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Abstract:  

Due to its specificity, fluorescence microscopy (FM) has become a quintessential imaging tool in 

cell biology. However, photobleaching, phototoxicity, and related artifacts continue to limit 

FM’s utility. Recently, it has been shown that artificial intelligence (AI) can transform one form 

of contrast into another. We present PICS, a combination of quantitative phase imaging and AI, 

which provides information about unlabeled live cells with high specificity. Our imaging system 

allows for automatic training, while inference is built into the acquisition software and runs in 

real-time. Applying the computed fluorescence maps back to the QPI data, we measured the 

growth of both nuclei and cytoplasm independently, over many days, without loss of viability. 

Using a QPI method that suppresses multiple scattering, we measured the dry mass content of 

individual cell nuclei within spheroids. In its current implementation, PICS offers a versatile 

quantitative technique for continuous simultaneous monitoring of individual cellular components 

in biological applications where long-term label-free imaging is desirable. 
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Fluorescence microscopy has been the most common imaging tool for studying cellular 

biology1. Fluorescence signals, whether intrinsic or extrinsic, allow the investigator to study 

particular structures in the biospecimen with high specificity2. However, this important quality 

comes at an expensive price: chemical toxicity and phototoxicity disturb and may kill a live 

cell3,4, while photobleaching limits the extent of the investigation window5. Breakthroughs in 

genetic engineering led to the family of green fluorescent proteins, which today are broadly used 

in live cells with reduced toxicity6. In addition, current research efforts are dedicated to reducing 

photobleaching by various methods, including oxygen scavenging7 and replacing traditional 

fluorophores with quantum dots8. 

 Microscopy with intrinsic contrast preceded fluorescence labeling by more than two 

centuries9. Advanced forms of label-free imaging, such as phase-contrast microscopy, developed 

in the 1930’s10, and differential interference contrast, in the 1950’s11, extended the capability of 

imaging transparent specimens, including live cells. However, the lack of chemical specificity 

and inability to inform on underlying mechanisms has relegated these modalities to routine tasks, 

such as visual inspection of tissue cultures. Thus, fluorescence microscopy has remained a 

necessity for in-depth biology. 

Recently, quantitative phase imaging (QPI) has advanced label-free microscopy with its 

ability to extract quantitative parameters (cell dry mass, cell mass transport, cell tomography, 

nanoscale morphology, topography, pathology markers, etc.) from unlabeled cells and tissues12. 

As a result, QPI can extract structure and dynamics information from live cells without 

photodamage or photobleaching13-19. However, in the absence of labels, QPI cannot easily 

identify particular structures in the cell as the label-free image lacks specificity.  



In a parallel development, within the past few years, in part due to the continuous decline 

of computing power cost, development of frameworks for dataflow representation as well as a 

steep increase in data generation, deep learning techniques have been translating from consumer 

to scientific applications20-24. For example, it has been shown that AI can map one form of 

contrast into another, a concept coined as image-to-image translation25-28. Significantly, it has 

been demonstrated that a neural network can predict the mapping of a stain or fluorescence 

marker from label-free images as input29,30.  

 Inspired by this prior work, we present a new microscopy concept, referred to as phase 

imaging with computational specificity (PICS), in which the process of learning is automatic and 

retrieving computational specificity is part of the acquisition software, performed in real-time 

(Fig. 1). We applied deep learning to QPI data, generated by SLIM (spatial light interference 

microscopy)31-34 and GLIM (gradient light interference microscopy)35,36. These methods are 

white-light and common-path and, thus, provide high spatial and temporal sensitivity37-44. 

Because they are add-ons to existing microscopes and compatible with the fluorescence 

channels, these methods provide simultaneous phase and fluorescence images from the same 

field of view. As a result, the training data necessary for deep learning is generated 

automatically, without the need for manual annotation. This new type of microscopy can 

potentially replace some commonly used tags and stains and eliminate the inconveniences 

associated with chemical tagging. We demonstrate this idea with various fluorescence tags and 

diverse cell types, at different magnifications, on different QPI systems. We show that 

combining QPI and computational specificity allows us to quantify the growth of subcellular 

components (e.g. nucleus vs cytoplasm) over many cell cycles, nondestructively. Finally, using 



GLIM, we imaged spheroids and demonstrated that PICS can perform single-cell nucleus 

identification even in such turbid structures. 

 

Figure 1. PICS method for label-free measurements of compartment-specific cellular dry 

mass. a, We upgrade a conventional transmitted light microscope with a quantitative phase 

imaging add-on module. b, To avoid the intrinsic toxicity of fluorescent stains, we develop a 

two-step protocol imaging protocol where label-free images are recorded followed by fixation 

and staining. From the toxic stain recorded at the end of the experiment, we train a neural 

network capable of digitally staining the time-lapse sequence, thus enabling time-lapse 

imaging of otherwise toxic stains. c, The digital stain is used to introduce specificity to 

label-free imaging by providing a semantic segmentation map labeling the components of the 

cell. From the time-lapse sequence, we calculate organelle-specific dry mass doubling times, 

in this case, the rates of growth for the nucleus and cytoplasm. d, The PICS method is 

integrated into a fully automated plate reading instrument capable of displaying the machine 

learning results in real-time. 

 



 PICS advances the field of AI-enhanced imaging in several ways. First, PICS performs 

automatic registration by recording both QPI and fluorescence microscopy of the same field of 

view, on the same camera. The two imaging channels are integrated seamlessly by our software 

that controls both the QPI modules, fluorescence light path, and scanning stage. The PICS 

instrument can scan a large field of view, e.g., entire microscope slides, or multi-well plates, as 

needed. Second, PICS can achieve fluorescence channel multiplexing by automatically training 

on multiple fluorophores but performing inference on a single phase image. Because PICS uses 

intrinsic contrast images as input, which benefit from strong signals, it provides an order of 

magnitude improvement in acquisition rate compared to traditional fluorescence microscopy. 

Third, PICS performs real-time inference, because we incorporated the AI code into the live 

acquisition software. The computational inference is faster than the image acquisition rate in 

SLIM and GLIM, which is up to 15 frames per second, thus, we add specificity without 

noticeable delay. To the microscope user, it would be difficult to state whether the live image 

originates in a fluorophore or the computer GPU. Fourth, using the specificity maps obtained by 

computation, we exploit the QPI channel to compute the dry mass density image associated with 

the particular subcellular structures. For example, using this procedure, we demonstrated a 

previously unachievable task: the measurement of growth curves of cell nuclei vs. cytoplasm 

over several days, nondestructively. Fifth, using a QPI method dedicated to imaging 3D cellular 

systems (GLIM), we add subcellular specificity to turbid structures such as spheroids. 

Results 

PICS Method 

The PICS methodology is outlined in Fig. 1. We use an inverted microscope (Axio 

Observer Z1, Zeiss) equipped with a QPI module (CellVista SLIM Pro and CellVista GLIM Pro, 



Phi Optics, Inc.). The microscope is programmed to acquire both QPI and fluorescence images 

of fixed, tagged cells (Fig. 2b). Once the microscope “learned” the new fluorophore, PICS can 

perform inference on the live, never labeled cells. Due to the absence of chemical toxicity and 

photobleaching, as well as the low power of the white light illumination, PICS can perform 

dynamic imaging over arbitrary time scales, from milliseconds to weeks, without cell viability 

concerns. Simultaneous experiments involving multi-well plates can be performed to assay the 

growth and proliferation of cells of specific cellular compartments (Fig. 1c). Finally, the 

inference is implemented within the QPI acquisition time, such that PICS performs in real-time 

(Fig. 1d).  

PICS combines quantitative measurements of the object’s scattering potential with 

fluorescence microscopy. The essentials of the QPI optics and computation are shown in Fig 2. 

Fig.  2a illustrates the optical path of the GLIM system used for most of the QPI results in this 

work (for completeness, SLIM is described in Supplementary Fig. 1). The GLIM module 

controls the phase between the two interfering fields outputted by a DIC microscope, as 

described in Supplementary Note 135. We acquired four intensity images corresponding to phase 

shifts incremented in steps of 𝜋/2 and combined these to obtain a quantitative phase gradient 

map (Fig. 2b). This gradient is integrated using a Hilbert transform method, as described in 

Supplementary Fig. 2 and Supplementary Note 2. The same camera records fluorescence images 

via epi-illumination providing a straightforward way to combine the fluorescence and phase 

images. Fig. 2b illustrates the acquired images consisting of two fluorescence channels (cell 

nuclei and membrane in this case) and GLIM.  



 

Figure 2. The stain location is “learned” from co-localized phase and fluorescent images. 

a,  Quantitative phase images are acquired with a compact Gradient Light Interference 

Microscopy (GLIM) module that attaches to the output port of a differential interference 

contrast microscope (DIC/Nomarksi). By using a liquid crystal variable retarder (LCVR) the 

instrument introduces controlled phase shifts between the orthogonal polarizations in DIC. 

GLIM images are the result of a four-frame reconstruction process to retrieve the phase 

associated with a differential interference contrast microscope. Insets show a zoomed portion 

of the field of view at 0°, 90°, 180°, 270° phase shifts. b, The same light path is used for 

reflected light fluorescence imaging, providing a straightforward way to co-localize 

fluorescence and phase images. In this work, we focused on two popular stains used to assay 

the nucleus and cell body (DAPI and DiI). To recover the phase-shift associated with the 

object’s scattering potential, we remove the shear artifact associated with the DIC field by 

performing integration using a Hilbert transform to obtain φ, the phase shift measured along 

the DIC shear direction. Zoomed portion of a field of view showing a typical SW620 cell 

(20x/0.8). c, Next, to learn the mapping between the label-free and stained image, we train a 

U-Net style deep convolutional neural network. d, Once this model is trained we can perform 

real-time interference and rendering to obtain the equivalent fluorescence signal (PICS) 

directly from the label-free image. 



 We use these co-localized image pairs to train a deep convolutional neural network to 

map the label-free phase images to the fluorescence data. For deep learning, we used a variant of 

U-Net by introducing three modifications. First, following the work by Google45, we added batch 

normalization layers before all the activation layers, which helped accelerate the training. 

Second, we greatly reduced the number of parameters in our network by changing the number of 

feature maps in each layer of the network to a quarter of what was proposed in the original paper. 

This change greatly reduced GPU memory usage and improved inference time, without loss of 

performance. Our modified U-Net model used approximately 1.9 million parameters, while the 

original architecture had over 30 million parameters. Based on the training results, we believe 

that 1.9 million parameters are sufficient to approximate the mapping from phase images to 

fluorescence images. Third, we utilized the advantage of residual learning46 with the hypothesis 

that it is easier for the models to approximate the mapping from phase images to the difference 

between phase images and fluorescence images. Thus, we implemented an add operation 

between the input and the output of the last convolutional block to generate the final prediction. 

We noticed that this change enabled us to have much better performance under the same training 

conditions. The modified network architecture is shown in Fig. 2c (orange connection) and 

described in more detail in Supplementary Fig. 3. Fig. 2d shows the result of the inference. To 

measure the performance of PICS under various conditions, we applied this procedure across 

different image resolutions, fluorophores, and cell lines, using both SLIM and GLIM (see 

Supplementary Fig. 4). Our training dataset consisted of three most in-focus images of each 

unique field of view, spaced 2-3 depths of field apart. This approach serves as a natural form of 

data augmentation. We also realized that the amount of data needed for satisfying results differ 

from task to task (see Supplementary Table 1). 



 

Figure 3: The PICS method is applicable across microscope objectives and resolutions. a, 

To investigate the effect of resolution on performance we run a computational experiment 

where we train our network on SW cells acquired at different resolutions. To control for 

training sample size, we selected the most images shared between all sets. We note that the 

performance of the network improves with more data or training epochs.  Even at low 

resolutions (10x, 1.6 μm resolution), we achieved adequate performance. b, We use ρ, the 

correlation between the actual and the digital fluorescent signals over the entire set, as a 

quality metric. There appears to be a clear relationship (Pearson correlation, ρres = -0.97) 

between resolution (better objectives) and performance. c, The origin of the relationship 

between resolution and performance is attributable to differences in contrast recorded by these 

objectives. We find that the ρf coefficient between the variance of training scaled fluorescence 

images and quality metric ρ is statistically significant while the correlation between the 

variance of the training scaled phase images ρq is weaker. Overall, these results suggest that 

the relationship between performance associated with resolution can be largely attributed to 

better overall contrast, especially for the fluorescent signal, rather than directly due to 

resolving capabilities. 

 

  



Effects of resolution on PICS performance 

To understand the performance of our approach we conducted a series of computational 

experiments where we held the training time and quantities of training pairs constant and vary 

the objectives used for imaging. Figure 3 shows in detail how the resolution of QPI impacts the 

values of the Pearson correlation coefficient that quantifies the match between the 

computationally predicted and actual fluorescence images. Remarkably, even for a 5x/0.08NA 

objective, the Pearson correlation is above 72%. Figure 3c presents the effect of the image 

contrast upon the performance. As expected, higher contrast, i.e., spatial variance, of both the 

fluorescence and QPI yields better performance. Note that, for a fair comparison, we kept the 

number of epochs constant across all resolutions and contrast, which somewhat limited the 

network performance (see Supplemental Table 1). A comparison between quantitative phase 

imaging, standard contrast enhancement techniques (DIC), and bright field microscopy is 

presented in (Supplementary Fig. 5). The data indicate that the addition of the interferometric 

hardware to decouple phase and amplitude information improves the performance of the AI 

algorithm. Furthermore, PICS provides a uniform and consistent stain. Supplementary Fig. 5 

highlights a staining defect that PICS was able to correct. 

 

Training data set considerations for PICS 

To study the relationship between the number of training pairs vs. prediction accuracy, 

we conducted a second series of computational experiments where we varied the size of the data 

set while keeping other training parameters constant. As shown in Supplementary Fig. 6, we 

found that high fidelity digital stains can be generated from as few as 20 image pairs (roughly 

500 SW cells) corresponding to five minutes of training time.  When the performance of our 



procedure is cross-validated by training on a subset of the data (Supplementary Fig. 6a), we 

found that certain images were dominant for training (Supplementary Fig. 7). In other words, we 

found that certain folds converge faster than others. Importantly, neural networks that performed 

well during training on small data sets (Supplementary Fig. 6a), also performed well when being 

validated on larger, unseen data sets (Supplementary Fig. 6b). For example, the five minutes 

used to train a neural network from 20 pairs is well below the time typically needed to stain the 

cells (Supplementary Fig. 6c). 

Supplementary Fig. 7 contains a summary of the 57 networks trained for this work. 

 

Time-lapse PICS of adherent cells 

 To illustrate the value of specificity multiplexing, i.e., inferring multiple stains on the 

same cell, we acquired simultaneous PICS images of both the cell nucleus and membrane (Figs. 

4 & 5). Supplementary Video 1 shows the data acquisition procedure. After training, the 

inference model was integrated into the acquisition software for real-time operation with both 

SLIM and GLIM (Supplementary Video 2-3). Supplementary Figs. 8 & 9 describe the typical 

acquisition sequence and operation of the instrument. We note, that in general, fluorescence tags 

required an order of magnitude more exposure time than the QPI frames, implying that our plate 

reader achieves higher throughput while maintaining specificity. This effect is amplified when 

separate exposures are used for individual fluorophores. 

Because of the nondestructive nature of PICS, we can apply it to monitor cells over 

extended periods, of many days, without a noticeable loss in cell viability. This important aspect 

is emphasized in Fig. 4 and Supplementary Video 4. To perform a high content cell growth 

screening assay, unlabeled SW480 and SW620 cells were imaged over seven days and PICS 



predicted both DAPI (nucleus) and DiI (cell membrane) fluorophores. The density of the cell 

culture increased significantly over the seven days, a sign that cells continued their multiplication 

throughout the imaging. Note that, in principle, PICS can multiplex numerous stain predictions 

simultaneously, as training can be performed on an arbitrary number of fluorophores for the 

same cell type. The only price paid is computational time, as each inference channel adds, ~65 

ms to the real-time inference. The computation time for one stain is completely masked by the 

acquisition process and multiple networks can be evaluated in parallel on separate GPUs.  

 

Figure 4: Time-lapse PICS of unstained cells. To demonstrate time-lapse imaging and high 

content screening capabilities, we seeded a multiwell with three distinct concentrations of SW 

cells (20x/0.8). These conditions were imaged over the course of a week by acquiring mosaic 

tiles consisting of a 2.5 mm2 square area in each well using a 20x/0.8 objective. The machine 

learning classifier, trained at the final time point after paraformaldehyde fixation, is applied to 

the previously unseen sequence to yield a DiI and DAPI equivalent image. Interestingly, the 

neural network was able to correctly reproduce the DiI stain on more elongated fibroblast-like 

cells, even though few such cells are present when the training data was acquired (white 

arrows).  

 



Cell growth measurements of sub-cellular compartments 

 We used PICS-DiI to generate a binary mask (Fig. 5, Supplementary Fig. 10), which, 

when applied to the QPI images, yields the dry mass of the entire cell. Similarly, PICS-DAPI 

allows us to obtain the nuclear dry mass. Thus, we can independently and dynamically monitor 

the dry mass content of the cytoplasm and nucleus. This capability is illustrated in Figs. 5B and 

C, where an individual cell is followed through mitosis. It is known that the nuclear-cytoplasmic 

ratio (NCR) is a controlling factor in embryogenesis47 and a prognosis marker in various types of 

cancer48,49. Figures 5d-f show the specific growth curves for a large cell field of view, consisting 

of a mosaic of covering a 2.5 mm2 portion of a multiwell. Figure 5g illustrates the behavior of the 

confluence factor (defined as a fraction of the total area occupied by the cells) in time. Not 

surprisingly, as the confluence increases, the growth saturates due to contact inhibition50. In 

Supplementary Fig. 11, we repeat this imaging protocol, demonstrating that the median dry mass 

of the nuclei remains stable over time, while the area distinguishes between different cell lines 

(SW480 vs SW620). Interestingly, in this cell co-culture, while the metastatic cells (SW620) 

have smaller nuclei, the total dry mass is similar to that of SW480. Note that we used the same 

neural network for both cell lines. 



 

Figure 5: Tracking dry mass changes in cellular compartments using PICS.  a, The DiI 

and DAPI stains are specific to the cell body and nucleus, respectively. The difference 

between the two areas produces a semantic segmentation map that distinguishes between the 

nuclear and non-nuclear content of the cell (cytoplasm). b, Throughout the experiment, we 

observe cellular growth and proliferation with cells often traveling a substantial distance 

between division events. c, Using the semantic segmentation map we can track the nuclear and 

cytoplasmic dry mass. We find that nuclear and cytoplasmic dry mass steadily increase until 

mitosis, with some loss of dry mass due to cellular migration. d-g, Semantic segmentation 

maps enable us to track the nuclear and cytoplasmic dry mass and area over 155 hours. The 

dark curve represents the median of the growth rate across forty-nine fields of view (lighter 

curves). The dry mass and area are normalized by the average measured value from the first 

six hours. In this experiment we observe that total nuclear dry mass grows faster than total 

cytoplasmic mass, providing further evidence that cells can divide without growing. As the 

cells reach optimal confluence (t≈114 hours), we observe a decrease in the growth rate of 

nuclear mass, although less difference in cytoplasmic dry mass growth. 

 



PICS of Spheroids 

GLIM has been developed recently in our laboratory to extend QPI applications to 

thicker, strongly scattering structures, such as embryos35, spheroids, and acute brain slices36. 

GLIM improves image quality by suppressing artifacts due to multiple scattering and provides a 

quantitative method to assay cellular dry mass. To showcase this capability, we imaged 20 

spheroids using GLIM equipped with a 63x/1.4NA objective. Each spheroid was imaged in 

depth over an 85 m range, sampled in steps of 80 nm, with each field of view measuring 

170x170 m2. At each z-position, epi-fluorescence imaging was also performed to reveal the 

DAPI-stained nuclei (Fig. 6a). Following the same training procedure as before, we found that 

PICS can infer the nuclear map with high accuracy. Specifically, we constructed a binary mask 

using PICS and DAPI images and compared the fraction of mass found inside the two masks. 

Thus, Fig. 6b shows that the average error between inferring nuclear dry mass based on the 

DAPI vs. PICS mask is 4%.  

 

 



 

Figure 6: PICS for digitally staining 3D cellular systems.  a, Representative images of PICS 

applied to HepG2 spheroids (63x/1.4, 170 μm x 170 μm x ~85 μm).  The scattering potential, 

GLIM (ρ) was recovered, as in the original GLIM paper, by nonlinear filtering where the 

absolute value of the phase map is displayed on a log scale.  PICS and DAPI insets were 

bilaterally filtered to improve contrast. b, To compare the performance of PICS to 

conventional DAPI staining we constructed a semantic segmentation map by thresholding the 

DAPI and PICS image and calculating the dry mass within this map. When comparing total 

dry mass across twenty samples, we find the average percentage change between the PICS and 

DAPI images to be 4%.  

 

 

 

  



Discussion and Outlook 

PICS uses artificial intelligence to boost the capability of QPI. PICS exploits the unique 

capabilities of SLIM and GLIM, whereby the QPI and fluorescence images can be obtained by 

the same camera, without the need for complex image registration. As a result, annotation, which 

normally represents a bottleneck for AI, is performed automatically, with no manual 

intervention. In principle, the number of fluorescent channels that PICS can predict is virtually 

unlimited. Our approach is to collect training data at the end of the experiment on fixed cells, 

effectively training for each cell type and magnification. This training is performed only once 

and ensures that performance is optimal. Once the training dataset is stored on the computer, the 

microscope user benefits from a virtual stain that can be used indefinitely. The network inference 

requires a mere 65 ms per frame, which is faster than the image acquisition for both SLIM and 

GLIM. This inference time is also approximately one order of magnitude shorter than the typical 

exposure in our fluorescence imaging. As a result, the specificity map is displayed in real-time 

and overlaid with the QPI phase map. 

 The main benefit of PICS over regular fluorescence is the fact that computation is, of 

course, nondestructive, while at the same time, QPI yields quantitative information. Furthermore, 

the QPI data used as input is obtained using low levels of light, which has low phototoxicity. 

Thus, we demonstrated time-lapse imaging of live cells over a week while maintaining cell 

viability intact and a high level of specificity for cellular compartments. This capability is 

particularly valuable when studying cell growth, which remains an insufficiently understood 

phenomenon51. In particular, we showed that by multiplexing specificity for cell nuclei and lipid 

bilayers, PICS can simultaneously assay nuclear, cytoplasm, and total cell growth over many cell 

cycles. In this way, by training on fixed cells at the end of the experiment, PICS mimics 



fluorescence stains (such as DAPI) that are otherwise incompatible with live-cell imaging. The 

approach of learning stains from fixed cells for live-cell imaging presents many opportunities. 

For example, there is a pressing need for developing live-cell imaging techniques capable of 

reproducing stains that are associated with protein expression (antibody) or membrane 

permeability (cell viability52) as these stains require fixation.  

Interestingly, we found that by decoupling the amplitude and phase information, QPI 

images outperform their underlying modalities (phase contrast, DIC) in AI tasks (Supplementary 

Fig. 5). This capability is showcased in GLIM, which provides high-contrast imaging of thick 

tissues by suppressing multiple scattering, enabling us to achieve subcellular specificity in 

optically turbid spheroids. We foresee a range of applications in this area, including viability 

assays in spheroids subjected to various treatments53.  

 Finally, because PICS can be implemented as a hardware add-on module to an existing 

microscope, the threshold for adaption in the field is low. The automatic training procedure 

allows the user to easily replace the chemical makers in their studies. The real-time inference 

gives instantaneous feedback about the sample, which keeps the user experience virtually 

unchanged, while operating at an improved throughput and reduced toxicity.  

As shown in Supplementary Fig. 12, PICS reveals that the quantitative phase image contains 

vastly more information than the fluorescence counterpart. In a broader context, PICS illustrates 

a paradigm shift in microscopy, where the resurgence of intrinsic contrast imaging is empowered 

by recent advances in deep-learning methods to gain specificty.  



Methods 

Acquisition procedure  

With respect to Ref.54, our current software was designed as a “frontend” with acquisition 

dialogs to generate lists of events that are then processed by a “backend”.  The principal changes 

to the backend involved instrumenting TensorRT (NVIDIA) for real-time inference, while the 

frontend changes involved developing a graphic interface to facilitate plate-reader style imaging. 

PICS images are processed following the scheme shown in Supplementary Fig. 8. Each PICS 

image is the result of an acquisition sequence that collates four label-free intensity images into a 

phase map. The sequence begins by introducing a phase shift on the modulator (“Modulation”) 

followed by camera exposure and readout. In GLIM, the phase shift is introduced by a liquid 

crystal variable retarder (Thorlabs), which takes approximately 70 ms to fully stabilize. In SLIM 

a ring pattern is written on the modulator and 20 ms is allowed for the crystal to stabilize 

(Meadowlark, XY Series). Next, four such intensity images are collated to reconstruct the phase 

map (“Phase Retrieval”). In GLIM, the image is integrated (6 ms) and in SLIM we remove the 

phase-contrast halo artifact (25 ms). The phase map is then passed into a deep convolution neural 

network based on the U-Net architecture to produce a synthetic stain (65 ms). Finally, the two 

images are rendered as an overlay with the digital stain superimposed on the phase image (5 ms). 

In the “live” operating mode used for finding the sample and testing the network performance, a 

PICS image is produced for every intensity frame. Under typical operation, the rate-limiting 

factor is the speed of image acquisition rather than computation time. As a point of comparison, 

the two-channel fluorescence images used to train PICS required approximately 1000 ms of 

integration time making PICS approximately 15 times faster. 

  



Real-time PICS  

The PICS system uses an optimized version of the U-Net deep convolutional neural 

architecture to translate the quantitative phase map into a fluorescence one. To achieve real-time 

inference, we use TensorRT (NVIDIA) which automatically tunes the network for the specific 

network and GPU pairings55. In the process of this work, we found that the TensorRT was unable 

to parse standard machine learning interchange formats such as ONNX and instead developed a 

script to convert the model from TensorFlow (Google) to the optimized TensorRT inference 

engine (NVIDIA). In short, this script converts the weights learned by TensorFlow to match the 

format supported by TensorRT. The network was instrumented layer-by-layer using the 

TensorRT’s C++ API.  In addition to performance gains, TensorRT can operate directly on GPU 

memory, avoiding redundant data copies. 

The PICS inference framework is designed to account for differences between 

magnification and camera frame size. Differences in magnification are accounted for by scaling 

the input image to the networks' required pixel size using NVIDIA’s Performance Primitives 

library. While TensorRT is fast, the network-tuning is performed online and can take a non-

negligible time to initialize (30 seconds). To avoid tuning the network for each camera sensor 

size, we construct an optimized network for the largest image size and extend smaller images by 

mirror padding. Further, to avoid the edge artifacts typical of deep convolutional neural 

networks, a 32-pixel mirror pad is performed for all inferences. 

 

Multi-well plate reader operation 

Large samples, such as the multiwell plates (12.7 x 85 cm), used in this work are difficult 

to image due to a small but significant tilt introducing during sample placement. In this work, we 

compensate for sample tilt by developing a graphic user interface for plate reader applications 



that present each well as a 3D tomogram (Fig. S9). Tilts are controlled by adding focus points 

which are used to construct a Delaunay triangulation to interpolate the plane of best focus across 

the mosaic tiles54. As the glass bottom of a multiwell is flat, we found that most tilts are linear, 

and good results can be achieved by focusing on the four points at the corners of the well. In 

addition to specifying focus points, and controlling the dimensions of the acquisition, the 

interface configures the microscope for multichannel acquisition with fluorescence microscopy 

presented alongside phase imaging. The interface presents phase imaging specific features such 

as modulator stabilization time and variable exposure for intensity frames.  

 

Training the neural networks 

We chose to use the U-Net architecture56, which effectively captures the broad features 

typical of quantitative phase images. Networks were built using TensorFlow and Keras, with 

training performed on a variety of computers including workstations (NVIDIA GTX 1080 & 

GTX 2080) as well as isolated compute nodes (HAL, NCSA, 4x NVIDIA V100). Supplementary 

Table 1 contains a summary of the 57 networks trained in this study. No transfer learning was 

performed in this work. All networks were trained with the adaptive moment estimator (ADAM) 

against a mean squared error optimization criterion. Phase and fluorescence microscopy images, 

 ,I x y , were normalized for machine learning as 

 
  min

ml input
max min

,
, med 0, ,1

I x y
I x y



 

 
  

 
    [1] 

where min and max  are the minimum, and maximum pixel values across the entire training set, 

and med  is a pixel-wise median filter designed to bring the values within the range [0,1]. 

Spatio-temporal broadband quantitative phase images exhibit strong sectioning and defocus 



effects. To address focus related issues, images were acquired as a tomographic stack. The Haar 

wavelet criterion from54 was used to select the three most in-focus images for each mosaic tile.    

 

Cell culture 

The SW480 and SW620 pairing is a popular model for cancer progression as the cells 

were harvested from the tumor of the same patient before and after a metastasis event57. Cells 

obtained from ATCC were grown in Leibovitz’s L-15 media with 10% FBS and 1% pen-strep at 

atmospheric CO2. Mixed SW cells were plated at a 1:1 ratio at approximately 30% confluence.  

The fluorescent lipophilic dye, DiI is used to stain the cell membrane. The application of the dye 

was adapted and modified from established protocol from the Thermofisher website. After the 

passage, mixed SW cells were allowed for two days to attach and grow in the well plate. When 

the cells reach the desired confluence, we prepared the staining medium by mixing 5uL of DiI 

labeling solution into the 1 mL of normal growth medium. We aspirated off all the previous 

medium on the well plate and pipetted staining medium to cover all the surface of the well plate 

for 20 minutes at 37°C. After the incubation, we drained off the staining medium and washed the 

cells with warmed regular growth medium three times every 10 minutes. Cells were then fixed 

with freshly prepared 4% paraformaldehyde (PFA) for 15 minutes and washed with PBS two 

times before DAPI staining. To visualize the nucleus, DAPI was used for the experiment and 

DAPI solution prepared with 10uL DAPI in 10mL PBS. The cells were incubated in DAPI 

solution for 10 minutes and washed three times with PBS before imaging.  

Time-lapse microscopy was performed eight hours after platting and the slower growth 

rate at the start of the experiment can be attributed to the cells being in the “lag-phase” of the cell 



cycle58. The growth characteristics are consistent between experiments, suggesting that they are a 

constant behavior of our particular subclone.  

CHO cells are commonly used for mass production of mammalian proteins59. CHO cells 

(ATCC) were cultured in Ham's F-12 with 10% FBS and 1% pen-strep under 5% CO2.  

HepG2 spheroids represent a kind of liver cancer that is popular for high-throughput 

toxicity assays. Spheroids were cultured on a glass-bottom dish as indicated in60, which formed 

spheroids at sufficiently high density. To perform an experiment typical for high content 

screening, we plated cells on a poly-D-lysine coated multiwell.  

As plastic affects the differential interference contrast, all cells imaged in this work were 

cultured on glass-bottom dishes covered with a DIC specific glass lid (P06-20-1.5-N, L001, 

Cellvis). While the glass lid can be avoided in SLIM imaging, using a plastic lid with GLIM will 

result in a total loss of interferometric contrast. All cells except the spheroids were grown on 

poly-D-lysine treated glass.  

 

Time-lapse microscopy 

To illustrate the nondestructive specificity associated with PICS, we performed 

automated time-lapse microscopy for a week. This procedure was repeated twice (Fig. 4 & 5 and 

again in Supplementary Fig. 11). For Figs 4-5, three conditions of cancer cells were plated in a 2 

x 3 multiwell at 5 different depths. For each well, we acquire a 7 by 7 mosaic grid. This 

procedure is repeated for every well, with a sample taken every sixty-eight minutes. As the 

sample was imaged in a temperature-controlled incubator, we did not observe appreciable focus 

drift during the week. The resulting sequence consisted of 202,860 GLIM images, which were 

assembled into a mosaic by software developed in house54. After the experiment completed, the 



cells were fixed, stained with DiI and DAPI and imaged to produce a training corpus for AI. To 

illustrate the value of the dry mass and area, a similar procedure was applied for Supplementary 

Fig. 11 except SW480 and SW620 were not mixed. 
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Supplementary Note 1: Gradient Light Interference Microscopy 

 To show that PICS is not dependent on a particular QPI method, we used both SLIM and 

GLIM. GLIM is implemented as an upgrade to a conventional DIC microscope1,2 (Fig. 1a and 

Fig. 2a). To reduce photodamage and multiple scattering, we used a broadband infrared source 

(780 nm). The sample is illuminated by two slightly shifted fields originating from a Nomarski 

prism. The sample is imaged by an objective with an integrated Nomarski prism, which 

recombines these fields and undoes the effect of the input prism. To measure the difference in 

phase between the two fields, we modify the optical path by introducing a liquid crystal variable 

retarder (LCVR, Thorlabs) between the camera and output polarizer. The LCVR enables us to 

control the phase shift between the two polarizations outputted by the DIC microscope. In our 

instruments, we record four images corresponding to 𝜋/2 phase shifts between the two beams 

(Fig. 2a), which lets us recover, uniquely, the phase shift associated with the DIC microscope1. 

The resulting image resembles a derivative of the phase map associated with the object as it is 

based on differences in phase between neighboring points. This image is then integrated using a 

1D Hilbert transform as noted in the next section. While this approach can be extended to 

multiple shear directions (as in 3), here we used only 1D integration as the phase-shifting 

components can be located completely outside our microscope, at the expense of certain streak 

artifacts in the integrated image. For GLIM, we used a 20x/0.8 NA objective giving us a 

sampling of roughly 0.3 microns per pixel, compared to the diffraction spot of 0.7 microns. To 

obtain an optimal resolution, all GLIM images were acquired with a fully open condenser 

(NAc=0.55). 

 



Supplementary Note 2: Phase integration using the Hilbert transform 

The phase image in GLIM is the result of interfering two laterally offset or “sheared” 

beams. The intensity measured at the detector resembles2, 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 cosn x x x nI I I I I     = + + + + + − +  r r r r r r r  [1] 

where ( ) ( )x x x x      = + −  r r  is the gradient of the phase map. When the modulator is 

cycled using the liquid crystal variable retarder, 2n n  we obtain the phase shift x  which is 

the derivative of the phase along the contrast direction, x , scaled by the shear x . 

To obtain the true phase map and remove the shading effect, we perform a Hilbert transform 4 

along the contrast direction, which performs the following Fourier filter (Supplementary Fig. 2a), 

( ) ( )( ) ( )sgn /x x x xi k  = − k k     [2] 

where k is the wavevector, and ( )x k  is the integrated image along the contrast direction and 

sgn is the signum function.  As shown in 5, this operation approximates an integral, which can be 

implemented as a Wiener filter 6,  

( ) ( )
reg

x x
x

i
k l

 
−

= 
+

k k      [3] 

where regl is the regularization constant. We note that our approach is a regularized version of the 

Wiener filtering method when xk is large, which is also the frequency range at which the system 

operates with partially coherent illumination7.  

To demonstrate the ability of the Hilbert transform to recover topographic information we 

imaged a 3 μm polystyrene bead embedded in immersion oil. We found that the results are in 

good agreement with the expected phase shift (Supplementary Fig. 2b) 



( )
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peak object media

2 (3.000)
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1.48 RAD
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
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 −



     [4] 

The distortion orthogonal to the contrast-bearing axis (null space of the system transfer 

operator) bears little significance for live cell measurements, as cell shape and growth does not 

have a preferential direction.  

 

Supplementary Note 3: Spatial Light Interference Microscopy 

SLIM upgrades a phase-contrast microscope8 in a similar way to how GLIM upgrades 

DIC. In short, SLIM uses a spatial light modulator matched to the back focal plane of the 

objective to control the phase shift between the incident and scattered components of the optical 

field. Four such phase-contrast like frames are recorded to recover the phase between the two 

fields (Supplementary Fig. 1). Next, the total phase is obtained by estimating the phase shift of 

the transmitted component and compensating for the objective attenuation9. Finally, the “halo” 

associated with phase-contrast imaging is corrected by a non-linear Hilbert transform-based 

approach5. 

While SLIM has higher sensitivity10, the GLIM illumination path performs better in 

strongly scattering samples and dense well plates. In strongly scattering samples, the incident 

light, which acts as the reference field in SLIM, vanishes exponentially1. In dense microplates, 

the transmitted light path is distorted by the meniscus or blocked by high walls2. GLIM and 

SLIM images were acquired with three different Axio Observer Z1 microscopes.  

While in this work we focus on our own SLIM and GLIM methods, we expect PICS to be 

applicable to other modalities, especially where fluorescence can be easily overlaid with 

quantitative phase images11-15.  



Supplementary Figure 1 

 

Supplementary Figure 1: Spatial Light Interference Microscopy. a, The ring illumination 

is matched to the objective’s back focal plane and the mask on the spatial light modulator 

(SLM), effectively resulting in a phase-contrast microscope with a variable retardance ring. 

Four frames are recorded, corresponding to increments of 90 degrees introduced by the SLM. 

b, SLIM image reconstruction and the halo-removed SLIM image. 

 

  



Supplementary Figure 2 

 

Supplementary Figure 2: GLIM images are integrated with the Hilbert transform. a, The 

Hilbert transform along the direction of the shear (θ) is performed by multiplying by a step 

function in the frequency domain. The imaginary portion of the inverse transform yields the 

integrated image. b, The integrated phase is in good agreement with the theoretical profile of 

the bead (shown on the red dashed line). 

 

 

 

 

 



Supplementary Figure 3 

 

Supplementary Figure 3: Neural Network for Phase to Fluorescence Mapping. We 

modified the U-Net architecture, with batch normalization before all the activation layers and 

reduced the number of filters compared to the original implementation. To illustrate the 

evaluation of the PICS-DAPI neural network for a typical cell, we show the flow of data after 

applying the operations in each layer. Of particular note is the ability of the U-Net architecture 

to make use of both textures inside the cell (leftmost, first layers) and spatial information such 

as the edges around the cellular nucleolus (bottom layers). 

 

  



Supplementary Figure 4 

 

Supplementary Figure 4: PICS method is applicable across stains, modalities, and cell-

lines. To investigate the performance of our method in various conditions, we trained separate 

deep convolutional neural networks on several samples and quantified their performance. As a 

performance metric, we compare Pearson’s correlation (ρ) between the actual fluorescence 

image (“Stain”) and the computationally inferred image (“PICS”). The technique is equally 

applicable to other QPI modalities, such as SLIM and other cell types such as CHO or a mixed 

culture of SW480 and SW620. 

 

 

 

  



Supplementary Figure 5 

 

Supplementary Figure 5: Quantitative phase information improves machine learning 

performance. a, To compare the performance of quantitative phase imaging with 

conventional microscopy, we trained on different stages of the GLIM reconstruction process. 

Here we take the brightest GLIM frame corresponding to the least interferometric contrast as a 

brightfield image. DIC denotes the extinction mode frame, ∆φ is the GLIM image before 

integration, and φ is the GLIM image after integration. As a computational experiment we 

train our U-Net based neural architecture on a subset of DiI images (20x/0.8), for a limited 

number of epochs, with the same training rate. The performance of the brightfield network is 

particularly poor, with an improvement when training on the DIC frame. When we introduce 

phase shifting (∆φ), we isolate the pure phase information resulting in a further improvement 

in performance (green arrows). This is especially  true for at denser portions of the sample 

where multiple scattering contributes to unwanted amplitude information. While the ground 

truth image may appear sharper, the PICS neural network was able to pick up cells even when 

those were not fully represented due to inherent staining defects (pink arrows). b, To compare 

modalities we performed a Pearson correlation across the entire test data set, comparing the 

measured fluorescence to the computed fluorescent signal, showing that integrated GLIM (φ) 

has the closest match to the actual fluorescence image. c, To investigate the origins of these 

differences we plot a histogram of the image over a non-empty portion of the sample (dashed 

black box). When the variance inside this region is used as a contrast metric we note that 



comparably similar standard deviations (compare DIC at 0.064 to φ at 0.065) lead to different 

qualitative performances.  This result suggests that the difference in performance cannot be 

erased by simply scaling the data, rather, they are fundamental to the image formation process. 

 
 

 

 



Supplementary Figure 6 

 

Supplementary Figure 6: U-Net reaches asymptotic performance with a small number of 

training pairs. To better understand the effects of data size on performance we conducted a 

numerical experiment where we trained PICS networks with an increasing number of QPI-FL 

training pairs. As per our convention, each “pair” consists of three focus levels, so that with 80 

training pairs, we used 240 images for training, 48 for validation, and 174 for the final test 

group (see Supplementary Table 1). To account for differences in image selection, we perform 

k-fold validation (k=5), essentially training the network five times for each data set size. a, 

The performance of this network is calculated by looking at the Pearson correlation between 

the digital and actual fluorescent images. We note that performance becomes asymptotic, 

hinting that the network is fully trained after approximately 30 pairs. b, Each network 

previously trained is evaluated on an additional 58 fluorescent-phase pairs (174 phase and 

fluorescence images) that were not used during training. That is to say, we do no vary the test 

set within each k-fold. We note that this performance also becomes asymptotic after 

approximately 30 pairs indicating that learning the training corpus has a strong correlation to 

learning the transformation for unseen data. Looking at the difference in performance within 

k-fold validation (performance of folds within training pair 10 or 20), we note that some 

training pairs are substantially more performant, and this performance translates to the unseen 

test data. c, Average time to train a single fold on a single node of the HAL Cluster (NCSA).  

 
 

 

  



Supplementary Figure 7 

 

Supplementary Figure 7: Training Plot for 57 Neural Networks. To verify that the neural 

networks converged, we plot the loss on training and validation data after each epoch. A small 

difference between the two curves indicates that our models do not overfit. A simplified 

version of this plot is shown for the cross-validated networks used in Supplementary Fig. 6 

showing only training loss. We note there is a substantial difference in convergence within the 

folds used for cross-validation, hinting that some training pairs are easier to learn than others. 

 



Supplementary Figure 8 

 

Supplementary Figure 8: Real-Time acquisition of digital stains from label-free images. 

a,  In SLIM and GLIM, the acquisition process begins by introducing a controlled modulation 

which is allowed some time to stabilize (20 ms on SLIM, 70 ms on GLIM). In this work, we 

acquire full camera frame sizes at minimal exposure (10 ms exposure, 10 ms readout). Phase 

retrieval is comparably quick (2 ms, 2070 GTX Super, NVIDIA). Phase images typically 

require further demodulation to correct for system-specific imaging artifacts. In SLIM we 

perform halo removal to correct for spatial incoherence (25 ms), while GLIM images are 

integrated along the direction of the DIC shear (6 ms). To avoid edge artifacts, we perform 

GPU based inference (65 ms) on a larger, mirror padded version of the image, followed by 

rendering (6 ms). b, These steps are performed in parallel to optimally overlap computation 

with acquisition. As the computation is typically quicker than the acquisition, during real-time 

operation all reconstruction steps are performed every time a new frame is received. In GLIM 

the effective frame rate is limited by the modulation of the variable retarder, resulting in one 

phase image every 80 ms. In practice, it is possible to achieve faster performance, by using 

high performing graphics card or faster modulators. 

 
 

  



Supplementary Figure 9 

 

Supplementary Figure 9: To successfully digitize multiwells we develop a graphic 

interface that produces a list of acquisition events that are then processed by the 

acquisition software. Our capture user interface presents the multiwell as “regions of interest” 

(rectangles) that have associated “focus points”. The interface configures the dimensions of 

the volume and mosaic parameters such as the number of tiles and steps. The focus points 

correct for defocus in the sample (mostly due to mounting), and the scan is performed offset to 

the estimated tilt. In addition to configuring fluorescence acquisition, our interface contains 

phase imaging specific parameters such as the modulator stabilization times and exposure for 

each pattern used to reconstruct the phase image.  

 

  



Supplementary Figure 10 

 

Supplemental Figure 10: Semantic segmentation map from digital stains. a, Digitally 

stained images were binarized to discriminate between stain and background by analyzing the 

cumulative sum of a histogram for a representative image. It was found that the change in 

inflection of the cumulative histogram of fluorescence intensity values served as a good 

threshold marker. Intuitively this change in inflection indicates when the histogram switches 

from tracking the background to the sample. In this work, we used the same binarization 

thresholds for all training pairs. b, Thresholded images were combined into a semantic 

segmentation map, by labeling all pixels with the PICS-DAPI binary mask blue, all pixels that 

had a PICS-DiI mask but were not blue as green (cytoplasm), and all pixels not labeled as 

either of the two as black (background). 

 
  



Supplementary Figure 11 

 

Supplemental Figure 11: Time-lapse monitoring of nuclear dry mass and area for SW 

480 and SW 620 subclones. a, SW cells were images for 72 hours with a multiwell scan 

acquired every two hours. The semantic segmentation map from PICS was used to generate 

markers and ridgelines to perform instance segmentation using a watershed-based approach. b, 

instance segmentation on the cellular nucleolus shows that while SW 620 (metastatic) has 

somewhat smaller nuclei (ΔA=30%) total nuclear dry mass remains relatively consistent 

between SW 480 and SW 620.  

 
 

 

  



Supplementary Figure 12 

 

Supplemental Figure 12: Fluorescence microscopy provides limited information 

compared to scattered light imaging. While scattered light GLIM images can be used to 

produce fluorescence equivalents, attempting to do the reverse, going from DAPI to phase 

images has substantially worse performance missing structural details that would lead to a 

substantial underestimation of the cell’s area (red arrows).  

 
 

 

  



Supplementary Table 1 

ID
*** 

A
ppearance 

M
odality 

O
bjective 

Stain 

C
ell L

ine** 

T
raining Pairs 

V
alidation Pairs 

T
est Pairs 

L
earning R

ate 

E
pochs 

Pearson 
C

orrelation  

1 Fig 3 GLIM 05x/0.08 DAPI SW 48 6 6 5e-5 50 0.75 
2 Fig 3 GLIM 10x/0.30 DAPI SW 48 6 6 5e-5 50 0.87 
3 Fig 3 GLIM 20x/0.80 DAPI SW 48 6 6 5e-5 50 0.89 
4 Fig 3 GLIM 63x/1.40 DAPI SW 48 6 6 5e-5 50 0.94 
5 Fig 6 GLIM 63x/1.40 DAPI HepG2 16324 64 32 1e-4 3000 0.97 
6 Fig S4 GLIM 20x/0.80 DAPI SW 830 42 10 1e-4 20 0.93 
7 Fig S4 GLIM 20x/0.80 DiI SW 705 87 90 5e-5 30 0.94 
8 Fig S4 SLIM 10x/0.30 DAPI SW 210 30 30 1e-4 20 0.92 
9 Fig S4 SLIM 20x/0.30 DAPI CHO 48 6 6 5e-5 50 0.86 
10 Fig S5 BF 20x/0.80 DiI SW 705 87 90 5e-5 30 0.51 
11 Fig S5 DIC 20x/0.80 DiI SW 705 87 90 5e-5 30 0.87 
12 Fig S5 GLIM (∆φ) 20x/0.80 DiI SW 705 87 90 5e-5 30 0.92 
13 Fig S5 GLIM 20x/0.80 DiI SW 705 87 90 5e-5 30 0.94 

14-18 Fig S6 GLIM 20x/0.80 DAPI SW 30 6 174 1e-4 20 0.51* 
19-23 Fig S6 GLIM 20x/0.80 DAPI SW 60 12 174 1e-4 20 0.65* 
24-28 Fig S6 GLIM 20x/0.80 DAPI SW 90 18 174 1e-4 20 0.82* 
29-33 Fig S6 GLIM 20x/0.80 DAPI SW 120 24 174 1e-4 20 0.73* 
34-38 Fig S6 GLIM 20x/0.80 DAPI SW 150 30 174 1e-4 20 0.89* 
39-43 Fig S6 GLIM 20x/0.80 DAPI SW 180 36 174 1e-4 20 0.86* 
44-48 Fig S6 GLIM 20x/0.80 DAPI SW 210 42 174 1e-4 20 0.90* 
49-53 Fig S6 GLIM 20x/0.80 DAPI SW 240 48 174 1e-4 20 0.88* 

54 Fig S11 GLIM 20x/0.80 DAPI SW 390 45 45 1e-4 40 0.91 
55 Fig S11 GLIM 20x/0.80 DiI SW 3000 300 300 1e-5 80 0.83**** 
56 Fig S12 GLIM 20x/0.80 DAPI SW 705 87 90 5e-5 20 0.78 
57 Vid S3 SLIM 10x/0.30 DAPI SW 210 30 30 1e-4 20 0.80 

* Averaged performance across all k models for that k-fold cross-validation experiment 

** SW network was trained on both SW480 and SW620 

*** Corresponding to IDs in supplementary Fig. 7 

**** Not used for analysis 

 

  



Video 1 

Co-localized acquisition of GLIM and DAPI data for PICS training (20x/0.8, SW cells). 

Video 2 

Real-time GLIM and PICS-DAPI (20x/0.8, SW cells). 

Video 3 

Real-time SLIM and PICS-DAPI (10x/0.3, CHO cells). 

Video 4 

Time-lapse GLIM and PICS imaged over seven days (20x/0.3, SW Cells). 
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