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Abstract:

Due to its specificity, fluorescence microscopy (FM) has become a quintessential imaging tool in
cell biology. However, photobleaching, phototoxicity, and related artifacts continue to limit
FM’s utility. Recently, it has been shown that artificial intelligence (Al) can transform one form
of contrast into another. We present PICS, a combination of quantitative phase imaging and Al,
which provides information about unlabeled live cells with high specificity. Our imaging system
allows for automatic training, while inference is built into the acquisition software and runs in
real-time. Applying the computed fluorescence maps back to the QPI data, we measured the
growth of both nuclei and cytoplasm independently, over many days, without loss of viability.
Using a QPI method that suppresses multiple scattering, we measured the dry mass content of
individual cell nuclei within spheroids. In its current implementation, PICS offers a versatile
quantitative technique for continuous simultaneous monitoring of individual cellular components

in biological applications where long-term label-free imaging is desirable.
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Fluorescence microscopy has been the most common imaging tool for studying cellular
biology'. Fluorescence signals, whether intrinsic or extrinsic, allow the investigator to study
particular structures in the biospecimen with high specificity’. However, this important quality
comes at an expensive price: chemical toxicity and phototoxicity disturb and may kill a live

134, while photobleaching limits the extent of the investigation window®. Breakthroughs in

cel
genetic engineering led to the family of green fluorescent proteins, which today are broadly used
in live cells with reduced toxicity®. In addition, current research efforts are dedicated to reducing
photobleaching by various methods, including oxygen scavenging’ and replacing traditional
fluorophores with quantum dots®.

Microscopy with intrinsic contrast preceded fluorescence labeling by more than two
centuries’. Advanced forms of label-free imaging, such as phase-contrast microscopy, developed
in the 1930°s'°, and differential interference contrast, in the 1950°s!!, extended the capability of
imaging transparent specimens, including live cells. However, the lack of chemical specificity
and inability to inform on underlying mechanisms has relegated these modalities to routine tasks,
such as visual inspection of tissue cultures. Thus, fluorescence microscopy has remained a
necessity for in-depth biology.

Recently, quantitative phase imaging (QPI) has advanced label-free microscopy with its
ability to extract quantitative parameters (cell dry mass, cell mass transport, cell tomography,
nanoscale morphology, topography, pathology markers, etc.) from unlabeled cells and tissues'?.
As a result, QPI can extract structure and dynamics information from live cells without

photodamage or photobleaching!*!°. However, in the absence of labels, QPI cannot easily

identify particular structures in the cell as the label-free image lacks specificity.



In a parallel development, within the past few years, in part due to the continuous decline
of computing power cost, development of frameworks for dataflow representation as well as a
steep increase in data generation, deep learning techniques have been translating from consumer
to scientific applications®*?*. For example, it has been shown that AI can map one form of
contrast into another, a concept coined as image-to-image translation* 3. Significantly, it has
been demonstrated that a neural network can predict the mapping of a stain or fluorescence
marker from label-free images as input®*-*°,

Inspired by this prior work, we present a new microscopy concept, referred to as phase
imaging with computational specificity (PICS), in which the process of learning is automatic and
retrieving computational specificity is part of the acquisition software, performed in real-time
(Fig. 1). We applied deep learning to QPI data, generated by SLIM (spatial light interference
microscopy)®!* and GLIM (gradient light interference microscopy)®>*¢. These methods are
white-light and common-path and, thus, provide high spatial and temporal sensitivity>’*,
Because they are add-ons to existing microscopes and compatible with the fluorescence
channels, these methods provide simultaneous phase and fluorescence images from the same
field of view. As a result, the training data necessary for deep learning is generated
automatically, without the need for manual annotation. This new type of microscopy can
potentially replace some commonly used tags and stains and eliminate the inconveniences
associated with chemical tagging. We demonstrate this idea with various fluorescence tags and
diverse cell types, at different magnifications, on different QPI systems. We show that

combining QPI and computational specificity allows us to quantify the growth of subcellular

components (e.g. nucleus vs cytoplasm) over many cell cycles, nondestructively. Finally, using



GLIM, we imaged spheroids and demonstrated that PICS can perform single-cell nucleus

identification even in such turbid structures.
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Figure 1. PICS method for label-free measurements of compartment-specific cellular dry
mass. a, We upgrade a conventional transmitted light microscope with a quantitative phase
imaging add-on module. b, To avoid the intrinsic toxicity of fluorescent stains, we develop a
two-step protocol imaging protocol where label-free images are recorded followed by fixation
and staining. From the toxic stain recorded at the end of the experiment, we train a neural
network capable of digitally staining the time-lapse sequence, thus enabling time-lapse
imaging of otherwise toxic stains. ¢, The digital stain is used to introduce specificity to
label-free imaging by providing a semantic segmentation map labeling the components of the
cell. From the time-lapse sequence, we calculate organelle-specific dry mass doubling times,
in this case, the rates of growth for the nucleus and cytoplasm. d, The PICS method is
integrated into a fully automated plate reading instrument capable of displaying the machine

learning results in real-time.



PICS advances the field of Al-enhanced imaging in several ways. First, PICS performs
automatic registration by recording both QPI and fluorescence microscopy of the same field of
view, on the same camera. The two imaging channels are integrated seamlessly by our software
that controls both the QPI modules, fluorescence light path, and scanning stage. The PICS
instrument can scan a large field of view, e.g., entire microscope slides, or multi-well plates, as
needed. Second, PICS can achieve fluorescence channel multiplexing by automatically training
on multiple fluorophores but performing inference on a single phase image. Because PICS uses
intrinsic contrast images as input, which benefit from strong signals, it provides an order of
magnitude improvement in acquisition rate compared to traditional fluorescence microscopy.
Third, PICS performs real-time inference, because we incorporated the Al code into the live
acquisition software. The computational inference is faster than the image acquisition rate in
SLIM and GLIM, which is up to 15 frames per second, thus, we add specificity without
noticeable delay. To the microscope user, it would be difficult to state whether the live image
originates in a fluorophore or the computer GPU. Fourth, using the specificity maps obtained by
computation, we exploit the QPI channel to compute the dry mass density image associated with
the particular subcellular structures. For example, using this procedure, we demonstrated a
previously unachievable task: the measurement of growth curves of cell nuclei vs. cytoplasm
over several days, nondestructively. Fifth, using a QPI method dedicated to imaging 3D cellular
systems (GLIM), we add subcellular specificity to turbid structures such as spheroids.

Results

PICS Method

The PICS methodology is outlined in Fig. 1. We use an inverted microscope (Axio

Observer Z1, Zeiss) equipped with a QPI module (CellVista SLIM Pro and CellVista GLIM Pro,



Phi Optics, Inc.). The microscope is programmed to acquire both QPI and fluorescence images
of fixed, tagged cells (Fig. 2b). Once the microscope “learned” the new fluorophore, PICS can
perform inference on the live, never labeled cells. Due to the absence of chemical toxicity and
photobleaching, as well as the low power of the white light illumination, PICS can perform
dynamic imaging over arbitrary time scales, from milliseconds to weeks, without cell viability
concerns. Simultaneous experiments involving multi-well plates can be performed to assay the
growth and proliferation of cells of specific cellular compartments (Fig. 1¢). Finally, the
inference is implemented within the QPI acquisition time, such that PICS performs in real-time
(Fig. 1d).

PICS combines quantitative measurements of the object’s scattering potential with
fluorescence microscopy. The essentials of the QPI optics and computation are shown in Fig 2.
Fig. 2a illustrates the optical path of the GLIM system used for most of the QPI results in this
work (for completeness, SLIM is described in Supplementary Fig. 1). The GLIM module
controls the phase between the two interfering fields outputted by a DIC microscope, as

described in Supplementary Note 1%

. We acquired four intensity images corresponding to phase
shifts incremented in steps of /2 and combined these to obtain a quantitative phase gradient
map (Fig. 2b). This gradient is integrated using a Hilbert transform method, as described in
Supplementary Fig. 2 and Supplementary Note 2. The same camera records fluorescence images
via epi-illumination providing a straightforward way to combine the fluorescence and phase

images. Fig. 2b illustrates the acquired images consisting of two fluorescence channels (cell

nuclei and membrane in this case) and GLIM.
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Figure 2. The stain location is “learned” from co-localized phase and fluorescent images.
a, Quantitative phase images are acquired with a compact Gradient Light Interference
Microscopy (GLIM) module that attaches to the output port of a differential interference
contrast microscope (DIC/Nomarksi). By using a liquid crystal variable retarder (LCVR) the
instrument introduces controlled phase shifts between the orthogonal polarizations in DIC.
GLIM images are the result of a four-frame reconstruction process to retrieve the phase
associated with a differential interference contrast microscope. Insets show a zoomed portion
of the field of view at 0°, 90°, 180°, 270° phase shifts. b, The same light path is used for
reflected light fluorescence imaging, providing a straightforward way to co-localize
fluorescence and phase images. In this work, we focused on two popular stains used to assay
the nucleus and cell body (DAPI and Dil). To recover the phase-shift associated with the
object’s scattering potential, we remove the shear artifact associated with the DIC field by
performing integration using a Hilbert transform to obtain ¢, the phase shift measured along
the DIC shear direction. Zoomed portion of a field of view showing a typical SW620 cell
(20x/0.8). ¢, Next, to learn the mapping between the label-free and stained image, we train a
U-Net style deep convolutional neural network. d, Once this model is trained we can perform
real-time interference and rendering to obtain the equivalent fluorescence signal (PICS)

directly from the label-free image.



We use these co-localized image pairs to train a deep convolutional neural network to
map the label-free phase images to the fluorescence data. For deep learning, we used a variant of
U-Net by introducing three modifications. First, following the work by Google*’, we added batch
normalization layers before all the activation layers, which helped accelerate the training.
Second, we greatly reduced the number of parameters in our network by changing the number of
feature maps in each layer of the network to a quarter of what was proposed in the original paper.
This change greatly reduced GPU memory usage and improved inference time, without loss of
performance. Our modified U-Net model used approximately 1.9 million parameters, while the
original architecture had over 30 million parameters. Based on the training results, we believe
that 1.9 million parameters are sufficient to approximate the mapping from phase images to
fluorescence images. Third, we utilized the advantage of residual learning*® with the hypothesis
that it is easier for the models to approximate the mapping from phase images to the difference
between phase images and fluorescence images. Thus, we implemented an add operation
between the input and the output of the last convolutional block to generate the final prediction.
We noticed that this change enabled us to have much better performance under the same training
conditions. The modified network architecture is shown in Fig. 2¢ (orange connection) and
described in more detail in Supplementary Fig. 3. Fig. 2d shows the result of the inference. To
measure the performance of PICS under various conditions, we applied this procedure across
different image resolutions, fluorophores, and cell lines, using both SLIM and GLIM (see
Supplementary Fig. 4). Our training dataset consisted of three most in-focus images of each
unique field of view, spaced 2-3 depths of field apart. This approach serves as a natural form of
data augmentation. We also realized that the amount of data needed for satisfying results differ

from task to task (see Supplementary Table 1).
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Figure 3: The PICS method is applicable across microscope objectives and resolutions. a,
To investigate the effect of resolution on performance we run a computational experiment
where we train our network on SW cells acquired at different resolutions. To control for
training sample size, we selected the most images shared between all sets. We note that the
performance of the network improves with more data or training epochs. Even at low
resolutions (10x, 1.6 pm resolution), we achieved adequate performance. b, We use p, the
correlation between the actual and the digital fluorescent signals over the entire set, as a
quality metric. There appears to be a clear relationship (Pearson correlation, pres = -0.97)
between resolution (better objectives) and performance. ¢, The origin of the relationship
between resolution and performance is attributable to differences in contrast recorded by these
objectives. We find that the pr coefficient between the variance of training scaled fluorescence
images and quality metric p is statistically significant while the correlation between the
variance of the training scaled phase images pq is weaker. Overall, these results suggest that
the relationship between performance associated with resolution can be largely attributed to
better overall contrast, especially for the fluorescent signal, rather than directly due to

resolving capabilities.



Effects of resolution on PICS performance

To understand the performance of our approach we conducted a series of computational
experiments where we held the training time and quantities of training pairs constant and vary
the objectives used for imaging. Figure 3 shows in detail how the resolution of QPI impacts the
values of the Pearson correlation coefficient that quantifies the match between the
computationally predicted and actual fluorescence images. Remarkably, even for a 5x/0.08NA
objective, the Pearson correlation is above 72%. Figure 3¢ presents the effect of the image
contrast upon the performance. As expected, higher contrast, i.e., spatial variance, of both the
fluorescence and QPI yields better performance. Note that, for a fair comparison, we kept the
number of epochs constant across all resolutions and contrast, which somewhat limited the
network performance (see Supplemental Table 1). A comparison between quantitative phase
imaging, standard contrast enhancement techniques (DIC), and bright field microscopy is
presented in (Supplementary Fig. 5). The data indicate that the addition of the interferometric
hardware to decouple phase and amplitude information improves the performance of the Al
algorithm. Furthermore, PICS provides a uniform and consistent stain. Supplementary Fig. 5

highlights a staining defect that PICS was able to correct.

Training data set considerations for PICS

To study the relationship between the number of training pairs vs. prediction accuracy,
we conducted a second series of computational experiments where we varied the size of the data
set while keeping other training parameters constant. As shown in Supplementary Fig. 6, we
found that high fidelity digital stains can be generated from as few as 20 image pairs (roughly

500 SW cells) corresponding to five minutes of training time. When the performance of our



procedure is cross-validated by training on a subset of the data (Supplementary Fig. 6a), we
found that certain images were dominant for training (Supplementary Fig. 7). In other words, we
found that certain folds converge faster than others. Importantly, neural networks that performed
well during training on small data sets (Supplementary Fig. 6a), also performed well when being
validated on larger, unseen data sets (Supplementary Fig. 6b). For example, the five minutes
used to train a neural network from 20 pairs is well below the time typically needed to stain the
cells (Supplementary Fig. 6¢).

Supplementary Fig. 7 contains a summary of the 57 networks trained for this work.

Time-lapse PICS of adherent cells

To illustrate the value of specificity multiplexing, i.e., inferring multiple stains on the
same cell, we acquired simultaneous PICS images of both the cell nucleus and membrane (Figs.
4 & 5). Supplementary Video 1 shows the data acquisition procedure. After training, the
inference model was integrated into the acquisition software for real-time operation with both
SLIM and GLIM (Supplementary Video 2-3). Supplementary Figs. 8 & 9 describe the typical
acquisition sequence and operation of the instrument. We note, that in general, fluorescence tags
required an order of magnitude more exposure time than the QPI frames, implying that our plate
reader achieves higher throughput while maintaining specificity. This effect is amplified when

separate exposures are used for individual fluorophores.

Because of the nondestructive nature of PICS, we can apply it to monitor cells over
extended periods, of many days, without a noticeable loss in cell viability. This important aspect
is emphasized in Fig. 4 and Supplementary Video 4. To perform a high content cell growth

screening assay, unlabeled SW480 and SW620 cells were imaged over seven days and PICS



predicted both DAPI (nucleus) and Dil (cell membrane) fluorophores. The density of the cell
culture increased significantly over the seven days, a sign that cells continued their multiplication
throughout the imaging. Note that, in principle, PICS can multiplex numerous stain predictions
simultaneously, as training can be performed on an arbitrary number of fluorophores for the
same cell type. The only price paid is computational time, as each inference channel adds, ~65
ms to the real-time inference. The computation time for one stain is completely masked by the

acquisition process and multiple networks can be evaluated in parallel on separate GPUs.
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Figure 4: Time-lapse PICS of unstained cells. To demonstrate time-lapse imaging and high
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content screening capabilities, we seeded a multiwell with three distinct concentrations of SW
cells (20x/0.8). These conditions were imaged over the course of a week by acquiring mosaic
tiles consisting of a 2.5 mm? square area in each well using a 20x/0.8 objective. The machine
learning classifier, trained at the final time point after paraformaldehyde fixation, is applied to
the previously unseen sequence to yield a Dil and DAPI equivalent image. Interestingly, the
neural network was able to correctly reproduce the Dil stain on more elongated fibroblast-like
cells, even though few such cells are present when the training data was acquired (white

arrows).



Cell growth measurements of sub-cellular compartments

We used PICS-Dil to generate a binary mask (Fig. 5, Supplementary Fig. 10), which,
when applied to the QPI images, yields the dry mass of the entire cell. Similarly, PICS-DAPI
allows us to obtain the nuclear dry mass. Thus, we can independently and dynamically monitor
the dry mass content of the cytoplasm and nucleus. This capability is illustrated in Figs. 5B and
C, where an individual cell is followed through mitosis. It is known that the nuclear-cytoplasmic
ratio (NCR) is a controlling factor in embryogenesis*’ and a prognosis marker in various types of
cancer*®® . Figures 5d-f show the specific growth curves for a large cell field of view, consisting
of a mosaic of covering a 2.5 mm? portion of a multiwell. Figure Sg illustrates the behavior of the
confluence factor (defined as a fraction of the total area occupied by the cells) in time. Not
surprisingly, as the confluence increases, the growth saturates due to contact inhibition*’. In
Supplementary Fig. 11, we repeat this imaging protocol, demonstrating that the median dry mass
of the nuclei remains stable over time, while the area distinguishes between different cell lines
(SW480 vs SW620). Interestingly, in this cell co-culture, while the metastatic cells (SW620)
have smaller nuclei, the total dry mass is similar to that of SW480. Note that we used the same

neural network for both cell lines.
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Figure 5: Tracking dry mass changes in cellular compartments using PICS. a, The Dil
and DAPI stains are specific to the cell body and nucleus, respectively. The difference
between the two areas produces a semantic segmentation map that distinguishes between the
nuclear and non-nuclear content of the cell (cytoplasm). b, Throughout the experiment, we
observe cellular growth and proliferation with cells often traveling a substantial distance
between division events. ¢, Using the semantic segmentation map we can track the nuclear and
cytoplasmic dry mass. We find that nuclear and cytoplasmic dry mass steadily increase until
mitosis, with some loss of dry mass due to cellular migration. d-g, Semantic segmentation
maps enable us to track the nuclear and cytoplasmic dry mass and area over 155 hours. The
dark curve represents the median of the growth rate across forty-nine fields of view (lighter
curves). The dry mass and area are normalized by the average measured value from the first
six hours. In this experiment we observe that total nuclear dry mass grows faster than total
cytoplasmic mass, providing further evidence that cells can divide without growing. As the
cells reach optimal confluence (t=114 hours), we observe a decrease in the growth rate of

nuclear mass, although less difference in cytoplasmic dry mass growth.



PICS of Spheroids

GLIM has been developed recently in our laboratory to extend QPI applications to
thicker, strongly scattering structures, such as embryos*®, spheroids, and acute brain slices>®.
GLIM improves image quality by suppressing artifacts due to multiple scattering and provides a
quantitative method to assay cellular dry mass. To showcase this capability, we imaged 20
spheroids using GLIM equipped with a 63x/1.4NA objective. Each spheroid was imaged in
depth over an 85 um range, sampled in steps of 80 nm, with each field of view measuring
170x170 um?. At each z-position, epi-fluorescence imaging was also performed to reveal the
DAPI-stained nuclei (Fig. 6a). Following the same training procedure as before, we found that
PICS can infer the nuclear map with high accuracy. Specifically, we constructed a binary mask
using PICS and DAPI images and compared the fraction of mass found inside the two masks.

Thus, Fig. 6b shows that the average error between inferring nuclear dry mass based on the

DAPI vs. PICS mask is 4%.
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Figure 6: PICS for digitally staining 3D cellular systems. a, Representative images of PICS
applied to HepG2 spheroids (63x/1.4, 170 um x 170 um x ~85 um). The scattering potential,
GLIM (p) was recovered, as in the original GLIM paper, by nonlinear filtering where the
absolute value of the phase map is displayed on a log scale. PICS and DAPI insets were
bilaterally filtered to improve contrast. b, To compare the performance of PICS to
conventional DAPI staining we constructed a semantic segmentation map by thresholding the
DAPI and PICS image and calculating the dry mass within this map. When comparing total
dry mass across twenty samples, we find the average percentage change between the PICS and

DAPI images to be 4%.



Discussion and Outlook

PICS uses artificial intelligence to boost the capability of QPI. PICS exploits the unique
capabilities of SLIM and GLIM, whereby the QPI and fluorescence images can be obtained by
the same camera, without the need for complex image registration. As a result, annotation, which
normally represents a bottleneck for Al, is performed automatically, with no manual
intervention. In principle, the number of fluorescent channels that PICS can predict is virtually
unlimited. Our approach is to collect training data at the end of the experiment on fixed cells,
effectively training for each cell type and magnification. This training is performed only once
and ensures that performance is optimal. Once the training dataset is stored on the computer, the
microscope user benefits from a virtual stain that can be used indefinitely. The network inference
requires a mere 65 ms per frame, which is faster than the image acquisition for both SLIM and
GLIM. This inference time is also approximately one order of magnitude shorter than the typical
exposure in our fluorescence imaging. As a result, the specificity map is displayed in real-time
and overlaid with the QPI phase map.

The main benefit of PICS over regular fluorescence is the fact that computation is, of
course, nondestructive, while at the same time, QPI yields quantitative information. Furthermore,
the QPI data used as input is obtained using low levels of light, which has low phototoxicity.
Thus, we demonstrated time-lapse imaging of live cells over a week while maintaining cell
viability intact and a high level of specificity for cellular compartments. This capability is
particularly valuable when studying cell growth, which remains an insufficiently understood
phenomenon®'. In particular, we showed that by multiplexing specificity for cell nuclei and lipid
bilayers, PICS can simultaneously assay nuclear, cytoplasm, and total cell growth over many cell

cycles. In this way, by training on fixed cells at the end of the experiment, PICS mimics



fluorescence stains (such as DAPI) that are otherwise incompatible with live-cell imaging. The
approach of learning stains from fixed cells for live-cell imaging presents many opportunities.
For example, there is a pressing need for developing live-cell imaging techniques capable of
reproducing stains that are associated with protein expression (antibody) or membrane
permeability (cell viability>?) as these stains require fixation.

Interestingly, we found that by decoupling the amplitude and phase information, QPI
images outperform their underlying modalities (phase contrast, DIC) in Al tasks (Supplementary
Fig. 5). This capability is showcased in GLIM, which provides high-contrast imaging of thick
tissues by suppressing multiple scattering, enabling us to achieve subcellular specificity in
optically turbid spheroids. We foresee a range of applications in this area, including viability
assays in spheroids subjected to various treatments>>.

Finally, because PICS can be implemented as a hardware add-on module to an existing
microscope, the threshold for adaption in the field is low. The automatic training procedure
allows the user to easily replace the chemical makers in their studies. The real-time inference
gives instantaneous feedback about the sample, which keeps the user experience virtually
unchanged, while operating at an improved throughput and reduced toxicity.

As shown in Supplementary Fig. 12, PICS reveals that the quantitative phase image contains
vastly more information than the fluorescence counterpart. In a broader context, PICS illustrates
a paradigm shift in microscopy, where the resurgence of intrinsic contrast imaging is empowered

by recent advances in deep-learning methods to gain specificty.



Methods

Acquisition procedure

With respect to Ref.>*, our current software was designed as a “frontend” with acquisition
dialogs to generate lists of events that are then processed by a “backend”. The principal changes
to the backend involved instrumenting TensorRT (NVIDIA) for real-time inference, while the
frontend changes involved developing a graphic interface to facilitate plate-reader style imaging.
PICS images are processed following the scheme shown in Supplementary Fig. 8. Each PICS
image is the result of an acquisition sequence that collates four label-free intensity images into a
phase map. The sequence begins by introducing a phase shift on the modulator (“Modulation’)
followed by camera exposure and readout. In GLIM, the phase shift is introduced by a liquid
crystal variable retarder (Thorlabs), which takes approximately 70 ms to fully stabilize. In SLIM
a ring pattern is written on the modulator and 20 ms is allowed for the crystal to stabilize
(Meadowlark, XY Series). Next, four such intensity images are collated to reconstruct the phase
map (“Phase Retrieval”). In GLIM, the image is integrated (6 ms) and in SLIM we remove the
phase-contrast halo artifact (25 ms). The phase map is then passed into a deep convolution neural
network based on the U-Net architecture to produce a synthetic stain (65 ms). Finally, the two
images are rendered as an overlay with the digital stain superimposed on the phase image (5 ms).
In the “live” operating mode used for finding the sample and testing the network performance, a
PICS image is produced for every intensity frame. Under typical operation, the rate-limiting
factor is the speed of image acquisition rather than computation time. As a point of comparison,
the two-channel fluorescence images used to train PICS required approximately 1000 ms of

integration time making PICS approximately 15 times faster.



Real-time PICS

The PICS system uses an optimized version of the U-Net deep convolutional neural
architecture to translate the quantitative phase map into a fluorescence one. To achieve real-time
inference, we use TensorRT (NVIDIA) which automatically tunes the network for the specific
network and GPU pairings®. In the process of this work, we found that the TensorRT was unable
to parse standard machine learning interchange formats such as ONNX and instead developed a
script to convert the model from TensorFlow (Google) to the optimized TensorRT inference
engine (NVIDIA). In short, this script converts the weights learned by TensorFlow to match the
format supported by TensorRT. The network was instrumented layer-by-layer using the
TensorRT’s C++ API. In addition to performance gains, TensorRT can operate directly on GPU
memory, avoiding redundant data copies.

The PICS inference framework is designed to account for differences between
magnification and camera frame size. Differences in magnification are accounted for by scaling
the input image to the networks' required pixel size using NVIDIA’s Performance Primitives
library. While TensorRT is fast, the network-tuning is performed online and can take a non-
negligible time to initialize (30 seconds). To avoid tuning the network for each camera sensor
size, we construct an optimized network for the largest image size and extend smaller images by
mirror padding. Further, to avoid the edge artifacts typical of deep convolutional neural

networks, a 32-pixel mirror pad is performed for all inferences.

Multi-well plate reader operation

Large samples, such as the multiwell plates (12.7 x 85 cm), used in this work are difficult
to image due to a small but significant tilt introducing during sample placement. In this work, we

compensate for sample tilt by developing a graphic user interface for plate reader applications



that present each well as a 3D tomogram (Fig. S9). Tilts are controlled by adding focus points
which are used to construct a Delaunay triangulation to interpolate the plane of best focus across
the mosaic tiles>*. As the glass bottom of a multiwell is flat, we found that most tilts are linear,
and good results can be achieved by focusing on the four points at the corners of the well. In
addition to specifying focus points, and controlling the dimensions of the acquisition, the
interface configures the microscope for multichannel acquisition with fluorescence microscopy
presented alongside phase imaging. The interface presents phase imaging specific features such

as modulator stabilization time and variable exposure for intensity frames.

Training the neural networks

We chose to use the U-Net architecture®®, which effectively captures the broad features
typical of quantitative phase images. Networks were built using TensorFlow and Keras, with
training performed on a variety of computers including workstations (NVIDIA GTX 1080 &
GTX 2080) as well as isolated compute nodes (HAL, NCSA, 4x NVIDIA V100). Supplementary
Table 1 contains a summary of the 57 networks trained in this study. No transfer learning was
performed in this work. All networks were trained with the adaptive moment estimator (ADAM)

against a mean squared error optimization criterion. Phase and fluorescence microscopy images,

1 (x, y) , were normalized for machine learning as

[mlinput (X,y)zmed(o,m,ll [1]
pmax - pmin

where p, . and p, . are the minimum, and maximum pixel values across the entire training set,

and med is a pixel-wise median filter designed to bring the values within the range [0,1].

Spatio-temporal broadband quantitative phase images exhibit strong sectioning and defocus



effects. To address focus related issues, images were acquired as a tomographic stack. The Haar

wavelet criterion from>* was used to select the three most in-focus images for each mosaic tile.

Cell culture

The SW480 and SW620 pairing is a popular model for cancer progression as the cells
were harvested from the tumor of the same patient before and after a metastasis event®’. Cells
obtained from ATCC were grown in Leibovitz’s L-15 media with 10% FBS and 1% pen-strep at
atmospheric CO,. Mixed SW cells were plated at a 1:1 ratio at approximately 30% confluence.
The fluorescent lipophilic dye, Dil is used to stain the cell membrane. The application of the dye
was adapted and modified from established protocol from the Thermofisher website. After the
passage, mixed SW cells were allowed for two days to attach and grow in the well plate. When
the cells reach the desired confluence, we prepared the staining medium by mixing SuL of Dil
labeling solution into the 1 mL of normal growth medium. We aspirated off all the previous
medium on the well plate and pipetted staining medium to cover all the surface of the well plate
for 20 minutes at 37°C. After the incubation, we drained off the staining medium and washed the
cells with warmed regular growth medium three times every 10 minutes. Cells were then fixed
with freshly prepared 4% paraformaldehyde (PFA) for 15 minutes and washed with PBS two
times before DAPI staining. To visualize the nucleus, DAPI was used for the experiment and
DAPI solution prepared with 10uL DAPI in 10mL PBS. The cells were incubated in DAPI
solution for 10 minutes and washed three times with PBS before imaging.

Time-lapse microscopy was performed eight hours after platting and the slower growth

rate at the start of the experiment can be attributed to the cells being in the “lag-phase” of the cell



cycle®®. The growth characteristics are consistent between experiments, suggesting that they are a
constant behavior of our particular subclone.

CHO cells are commonly used for mass production of mammalian proteins>®. CHO cells
(ATCC) were cultured in Ham's F-12 with 10% FBS and 1% pen-strep under 5% CO,.

HepG2 spheroids represent a kind of liver cancer that is popular for high-throughput
toxicity assays. Spheroids were cultured on a glass-bottom dish as indicated in®, which formed
spheroids at sufficiently high density. To perform an experiment typical for high content
screening, we plated cells on a poly-D-lysine coated multiwell.

As plastic affects the differential interference contrast, all cells imaged in this work were
cultured on glass-bottom dishes covered with a DIC specific glass lid (P06-20-1.5-N, L001,
Cellvis). While the glass lid can be avoided in SLIM imaging, using a plastic lid with GLIM will
result in a total loss of interferometric contrast. All cells except the spheroids were grown on

poly-D-lysine treated glass.

Time-lapse microscopy

To illustrate the nondestructive specificity associated with PICS, we performed
automated time-lapse microscopy for a week. This procedure was repeated twice (Fig. 4 & 5 and
again in Supplementary Fig. 11). For Figs 4-5, three conditions of cancer cells were plated in a 2
x 3 multiwell at 5 different depths. For each well, we acquire a 7 by 7 mosaic grid. This
procedure is repeated for every well, with a sample taken every sixty-eight minutes. As the
sample was imaged in a temperature-controlled incubator, we did not observe appreciable focus
drift during the week. The resulting sequence consisted of 202,860 GLIM images, which were

assembled into a mosaic by software developed in house®*. After the experiment completed, the



cells were fixed, stained with Dil and DAPI and imaged to produce a training corpus for Al. To

illustrate the value of the dry mass and area, a similar procedure was applied for Supplementary

Fig. 11 except SW480 and SW620 were not mixed.

Data availability statement:

The data that support the findings of this study are available upon reasonable request.

Availability of computer code and algorithms:

The code and computer algorithms that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments:

We thank Dr. Catalin Chiritescu & Taha Anwar at Phi Optics for ongoing maintenance and
software development of the Cell Vista microscopes used in this work. We also thank
Volodymyr Kindratenko and Dawei Mu for providing access to the supercomputer used to train
the neural networks (HAL Cluster, NCSA). Frozen vials of CHO cells were provided by Huimin
Zhao’s group at UIUC.

This work is supported by NSF 0939511 (T.S., J.K., G.P.), ROIGM129709 (G.P.), RO1
CA238191 (G.P.), R43GM133280-01 (G.P.). M.E.K. and M.K.S are supported by a fellowship
from MBM (NSF, NRT-UtB, 1735252). This work utilizes resources supported by the National
Science Foundation’s Major Research Instrumentation program, grant #1725729, as well as the

University of Illinois at Urbana-Champaign.



Contributions:

M.E.K. designed and performed imaging experiments. Y.R.H. and N.S. developed the Al model
and trained the neural networks. M.E.K. & Y.R.H. instrumented the real-time inference. Y.J.L. &
T.H.C. cultured and stained the cells. K.M.S. & H.K. provided spheroids. O.A. and T.A.S.
provided SW cells. M.E K. analyzed the data. G.P., M.E.K., Y.R.H. wrote the manuscript. N.S.

supervised the Al work. G.P. supervised the project.

Conflict of Interest:

G.P. has a financial interest in Phi Optics, Inc., a company developing quantitative phase
imaging technology for materials and life science applications. The remaining authors declare no

competing interests.

References:

1 Diaspro, A. Optical Fluorescence Microscopy. Optical Fluorescence Microscopy by Alberto
Diaspro. Berlin: Springer, 2011. ISBN: 978-3-642-15174-3 1 (2011).

2 Mycek, M.-A. & Pogue, B. W. Handbook of biomedical fluorescence. (Marcel Dekker, 2003).

3 Campagnola, P. J., Wei, M. D., Lewis, A. & Loew, L. M. High-resolution nonlinear optical imaging
of live cells by second harmonic generation. Biophys J 77, 3341-3349, doi:10.1016/S0006-
3495(99)77165-1 (1999).

4 Dixit, R. & Cyr, R. Cell damage and reactive oxygen species production induced by fluorescence
microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J

36, 280-290, doi:10.1046/j.1365-313x.2003.01868.x (2003).



10

11

12

13

14

Hoebe, R. A. et al. Controlled light-exposure microscopy reduces photobleaching and
phototoxicity in fluorescence live-cell imaging. Nat Biotechnol 25, 249-253, doi:10.1038/nbt1278
(2007).

Zacharias, D. A,, Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified
monomeric GFPs into membrane microdomains of live cells. Science 296, 913-916,
doi:10.1126/science.1068539 (2002).

Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye
stability in single-molecule fluorescence experiments. Biophys J 94, 1826-1835,
doi:10.1529/biophysj.107.117689 (2008).

Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles.
Science 298, 1759-1762, doi:10.1126/science.1077194 (2002).

Evanko, D., Heinrichs, A. & Rosenthal, C. Milestones in light microscopy. Nature Cell Biol., S5-520
(2009).

Zernike, F. How | discovered phase contrast. Science 121, 345-349,
doi:10.1126/science.121.3141.345 (1955).

Nomarski, G. Microinterférométre différentiel a ondes polarisées. J. Phys. Radium 16, 95-13S
(1955).

Popescu, G. Quantitative phase imaging of cells and tissues. (McGraw-Hill, 2011).

Graf, R. N. & Wax, A. Nuclear morphology measurements using Fourier domain low coherence
interferometry. Optics express 13, 4693-4698 (2005).

Langehanenberg, P., von Bally, G. & Kemper, B. Application of partially coherent light in live cell
imaging with digital holographic microscopy. Journal of Modern Optics 57, 709-717, doi:Pii

919194490

10.1080/09500341003605411 (2010).



15 Miccio, L., Memmolo, P., Merola, F., Netti, P. A. & Ferraro, P. Red blood cell as an adaptive
optofluidic microlens. Nat Commun 6, 6502, doi:10.1038/ncomms7502 (2015).

16 Park, H. et al. Characterizations of individual mouse red blood cells parasitized by Babesia
microti using 3-D holographic microscopy. Sci Rep 5, 10827, doi:10.1038/srep10827 (2015).

17 Merola, F. et al. Tomographic flow cytometry by digital holography. Light Sci Appl 6, €16241,
do0i:10.1038/Isa.2016.241 (2017).

18 Jin, D., Zhou, R., Yaqoob, Z. & So, P. T. C. Tomographic phase microscopy: principles and
applications in bioimaging [Invited]. J. Opt. Soc. Am. B 34, B64-B77,
doi:10.1364/J0SAB.34.000B64 (2017).

19 Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat
Photonics 12, 578-589, doi:10.1038/s41566-018-0253-x (2018).

20 Mahjoubfar, A., Chen, C. L. & Jalali, B. in Artificial Intelligence in Label-free Microscopy 73-85
(Springer, 2017).

21 Litjens, G. et al. A survey on deep learning in medical image analysis. Med Image Anal 42, 60-88,
doi:10.1016/j.media.2017.07.005 (2017).

22 Jo, Y. et al. Quantitative Phase Imaging and Artificial Intelligence: A Review. leee Journal of

Selected Topics in Quantum Electronics 25, 1-14, doi:Artn 6800914

10.1109/Jstqe.2018.2859234 (2019).

23 Borhani, N., Kakkava, E., Moser, C. & Psaltis, D. Learning to see through multimode fibers. Optica
5, 960-966, doi:10.1364/0PTICA.5.000960 (2018).

24 Barbastathis, G., Ozcan, A. & Situ, G. On the use of deep learning for computational imaging.
Optica 6, 921-943, doi:10.1364/0OPTICA.6.000921 (2019).

25 Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. in Proceedings of the IEEE conference on computer

vision and pattern recognition. 1125-1134.



26

27

28

29

30

31

32

33

34

35

36

Christiansen, E. M. et al. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images.
Cell 173, 792-803 €719, doi:10.1016/j.cell.2018.03.040 (2018).

Ounkomol, C., Seshamani, S., Maleckar, M. M., Collman, F. & Johnson, G. R. Label-free
prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat
Methods 15, 917-920, doi:10.1038/s41592-018-0111-2 (2018).

Rivenson, Y. et al. PhaseStain: the digital staining of label-free quantitative phase microscopy
images using deep learning. Light Sci App! 8, 23, d0i:10.1038/s41377-019-0129-y (2019).
Rivenson, Y. et al. Virtual histological staining of unlabelled tissue-autofluorescence images via
deep learning. Nat Biomed Eng 3, 466-477, d0i:10.1038/s41551-019-0362-y (2019).

Nygate, Y. N. et al. HoloStain: Holographic virtual staining of individual biological cells. arXiv
preprint arXiv:1909.11374 (2019).

Mir, M. et al. Optical measurement of cycle-dependent cell growth. Proc Natl/ Acad Sci U S A 108,
13124-13129, d0i:10.1073/pnas.1100506108 (2011).

Wang, Z., Tangella, K., Balla, A. & Popescu, G. Tissue refractive index as marker of disease. J
Biomed Opt 16, 116017, doi:10.1117/1.3656732 (2011).

Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat Photonics 8, 256-
263, doi:10.1038/Nphoton.2013.350 (2014).

Kandel, M. E. et al. Cell-to-cell influence on growth in large populations. Biomed. Opt. Express
10, 4664-4675, doi:10.1364/BOE.10.004664 (2019).

Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B. & Popescu, G. Gradient light
interference microscopy for 3D imaging of unlabeled specimens. Nat Commun 8, 210,
doi:10.1038/s41467-017-00190-7 (2017).

Kandel, M. E. et al. Epi-illumination gradient light interference microscopy for imaging opaque

structures. Nat Commun 10, 4691, doi:10.1038/s41467-019-12634-3 (2019).



37

38

39

40

41

42

43

44

45

46

Lee, Y. J. et al. Quantitative assessment of neural outgrowth using spatial light interference
microscopy. J Biomed Opt 22, 66015, doi:10.1117/1.JB0.22.6.066015 (2017).

Majeed, H., Okoro, C., Kajdacsy-Balla, A., Toussaint, K. C., Jr. & Popescu, G. Quantifying collagen
fiber orientation in breast cancer using quantitative phase imaging. J Biomed Opt 22, 46004,
do0i:10.1117/1.JB0.22.4.046004 (2017).

Nguyen, T. H. et al. Automatic Gleason grading of prostate cancer using quantitative phase
imaging and machine learning. J Biomed Opt 22, 36015, d0i:10.1117/1.JB0.22.3.036015 (2017).
Majeed, H., Nguyen, T. H., Kandel, M. E., Kajdacsy-Balla, A. & Popescu, G. Label-free quantitative
evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM). Sci Rep 8, 6875,
doi:10.1038/s41598-018-25261-7 (2018).

Rubessa, M., Lotti, S. N., Kandel, M. E., Popescu, G. & Wheeler, M. B. SLIM microscopy allows for
visualization of DNA-containing liposomes designed for sperm-mediated gene transfer in cattle.
Mol Biol Rep 46, 695-703, doi:10.1007/s11033-018-4525-9 (2019).

Sridharan Weaver, S. et al. Simultaneous cell traction and growth measurements using light. J
Biophotonics 12, €201800182, doi:10.1002/jbio.201800182 (2019).

Hu, C. & Popescu, G. Quantitative Phase Imaging (QPI) in Neuroscience. IEEE Journal of Selected
Topics in Quantum Electronics 25, 1-9, doi:10.1109/jstqe.2018.2869613 (2019).

Li, Y., Fanous, M. J,, Kilian, K. A. & Popescu, G. Quantitative phase imaging reveals matrix
stiffness-dependent growth and migration of cancer cells. Sci Rep 9, 248, d0i:10.1038/s41598-
018-36551-5 (2019).

loffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).

He, K., Zhang, X., Ren, S. & Sun, J. in Proceedings of the IEEE conference on computer vision and

pattern recognition. 770-778.



47

48

49

50

51

52

53

54

55

56

57

58

Edgar, B. A,, Kiehle, C. P. & Schubiger, G. Cell cycle control by the nucleo-cytoplasmic ratio in
early Drosophila development. Cell 44, 365-372, doi:10.1016/0092-8674(86)90771-3 (1986).
Brennan, D. J. et al. Altered cytoplasmic-to-nuclear ratio of survivin is a prognostic indicator in
breast cancer. Clin Cancer Res 14, 2681-2689, doi:10.1158/1078-0432.CCR-07-1760 (2008).
Sung, W. W. et al. High nuclear/cytoplasmic ratio of Cdk1 expression predicts poor prognosis in
colorectal cancer patients. BMC Cancer 14, 951, doi:10.1186/1471-2407-14-951 (2014).

S, T. & M, C. How to do a Proper Cell Culture Quick Check : Workflow for subculture of adherent

cells <https://www.leica-microsystems.com/science-lab/how-to-do-a-proper-cell-culture-quick-

check/> (2016).

Tzur, A., Kafri, R., LeBleu, V. S., Lahav, G. & Kirschner, M. W. Cell growth and size homeostasis in
proliferating animal cells. Science 325, 167-171, doi:10.1126/science.1174294 (2009).

Riss, T. L. et al. in Assay Guidance Manual (eds G. S. Sittampalam et al.) (Eli Lilly & Company
and the National Center for Advancing Translational Sciences, 2004).

Kamm, R. D. et al. Perspective: The promise of multi-cellular engineered living systems. APL
Bioeng 2, 040901, doi:10.1063/1.5038337 (2018).

Kandel, M. E. et al. Label-free tissue scanner for colorectal cancer screening. J Biomed Opt 22,
66016, doi:10.1117/1.JB0.22.6.066016 (2017).

NVIDIA. in BEST PRACTICES FOR TENSORRT PERFORMANCE Ch. 2, 9.

Ronneberger, O., Fischer, P. & Brox, T. 234-241 (Springer International Publishing).

Ahmed, D. et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2,
e71, doi:10.1038/oncsis.2013.35 (2013).

Edwards, C. et al. Effects of spatial coherence in diffraction phase microscopy. Opt. Express 22,

5133-5146, doi:10.1364/0E.22.005133 (2014).


https://www.leica-microsystems.com/science-lab/how-to-do-a-proper-cell-culture-quick-check/
https://www.leica-microsystems.com/science-lab/how-to-do-a-proper-cell-culture-quick-check/

59

60

Wurm, F. M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat
Biotechnol 22, 1393-1398, doi:10.1038/nbt1026 (2004).

Park, J. et al. Decellularized Matrix Produced by Mesenchymal Stem Cells Modulates Growth and
Metabolic Activity of Hepatic Cell Cluster. Acs Biomater Sci Eng 4, 456-462,

doi:10.1021/acsbiomaterials.7b00494 (2018).



Supplementary information for

Phase Imaging with Computational Specificity (PICS)

for measuring dry mass changes in sub-cellular compartments



Supplementary Note 1: Gradient Light Interference Microscopy
To show that PICS is not dependent on a particular QPI method, we used both SLIM and

GLIM. GLIM is implemented as an upgrade to a conventional DIC microscope'* (Fig. 1a and
Fig. 2a). To reduce photodamage and multiple scattering, we used a broadband infrared source
(780 nm). The sample is illuminated by two slightly shifted fields originating from a Nomarski
prism. The sample is imaged by an objective with an integrated Nomarski prism, which
recombines these fields and undoes the effect of the input prism. To measure the difference in
phase between the two fields, we modify the optical path by introducing a liquid crystal variable
retarder (LCVR, Thorlabs) between the camera and output polarizer. The LCVR enables us to
control the phase shift between the two polarizations outputted by the DIC microscope. In our
instruments, we record four images corresponding to /2 phase shifts between the two beams
(Fig. 2a), which lets us recover, uniquely, the phase shift associated with the DIC microscope'.
The resulting image resembles a derivative of the phase map associated with the object as it is
based on differences in phase between neighboring points. This image is then integrated using a
1D Hilbert transform as noted in the next section. While this approach can be extended to
multiple shear directions (as in ), here we used only 1D integration as the phase-shifting
components can be located completely outside our microscope, at the expense of certain streak
artifacts in the integrated image. For GLIM, we used a 20x/0.8 NA objective giving us a
sampling of roughly 0.3 microns per pixel, compared to the diffraction spot of 0.7 microns. To
obtain an optimal resolution, all GLIM images were acquired with a fully open condenser

(NA=0.55).



Supplementary Note 2: Phase integration using the Hilbert transform

The phase image in GLIM is the result of interfering two laterally offset or “sheared”

beams. The intensity measured at the detector resembles?,
L(r)=I(r)+I(r+6,)+2JI(r)I(r+3 )cos[p(r+5,)-¢(r)+¢,] [1]

where Ag, =¢(r+3,)—¢(r)~A¢.J, is the gradient of the phase map. When the modulator is

cycled using the liquid crystal variable retarder, &, =Zn we obtain the phase shift Ag_ which is

the derivative of the phase along the contrast direction, x, scaled by the shear O, .

To obtain the true phase map and remove the shading effect, we perform a Hilbert transform

along the contrast direction, which performs the following Fourier filter (Supplementary Fig. 2a),
¢, (k)=(~isgn(k,)/5,.)Ad, (k) [2]
where Kk is the wavevector, and ¢, (k) is the integrated image along the contrast direction and

sgn is the signum function. As shown in °, this operation approximates an integral, which can be
implemented as a Wiener filter °,

4. (k)= j, Ag, (k) [3]

X reg

where [, is the regularization constant. We note that our approach is a regularized version of the

Wiener filtering method when £ _ is large, which is also the frequency range at which the system

operates with partially coherent illumination’.
To demonstrate the ability of the Hilbert transform to recover topographic information we
imaged a 3 pm polystyrene bead embedded in immersion oil. We found that the results are in

good agreement with the expected phase shift (Supplementary Fig. 2b)
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The distortion orthogonal to the contrast-bearing axis (null space of the system transfer
operator) bears little significance for live cell measurements, as cell shape and growth does not

have a preferential direction.

Supplementary Note 3: Spatial Light Interference Microscopy

SLIM upgrades a phase-contrast microscope® in a similar way to how GLIM upgrades
DIC. In short, SLIM uses a spatial light modulator matched to the back focal plane of the
objective to control the phase shift between the incident and scattered components of the optical
field. Four such phase-contrast like frames are recorded to recover the phase between the two
fields (Supplementary Fig. 1). Next, the total phase is obtained by estimating the phase shift of
the transmitted component and compensating for the objective attenuation’. Finally, the “halo”
associated with phase-contrast imaging is corrected by a non-linear Hilbert transform-based
approach’.

While SLIM has higher sensitivity'?, the GLIM illumination path performs better in
strongly scattering samples and dense well plates. In strongly scattering samples, the incident
light, which acts as the reference field in SLIM, vanishes exponentially'. In dense microplates,
the transmitted light path is distorted by the meniscus or blocked by high walls>. GLIM and
SLIM images were acquired with three different Axio Observer Z1 microscopes.

While in this work we focus on our own SLIM and GLIM methods, we expect PICS to be
applicable to other modalities, especially where fluorescence can be easily overlaid with

quantitative phase images'!"!>.



Supplementary Figure 1
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Supplementary Figure 1: Spatial Light Interference Microscopy. a, The ring illumination
is matched to the objective’s back focal plane and the mask on the spatial light modulator
(SLM), effectively resulting in a phase-contrast microscope with a variable retardance ring.
Four frames are recorded, corresponding to increments of 90 degrees introduced by the SLM.

b, SLIM image reconstruction and the halo-removed SLIM image.
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Supplementary Figure 2: GLIM images are integrated with the Hilbert transform. a, The
Hilbert transform along the direction of the shear (0) is performed by multiplying by a step
function in the frequency domain. The imaginary portion of the inverse transform yields the
integrated image. b, The integrated phase is in good agreement with the theoretical profile of

the bead (shown on the red dashed line).
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Supplementary Figure 3: Neural Network for Phase to Fluorescence Mapping. We
modified the U-Net architecture, with batch normalization before all the activation layers and
reduced the number of filters compared to the original implementation. To illustrate the
evaluation of the PICS-DAPI neural network for a typical cell, we show the flow of data after
applying the operations in each layer. Of particular note is the ability of the U-Net architecture

to make use of both textures inside the cell (leftmost, first layers) and spatial information such

as the edges around the cellular nucleolus (bottom layers).



Supplementary Figure 4
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Supplementary Figure 4: PICS method is applicable across stains, modalities, and cell-
lines. To investigate the performance of our method in various conditions, we trained separate
deep convolutional neural networks on several samples and quantified their performance. As a
performance metric, we compare Pearson’s correlation (p) between the actual fluorescence
image (“Stain”) and the computationally inferred image (“PICS”). The technique is equally
applicable to other QPI modalities, such as SLIM and other cell types such as CHO or a mixed
culture of SW480 and SW620.
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Supplementary Figure 5: Quantitative phase information improves machine learning
performance. a, To compare the performance of quantitative phase imaging with
conventional microscopy, we trained on different stages of the GLIM reconstruction process.
Here we take the brightest GLIM frame corresponding to the least interferometric contrast as a
brightfield image. DIC denotes the extinction mode frame, Ag is the GLIM image before
integration, and ¢ is the GLIM image after integration. As a computational experiment we
train our U-Net based neural architecture on a subset of Dil images (20x/0.8), for a limited
number of epochs, with the same training rate. The performance of the brightfield network is
particularly poor, with an improvement when training on the DIC frame. When we introduce
phase shifting (Ap), we isolate the pure phase information resulting in a further improvement
in performance (green arrows). This is especially true for at denser portions of the sample
where multiple scattering contributes to unwanted amplitude information. While the ground
truth image may appear sharper, the PICS neural network was able to pick up cells even when
those were not fully represented due to inherent staining defects (pink arrows). b, To compare
modalities we performed a Pearson correlation across the entire test data set, comparing the
measured fluorescence to the computed fluorescent signal, showing that integrated GLIM (o)
has the closest match to the actual fluorescence image. ¢, To investigate the origins of these
differences we plot a histogram of the image over a non-empty portion of the sample (dashed

black box). When the variance inside this region is used as a contrast metric we note that



comparably similar standard deviations (compare DIC at 0.064 to ¢ at 0.065) lead to different
qualitative performances. This result suggests that the difference in performance cannot be

erased by simply scaling the data, rather, they are fundamental to the image formation process.



Supplementary Figure 6
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Supplementary Figure 6: U-Net reaches asymptotic performance with a small number of
training pairs. To better understand the effects of data size on performance we conducted a
numerical experiment where we trained PICS networks with an increasing number of QPI-FL
training pairs. As per our convention, each “pair” consists of three focus levels, so that with 80
training pairs, we used 240 images for training, 48 for validation, and 174 for the final test
group (see Supplementary Table 1). To account for differences in image selection, we perform
k-fold validation (k=5), essentially training the network five times for each data set size. a,
The performance of this network is calculated by looking at the Pearson correlation between
the digital and actual fluorescent images. We note that performance becomes asymptotic,
hinting that the network is fully trained after approximately 30 pairs. b, Each network
previously trained is evaluated on an additional 58 fluorescent-phase pairs (174 phase and
fluorescence images) that were not used during training. That is to say, we do no vary the test
set within each k-fold. We note that this performance also becomes asymptotic after
approximately 30 pairs indicating that learning the training corpus has a strong correlation to
learning the transformation for unseen data. Looking at the difference in performance within
k-fold validation (performance of folds within training pair 10 or 20), we note that some
training pairs are substantially more performant, and this performance translates to the unseen

test data. ¢, Average time to train a single fold on a single node of the HAL Cluster (NCSA).



Supplementary Figure 7

Maodel 1 Model 2 Model 3 Model 4 Maodel 5
0035
0.140 — wval — val — val — val — val
i 0.100 —— tai — — i 0.030 — yai
0420 train train 0.080 train 0.150 train train
0.080 0.025
0.060
g 0.060 3 g 0.100 % 0.020
! = 0.040 0,018
0.040
X \ 0.050 0.010
0.020 0020 0.005
X 0.000 0.000 0.000 0.000 .
T
0 20 40 0 20 40 0 20 40 0 2 40 0 1000 2000 3000
Epach Epoch Epoch Epoch Epoch
Model 6 Model 7 Model 8 Model 9 Model 10
0.200
0120 — val 0.150 — val % — val 0020 — val
—— train : —— train —— train —— wain
0.100
0.125 0.150 0015
0.080 0100
@ » 2 @
5 0.060 S o075 gowo g oo
0.040
0.050 0.050 0,005
0.020 0.025
0.000 0.000 0.000 0,000
0 5 0 15 0 10 20 30 0 5 0 15 0 20 40 0 10 20 30
Epoch Epoch Epoch Epoch Epoch
Model 11 Model 12 Model 13 Model 14 to 18 Model 18 to 23
0. 0.060 ' 0.300
— val — val 0120 — val — fold1 — fold1
0012 — tain 0.050 — train 0100 — train 0250 — fold2 0.200 — fold2
0.010 ) — fold3 — fold 3
0.040 0.080 0.200 — foldd 0150 — fold4
o 0008 w w @ — old5 | o — fold5
8 g 0.030 2 0.060 2 0.150 8
3 0008 3 el - = 0100
0.020 . 0.100
0.004 0.040
0.050
002 0.010 0.020 0050 ;
0000 0.000 0.000 0.000 [ e ———
[ 10 20 30 0 10 20 a0 0 10 20 30 o 5 10 15 2 a 5 1 15 20
Epoch Epach Epoch Epocch Epoch
Model 24 to 28 Model 34 to 38 Model 38 to 43 Model 44 to 48 Model 49 to 53
— fold1 — fold1 0.140 — fold 1 0.150 — fold1 0.120 — fold 1
0:200 — fold2 0-200 — fold 2 0120 — ol 2 — foli2 — fold 2z
— fod3 — fold3 0100 — fold3 0125 — foud3 0,100 — fold3
0.150 — fold4 0.150 — fald4 ) | — fald4 0.100 — fold4 0,080 — fold4
o — o5 | — fold5 |, 0.080 — fold5 | o — fold5 | — fold5
3 0100 3 0a00 . Zooms & 0060
2050 0,040 0.050 0,040
0.050 X
0.020 0.025 0.020
0.000 0.000 0.000 0,000 0.000
[} 5 15 20 0 5 0 15 20 0 5 15 20 a 5 w15 2 ] 5 015 20
Epoch Epach Epoch Epoch Epoch
Model 54 Model 55 Model 56 Model 57
0z
0.060 — val 0175 — val 0.003 — val 50 — val
—— ftrain —— train B —— train —— Irain
0050 0.150 0.003 0.200
0.125
0.040 0.002 0.150
2 2 0.100 8
& o030 g S 0002 g
0.075 - 0.100
0.020 0050 0.001
ﬁ 0.050
0.010 0.025 0.001
0.000 = 0.000 0.000 0.000
T T T T
0 1 20 30 40 0 20 40 60 80 0 5 m 15 0 5 L
Epoch Epoch Epoch Epoch

Supplementary Figure 7: Training Plot for 57 Neural Networks. To verify that the neural
networks converged, we plot the loss on training and validation data after each epoch. A small
difference between the two curves indicates that our models do not overfit. A simplified
version of this plot is shown for the cross-validated networks used in Supplementary Fig. 6
showing only training loss. We note there is a substantial difference in convergence within the

folds used for cross-validation, hinting that some training pairs are easier to learn than others.



Supplementary Figure 8

Demodulation IZSIG ms]-—
- <

Padded Inference AQ [raq) @ [rad]

Frame 1 Frame 2

Frame 3 . Frame 4

Acquisition
(Modulation & Exposure

Camera Readout

Retrieval
(Phase Retrieval & Integration)

Display
(Inference & Render)

Supplementary Figure 8: Real-Time acquisition of digital stains from label-free images.
a, In SLIM and GLIM, the acquisition process begins by introducing a controlled modulation
which is allowed some time to stabilize (20 ms on SLIM, 70 ms on GLIM). In this work, we
acquire full camera frame sizes at minimal exposure (10 ms exposure, 10 ms readout). Phase
retrieval is comparably quick (2 ms, 2070 GTX Super, NVIDIA). Phase images typically
require further demodulation to correct for system-specific imaging artifacts. In SLIM we
perform halo removal to correct for spatial incoherence (25 ms), while GLIM images are
integrated along the direction of the DIC shear (6 ms). To avoid edge artifacts, we perform
GPU based inference (65 ms) on a larger, mirror padded version of the image, followed by
rendering (6 ms). b, These steps are performed in parallel to optimally overlap computation
with acquisition. As the computation is typically quicker than the acquisition, during real-time
operation all reconstruction steps are performed every time a new frame is received. In GLIM
the effective frame rate is limited by the modulation of the variable retarder, resulting in one
phase image every 80 ms. In practice, it is possible to achieve faster performance, by using

high performing graphics card or faster modulators.



Supplementary Figure 9
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Supplementary Figure 9: To successfully digitize multiwells we develop a graphic
interface that produces a list of acquisition events that are then processed by the
acquisition software. Our capture user interface presents the multiwell as “regions of interest”
(rectangles) that have associated “focus points”. The interface configures the dimensions of
the volume and mosaic parameters such as the number of tiles and steps. The focus points
correct for defocus in the sample (mostly due to mounting), and the scan is performed offset to
the estimated tilt. In addition to configuring fluorescence acquisition, our interface contains

phase imaging specific parameters such as the modulator stabilization times and exposure for

each pattern used to reconstruct the phase image.



Supplementary Figure 10
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Supplemental Figure 10: Semantic segmentation map from digital stains. a, Digitally
stained images were binarized to discriminate between stain and background by analyzing the
cumulative sum of a histogram for a representative image. It was found that the change in
inflection of the cumulative histogram of fluorescence intensity values served as a good
threshold marker. Intuitively this change in inflection indicates when the histogram switches
from tracking the background to the sample. In this work, we used the same binarization
thresholds for all training pairs. b, Thresholded images were combined into a semantic
segmentation map, by labeling all pixels with the PICS-DAPI binary mask blue, all pixels that
had a PICS-Dil mask but were not blue as green (cytoplasm), and all pixels not labeled as

either of the two as black (background).



Supplementary Figure 11
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Supplemental Figure 11: Time-lapse monitoring of nuclear dry mass and area for SW
480 and SW 620 subclones. a, SW cells were images for 72 hours with a multiwell scan
acquired every two hours. The semantic segmentation map from PICS was used to generate
markers and ridgelines to perform instance segmentation using a watershed-based approach. b,
instance segmentation on the cellular nucleolus shows that while SW 620 (metastatic) has
somewhat smaller nuclei (AA=30%) total nuclear dry mass remains relatively consistent

between SW 480 and SW 620.



Supplementary Figure 12

DAPI PICS (A¢) GLIM (A@)

0.3 T ]+03

Supplemental Figure 12: Fluorescence microscopy provides limited information

compared to scattered light imaging. While scattered light GLIM images can be used to
produce fluorescence equivalents, attempting to do the reverse, going from DAPI to phase
images has substantially worse performance missing structural details that would lead to a

substantial underestimation of the cell’s area (red arrows).



Supplementary Table 1
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1 Fig3 GLIM 5x/0.08 | DAPI SW 48 6 6 5e-5 50 0.75
2 Fig 3 GLIM 10x/0.30 | DAPI SW 48 6 6 5e-5 50 0.87
3 Fig 3 GLIM 20x/0.80 | DAPI SW 48 6 6 5e-5 50 0.89
4 Fig3 GLIM 63x/1.40 | DAPI SW 48 6 6 5e-5 50 0.94
5 Fig 6 GLIM 63x/1.40 | DAPI HepG2 16324 64 32 le-4 3000 0.97
6 Fig S4 GLIM 20x/0.80 | DAPI SW 830 42 10 le-4 20 0.93
7 Fig S4 GLIM 20x/0.80 Dil SW 705 87 90 5e-5 30 0.94
8 Fig S4 SLIM 10x/0.30 | DAPI SW 210 30 30 le-4 20 0.92
9 Fig S4 SLIM 20x/0.30 | DAPI CHO 48 6 6 5e-5 50 0.86
10 Fig S5 BF 20x/0.80 Dil SW 705 87 90 5e-5 30 0.51
11 Fig S5 DIC 20x/0.80 Dil SW 705 87 90 5e-5 30 0.87
12 Fig S5 GLIM (A¢) | 20x/0.80 Dil SW 705 87 90 5e-5 30 0.92
13 Fig S5 GLIM 20x/0.80 Dil SW 705 87 90 5e-5 30 0.94
14-18 | Fig S6 GLIM 20x/0.80 | DAPI SW 30 6 174 le-4 20 0.51*
19-23 | Fig S6 GLIM 20x/0.80 | DAPI SW 60 12 174 le-4 20 0.65*
24-28 | Fig S6 GLIM 20x/0.80 | DAPI SW 90 18 174 | le4 | 20 0.82*
29-33 | Fig S6 GLIM 20x/0.80 | DAPI SW 120 24 174 le-4 20 0.73%*
34-38 | Fig S6 GLIM 20x/0.80 | DAPI SW 150 30 174 le-4 20 0.89*
39-43 | Fig S6 GLIM 20x/0.80 | DAPI SW 180 36 174 le-4 20 0.86*
44-48 | Fig S6 GLIM 20x/0.80 | DAPI SW 210 42 174 le-4 20 0.90*
49-53 | Fig S6 GLIM 20x/0.80 | DAPI SW 240 48 174 le-4 20 0.88%*
54 Fig S11 GLIM 20x/0.80 | DAPI SW 390 45 45 le-4 40 091
55 Fig S11 GLIM 20x/0.80 Dil SW 3000 300 300 le-5 80 0.83#***
56 Fig S12 GLIM 20x/0.80 | DAPI SW 705 87 90 5e-5 20 0.78
57 Vid S3 SLIM 10x/0.30 | DAPI SW 210 30 30 le-4 20 0.80

*#%% Not used for analysis

** SW network was trained on both SW480 and SW620

**% Corresponding to IDs in supplementary Fig. 7

* Averaged performance across all k models for that k-fold cross-validation experiment




Video 1

Co-localized acquisition of GLIM and DAPI data for PICS training (20x/0.8, SW cells).
Video 2

Real-time GLIM and PICS-DAPI (20x/0.8, SW cells).

Video 3

Real-time SLIM and PICS-DAPI (10x/0.3, CHO cells).

Video 4

Time-lapse GLIM and PICS imaged over seven days (20x/0.3, SW Cells).
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