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Abstract— We examine the problem of forecasting tomorrow
morning’s three self-reported levels (on scales from 0 to
100) of stressed-calm, sad-happy, and sick-healthy based on
physiological data (skin conductance, skin temperature, and
acceleration) from a sensor worn on the wrist from 10am-5pm
today. We train automated forecasting regression algorithms
using Random Forests and compare their performance over
two sets of data: “workers” consisting of 490 days of weekday
data from 39 employees at a high-tech company in Japan
and “students” consisting of 3,841 days of weekday data from
201 New England USA college students. Mean absolute errors
on held-out test data achieved 10.8, 13.5, and 14.4 for the
estimated levels of mood, stress, and health respectively of office
workers, and 17.8, 20.3, and 20.4 for the mood, stress, and
health respectively of students. Overall the two groups reported
comparable stress and mood scores, while employees reported
slightly poorer health, and engaged in significantly lower levels
of physical activity as measured by accelerometers. We further
examine differences in population features and how systems
trained on each population performed when tested on the other.

I. INTRODUCTION

An accurate forecast of tomorrow’s well-being might
inspire people to make changes to their schedule today or
tonight in order to improve their well-being tomorrow. Early
detection indicators that one’s well-being is getting worse
may also enable new kinds of interventions to potentially
prevent a series of bad stress or bad mood days from taking
a turn into clinical depression or anxiety. Stress is well-
known to increase susceptibility to infection and illness [1].
Self-reported health strongly relates to actual health and all-
cause mortality [2]. Self-reported mood is strongly correlated
to measures of depression [3]. The ability to forecast well-
being levels, and identify what specifically changes them,
could enable better self-management of behavioral choices,
potentially preventing poor well-being and its damage to
physical and mental health. The ability to model and forecast
well-being could thus be immensely beneficial to society,
especially if made in a privacy-sensitive, convenient and
unobtrusive way.
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Previous work has shown that students’ well-being
(high/low stress, good/poor mood and good/poor health
levels) tomorrow can be predicted with 78-82% classification
accuracy based on today’s physiological and behavioral data
by using personalized machine learning models [4]. Previous
work also showed that using 7 days of time series data with
recurrent neural network (RNN) models can give acceptable
results in well-being prediction without building personal-
ized prediction models for forecasting students’ tomorrow’s
high/low stress [5]. Other work has shown that using only
daytime (10am-5pm) physiology data in 7 days of time
series with long short-term memory neural network models
(LSTM) can forecast the next-day’s students’ stress, mood,
and health [6]. However, these works focus on student
populations instead of workforce populations, despite the
growing interest in this space [7]–[10]. It has not yet been
examined whether daily stress, mood, and health levels for
office workers can be accurately forecast using only passively
collected physiology data over the workday, or how the
results compare to those in a very different population (e.g.
students).

In this work, we investigate the hard problem of forecast-
ing the level of tomorrow’s self-reported wellbeing (stress,
mood, and health, reported each morning on a scale from 0 to
100) using only daytime, passively-collected physiology data
from today. Daytime is defined here as 10am-5pm, a period
of time when both office workers and the group of college
students were generally awake and active. We further restrict
the algorithms to use only physiological features (skin con-
ductance, skin temperature, and acceleration). The problem
is especially challenging because, in order to preserve night-
time privacy, we do not use any data from tonight when
predicting tomorrow morning’s wellbeing.

This paper makes new contributions expanding automated
means of forecasting well-being for office workers. Our
results also provide new insights into how the physiological
features and the performances of the automated methods
compare across the student and office-worker populations.

II. DATA

A. Data Sets

(1) Workers’ data

A total of 39 workers from one Japanese IT company
(number of employees: >20,000) in 2017 collected physi-
ological and behavioral survey data over a 30-day period.
The participants ranged in age from 20s-50s and were from
the following departments: R&D 50%, developer 28%, sales



10%, planing 7%, and system engineer 5%. Each participant
wore a wearable sensor during their working time during the
weekdays. Stress, mood, and health scores were collected
each morning at the start of the participant’s working day
(around 9am). A total of 490 days of complete daytime data
was collected.

(2) Students’ data

The students’ data in this experiment came from the study
Sleep, Networks, Affect, Performance, Stress, and Health
using Objective Techniques (SNAPSHOT) [11], which gath-
ered 30-day multi-modal data, including physiological, mo-
bile phone, and behavioral survey data from college students
in one US university during 2015-2017. As in the workers’
dataset, stress, mood, and health scores were collected ev-
ery morning. The study participants obtained compensation
based on their contribution to the study. In this work, we
removed days of data that were missing a self-reported score
and we removed weekend data in order to have a more
similar dataset to the workers data. We used a total of 3,841
days of daytime data from weekdays from 201 students.

B. Self-reported Survey for Ground-truth Scores and Check-
ing Data Distribution

Self-reported stress, mood, and health scores were col-
lected every morning, using self-reported scores from 0
(stressed out) - 100 (calm), 0 (sad) - 100 (happy), and 0
(sick) - 100 (healthy), respectively. These scores were used
as the ground-truth labels for the forecasts. For checking
data distribution, participants filled out a few minutes of
survey about their daily behaviors every morning at the
same time. They self-reported the duration of some activities,
including sleep, active time (academic and study activities
for students, working duration for workers), and exercise.
We also collected the Perceived Stress Scale questionnaire
[12] (PSS-10 score: 0 (low stress) - 40 (high stress)) for
comparing distributions.

C. Physiology Feature Calculation

We computed 42 daily physiology features for both work-
ers’ and students’ data in the same way. The physiological
measurements were collected by wrist-worn Empatica E4
sensors from office workers and by wrist-worn Affectiva
Q sensors from students; each sensor records electrodermal
activity (EDA) measured as skin conductance (SC), skin tem-
perature (ST), and 3-axis acceleration (ACC). The sampling
rate of E4 sensors is 4 Hz for EDA and SC, and 32 Hz for
ACC, and the sampling rate of Q sensors is 8 Hz for EDA,
SC, and ACC. We defined data during 10am-5pm (10-17H)
as “daytime” data as all workers and most students were ac-
tive during this timeframe, and we used only “daytime” data
for experiments. EDA, acceleration and ST were collected
to measure sympathetic nervous activity, physical activity,
circadian rhythm, and stress responses [13]–[15]. Following
[16] and [4], for each time period the following sets of
features were computed: EDA Peak features (for all detected
peak features and for only non-artifact peaks [17]), SC level

features, accelerometer features, temperature features, and
various combinations of the three physiological data streams.
All physiology features are explained in Table I.

III. DAILY WELL-BEING FORECASTING EXPERIMENTS

A. Experimental Conditions

We examine how accurately the previous days’ physiology
data using only a daytime day’s data can forecast a next-day’s
morning well-being level. Specifically, we learn p(yt+1|xt),
the probability of the person’s well-being given the previous
daytime days’ data, where xt is the physiology data collected
from wearable sensors on day t, and yt+1 is the next-day
self-reported well-being scores.

B. Regression Labels

We framed the problem as a regression: for forecasting
tomorrow morning’s well-being (stress, mood, and health)
using today’s physiology features (II.C). The three daily
labels are the values from 0 to 100 given in the morning
for each of the stress, mood, and health scales.

C. Regression Methods

We used Random Forests for regression. Random Forests
are an ensemble learning method using a combination of
tree predictors such that each tree depends on the values of
a random vector sampled independently and with the same
distribution for all trees in the forest [18]. Parameters such as
the number of trees, the maximum depth of the tree, and the
minimum number of samples required to split an internal
node were selected by grid search. The full dataset was
used in a five-fold cross validation with 80% of the data for
training and validating the models, and 20% for testing each
fold. Specifically, within the training and validation set, we
used 80% of the dataset for training and 20% as validation
and selected the hyperparameters (the number of trees in
the forest and the maximum depth of the tree) that yielded
the highest accuracy on the validation set. The days in the
test set were kept completely independent of the training and
validation data. The whole algorithm was implemented using
scikit-learn library and Python 3.5.4.

D. Evaluation metrics

We used Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and correlation as evaluation metrics. For
evaluating accuracy we computed the average and the Stan-
dard Deviation (SD) of the test set for the five folds.
Specifically, let n be the number of samples and et be the
error between forecasting results and labels, respectively.

MAE =
1

n

n∑
t=1

|et|, RMSE =

√√√√ 1

n

n∑
t=1

e2t (1)

Using the set-up above, we compare the accuracies of using
the two training data.



TABLE I
PHYSIOLOGY FEATURES [4], [16], [17]

Category Feature’s name Explanation of Features
EDA Peaks Features

EDA

sumAUC the sum of the AUC of all peaks where amplitude of peak is calculated as difference
from base tonic signal

sumAUCFull sum of AUC of peaks where amplitude is calculated as difference from 0
medianRiseTime median rise time of peaks (seconds)
medianAmplitude median amplitude of peaks (µS)
countPeaks number of peaks detected
sdPeaks30min compute number of peaks per 30 minute epoch, take SD of this signal
medPeaks30min compute number of peaks per 30 minute epoch, take median of this signal
percentHighPeak percentage of signal containing 1 minute epochs with greater than 5 peaks

EDA Peaks without Artifact Features

EDA without artifact
(EDA noA)

sumAUCNoArtifact sumAUC without artifact
sumAUCFullNoArtifact sumAUCFull without artifact
medianRiseTimeNoArtifact medianRiseTime without artifact
medianAmplitudeNoArtifact medianAmplitude without artifact
countPeaksNoArtifact countPeaks without artifact
sdPeaks30minNoArtifact sdPeaks30min without artifact
medPeaks30minNoArtifact medPeaks30min without artifact
percentMedPeakNoArtifact percentMedPeak without artifact
percentHighPeakNoArtifact percentHighPeak without artifact

Skin conductance level (SCL) Features

SCL

sclPercentOff percentage of period where sensor was off
sclMaxUnnorm max level of un normalized EDA signal
sclMedUnnorm median of normalized EDA signal
sclMeanUnnorm mean of un-normalized EDA signal
sclMedianNorm median of z-score normalized EDA signal
sclSDnorm standard deviation of z-score normalized EDA signal
sclMeanDeriv mean derivative of z-score normalized EDA signal (µS/second)

Accelerometer Features

ACC
stepCount number of steps detected
meanMovementStepTime average number of samples (at 8Hz) between two steps
stillnessPercent percentage of time the person spent nearly motionless

Accelerometer Weighted Peak Features

ACC weighted EDA

sumStillnessWeightedAUC weight the peak AUC signal by how still the user was every 5 minutes and sum
sumStepsWeightedAUC weight the peak AUC signal by the step count over every 5 minutes and sum
sumStillnessWeightedPeaks multiply the number of peaks every 5 minutes by the amount of stillness during that period
maxStillnessWeightedPeaks the max value for the number peaks * stillness for any five minute period
sumStepsWeightedPeaks divide number of peaks every five minutes by step count and sum
medStepsWeightedPeaks average value for the number of peaks / step count every 5 mins

Temperature Weighted EDA peaks Features

ST weighted EDA
sumTempWeightedAUC sum of peak AUC divided by the average temp every 5 mins
sumTempWeightedPeaks number of peaks divided by the average temp every 5 mins
maxTempWeightedPeaks the maximum number of peaks in any 5 minute period divided by the average temp

Skin Temperature Features

ST

maxRawTemp the maximum of the raw temperature signal (◦C)
minRawTemp the minimum of the raw temperature signal (◦C)
sdRawTemp the standard deviation of the raw temperature signal (◦C)
medRawTemp the median of the raw temperature signal (◦C)

Accelerometer Weighted Skin Temperature

ACC weighted ST sdStillnessTemp the standard deviation of the temperature recorded during periods when the person was still
medStillnessTemp the median of the temperature when the person was still

IV. RESULTS AND DISCUSSION

A. Group-Level Data Distribution

First we examine the results of the surveys described in
section II.B: Table II shows the mean and standard deviation
(SD) of workers’ and students’ daily well-being and PSS-
10 scores (pre: before 30-days data collection, post: after
30-days data collection). Stress and mood scores are not
significantly different for the groups (Welch’s t test), but
health and pre-PSS scores are different, with workers less
healthy and initially more stressed. Table III shows the
mean and standard deviation for workers’ and students’ self-
reported durations of time in bed, active, and exercising. All
of these durations differed significantly between the groups
(p <0.05, Welch’s t test). On average, workers spent more
time sleeping and working, and less time exercising than did

TABLE II
MEAN(SD) OF DAILY WELL-BEING AND PSS SCORES

Workers Students p-value
Stress score 53.96 (21.26) 53.99 (25.63) 0.98
Mood score 56.90 (17.14) 61.03 (22.47) 8.83

Health score 60.09 (21.93) 64.60 (25.58) <0.05
PSS-10 score (pre) 17.77 (6.21) 14.73 (7.09) <0.05

PSS-10 score (post) 16.62 (5.67) 16.13 (7.44) 0.72

students.

B. Well-being Forecasting Results

We examine how accurately (using MAE, RMSE, and
correlation) the models using workers’ or students’ data
forecast next-day stress, mood, and health in section III.
In Tables IV, V, and VI, we first confirm (as expected)
that higher accuracy is obtained testing on students after
training on students, and similarly for workers. The MAE



TABLE III
MEAN (SD) OF SLEEP, ACTIVE, AND EXERCISES DURATION (IN

MINUTES)

Workers Students p-value
Bed time duration[mins] 360.37 (90.32) 337.41 (174.50) <0.05

Active time duration[mins] 533.19 (119.18) Academic: 154.84 (135.47) <0.05
Study: 166.20 (165.70) <0.05

Exercise time duration[mins] 16.35 (42.18) 29.20 (64.78) <0.05

TABLE IV
STRESS FORECASTING ACCURACY (MAE (RMSE), CORR)

Train
Workers Students

Test Workers 13.47 (19.95), 0.37 17.56 (22.50), -0,04
Students 22.72 (27.45), -0.07 20.28 (24.76), 0.18

TABLE V
MOOD FORECASTING ACCURACY (MAE (RMSE), CORR)

Train
Workers Students

Test Workers 10.80 (14.09), 0.67 15.64 (20.07), -0.22
Students 25.66 (30.73), -0.10 17.81 (22.20), 0.13

TABLE VI
HEALTH FORECASTING ACCURACY (MAE (RMSE), CORR)

Train
Workers Students

Test Workers 14.41 (18.51), 0.45 18.32 (21.67), -0.05
Students 30.66 (35.84), -0.04 20.43 (24.47), 0.22

using Random Forest are 13.47 for stress, 10.80 for mood,
and 14.41 for health, using physiology features from workers.
These results on the office workers are consistently better
than the model trained on students, which obtained in the
best case an MAE of 20.28 for stress, 17.81 for mood,
and 20.43 for health when it was tested on the students.
One possible reason for higher accuracy with the workers is
that their data may be more homogeneous than the student
data, given lower variances and less change in their PSS-10
score as shown in Table II, and lower physical activity levels
during the daytime. In addition, all the office workers were
from the same culture (Japanese) while the students at this
university come from many diverse cultures. Previous studies
showed higher accuracy for predicting students’ stress, mood,
and health using the same students’ data and deep-learning
methods [19]–[21] while we used Random Forest, one of
interpretable machine learning methods, that allowed us to
interpret feature importance.

C. Feature Importance for Worker and Student Models

We computed the top 10 features for each Random Forest
model of section IV.B, which we list in Figs 1 and 2.
Features with higher weights indicate a stronger influence on
forecasting stress, mood, and health. High feature importance
of both groups are ACC features such as step count related
to increased physical activity. All six models included two
accelerometer based features: stepcount and stillnessPercent.

In Table VII we show the mean and standard deviation
(SD) of the top three important features in each model. All
three features show a significant difference between the two
groups. Over weekdays 10am-5pm, office workers showed
lower levels of step counts while students showed higher
levels (workers: average 1,699, SD 1,145, and students:

TABLE VII
MEAN AND STANDARD DEVIATION (SD) OF THE TOP THREE OF

IMPORTANT FEATURES IN EACH MODELS

Workers Students
Mean SD Mean SD p-value

maxRawTemp [ST] 31.33 2.00 35.42 2.52 <0.05
stepCount [ACC] 1699.32 1144.72 3428.44 1956.48 <0.05

meanMovementStepTime [ACC] 356.25 248.63 230.33 256.62 <0.05
stillnessPercent [ACC] 0.70 0.15 0.56 0.18 <0.05

sclSDnorm [SCL] 0.69 0.57 0.53 0.43 <0.05
sclMedianNorm [SCL] 0.57 0.38 -0.05 0.38 <0.05

medianAmplitudeNoArtifact [EDA noA] 0.30 0.10 0.23 0.14 <0.05
sclMeanUnnorm [SCL] 2.53 0.55 0.41 0.57 <0.05

sdRawTemp [ST] 0.88 3.30 1.82 0.78 <0.05
sclMedUnnorm [SCL] 2.16 3.16 0.29 0.50 <0.05

3,428, 1,956, p <0.05, Welch’s t test). In addition, we found
that for weekdays 10am-5pm, the office workers showed
lower levels of maximum skin temperature compared to
the students (office workers: average 31.3◦C, SD 2.0, and
students: 35.4◦C, 2.5, p <0.05, Welch’s t test), and the
office workers showed a higher average number of samples
between two steps (ACC features: meanMovementSteptime,
office workers: average 356.25, SD 248.63, and students:
230.33, 256.62, p <0.05, Welch’s t test). As is generally
true for different populations of data, using different group
models for training and testing gives lower accuracy than
using the same group model, as shown in Tables IV, V, and
VI.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we developed an automated forecast for
workers’ daily well-being scores using physiological data
that has previously been shown to accurately estimate well-
being in students. We also focused on making a forecast
for tomorrow morning’s values based on only the daytime
10am-5pm physiological data today. The experimental results
show that the daily well-being, measured as mood, stress, and
overall physical health for workers can be forecast on a scale
from 0 to 100 with MAE of less than 15 points. The main
difference in physiology features (measured on the wrist)
between workers and students are related to acceleration
(e.g., office workers having lower step count) which is likely
related to differing environments and behavioral patterns.

While this work has expanded automated forecasting abil-
ities, this work has several limitations. The two datasets
are collected on office workers in a Japanese IT company
and New England college students and might not generalize
to other populations. Office workers at an IT company
were chosen since, like the college students they are merit-
driven and work with technology a large part of the day.
More populations need to be studied before we can draw
general conclusions about how much these models need to
be customized to different cultures, ages, and activity levels.
However, this work appears to be the first to expand daily
well-being forecasting models using physiology data to office
workers.

In future work, we plan to collect more data for not
only office workers but also other workers such as field
workers, and with longer monitoring per person, it might be
possible to build more accurate forecasting models. Further,
we plan to examine transfer learning and other deep learning
methods to improve well-being forecasting accuracies by
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using previously collected data in novel populations. In
addition, we will consider adaptive methods to fill in missing
data with time series information [22]. Finally, this work
has focused on the forecasting and has not addressed several
aspects of the problem of what to do with the forecasts –
how to help people identify the best behaviors to change
and how to support them in making those changes. These
are important challenges to solve before closing the feedback
loop with the participants. Nevertheless, this work shows that
earlier work, limited to forecasting in students, can indeed be
expanded to provide well-being forecasting in office workers,
and in fact can even work more accurately in this important
population.
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