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Abstract. Real-world data often follow a long-tailed distribution as the
frequency of each class is typically different. For example, a dataset can
have a large number of under-represented classes and a few classes with
more than sufficient data. However, a model to represent the dataset is
usually expected to have reasonably homogeneous performances across
classes. Introducing class-balanced loss and advanced methods on data
re-sampling and augmentation are among the best practices to allevi-
ate the data imbalance problem. However, the other part of the problem
about the under-represented classes will have to rely on additional knowl-
edge to recover the missing information.
In this work, we present a novel approach to address the long-tailed prob-
lem by augmenting the under-represented classes in the feature space
with the features learned from the classes with ample samples. In par-
ticular, we decompose the features of each class into a class-generic
component and a class-specific component using class activation maps.
Novel samples of under-represented classes are then generated on the
fly during training stages by fusing the class-specific features from the
under-represented classes with the class-generic features from confusing
classes. Our results on different datasets such as iNaturalist, ImageNet-
LT, Places-LT and a long-tailed version of CIFAR have shown the state
of the art performances.

1 Introduction

Deep neural networks have shown considerable success in a wide variety of visual
recognition tasks. Its effectiveness and generalizability have been well proved by
many state-of-the-art work [25, 19, 16, 30] and a wide variety of real-world
applications in different industries [6, 49, 3, 12]. However, there is often one
underlying condition that each category of interest needs to be well represented.

To quantify the “representativeness” of data can be a challenging prob-
lem itself. In practice, it is usually scrutinized using different heuristics, and
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Fig. 1: Left: With limited but well-spread
data, the optimal decision boundary search
can be recovered by sample re-weighting/loss
balancing. Right: Without sufficient sample
coverage, the “optimal direction” to move the
decision boundary becomes unclear. In this
paper, augmented samples are generated to
recover the underlying distribution.

Fig. 2: The sorted sample size of
each class from different dataset
follows similar long-tailed distri-
bution.

one common criterion could be the balance of a dataset. Indeed, many public
datasets are intentionally organized to have the same number of samples from
each class [33, 24]. For problems such as segmentation and detection which are
hard to ensure exact balanced data, it is always preferable to ensure good data
coverage in a way that the rare classes still have sufficient data and are hence
well represented [40, 13].

However, real-world visual understanding problems are often fine-grained and
long-tailed. To achieve human-level visual understanding, it almost implies the
ability to distinguish the subtle differences between fine-grained categories and to
robustly handle the presence of rare categories [1]. In fact, these two properties
of real-world data usually accompany each other as a large number of fine-
grained categories often leads to a highly imbalanced dataset, as illustrated in
Fig. 2. For example, in iNaturalist dataset 2017 [40] for species classification,
there are a total of 5089 classes with the largest classes more than 1000 samples
and the smallest classes fewer than 10. In iNaturalist competition 2019, even
with an effort to filter out species that have insufficient observations and to
further cap the maximum class size to be 500, there is still serious imbalance in
the dataset as the smallest classes around 10 samples. Similar data distribution
can be observed in other applications, such as a UAV-based object detection
dataset [49] and COCO [28].

Like many supervised learning algorithms, the performance of deep neu-
ral networks also suffers when the training data is highly imbalanced [9]. The
problem can get worse when the categories with fewer data are severely under-
sampled to the extent that the variation within each category is not fully cap-
tured by the given data [41, 2, 44].

The common presence of long-tailed data in real-world problems has led to
several effective practices to achieve an overall performance improvement of a
given machine learning model. For example, data manipulation such as augmen-
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tation, under-sampling and over-sampling [4, 14, 10], and balanced loss func-
tion design (e.g., focal-loss [27] and class-balanced loss [9]), are the two main-
stream approaches. These practices often improve the performance reasonably
yet the improvement deteriorates when certain categories are severely under-
represented, as shown in Fig. 1. Specifically, these methods are often designed to
move the class decision boundary to reduce the bias introduced by imbalanced
classes. However, when a class is severely under-represented such that it is hard
to draw its complete data distribution, finding the right direction to adjust the
decision boundary becomes challenging. We therefore focus on exploring the in-
formation learned from the head classes (the ones with ample samples) to help
the tail classes (the under-represented ones) in a long-tailed dataset.

In this work, we present a novel method to address the long-tailed data clas-
sification problem by augmenting the tail classes in the feature space using the
information from the head classes. In particular, we insert an attention unit
with the help of the class activation map (CAM) [46] to filter out class-specific
features and class-generic features from each class. For the samples of each tail
class, we augment the high-level features (from high-level deep network layers)
by mixing its class-specific features with the class-generic features from the head
classes. This method is based on two underlying assumptions: 1) information
from the head classes, represented as class-generic features, can help to recover
the distribution of tail classes; and 2) the class-generic and class-specific features
can be extracted and re-mixed to generate novel samples in the high-level feature
space due to a more “linear” representation at that level. We have designed an
end-to-end training pipeline to efficiently perform such feature space augmen-
tation, and evaluated our method on artificially created long-tailed CIFAR-10
and CIFAR-100 datasets [24], ImageNet-LT, Places-LT [29] and naturally long-
tailed datasets such as iNaturalist 2017 & 2018 [40]. Our approach has shown
the state of the art performance on these long-tailed datasets compared to other
mainstream deep learning models on data imbalance problems.

2 Related Work

In this section, we first discuss the two directly related approaches, learning with
balanced loss and data augmentation, and then discuss the difference and relation
of our approach to few-shot learning and transfer learning.

2.1 Learning with Balanced Loss

One of the most common and often most effective practices is learning with
balanced loss. The key to such approaches is to counter the effect of a skewed
data distribution by adjusting the weights of the samples from the small classes
in the loss function. It is typically accomplished by: 1) over-sampling or under-
sampling [37, 4, 50, 14, 22] to achieve an even data distribution across various
classes, and/or 2) assigning proper weights to the loss terms corresponding to
the tail classes [39, 20, 23, 27, 9, 48, 35, 11, 45].
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Specifically, these approaches treat the issue of long-tailed data as an op-
timization problem such that an “optimal” classification boundary can be re-
covered by carefully adjusting the weight/frequency of each data point in the
training set. They typically have the advantage of a relatively clean implementa-
tion by either adjusting the loss function [9, 27] or manipulating the input batch
[14, 37, 4, 50], and hence were widely adopted in practice [37, 27, 50]. However,
when the samples of the tail classes are far from sufficient to recover the true
distribution, the performance of such methods deteriorates [9].

Two works along this direction, class-balanced loss [9] and focal loss [27]
draw our attention in particular for their generic applications on deep learning
models. Specifically, focal loss weights the loss term of each sample based on the
probability generated from the last soft-max layer [27]. It implicitly gives higher
weights to samples from the tail classes to counter the bias introduced by the
sample size. In [9], the concept of the effective number is introduced to calculate
the weight of each class in the loss term.

Note that our approach can be used jointly with approaches such as focal
loss [27] and potentially gain the benefits from both. For example, we can use
the feature space augmentation approach to facilitate the performance of the tail
classes, and at the same time, balanced loss methods such as focal loss can give
higher weights to the hard examples regardless of the class label during training.

2.2 Data Synthesis and Augmentation

Generating and synthesizing new samples to compensate the small sample size
of a tail class is a natural way to improve the performance of deep learning
models on long-tailed data. These samples can be either generated from similar
samples [5] or synthesized based on the given information of a dataset [18, 50, 15].
The general application of data augmentation in different deep learning models
also boosts the interest of developing more sophisticated data augmentation
methods. For example, in [7], an input image is partitioned into local regions
which are shuffled during training. In [8], local regions of an image are replaced by
unlabeled data to generate synthetic images to help training. In [41], a parametric
generative model takes noise and existed samples to hallucinate new samples to
support training.

As directly manipulating the raw input images may as well introduce un-
expected noise, feature vectors are instead generated by training a function to
learn the relation between a pair of samples from one class and applies it to the
samples in another [17]. Furthermore, recent progress in generative adversarial
networks (GAN) have inspired advanced methods using generative models to
address the data insufficiency problem [43].

In contrast to the existing approaches on augmenting feature vectors, we fo-
cus on modeling the feature space itself rather than training a heavily parametric
model that applies to all different classes. The decomposition of feature space is
then used to formulate novel training samples in the feature space on the fly.
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2.3 Transfer Learning

Past works in the domain of transfer learning and few-shot learning [42, 2, 32,
44, 31, 47] have been conducted to solve the long-tailed problem. Our work
shares a similar assumption with these works that the information from the head
classes can be used to help the tail classes. However, we explicitly distinguish the
generic features and specific features from each class instead of making strong
assumptions on the general transferability of knowledge from the head classes
to the tail classes. Specifically, in [42], a meta-network is trained to predict
the many-shot parameters from few-shot model parameters using data from
the head classes with the assumption that the model parameters from different
classes share a similar dynamic behavior even if the size of the training set
varies. In [2], the representation is shared in general with different embedding
approaches across different classes. In [44], the variance of the head classes is
learned and transferred to the tail classes with the underlying assumption that
each class has its own mean but a shared variance. In [32], visually similar classes
are clustered together in order to reduce the level of data imbalance. Knowledge
can then be transferred from each cluster to its sub-classes during the fine tuning
stage of deep networks for object detection specifically.

In comparison, we intentionally separate the features of each class into class-
specific features and class-generic features. Only class-generic features from head
classes are seen as transferable knowledge and are hence used for feature space
augmentation on the tail classes.

3 The Problem of Long Tail

In this section, we first analyze the underlying issues of long-tailed data that
affect model performance (Sec. 3.1), and then explore deeper into the feature
space of DNNs and illustrate a novel way to alleviate the problem (Sec. 3.2).

3.1 Two Reasons of Model Performance Drop

Long-tailed data hurt the performance of learning-based classification models
mainly due to the following two issues: (1) data imbalance which is relatively
easy to solve, and (2) missing coverage of the data distribution caused by limited
data, which is harder to deal with.

The data imbalance issue has been discussed in several recent works [9, 4,
14, 27] with good solutions proposed to minimize its impact. This problem is
essentially about the bias introduced by the different number of samples in the
dataset. With carefully designed sampling schemes and/or loss weights, we can
compensate this negative impact and move the classification decision boundary
in the right direction. For example, a common practice of training on an im-
balanced dataset is to over-sample the small classes or under-sample the large
classes [10]. This is built upon the assumption that the underlying decision
boundary is indeed well-defined with the given data, and hence with careful
adjustment we can find its optimal location.
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Fig. 3: The difference between the two
“optimal” decision boundaries.

Fig. 4: Left: class-specific features,
Right: class-generic features.

However, when there is simply no sufficient data for the tail classes to re-
cover their underlying distribution, the problem of finding an optimal decision
boundary becomes ill-defined. In this scenario, it becomes extremely difficult to
guess the location of the decision boundary without recovering the distribution
first. We hypothesize that the knowledge obtained from the head classes can
help with solving the issue.

We further elaborate the issue in Fig. 3 by plotting the feature distribution of
4 classes in CIFAR-10. The features are from the last fully-connected (FC) layer
of ResNet-18 and then embedded in 2-D space. When the ship class is under-
represented, as shown in the left graph, simply moving the decision boundary
will not provide the optimal decision boundary (as shown in the right graph) as
if there were sufficient samples.

3.2 Class Activation Map and Feature Decomposition

With limited data in the tail classes and ample data in the head classes, it seems
natural to use the knowledge learned from the head classes to help recovering
the missing information in the tail classes. However, we have to be careful to
differentiate the class-generic information that can be used to recover the dis-
tribution of the tail classes from the class-specific information that may mislead
the recovery of the distribution of the tail classes.

Inspired by the recent works on attention and visual explanation [46, 36],
we find that deep neural network features can be decomposed into two such
components in a similar fashion. In particular, let us define class activation map
Mc of class c as in [46],

Mc(x, y) =
∑
k

wckfk(x, y), (1)

where fk(x, y) is the feature vector in location (x, y) of channel k, and wck the
weights of the last layer of classifier corresponding to class c. The larger value
of Mc(x, y), the more important of feature vector at (x, y) is to class c, and vice
versa.

We further normalize the value of Mc(x, y) to the range of 0 and 1. Therefore,
given a pair of thresholds 0 < τs, τg < 1, we can decompose the class activation
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Fig. 5: Overview of the proposed two-phase learning scheme.

map Mc into two parts, Ms
c and Mg

c , to separate the feature vectors into class-
specific features and class-generic features as follows,

Ms
c = sgn(Mc − τs)�Mc, (2)

Mg
c = sgn(τg −Mc)�Mc, (3)

where � is the Hadamard product between two tensors, sgn(x) = 1 for x ≥ 0
and sgn(x) = 0 for x < 0.

Fig. 4 shows the scatter plot of class-generic features and class-specific fea-
tures of different classes from CIFAR-10 (More results can be seen in the sup-
plemental material). We can see that after decomposition, even when embed-
ded in a 2-D space, the class-specific features are clearly more separated than
class-generic features. In general, we have observed a much stronger correlation
between class-generic features than class-specific features across different classes
and different datasets. These results further substantiate our approach on using
class-generic features to augment the tail classes during training.

4 Method

We propose a two-phase training scheme to leverage the class-generic informa-
tion to recover the distribution of tail classes, as shown in Fig. 5. In Phase-I,
samples from all classes are used to learn the feature representation and a base
classifier. In Phase-II, online feature space augmentation is applied to generate
novel samples for tail classes.

4.1 Initial Feature Learning

In the Phase-I training, we use all images in the dataset to learn the feature sub-
network and the base classifier. In order to calculate the class activation maps
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in the following steps, we choose a network architecture that contains a single
FC layer as the final classifier, which takes input from a global average pooling
layer as illustrated in Fig. 5. A number of the modern deep convolutional neural
network architectures fit into this category, e.g., ResNet [19], DenseNet [21],
MobileNet [34], and EfficientNet [38].

4.2 Feature Space Augmentation

With the pre-trained feature sub-network and the classifier, augmented samples
can be generated in the feature space on the fly by mixing the class-specific
features from the given tail class and the class-generic features.

One question we need to address is that, given a tail class, how to choose the
classes from which the class-generic features will be extracted. A naive solution
would be to randomly select the classes from the training dataset. However, the
class-generic features from different classes may vary with each other, and such
features of a randomly selected class cannot always guarantee a good recovery
of the classification decision boundary. From the perspective of the optimal clas-
sification decision boundary, we observe that the “nearby” classes in the feature
space, i.e. the most “confusing” classes with respect to the given tail class, have
the biggest impact on recovering the previously ill-defined decision boundary,
as seen in Fig. 3. Specifically, we calculate the classification scores for all other
classes for each training sample in a given tail class, and then find its top Nf
confusing classes by ranking the average classification scores of other classes over
all samples within the tail class.

As described in Sec. 3.2, we use class activation maps to separate the class-
generic and class-specific information from a given image. As shown in Fig. 5, the
feature sub-network trained in Phase-I is used to extract feature maps for each
input image. The weights of the linear classifier trained in Phase-I are adapted
to form the 1 × 1 convolutional filter for each class. For each input image, the
filter associated with the ground truth class is applied on its feature maps to
generate the class activation map which is further normalized to the range of
[0, 1] for consistency. Two independent thresholds τg and τs are used to extract
the corresponding binarized masks for class-generic features and class-specific
features following Eq. 2.

The class-generic information in the confusing classes is then leveraged to
generate the augmented samples of each tail class in order to recover its in-
trinsic data distribution. Directly blending information at the pixel level often
introduces artificial edges and hence imposes bias to the augmented samples.
We, therefore, conduct the fusion in the feature space to suppress the noise and
potential bias. In particular, for each real sample in the tail class, we sample
Na images from its Nf confusing classes. The class-specific features from the
sample are then combined with the class-generic features from the Na samples
in a linear way. A random combination ratio is generated to guide the fusion
by randomly drawing class-generic and class-specific feature vectors to form an
augmented sample for the tail class. By randomly modulating the combination
ratio between the class-generic and class-specific features, the sample variance
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Algorithm 1 Online Feature Augmentation

1: Input: All training images features F and their CAM M.
2: Output: Training batch with augmented feature samples bout.
3: Initialize output batch bout.
4: for i = 1, . . . , Nt do
5: Fc ← Draw one sample from tail classes
6: Append Fc to bout
7: Ms

c ←Mc > τs
8: Fs

c ←Ms
c � Fc

9: {u} ← Find confusing classes for class c
10: for u in {u} do
11: Fu ← Draw one sample from class u
12: Mg

u ←Mu < τg
13: Fg

u ←Mg
u � Fu

14: Generate combination ratio γ ∈ (0, 1)
. Total L spatial locations in Fi

. Draw with repeat and excluding all zeros feature
15: {fsc} ← Draw γL feature vectors from Fs

c

16: {fgu} ← Draw (1− γ)L feature vectors from Fg
u

17: Faug
c ← Merge {fsc} and {fgu}

18: Append Faug
c to bout

19: end for
20: {Fk} ← Draw Nt(1 +Na) samples from head classes
21: Append {Fk} to bout
22: end for

is built into this augmentation procedure. In the end, a total of Na augmented
samples are generated for each real sample from the tail class.

4.3 Fine Tuning with Online Augmented Samples

The augmented samples are generated online to fine tune the network trained
in Phase-I to improve the performance of the tail classes. In each batch, we
sample Nt images from the tail classes, and generate Na augmented samples
online for each of the real samples, which creates a batch including Nt(1 +Na)
samples from the tail classes. The same number of images are also randomly
drawn from the head classes to balance the distribution. Thus, a batch of size
2Nt(1 + Na) is generated online for each fine tuning iteration. We summarize
this process in Alg. 1.

Fine tuning is performed on the layers after the features being extracted.
Since the augmentation is conducted in the feature space, augmented samples
can be generated at any stage of the network. However, the deeper features,
compared to its shallow counterparts, are more linearly separable, which greatly
help the fusion of features from the tail classes and their confusing classes. More-
over, richer spatial information in the lower-level feature maps may introduce
artifacts to bias the model training. We analyze the detailed effect of augmenting
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samples at different depths in Sec. 5.4. We choose the features right before the
last average pooling layer to help with the classification performance and at the
same time to realize a simple design. Since the average pooling layer accumu-
lates features in all spatial locations, the spatial distribution of class-generic and
class-specific features become irrelevant in the augmented samples. Therefore,
when combining, only the ratio between the two types of features needs to be
given. Finally, we use the augmented batches to fine tune the FC classifier layer
as shown in Fig. 5.

5 Experiments

We conduct experiments on the artificially created long-tailed CIFAR dataset [9]
with various simulated imbalance factors, ImageNet-LT [29], Places-LT [29] and
the real world long-tailed iNaturalist 2017 and 2018 [40] datasets to validate
the proposed method. Deep residual network (ResNet) with various depth are
employed in our experiments.

5.1 Long-tailed CIFAR

To demonstrate the effectiveness of the proposed method, long-tailed versions of
CIFAR dataset are generated following the protocol mentioned in [9] as IM =
max({Ni})/min({Ni}). Five datasets of different imbalance factors, {10, 20, 50,
100, 200}, are created for both CIFAR-10 and CIFAR-100, where an imbalance
factor is defined as where Ni is the number of training samples of the i-th class.
ResNet with depth 18 and 34 are adapted for this experiment. We use the original
validation set of the CIFAR-10 and CIFAR-100 to evaluate the performance.

The baseline network and the proposed method are implemented in PyTorch
and run on a Xeon CPU of 2.1 GHz and Tesla V100 GPU. The initial learning
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ResNet-18 ResNet-34
IM 10 20 50 100 200 10 20 50 100 200

Baseline 90.73 87.24 82.32 75.16 70.22 91.03 87.32 82.74 78.58 71.42
CB [9] β = 0.9 90.79 86.61 81.9 75.16 69.16 91.03 87.18 82.48 75.99 70.0

CB [9] β = 0.999 90.54 86.83 81.81 76.4 69.83 90.74 87.24 81.66 74.85 70.08
CB [9] β = 0.9999 89.61 86.05 80.4 75.04 69.21 90.69 86.9 81.06 75.74 68.79
FL [27] γ = 0.5 90.66 86.61 81.55 74.99 69.06 90.76 87.18 81.91 76.5 69.87
FL [27] γ = 1.0 90.59 86.83 81.79 74.07 68.23 90.7 87.24 81.34 76.44 70.02
FL [27] γ = 2.0 90.5 86.05 81.25 75.13 68.27 90.08 86.9 82.44 75.58 69.87

SLA [26] - - - - - 89.58 - - 80.24 -
Ours 91.75 88.54 84.51 80.57 77.06 91.2 89.26 84.49 82.06 75.52

Table 1: Classification accuracy on long-tailed CIFAR-10.

ResNet-18 ResNet-34
IM 10 20 50 100 200 10 20 50 100 200

Baseline 62.59 57.09 48.55 43.65 38.87 63.87 57.55 48.07 43.55 37.5
CB [9] β = 0.9 63.1 57.02 48.15 43.51 38.58 64.14 58.03 48.44 42.94 38.84

CB [9] β = 0.999 61.76 55.3 44.28 32.19 26.61 63.05 54.13 40.89 32.65 26.2
CB [9] β = 0.9999 60.71 53.93 42.02 31.32 25.91 62.28 53.64 40.03 29.82 26.63
FL [27] γ = 0.5 62.64 57.02 47.9 42.82 38.73 64.36 58.45 48.31 42.72 36.18
FL [27] γ = 1.0 62.85 57.22 47.76 42.81 40.47 64.83 58.78 48.24 42.64 37.29
FL [27] γ = 2.0 63.37 57.15 47.0 42.18 40.31 64.48 58.55 47.47 43.33 38.11

SLA [26] - - - - - 59.89 - - 45.53 -
Ours 65.08 58.69 51.9 46.57 42.84 65.29 59.75 52.17 48.51 41.46

Table 2: Classification accuracy on long-tailed CIFAR-100.

rate for Phase-I is 0.1 and decreases by 1/10 every 150 epochs. The feature sub-
network and base classifier are trained for 300 epochs. In Phase-II, the learning
rate is fixed at 0.001. The classifier is fine tuned for 6,400 iterations with a batch
size of 128. For each real sample in tail classes, we choose Na = Nf = 3.

A sample learning curve for long-tailed CIFAR-10 with an imbalance factor
of 200 using ResNet-18 is shown in Fig. 6. The performance of the proposed
method is compared with a baseline setting of the same learning rate but without
the feature space augmentation. After the Phase-II feature space augmentation,
the accuracy of the proposed method on the validation set increases about 7%
during the fine tuning stage, while no noticeable change in accuracy for the
baseline setting is observed.

To further illustrate the improvement, the confusion matrix before Phase-II
and its changes are shown in Fig. 7. After Phase-I training, tail classes show
poor accuracy on the validation set due to insufficient training samples in those
classes. Most mis-classified samples fall into the first several head classes, where
most training samples belong to, as indicated in the left bottom corner of the
confusion matrix. After Phase-II fine tuning, significant improvement is observed
for the diagonal elements of the tail classes. The off-diagonal elements decrease
accordingly. Although the accuracy of the head classes decrease slightly, due to
dramatic improvement in the tail classes, the overall accuracy still increases.

The complete classification performance on different imbalance factors of the
two dataset are shown in Tab. 1 and 2. The method using the same ResNet with
cross-entropy loss and traditional data augmentation on input images is referred
as Baseline in Tab. 1 and 2. In our experiments, we compare our method with
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ImageNet-LT Places-LT
> 100
Many

6 100 & > 20
Medium

< 20
Few

Overall
> 100
Many

6 100 & > 20
Medium

< 20
Few

Overall

Plain Model [29] 40.9 10.7 0.4 20.9 45.9 22.4 0.36 27.2
Lifted Loss [31] 35.8 30.4 17.9 30.8 41.1 35.4 24 35.2
FL [27] 36.4 29.9 16 30.5 41.1 34.8 22.4 34.6
Range Loss [45] 35.8 30.3 17.6 30.7 41.1 35.4 23.2 35.1
FSLwF [15] 40.9 22.1 15 28.4 43.9 29.9 29.5 34.9
OLTR [29] 43.2 35.1 18.5 35.6 44.7 37 25.3 35.9
Ours 47.3 31.6 14.7 35.2 42.8 37.5 22.7 36.4
Ours+FL 47.0 31.3 16.8 35.3 42.2 36.4 24.0 36.0

Table 3: Top-1 classification accuracy on ImageNet-LT and Places-LT.

the state of the arts on addressing the long-tailed problem, including Class-
balanced (CB) loss [9] based method and Focal Loss (FL) from [27] with various
choices of hyper-parameters and augmentation based method [26]. Our method
outperforms all other methods in both datasets.

5.2 ImageNet-LT and Places-LT Dataset

We also evaluate the proposed method on two constructed large-scale long-
tailed datasets ImageNet-LT and Places-LT [29]. ImageNet-LT is a subset of
the ILSVRC2012 dataset. Its training set is drawn from the original training
set following the Pareto distribution with α = 6, which results 115.8K images
from 1000 categories with a maximum of 1280 images per category and a min-
imum of 5 images per category (IM = 256). The original validation set with
balanced 50K images is used as test set in our experiments. Places-LT dataset is
constructed similarly with ImageNet-LT from Places-2 dataset. Finally, 184.5K
images from 365 categories are collected, where the largest class contains 4980
images while the smallest ones with 5 images (IM = 996). The test set contains
balanced 36.5K images.

For fair comparison, we use the same scratch ResNet-10 for ImageNet-LT
and pre-trained ResNet-152 for Places-LT as in [29]. The numerical results and
comparison with other peer methods are reported in Tab. 3. We also evaluate the
combination of other balanced loss methods with the proposed method in these
experiments. The different losses are applied in the Phase-I training. We use
“Ours+FL” to refer the experiments using Focal Loss and “Ours” for ordinary
cross-entropy loss. Both of our methods achieve comparable performance with
the state-of-the-art method.

Note that, “Ours+FL” shows better performance than “Ours” in the ImageNet-
LT dataset while “Ours” is better in Places-LT. Feature maps generated in the
shallow network as ResNet-10 is not as sparse as in ResNet-152. Therefore, as
explained in Sec. 4.3, the feature space augmentation delivers more performance
boost to ResNet-152. On the other hand, our class balanced training batch gen-
eration achieves a similar effect as other balanced loss methods in the Phase-II
fine tuning. But applying those losses in the Phase-I may still improve the per-
formance when poor Phase-I performance affects CAM quality.
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iNaturalist 2017 iNaturalist 2018

Baseline
ResNet-50 60.50 62.27
ResNet-101 61.81 65.19
ResNet-152 65.12 66.17

CB [9]
ResNet-50∗ 58.08 61.12
ResNet-101∗ 60.94 63.88
ResNet-152 64.75 66.97

Ours
ResNet-50 61.96 65.91
ResNet-101 64.16 68.39
ResNet-152 66.58 69.08

Table 4: Top-1 classification accuracy on iNaturalist (∗: results from literature).

5.3 iNaturalist

iNaturalist is a real-world fine-grained species classification dataset. Its 2017
version contains 579,184 training images of 5,089 categories, and its 2018 ver-
sion [40] has 437,513 training samples in 8,142 classes. The imbalance factor for
iNaturalist 2017 is 435 and 500 for iNaturalist 2018. For both versions, there are
three validation samples for each class. We adapt ResNet-50, ResNet-101 and
ResNet-152 in our experiments, all with 224× 224 input image size. The similar
training strategy with CIFAR datasets is adapted for iNaturalist. In Phase-I,
the starting learning rate is 0.1 and reduced every 30 epochs for total of 100
epochs. In Phase-II, fine tuning is performed with a fixed learning rate of 0.001
for 200 iterations. The top-1 classification accuracy for the validation set of the
two datasets are reported in Tab. 4. We compare the proposed method with
class-balanced cross-entropy loss on ResNet-152 and class-balanced focal loss on
ResNet-101/50. Our method has shown the best performance in all the settings.

5.4 Ablation Analysis

One major hyper-parameter in the proposed method is how to separate the head
classes from the tail classes. Specifically, the classes are first sorted in the descent
order by the number of training samples in each class as illustrated in Fig. 2. The
first h classes are chosen as head classes. In order to unify the choice between
different imbalance factors of datasets, we introduce hr ∈ (0, 1) which is the
ratio between the number of samples in the head classes and the total number
of samples. Different hr choices against the Phase-II classification accuracy are
evaluated in Fig. 8. The curves among different datasets show peaks around
hr = 0.95. On the left of peaks, fewer samples or classes are used as the head
class, and thus class-generic features cannot be drawn sufficiently for feature
augmentation. On the right side, fewer classes are selected as the tail classes,
and therefore some classes with insufficient training samples will not be fine
tuned with augmented samples. For consistency, we choose the minimum of h
that satisfies hr ≥ 0.9 in all the CIFAR experiments.

We also investigate the classification performance when applying the feature
space augmentation at different depths of the network. The ResNet architecture
we adapted usually consists of four convolutional blocks. We plug our feature



14 P. Chu et al.

38

40

42

44

46

48

72

74

76

78

80

82

0.35 0.55 0.75 0.95

C
IF

AR
-1

00
 A

cc
ur

ac
y 

(%
)

C
IF

AR
-1

0 
Ac

cu
ra

cy
 (%

)

Ratio of Total Sample as Head Classes

CIFAR10 IM100 CIFAR10 IM200
CIFAR100 IM100 CIFAR100 IM200

Fig. 8: Phase-II performance depen-
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Fig. 9: Classification accuracy by ap-
plying feature space augmentation at
different depth of ResNet-18.

space augmentation after each of the last three convolutional blocks of ResNet-18
on CIFAR dataset. When augmenting features after Block2 and Block3, class-
specific features in Fgu are replaced with the class-specific features in Fgc with
random ratio to generate augmented samples, where spatial information of Fgu is
preserved. The corresponding classification accuracy after Phase-II fine tuning
is shown in Fig. 9. From Fig. 9, one can observe that feature augmentation after
Block4 gains the best performance among different datasets and imbalance fac-
tors. The feature maps closer to the input side contain more spatial information,
which also introduces additional artifacts into the augmented samples. Features
generated by Block4 are directly passed into the global pooling layer where the
noise in the spatial dimension introduced by augmentation can be eliminated.
Moreover, the linearity of the high-level feature space helps the final linear op-
eration of the fusion. We, therefore, apply the feature space augmentation after
Block4. We also compare the performance of only sampling balanced finetuning
batch without augmentation applied, which is refered as “No Aug” in Fig. 9.

6 Conclusion

In this paper, we propose a novel learning scheme to address the problem of
training the deep convolutional neural network based classifier with long-tailed
datasets. In detail, by combining the class-generic features in head classes with
class-specific features in tail classes, augmented samples are online generated
to enhance the performance of the tail classes. Results on long-tailed version
CIFAR-10/100, ImageNet-LT, Places-LT and real-world long-tailed iNaturalist
2017/2018 datasets have shown the effectiveness of proposed method.
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