (namely Freetype,
QRcodegen, and Genometools), the total number of unique
G's are all smaller than the total number of the syntactic inputs
generated by ANABLEPS.

Detecting Order-based Side Channels. To detect order-
based side channels, we first cross-compare all of the gis
(Ghs or Gls) to detect whether there is any unique /; that maps
to a particular G’ (g;, or G!). As we are detecting order-based
side channels, only Order of the G's (g,",s or G's) are used in
the comparison. Many inputs have such a one-to-one mapping
G' < I; (G}, + I; or G! < I;), which suggests that no other
input I; maps to the same G'. The branch-level, page-level
and cache-level statistics for this mapping is reported in the
6th column of Table 1, the 3rd column of Table 2, and the
8th column of Table 2, respectively. From the table, we can
notice that compared to the branch-level vulnerabilities, less
one-to-one mappings are detected in page-level and cache-
level. For instance, while all inputs of dA in deep learning
can be recovered by branch-level side channel, they cannot
be recovered by page-level side channels.

As the traces are dynamically collected, the node or edge
which can differ any two G's (G)s or G's) must leak some
secret of interest. It is possible that many nodes or edges only
leak a partial secret. However, for some program, a set of
vulnerable nodes can be used together to leak the entire secret
(e.g., the Deep Learning case uses two nodes to leak the entire
secret). Moreover, it is also possible that part of leaked secret
can be used to infer the entire secret (e.g., the padding oracle

USENIX Association

attack for crypto algorithms only need to know if the padding
is correct or not).

Detecting Time-based Side Channels. For those that have
multiple inputs corresponding to the same trace, i.e., one-to-N
mappings (G' — Is, g[’, — Iis or G! — Is), their statistics
are reported in the 8th column of Table 1, the 4th column of
Table 2, and the 9th column of Table 2, respectively. Next,
we use the timing information to further differentiate G' (G,
and G!) and see whether there is still one-to-one mapping
(i.e., G' <> I;) after considering the timing differences. That
is, we hope to determine whether there are time-based side-
channel vulnerabilities when the program is not vulnerable to
order-based side channels. In practice, only large enough time
differences can be used to differentiate two traces. Therefore,
thresholds are defined from empirical results. We report under
three different threshold settings (i.e., with #; = 2ns, r, = 10ns,
and 73 = 20ns), the number of such one-to-one mappings, and
these results are reported in the last three columns of Table 1,
the columns 5 to 7 and columns 10 to 12 of Table 2. We notice
that it is relative hard to differentiate inputs based on timing
information at branch level. However, many inputs can be
further differentiated after applying time information at page
or cache level.

Determining Input Spaces. Previous experiments are based
on generated inputs /;s. However, not all inputs in the whole
inputs set are generated. Therefore, we would like to know
whether there is only one input /; in the whole inputs set that
can map to a particular G, that is, if |{I;|E(p,1;) = G',Vj €
I'}| =1, which can be determined by using concolic execution.
If so, then the input /; can be differentiated by order-based
vulnerabilities. The total number of symbolic execution de-
termined input Ijeterminstic 1S reported in the 7th column of
Table 1. We can see that for some applications, such as QR-
codegen and Deep learning, Ijeterminstic 1S NON-Zero, mean-
ing at branch-level some inputs of these programs can be
uniquely identified by execution traces. For some applica-
tions, Igeterminstic 1S Z€ro, indicating by the constraint solver
that there are other inputs that all have the same execution
traces with generated inputs, e.g., function Sort in gsl, al-
though |G’ <+ I;| is non-zero (120 for gs1).

However, the concolic execution cannot finish for five
programs (marked with X in the Table), including Hunspell,
PNG, and Freetype, because of the limitation in either
computation power or physical memory space. For these
programs, ANABLEPS cannot answer if these execution
traces will completely leak the information of the input.

5.2.1 Performance Overhead

We also measured the performance of ANABLEPS, though
it is an offline analysis tool. We report the execution time
for each of the key component of ANABLEPS in Table 3.
More specifically, during the Input Generation (IG) phase,

22nd International Symposium on Research in Attacks, Intrusions and Defenses 451

Detecting Branch Side Channel

Benchmark Functionality Trace Size |G" 1|
Program under Test [F—— (GB) |G| |G' < L] | |Taeteninistic| G =Ls| | n | o |15
dA 214 76.8 214 214 214 0 - - -
SdA 176 384.2 176 176 176 0 - - -
Deep Learning DBN 152 139.0 152 152 152 0 - - -
RBM 187 2259 55 16 0 39 56 | 43 0
LogisticRegression 198 25.1 41 18 0 23 31 5 0
gsl Sort 220 2.8 154 120 0 34 0 0 0
Permutation 200 3.0 135 100 X 35 0 0 0
Hunspell Spell Checking 231 307.2 168 157 X 11 1 0 0
PNG Image Render 294 82.3 135 120 X 15 0 0 0
Freetype Character Render 206 352.6 206 206 X 0 - - -
Bio-rainbow Bioinfo Clustering 128 51.3 119 118 0 1 0 0 0
QRcodegen Generate QR Code 204 17.9 204 204 204 0 - - -
Genometools bed to gff3 convertion 201 382.4 25 12 X 13 0 0 0

Table 1: The benchmark programs, their concrete input size, the corresponding PT trace size, and the result of branch level side

channel detection

Detecting Page Side Channel Detecting Cache Side Channel

Benchmark Functionality |g;) I |Gl |
Programs Under Test |Gi < Ll | |G — L nln|n |Gl L] | |Gl — Ls| n|ln|n
dA 127 12 65 | 52 9 214 0 - - -
SdA 112 5 33 | 28 0 176 0 - - -
Deep Learning DBN 128 9 15 11 0 152 0 - - -
RBM 28 15 56 | 43 0 55 16 56 | 43 0
LogisticRegression 6 9 82 24 0 18 23 82 24 0
gsl Sort 17 12 0 0 0 33 16 0 0 0
Permutation 100 2 0 0 0 100 2 0 0 0
Hunspell Spell Checking 156 11 5 2 2 157 11 7 7 7
PNG Image Render 103 25 1 1 1 111 22 10 6 0
Freetype Character Render 206 0 - - - 206 0 - - -
Bio-rainbow Bioinfo Clustering 39 9 1 0 0 118 1 0 0 0
QRcodegen Generate QR Code 204 0 - - 204 0 - -
Genometools bed to gff3 convertion 5 8 5 5 3 5 8 5 5 3

Table 2: The page level and cache level vulnerability detection results for the tested benchmark programs

Benchmark Functionality 1G TC VI CS
Programs Under Test ‘ (h) (h) ‘ (m) ‘ (h)
dA 48 26.1 79 313
SdA 48 1872 | 61.7 132.1
Deep Learning DBN 48 63.3 43.8 823
RBM 48 110.1 13.2 459
LogisticRegression 48 7.2 1.8 8.4
gsl Sort 48 0.62 0.2 2.5
Permutation 48 0.57 0.2 -
Hunspell Spell Checking 48 68.2 4.4 -
PNG PNG Image Render 48 19.8 1.6 -
Freetype Character Render 48 87.4 19.8 -
Bio-rainbow Clustering bioinformatics 48 14.2 20.9 58
QRcodegen Generate QR Code 48 8.89 22.4 126
Genometools bed to gff3 convertion 48 192.6 15.2 -

Table 3: Performance overhead for running each component
of ANABLEPS the tested programs. IG stands for Input Gen-
eration, TC stands for Trace Construction, VI stands for Vul-
nerability Identification, and CS stands for Constraint Solver

we configured ANABLEPS to run 48 hours for all of the
benchmarks. Then, our Trace Construction (TC) component
decodes the trace, builds each G', G}, and G!. For the
Vulnerability Identification (VI), ANABLEPS just performs
the cross-comparison with the graphs we have built. Only
when detecting the branch-level side channel, we invoke
Constraint Solver (CS) to determine whether there is a unique
input for a specific trace. This execution time is reported in

452

22nd International Symposium on Research in Attacks, Intrusions and Defenses

the last column of Table 3. For certain programs that concolic
execution cannot finish (marked with ‘-’ in the Table), we
cannot evaluate their performance overhead. We can notice
that the bottleneck of the ANABLEPS is Trace Construction
and Constraint Solver, which are affected by the size of
execution trace files and computation power.

6 Exploitability of the Vulnerability

So far, we have discussed the design, implementation and
evaluation of ANABLEPS in automatically detecting order and
time based side-channel vulnerabilities. However, automated
tools can only provide syntactic-level analysis. Oftentimes,
such analysis cannot be directly translated into exploitability
of the program, especially when the input space of interest
(to the attackers) cannot be automatically determined. In this
section, we discuss how ANABLEPS can be used by enclave
program developers to analyze the exploitability of the vulner-
abilities by providing the proper input, locating and exploiting
the vulnerabilities.

USENIX Association

6.1 Developer-assisted Vulnerability Analysis

Developer-supplied Input. While the automated syntactic
analysis has provided a large number of inputs, not all of
them are of interest to attackers. For instance, in the PNG ex-
ample, not all input correspond to valid images; it is not very
interesting to determine the errors in the PNG file formats. In
practice, only software developers are able to identify the true
secretive set of input that they would like to make indistin-
guishable. This is called semantic-level analysis. Developers
may select the set of inputs [that she wishes to be indistin-
guishable from the execution traces and use ANABLEPS to
analyze E(p, I).

The steps to perform such an analysis is similar to auto-
mated analysis described in §4. The only difference is that the
Input Generation step and “determining input spaces for G”
of the Vulnerability Identification step can be skipped, as the
set of input of interest is now provided by the developers. The
output of the analysis would be |G’ <+ I;| that can be differ-
entiated by order or time information of the execution traces.

Locating Vulnerabilities. Given a secretive set of input I, if
|E(p,I)| > 1, we would like to find the set of nodes in G that
can be used to learn the inputs. That is, we would like to locate
the vulnerabilities (i.e., vulnerable node) in the graph and the
program. With the method discussed in §4, we can differenti-
ate order-based vulnerable nodes and time-based vulnerable
nodes. The capability to easily locate vulnerabilities is one
benefit of adopting ED-CFG to represent execution traces.

With the input set of Igyntactic, the statistics of the vulner-
able nodes are shown in Table 4. The cache-level statistics
are listed in the column 3 to 5, and the page-level statistics
are reported in column 6 to 8. The total numbers of nodes
in G! and G}, are shown in column 3 and 6; the numbers of
order-based vulnerable nodes are listed in column 4 and 7;
and the numbers of time-based vulnerable nodes are listed in
column 5 and 8, respectively. In the Table 4, the time-based
vulnerable nodes are mutually exclusive with the order-based
vulnerable nodes. According to the results presented in Ta-
ble 4, ANABLEPS narrows down the number of nodes to be
examined for side-channel vulnerabilities dramatically. On
average, the number of order-based vulnerable nodes is only
18% of all nodes in G, and 37% of all nodes in G,,; the num-
ber of time-based vulnerable nodes is only 6% of all nodes
in G, and 13% of all nodes in G,. The fraction of vulnerable
nodes can be further reduced with a developer-supplied input
set that is of interest.

6.2 Case Studies of the Exploitability Analysis

In this section, we briefly summarize three interesting cases
to show how ANABLEPS can help enclave developers identify
side-channel vulnerabilities that can be exploited to extract
sensitive information.

USENIX Association

int binomial(int n, double p) {

for (i=0; i<n; i++) {
r = rand () / (RAND.MAX + 1.0);
if (r < p) c++4;

}

00N W R =

}

11 | void dA_get corrupted_input(dAA this, int Ax, int Atilde_x, double p)
{

12 int i;

13 for (i=0; i<this—>n_visible; i++) {
14 if (x[i] == 0) {

15 tilde_x[i] = 0;

16 } else {

17 tilde_x[i] = binomial (x[i], p);
18 }

19 }

20 |y

Figure 2: The deep learning vulnerable code

6.2.1 Deep Learning Algorithms

According to Table 2, there are 214 different inputs for algo-
rithm dA that has unique G, i.e., g;l > I;. Therefore, poten-
tially the vulnerabilities in dA may lead to exploitable infor-
mation leakage. In order to start analyzing the vulnerabilities
in dA algorithm, we first manually selected inputs that might
be of interest to attackers: a set of | I| training data that differ
only in values. Then, we feed these inputs to ANABLEPS. The
output of ANABLEPS indicates that all selected inputs have
unique cache-level execution traces, i.e., |E(p, I)| = |1|.

After locating the vulnerable nodes and some man-
ual effort to examine the identified vulnerable nodes,
we find the leakage primarily comes from function
dA_get_corrupted_input (), which has a for loop that
enumerates every element of array x and calls function
binomial () if the element is not 0. The code snippet is shown
in Figure 2.

The execution of dA_get_corrupted_input () and
binomial () may be exploited to leak training data infor-
mation. Whether or not function binomial () is called by
dA_get_corrupted_input () reveals the value of array x.
The function call sequence can be learned through cache-
level side channels. The two functions are located in the same
page but different cachelines. After compilation, the for loop
in dA_get_corrupted_input () is compiled into two cache-
lines, denoted m; and my, function binomial () is compiled
into two consecutive cachelines. We denote the first cache-
line as mj3. Therefore, if the i'" element of array x is 0, the
order of the executed cachelines is [m;,m;]; otherwise, the
execution order becomes [m;,my,m3,my]. This order-based
side-channel vulnerability on the cache-level can completely
leak the training data of the deep learning algorithm.

6.2.2 Freetype Font Engine

According to Table 2, there are 206 inputs that have unique g;‘,.
To validate the page-level vulnerability, we generated some
printable characters as input and fed them to ANABLEPS. The
result indicates that every input corresponds to a unique QI’)

22nd International Symposium on Research in Attacks, Intrusions and Defenses 453

Cache Level Page Level
Functionalities #Order-Based #Time-Based #Order-Based #Time-Based

Programs Under Test #Nodes Vulnerable Nodes Vulnerable Nodes #Nodes Vulnerable Nodes Vulnerable Nodes
dA 69 9 4 13 2 3
SdA 109 12 21 22 3 3
Deep Learning DBN 126 17 81 14 3 10
RBM 68 8 27 13 2 7
LogisticRegression 48 2 16 11 0 7
Sort 31 12 0 11 5 0
gsl Permutation 99 30 0 29 15 0
Hunspell Spell checking 302 48 9 47 27 10
PNG PNG Image Render 640 170 90 53 39 2
Freetype Character Render 1054 263 18 82 20 13
Bio-rainbow Bioinfo Clustering 214 16 0 24 2 1
QRcodegen Generatee QR 176 32 18 15 6 3
Genometools bed to gff3 convertion 1901 231 9 147 53 5

Table 4: Locating vulnerable nodes in G, and G,

1 static void psh_glyph_interpolate_strong points (...) {
2

3 for (; count>0; count——, point++){

4 ..

5 if (psh_point_is_edge _min(point))

6 point—>cur_u = ...;

7 else if (psh_point_is_edge max(point))

8 point—>cur_u = ...;

9 else{

10 data = ...;

11 if (delta<=0)

12 point—>cur_u = FT_MulFix (...) + ...;
13 else if (delta >= hint—>org_len)

14 point—>cur_u = FT _MulFix (...) + ...3
15 else

16 point—>cur_u = FT_MulDiv(...) + ...}
17 }

18 psh_point_set_fitted (point);

19 }

20 |3

Figure 3: The freetype vulnerable functions

ANABLEPS has helped us identify the vulnerable nodes.
In fact, there are more than one vulnerable nodes. To
illustrate these vulnerabilities, we explain the leakage
through function psh_glyph_find_strong_points() at
the page level. The code snippet is shown in Fig-
ure 3. psh_glyph_interpolate_strong_points() in-
cludes a loop to interpolate every strong point into the
glyph. Adversaries can recover the strong points po-
sition according to the page sequence. More specifi-
cally, function psh_point_is_edge_min() is placed in
page mj. Functions FT_MulFix () and FT_MulDiv () are
placed in another page, denoted m,. The page of func-
tion psh_glyph_interpolate_strong_points() is de-
noted m3. The access order of these pages leaks informa-
tion of the interpolated point: When a point is not marked
as a strong point, the order of page access is [m3]; when
the strong point is located in the edge, the order of page ac-
cess is [m3,my,m3,m;, ms]; otherwise, the sequence would be
[m3,my,m3,my,ms,my,ms3). Given the sequence of this func-
tion, the attacker can learn whether each point is strong or not.
Though the example does not completely leak the content of
the data, it illustrates how leakage can be identified.

454 22nd International Symposium on Research in Attacks, Intrusions and Defenses

1 8050920 <get_parser >:

2

3 8050b05: 89 1c 24 mov Jeebx ,(% esp)

4 8050b08: 83 ¢3 02 add $0x2,% ebx

5 8050b0b: eS8 e 63 00 00 call 8056ef0 <
_unguarded_linear_insert>

6 8050b10: 39 de emp %ebx,%esi

7 8050b12: 75 f1 jne 8050b05 <get_parser+0xle5>

8

11 8056ef0 <_unguarded_linear_insert >:

12

13 8056128 : 89 c2 mov Yeeax ,%edx

14 8056f2a: 89 d8 mov %ebx,% eax

15 8056f2¢: 0f b7 18 movawl (%eax),%ebx

16 8056 f2f: 66 89 1a mov %bx,(%edx)

17 8056£32: 0f b6 50 ff movzbl —0x1(%eax),%edx

18 8056136 : 8d 58 fe lea —0x2(%eax),%ebx

19 805639 0f b6 70 fe movzbl —0x2(%eax),% esi

20 8056£3d: cl e2 08 shl $0x8,%edx

21 805640 : 01 f2 add %oesi % edx

22 8056142 66 39 ca cmp %ex, % dx

23 8056145 77 el ja 8056128 <
_unguarded_linear_insert+0x38>

24

Figure 4: The assembly code of std: :sort

n0
get_parser()
0x8050
Order: {nl,nl, nl, nl}
Time: {0.9, 0.8, 0.9, 0.8}

nl
_unguarded_linear_insert()
0x8056
Order: {n0, n0, n0, n0}
Time: {6, 13, 19, 18}

Figure 5: A subgraph of G, for function std: :sort
6.2.3 Hunspell

Hunspell is a popular spell checker. Xu er al. identified
that Hunspell is vulnerable to page-level controlled chan-
nel attacks due to its input-dependent access pattern to data
pages [43]. But its control flow was considered immune to
side-channel attacks. However, as shown in Table 2, AN-
ABLEPS identifies various control-flow side-channel vulnera-
bilities that may be exploited by attackers.

With the help of ANABLEPS, we narrow down our atten-
tion to the get_parser () function of Hunspell, in which the
function std::sort (vector.begin(), vector.end()) is
called to sort the data in the vector. We found this function
both have cache-level and branch-level order-based vulnera-
bility and page-level time-based vulnerability. This is a func-
tion implemented in C++ standard library. After compilation,

USENIX Association

the linear insertion algorithm is used in this sort function
with the snippet of assembly code in Figure 4. According
to the code snippet of function get_parser (), the function
_unguarded_linear_insert () is called when an element
in the unsorted vector is to be inserted into the sorted vector.
As such, by monitoring the execution sequence that involves
this function, the attacker is able to learn the number of el-
ements to be sorted in page-level, cache-level and branch-
level. Moreover, function _unguarded_linear_insert ()
contains a loop to compare the element to be inserted with
elements already in the sorted vector. According to the
insertion sort algorithm, the number of loops in function
_unguarded_linear_insert () reflects the number of com-
parisons during the insertion, which can be used to infer the
location of an element after the insertion.

Such leakage can be easily identified in G,s with time-
based vulnerability. A subgraph of g;j of a particular input
I; is shown in Figure 5. The edge ny — n; is executed 4
times, which reflects that four elements are being sorted.
The elements of Time list in node n; reveals the number of
comparisons in function _unguarded_linear_insert():
the first element corresponds to no comparison, the second
element corresponds to 1 comparison, the third and fourth
elements correspond to 2 comparisons. Therefore, the page
level order-based vulnerability in Hunspell, or more precisely
the sort algorithm implemented in the standard C++ library,
can only leak the number of elements to be sorted; however,
the time-based vulnerability can be exploited to leak the list
to be sorted if sorting result is known. We specially tested the
sort algorithm by providing a set of || unsorted lists that
correspond to the same sorted list after sorting. As expected,
ANABLEPS reports |E(p, I)| = |I| for this set of inputs.

7 Limitations and Future Work

Although we have demonstrated that ANABLEPS is capable
of identifying side-channel vulnerabilities in enclave binaries,
we only made a first step and there are a number of avenues
for future works. First, the currently design only considers
side-channel vulnerabilities due to secret-dependent control
flows. Leakages due to secret-dependent data accesses are
out of scope currently. Interestingly, the differences in the
data access pattern caused by divergence in the control
flow can actually be identified by ANABLEPS’s control-flow
based vulnerability analysis. What is missed by ANABLEPS
is memory pointers or array indexes that are determined
by the secret values. One of the future works is to extend
ANABLEPS in handling of these vulnerabilities.

Second, while ANABLEPS has integrated the state-of-the-
art input generation tools such as fuzzing and concolic exe-
cution, it still cannot generate the complete set of input. Cur-
rently, we rely on developers’ knowledge to remediate this
limitation since developers have the best understanding of the
semantic of the enclave program and its input space. Certainly,

USENIX Association

any advances in the research of test case generation itself will
improve ANABLEPS.

Third, the capability of the constraint solver is limited.
Given an input to a program, ANABLEPS relies on symbolic
execution to collect constraints. These constraints are solved
by a constraint solver to determine the size of G'’s input
space. However, not all the constraints can be solved (e.g.,
hash functions). Also, a solver may take too much time to
solve a constraint. Currently, ANABLEPS requires the solver
to return the result in 90 minutes. Otherwise, it considers
unsolvable. Any advancement of constraint solver will make
ANABLEPS more efficient.

8 Conclusion

In conclusion, we designed and implemented ANABLEPS, a
software tool for automatically vetting side-channel vulner-
abilities in SGX enclave programs. ANABLEPS is the first
side-channel vulnerability analysis tool that considers both
time and order of a program’s memory access patterns. It
leverages concolic execution and fuzzing techniques to gen-
erate input sets for an arbitrary enclave program, constructs
extended dynamic control-flow graph representation of exe-
cution traces using Intel PT, and automatically analyzes and
identifies side-channel vulnerabilities using graph analysis.
With ANABLEPS, we have uncovered a large number of side
channel leaks in enclave binaries we tested. Our experimen-
tal results also demonstrate ANABLEPS can be used by both
security analysts and software developers to identify the side-
channel vulnerabilities for enclave programs.

Acknowledgments

We would like to thank the anonymous reviewers for their
very helpful comments. This work was supported in part by
the NSF grants 1750809, 1718084, 1834213, 1834215, and
1834216 as well as a research gift from Intel.

References

[1] american fuzzy lop. http://lcamtuf.coredump.cx/afl/.
(Accessed on 04/28/2018).

[2] Graphene / graphene-SGX library os - a library os for linux
multi-process applications, with intel SGX support. https:
//github.com/oscarlab/graphene.

[3] libipt - an intel(r) processor trace decoder library. https:
//github.com/0lorg/processor-trace.

[4] Lists of instruction latencies, throughputs and micro-operation
breakdowns for intel, amd and via cpus. https://www.agner.
org/optimize/instruction_tables.pdf.

[5] pyelftools - parsing elf and dwarf in python. https://github.
com/eliben/pyelftools.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 455

(6]

(71

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

[19]

456

Intel® software extensions enclave
writer’s guide.
com/sites/default/files/managed/ae/48/

Software-Guard-Extensions-Enclave-Writers-Guide.

pdf, 2017. Revision 1.02, Accessed May, 2017.

E. Bauman and Z. Lin. A case for protecting computer
games with SGX. In Proceedings of the 1st Workshop on
System Software for Trusted Execution (SysTEX’16), Decem-
ber 2016.

A. Baumann, M. Peinado, and G. Hunt. Shielding applications
from an untrusted cloud with haven. ACM Transactions on
Computer Systems (TOCS’15), 2015.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi. Software grand exposure: SGX cache
attacks are practical. In USENIX Workshop on Offensive
Technologies, 2017.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai.
Stealing intel secrets from SGX enclaves via speculative execu-
tion. In Proceedings of the 2019 IEEE European Symposium
on Security and Privacy, June 2019.

G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang,
T.-H. Lai, and D. Lin. Racing in hyperspace: Closing hyper-
threading side channels on SGX with contrived data races.
In 2018 IEEE Symposium on Security and Privacy (SP’18).
IEEE, 2018.

S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting
privileged side-channel attacks in shielded execution with
déja vu. In 12th ACM on Asia Conference on Computer and
Communications Security (ASIA CCS °17). ACM.

V. Costan and S. Devadas. Intel SGX explained. Technical
report, Cryptology ePrint Archive, Report 2016/086, 20 16.
http://eprint. iacr. org.

guard

Y. Fu, E. Bauman, R. Quinonez, and Z. Lin. Sgx-lapd: Thwart-
ing controlled side channel attacks via enclave verifiable page
faults. In Proceedings of the 20th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID’17),
September 2017.

J. Gotzfried, M. Eckert, S. Schinzel, and T. Miiller. Cache
attacks on intel SGX. In 10th European Workshop on Systems
Security (EuroSec’17). ACM, 2017.

D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, 1. Haller,
and M. Costa. Strong and efficient cache side-channel pro-
tection using hardware transactional memory. In USENIX
Security Symposium (USENIX Security’17). USENIX Asso-
ciation, 2017.

M. Hihnel, W. Cui, and M. Peinado. High-resolution side
channels for untrusted operating systems. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17). USENIX
Association,, 2017.

S. M. Kim, J. Han, J. Ha, T. Kim, and D. Han. Enhancing secu-

rity and privacy of tor’s ecosystem by using trusted execution
environments. In (NSDI’17), 2017.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre attacks: Exploiting speculative execution. ArXiv
e-prints, Jan. 2018.

22nd International Symposium on Research in Attacks, Intrusions and Defenses

https://software.intel.

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In 26th USENIX Security Symposium
(USENIX Security’17). USENIX Association, 2017.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Melt-
down. ArXiv e-prints, Jan. 2018.

0. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer.
Varys: Protecting SGX enclaves from practical side-channel
attacks. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, 2018.

D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and
countermeasures: the case of AES. In 6th Cryptographers’

track at the RSA conference on Topics in Cryptology, 2006.

C. Percival. Cache missing for fun and profit. In 2005 BSDCan,
2005.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. Vc3: Trustworthy data
analytics in the cloud using SGX. In 2015 IEEE Symposium
on Security and Privacy (SP’15). IEEE, 2015.

M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Man-
gard. Malware guard extension: Using SGX to conceal cache
attacks. Springer International Publishing, 2017.

J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and
T. Kim. SGX-shield: Enabling address space layout random-
ization for SGX programs. In In Proceedings of the 2017
Annual Network and Distributed System Security Symposium
(NDSS), 2017.

M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Erad-
icating controlled-channel attacks against enclave programs.
In Proceedings of the 2017 Annual Network and Distributed
System Security Symposium (NDSS’17), 2017.

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Prevent-
ing page faults from telling your secrets. In 11th ACM on
Asia Conference on Computer and Communications Security
(ASIA CCS’16). ACM, 2016.

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Cor-
betta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller:
Augmenting fuzzing through selective symbolic execution. In
(NDSS’16), 2016.

C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A
practical library os for unmodified applications on SGX. In
Proceedings of the USENIX Annual Technical Conference
(ATC’17),2017.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx. Foreshadow: Extracting the keys to the in-
tel SGX kingdom with transient out-of-order execution. In
27th USENIX Security Symposium (USENIX Security’18).
USENIX Association, 2018.

J. Van Bulck, F. Piessens, and R. Strackx. SGX-step: A prac-
tical attack framework for precise enclave execution control.
In Proceedings of the 2Nd Workshop on System Software for
Trusted Execution, (SysTEX’17), 2017.

USENIX Association

[34]

[35]

(36]

(37]

(38]

(39]

USENIX Association

J. Van Bulck, F. Piessens, and R. Strackx. Nemesis: Studying
microarchitectural timing leaks in rudimentary cpu interrupt
logic. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS’18). ACM,

2018.

J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and
R. Strackx. Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution.
In Proceedings of the 26th USENIX Security Symposium
(USENIX Security’17). USENIX Association, 2017.

R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna. Ramblr: Making re-
assembly great again. In Proceedings of the 24th Annual
Symposium on Network and Distributed System Security

(NDSS’17), 2017.

S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu. Cached: Iden-
tifying cache-based timing channels in production software. In
26th USENIX Security Symposium (USENIX Security’17).

USENIX Association, 2017.

W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter. Leaky cauldron on
the dark land: Understanding memory side-channel hazards
in SGX. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, (CCS’17). ACM,

2017.

S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard, and
G. Sigl. DATA - differential address trace analysis: Find-

(40]

[41]

[42]

[43]

[44]

ing address-based side-channels in binaries. In 27th USENIX
Security Symposium (USENIX Security’18). USENIX Asso-
ciation, 2018.

J. Wichelmann, A. Moghimi, T. Eisenbarth, and B. Sunar.
Microwalk: A framework for finding side channels in bina-
ries. In Proceedings of the 34th Annual Computer Security
Applications Conference. ACM, 2018.

J. C. Wray. An analysis of covert timing channels. J. Comput.
Secur., 1992.

Y. Xiao, M. Li, S. Chen, and Y. Zhang. Stacco: Differen-
tially analyzing side-channel traces for detecting SSL/TLS
vulnerabilities in secure enclaves. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications
Security, (CCS’17). ACM, 2017.

Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems.
In Proceedings of the 2015 IEEE Symposium on Security and
Privacy (SP’15). IEEE, 2015.

F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi.
Town crier: An authenticated data feed for smart contracts.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS’16). ACM,

2016.

22nd International Symposium on Research in Attacks, Intrusions and Defenses

457

