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Abstract

In spite of its urgent importance in the era of big data, testing high-dimensional pa-
rameters in generalized linear models (GLMs) in the presence of high-dimensional nuisance
parameters has been largely under-studied, especially with regard to constructing powerful
tests for general (and unknown) alternatives. Most existing tests are powerful only against
certain alternatives and may yield incorrect Type I error rates under high-dimensional
nuisance parameter situations. In this paper, we propose the adaptive interaction sum of
powered score (aiSPU) test in the framework of penalized regression with a non-convex
penalty, called truncated Lasso penalty (TLP), which can maintain correct Type I error
rates while yielding high statistical power across a wide range of alternatives. To calcu-
late its p-values analytically, we derive its asymptotic null distribution. Via simulations,
its superior finite-sample performance is demonstrated over several representative existing
methods. In addition, we apply it and other representative tests to an Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data set, detecting possible gene-gender interactions for
Alzheimer’s disease. We also put R package “aispu” implementing the proposed test on
GitHub.

Keywords: Adaptive Test, Truncated Lasso Penalty, Gene-Environmental Interaction

1. Introduction

Statistical inference in high-dimensional models has been attracting increasing attentions,
owing to the surge of high-dimensional data in many fields, such as in genetics and ge-
nomics. Accordingly, there is an increasing body of literature on significance testing in
high-dimensional linear or generalized linear models (GLMs), mostly on low-dimensional
regression coefficients. For example, Wasserman and Roeder (2009); Meinshausen et al.
(2009) proposed random sample-splitting approaches to testing on a regression coefficient
of interest in a high-dimensional model. Based on the idea of polyhedral selection, Lee
et al. (2016) proposed an exact post-selection estimator conditional on the selection event.
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Meanwhile, many researchers exploit the idea of projection or bias-correction to handle the
impact of regularization and high-dimensional nuisance parameters (e.g., Javanmard and
Montanari, 2014; Van de Geer et al., 2014; Zhang and Zhang, 2014; Lee et al., 2016; Shi
et al., 2019; Ma et al., 2020). In spite of exciting progresses in the last few years, little work
has been done to construct more general and powerful tests on high-dimensional regression
coefficients in GLMs in the presence of high-dimensional nuisance parameters.

It is noted that, for high-dimensional problems, classical or popular tests may not per-
form well, even if their asymptotic properties (such as their null distributions) are well
established. Fan (1996) gave a simple example: given a p-dimensional vector follows a nor-
mal distribution, y ∼ N(θ, I), to test H0: θ = 0 versus HA: θ 6= 0, the likelihood ratio test,
Wald test, and score test statistics all share the same form T = ||y||22, which is a sum of
squares-type statistic; even under an alternative HA with ||θ||22 →∞ as p→∞, as long as
||θ||22 = o(

√
p), the power of the three tests vanishes (i.e. tending to the Type I error rate);

in contrast, some adaptive tests can be much more powerful. This example convincingly
demonstrates the importance of considering the power of a test in high-dimensional settings
and this article aims at filling this gap.

This work was motivated by a critical problem in genetics to identify interaction effects
between a genetic marker set and a complex disease like Alzheimer’s. Although univari-
ate single nucleotide polymorphism (SNP) based analyses for identifying gene-environment
(G × E) interactions are popular in the community, relatively few of the findings have
been replicated (Manuck and McCaffery, 2014). To improve statistical power and en-
hance results interpretation, many genetic association studies have now considered an alter-
nate/supplementary approach to jointly test the interaction effect of all SNPs in a biological
meaningful marker set, e.g., SNPs in a gene or a pathway (Lin et al., 2013, 2016; Su et al.,
2017). Jointly testing the interaction effect of a marker set can be formulated as testing on
a high-dimensional parameter (i.e., interactions between possibly high-dimensional genetic
variants and environmental factors) in the presence of high-dimensional nuisance param-
eters (to adjust for the main effects of the genetic variants and other covariates) under a
high-dimensional GLM. Since such interactions in human genetics have proven difficult to
detect, while specific interaction patterns are largely unknown, it is critical to develop and
apply more general and adaptive tests that are powerful across a wide range of unknown
alternatives.

To account for impact of high-dimensional nuisance parameters in G × E interactions
testing problems, some variance-component score tests with the sum of squares-type statis-
tics, coupled with the ridge regression to estimate the nuisance parameters under the null,
have been proposed (Lin et al., 2013, 2016; Su et al., 2017). For example, Lin et al. (2013)
proposed a test called gene-environment set association test (GESAT) by assuming that
the G × E interaction effects follow an unspecified distribution with mean 0 and variance
υ2, then testing H0 : υ2 = 0 for the overall G × E interaction. By noting that the ridge
estimator is

√
n-consistent under suitable conditions (Knight and Fu, 2000), they derived

the theoretical null distribution for GESAT. While enticing, the
√
n-consistency of the ridge

estimator or asymptotic normality of the score vector may not be applicable under high-
dimensional situations with finite samples, leading to incorrect Type I error rates. As to
be shown in simulations, as the number of the covariates increases, methods based on the
ridge penalty yield incorrect Type I error rates and substantial power loss.
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Meanwhile, bias-correction based methods have been proposed (Dezeure et al., 2017;
Zhang and Cheng, 2017). For example, inspired by the desparsifying Lasso estimator
(Van de Geer et al., 2014) and the data-splitting strategy (Wasserman and Roeder, 2009),
Zhang and Cheng (2017) proposed a three-step bootstrap-assisted procedure based on a
supremum-type statistic to test on high-dimensional regression coefficients in high dimen-
sional regression models. This method can control the Type I error rate well and yield
high statistical power under highly sparse alternatives. However, due to the accumulation
of estimation errors of the desparsifying Lasso estimator, the estimation errors might be
out of control if a burden-type or sum of squares-type statistic is used (Zhang and Cheng,
2017). Moreover, although the data-splitting strategy adopted therein helps control the
Type I error rate, it reduces the power as well.

To address those challenges, we propose an adaptive test, referred to as adaptive interac-
tion sum of powered score (aiSPU) test, for testing high-dimensional regression coefficients
under GLMs with high-dimensional nuisance parameters. The aiSPU test is new and ap-
pealing in two aspects. First, in aiSPU we apply the truncated Lasso penalty (TLP) (Shen
et al., 2012), a non-convex penalty, to estimate the high-dimensional nuisance parameter
under the null hypothesis. The TLP estimator consistently reconstructs the oracle esti-
mator under mild assumptions, helping maintain correct Type I error rates under a high-
dimensional situation. In contrast, the consistency of a convex penalty-based estimator,
such as the ridge or Lasso estimator, holds under much stronger conditions. For example,
the Lasso estimator is consistent under a strong irrepresentable (Wainwright, 2009), while
the ridge estimator is consistent under the assumption that the sample covariance matrix
of all the covariates converges to a non-singular matrix (Knight and Fu, 2000). Second,
because the true alternative hypothesis is generally complex and unknown, we apply the
idea of an adaptive testing (Pan et al., 2014). We first construct a group of interaction sum
of powered score (iSPU) tests such that hopefully at least one of them would be powerful
for a given alternative. The proposed adaptive test then data-adaptively selects the one
with the most significant result with a proper adjustment for multiple testing to control the
Type I error rate, and thus achieves high power.

To apply the proposed test, we establish its asymptotic null distribution. In particu-
lar, we derive the joint asymptotic distribution for a set of the iSPU tests. The marginal
distribution of each iSPU test statistic converges to either a normal distribution or an
extreme value distribution under some conditions. Based on the theoretical results, we de-
velop an asymptotic way to calculate the p-values for the iSPU and aiSPU simultaneously.
We demonstrate the superior performance of the proposed test with some theoretical power
analyses under local alternatives. Further, as to be shown in simulations and real data anal-
yses, the proposed aiSPU test would yield correct Type I error rates and higher statistical
power than several existing methods under a wide range of high-dimensional alternative
hypotheses, ranging from highly dense to highly sparse alternatives.

The rest of the paper is organized as follows. In Section 2, we review two represen-
tative tests before proposing our new aiSPU test. Results for simulations and analysis
of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data are presented in Sec-
tions 3 and 4, respectively. We conclude with a short discussion in Section 5. All tech-
nical details, proofs, and extensive simulation results are relegated to Appendices. We
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have released open source R package aispu implementing the proposed test on GitHub
(https://github.com/ChongWu-Biostat/aispu), and will upload it to CRAN soon.

2. Methods

2.1. Notation and model

Even though our study was motivated by detecting gene-environmental interactions, our
proposed method is general and applicable to many other problems, thus we introduce our
method in a general framework. Suppose we have n independent and identically distributed
(IID) observations {(Yi, Zi, Xi) : i = 1, 2, . . . , n}, for which we denote an n-vector outcome
(response) Y = (Y1, ..., Yn)′, an n × q matrix Z = (Z ′1, ..., Z

′
n)′ for q nuisance covariates

(including the intercept term) with Zi = (Zi1, . . . , Ziq), and an n×p matrix X = (X ′1, .., X
′
n)′

for p variables of interest with Xi = (Xi1, . . . , Xip). Without loss of generality, we assume
that E(Xi) = 0 as otherwise each Xi can be re-centered by its sample mean. We consider
a generalized linear model with the canonical link function,

E(Y |X,Z) = g−1(Xβ + Zϑ), (1)

where p-vector β and q-vector ϑ are unknown parameters, and g is the canonical link
function. We are interested in testing

H0 : β = 0 versus H1 : β 6= 0, (2)

while treating ϑ as the high-dimensional nuisance parameter. We target the situation with
“large q and p.”

Remark 1 Numerous real-world problems can be formulated as testing high-dimensional
parameters under GLMs in the presence of high-dimensional nuisance parameters. For ex-
ample, when testing the interaction between a genetic marker set and a set of environmental
variables, we can let Z be the environmental factors, genotypes in the marker-set, and some
important covariates, and let X be the SNP-environment interaction variables. Here we con-
sider a large number of SNPs in a marker-set, leading to high-dimensional q and p. Another
example is testing gene-gene interactions (Cordell, 2009), a problem can be formulated with
Z being all the SNPs from two genes and X being their interactions.

2.2. Related existing methods

In this subsection, we review two representative methods: a variance component type test
called GESAT (Lin et al., 2013) and a bias-correction based test (Zhang and Cheng, 2017).

By assuming βj ’s follow an arbitrary distribution with mean zero and variance υ2,
GESAT converts testing H0 : β = 0 to testing H ′0 : υ2 = 0, which can be conducted
via the following sum of squares-type statistic: Q = (Y − µ(ϑ̂))′XX′(Y − µ(ϑ̂)), where
µ(ϑ̂) = g−1(Zϑ̂) and ϑ̂ is estimated under the null model,

E(Y |Z) = g−1(Zϑ). (3)

To account for high-dimensionality of ϑ, GESAT applies the ridge regression to estimate
ϑ under the null model (3). Using the property that the ridge estimator ϑ̂ is

√
n-consistent
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under suitable conditions (Knight and Fu, 2000), they showed that test statistic Q asymp-
totically follows a mixture of χ2 distributions under the H0, thus p-values can be calculated
accordingly (Lin et al., 2013).

Meanwhile, a three-step bootstrap-assisted procedure (Zhang and Cheng, 2017) has been
proposed to test on H0. First, it randomly splits the sample into two sub-samples. Second,
it screens out the irrelevant variables of X based on the first sub-sample. After screening,
denote the reduced model S = {j : j 6∈ {irrelevant variables}}. Third, it computes the
desparsifying Lasso estimator {β̌j}j∈S and the corresponding variance estimator w̌jj based
on the second sub-sample. The non-studentized (NST) and studentized (ST) supremum
type statistic are maxj∈S

√
n|β̌j | and maxj∈S

√
n|β̌j |/

√
w̌jj , respectively. Zhang and Cheng

(2017) then applied a bootstrap-assisted procedure to calculate their p-values.

Though appealing, both tests have limitations. First, a test based on the ridge penalty
(such as GESAT) might yield incorrect Type I error rates when the dimensionality of
nuisance parameters ϑ (i.e., q) is high. Note that the null distribution of GESAT is derived
based on the

√
n-consistent ridge estimator, which requires that the sample covariance

matrix of Zi converges to a non-singular matrix (Knight and Fu, 2000); this assumption
will not hold when q > n. This may explain incorrect Type I error rates of GESAT as
to be shown in simulations. Second, the existing tests might be powerless under some
alternatives. It is well known that a sum of squares-type statistic (for example, GESAT)
and a supremum-type statistic (for example, NST and ST) are more powerful for dense and
highly sparse nonzero signals, respectively (Pan et al., 2014). However, for moderately dense
nonzero signals, neither may be powerful: there might not exist one or few components
of β to represent a strong departure from H0, whereas a sum of squares statistic might
accumulate too much noises or estimation errors through summing over the non-informative
components. Furthermore, both NST and ST only use a sub-sample to construct test
statistics, further reducing power. As to be shown in simulations, the above methods would
lose substantial power under some alternatives.

2.3. New test statistics

There are two main challenges for constructing a powerful test in a high-dimensional setting.
First, estimating the high-dimensional ϑ under H0 is not trivial. Second, because the
underlying association patterns are unknown, it is crucial to construct an adaptive test
such that it can maintain high power across a wide range of alternatives.

To accurately estimate the high-dimensional ϑ under the null model (3), we apply pe-
nalized regression by imposing the truncated Lasso penalty (TLP) (Shen et al., 2012) on
the nuisance parameter ϑ. For gene-environmental interaction problems, we can impose no
penalty on a subset of some pre-specified low-dimensional covariates to keep some important
covariates, such as age and gender. TLP is defined as TLP(x, τ) = min(|x|, τ) for a scalar x
and a tuning parameter τ . It can be regarded as the Lasso penalty for a small |x| ≤ τ , but
imposes no penalty for a large |x| > τ . We use 10-fold cross-validation to select the tuning
parameters for TLP and denote ϑ̂ as the TLP estimate of ϑ under H0.

To maintain high power across various alternatives, we construct an adaptive test. Up
to some constant, the score vector U = (U1, . . . , Up)

′ for β in (1) is Uj = 1
n

∑n
i=1(Yi−µ̂0i)Xij
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for 1 ≤ j ≤ p, where µ̂0i = g−1(Ziϑ̂). Denote

Uij = (Yi − µ̂0i)Xij

for 1 ≤ i ≤ n and 1 ≤ j ≤ p. We first propose a class of test statistics called interaction
sum of powered score (iSPU) with power index γ > 0 as

L(γ) =

p∑
j=1

( 1

n

n∑
i=1

Uij

)γ
.

Since L(γ)1/γ → max1≤i≤p
∣∣ 1
n

∑n
i=1 Uij

∣∣ as even integer γ →∞, we define L(∞) as

L(∞) = max
1≤j≤p

n
(

1
n

∑n
i=1 Uij

)2
σ̌jj

,

where Σ̌ = (σ̌kj)p×p is the covariance matrix with σ̌kj = cov[U1k, U1j ] for 1 ≤ k, j ≤ p.
As to be shown in simulations, the power of L(γ) depends on the unknown β under

specific alternatives. Since in general there is no uniformly most-powerful test, to maintain
high power across various alternatives, we propose the adaptive interaction sum of powered
score (aiSPU) to combine the multiple iSPU tests with different γ:

TaiSPU = min
γ∈Γ

PL(γ),

where PL(γ) is the p-value for L(γ) and Γ contains the candidate values of γ, e.g., Γ =
{1, 2, . . . , 6,∞}. We take the minimum p-value to approximately select the most powerful
candidate test; TaiSPU is the test statistic, but no longer a genuine p-value.

To emphasize the penalty we use, in some places, we denote iSPU(γ) and aiSPU explic-
itly with the penalty, say TLP, as iSPU(TLP,γ) and aiSPU(TLP), respectively.

Remark 2 Accurate estimation of ϑ under the null is crucial in the situation with a high-
dimensional nuisance parameter. Because the

√
n-consistency of the ridge estimator may

not hold under a (relatively) high-dimensional situation, a test coupled with ridge regres-
sion may yield incorrect Type I error rates. The estimation errors of the desparsifying
Lasso estimator might be out of control if a burden-type or sum of squares-type statistic is
used (Zhang and Cheng, 2017), while the three-step bootstrap-assisted procedure based on a
supremum-type statistic will not be powerful under dense alternatives. In contrast, because
TLP enjoys the selection consistency and optimal parameter estimation under some mild
conditions (Shen et al., 2012), aiSPU controls Type I error rates and achieves high power
under a wide range of high-dimensional situations.

Remark 3 The proposed aiSPU test can be viewed as an extension of the aSPU test (Wu
et al., 2019) to high-dimensional nuisance parameter situations. The aSPU test was pro-
posed for the situations with large p but small q, while the aiSPU test targets situations with
large p and large q. Thus, the Type I error rate can be controlled by aiSPU, but not by
aSPU in high-dimensional nuisance parameter situations (large q).

Remark 4 Our proposed test may share some limitations of the standard score test with
possible loss of power under HA, which can be fixed by taking an approach as shown in Wang
(2016).
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2.4. Asymptotic null distribution

In this subsection, we derive the asymptotic null distribution for iSPU. Before stating
the theorem, we define necessary notation as follows. Let µ0 ≡ (µ01, . . . , µ0n)′ be the
conditional mean of Y under H0, where µ0i = E(Yi|H0) = E(Yi|Zi) = g−1(Ziϑ

0) and ϑ0

is the population value of ϑ. Write Sij = (Yi − µ0i)Xij for 1 ≤ i ≤ n and 1 ≤ j ≤ p. We
further define the corresponding covariance matrix Σ = (σkj)p×p with σkj = Cov[S1k, S1j ]
for 1 ≤ k, j ≤ p. For simplicity, we denote L(γ, µ0) =

∑p
j=1 L

(j)(γ, µ0) with L(j)(γ, µ0) =(
1
n

∑n
i=1 Sij

)γ
for 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then the mean and variance of L(γ, µ0) can

be denoted by ψ(γ) =
∑p

j=1 ψ
(j)(γ) with ψ(j)(γ) = E

[
L(j)(γ, µ0)|H0

]
, and by ω2(γ) =

var[L(γ, µ0)|H0], respectively.

Theorem 1 shows that (1) each iSPU(γ) converges to either a normal distribution or
an extreme value distribution; (2) iSPU(∞) and iSPU with a finite γ are asymptotically
independent under the H0.

Theorem 1.Under assumptions C1–C7 stated in Appendix A and under the null hypothesis
H0, for any fixed and finite Γ set we have:
(i) For finite candidate values γ in Γ, that is, Γ′ = Γ \ {∞}, the vector of the iSPU test
statistics [{L(γ) − ψ(γ)}/ω(γ)]

′
γ∈Γ′ converges weakly to a normal distribution with mean 0

and covariance matrix R(Γ′) = (ρst), i.e., N(0,R(Γ′)) as n, p→∞, where ψ(γ), ω(γ), and
R(Γ′) are defined in Appendix B.
(ii) For γ = ∞, let ap = 2 log p − log log p, for any real number x, Pr{L(∞) − ap ≤ x} →
exp{−π−1/2 exp(−x/2)}.
(iii) [{L(γ) − ψ(γ)}/ω(γ)]

′
γ∈Γ′ is asymptotically independent of L(∞), that is, the joint

distribution of [{L(γ)− ψ(γ)}/ω(γ)]
′
γ∈Γ′ and L(∞)− ap converges weakly to the product of

the limiting distributions given in (i) and (ii).

Remark 5 We leave the technical details and assumptions into the Appendices A–C. Intu-
itively speaking, L(γ, µ0) with a finite γ follows a normal distribution asymptotically when
Sij1 and Sij2 are independent for j1 6= j2. Under moment assumptions that put constraints
on correlation structures, we prove that the asymptotically normal still holds for L(γ) with a
finite γ and a TLP-based estimate ϑ̂. For L(∞), we derive its distribution based on theorems
in Cai et al. (2014). Of note, Wu et al. (2019) derived a similar Theorem under a much
simpler context; our current proof is different and more challenging due to the technical
complications under the adopted penalized regression framework to deal with the presence of
high-dimensional nuisance parameters.

Remark 6 In Theorem 1, we assume technical assumptions, such as a sparsity assumption
regarding the effect from Z (C3) and a feature selection assumption involving Hellinger
distance (C7). Because C7 is hard to validate in practice, we propose a stronger than
needed beta-min like condition C7*, which is a sufficient assumption for C7. As to be
shown in simulations, when the effect from Z is non-sparse but with sparse strong signals,
our proposed method still works. In other words, under situations where C3 and C7* have
been violated but C7 might hold, our proposed method still works.

These technical assumptions are used to establish the difference between µ0 and µ̂0 is a
small order term, which can be ignored in the theoretical derivation. Once we have a good
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estimate of the conditional mean of Y under H0 (i.e., µ0), our proposed method works. In
principle, our proposed aiSPU test can be extended to consider higher-order interactions
within Z if µ0 can be well estimated. We leave this interesting topic for future study.

Next, we briefly discuss how to calculate p-values and leave the detailed procedures into
the Appendix B. According to Theorem 1, we can calculate p-values asymptotically. The
p-values for individual iSPU(γ) can be calculated via either a normal or an extreme value
distribution. The p-value for aiSPU can be calculated by the following two steps. First, by
cov[L(t, µ0), L(s, µ0)] = o(pn−(t+s)/2) if s+t is odd and by Theorem 1 part three, iSPU with
even γ, odd γ, γ = ∞ are asymptotically independent to each other (see Appendix B for
details). Because for a finite γ, L(γ) − ψ(γ)/ω(γ) follows a standard normal distribution,
taking the minimum p-value as test statistics equals to taking the maximum of |L(γ) −
ψ(γ)|/ω(γ) as the test statistics. Further define tO = maxodd γ∈Γ

∣∣(L(γ) − ψ(γ)
)∣∣/ω(γ)

and tE = maxeven γ∈Γ

(
L(γ)−ψ(γ)

)
/ω(γ) as the observed test statistics from the data and

calculate the p-values for tO, tE , and L(∞) as pO = Pr[maxodd γ∈Γ |
(
L(γ)−ψ(γ)

)
/ω(γ)| >

tO], pE = Pr[maxeven γ∈Γ

(
L(γ) − ψ(γ)

)
/ω(γ) > tE ], and p∞ equals to the p-value of

iSPU(∞). Specifically, we use pmvnorm() in R package mvrnorm to calculate the normal
tail probabilities of pO and pE . Second, we take the minimum p-value from the above three
categories, that is, pmin = min{pO, pE , p∞}. By the asymptotic independence among pO,
pE , and p∞, the asymptotic p-value for the aiSPU test is paiSPU = 1− (1− pmin)3.

Of note, calculating ψ(γ), ω(γ) and R(Γ′) involves Σ = (σkj), which is unknown and has
to be estimated in practice. We apply either the banding method of Bickel and Levina (2008)
or a parametric bootstrap-based method to estimate covariance matrix Σ (see Remark S2
in Appendix B for details).

Meanwhile, we can calculate p-values by the parametric bootstrap (see Appendix B for
details). The parametric bootstrap may estimates more accurately the p-values than the
asymptotics-based method, but it is highly computational extensive, especially at a high
significance level. To facilitate data analyses in the wider community, we have developed
an R package “aispu”, implementing both methods.

Remark 7 We recommend using the asymptotic-based method when p is large and using
the parametric bootstrap-based method when p is small. Our proposed asymptotic-based
method may have a better performance when p is large due to two reasons. First, residual
bootstrap and pairs bootstrap are known to be problematic under a high-dimensional setting
(El Karoui and Purdom, 2018). We expect that parametric bootstrap may have a similar
problem when p is large. Second, by Theorem 1, estimation error can be ignored as both n
and p go to infinity. On the other hand, when p is small, the parametric bootstrap-based
method may achieve superior performance than the asymptotic-based method because the
asymptotic theory in Theorem 1 may not hold.

2.5. Asymptotic power analysis

We analyze the asymptotic power of the aiSPU test. Under an alternative HA : β 6= 0, we
first derive approximations to the mean and variance of L(γ, µ0) with γ < ∞, denoted by
ψA(γ) = E[L(γ, µ0)|HA] and by ω2

A(γ) = var[L(γ, µ0)|HA], respectively. Then we derive
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the asymptotic power under a local alternative. In the end, we discuss the choice of the Γ
set. To save space, we put technical details into the Appendix D.

First, we define some necessary notations. Let β0 be the true value of β and µA0 ≡
(µA01, . . . , µ

A
0n)′ with µA0i = E(Yi|Xi, Zi;HA) = g−1(Xiβ

0 +Ziϑ
0) being the conditional mean

of Yi under HA. We further define ψ̃(γ) = E
[
L(γ, µA0 )|HA

]
and ω̃2(γ) = var[L(γ, µA0 )|HA].

The high dimensionality of Xi makes the identification of the leading order term of the
test statistic L(γ) quite challenging. Here, we consider a local alternative such that for
j = 1, 2, . . . , p, ∆j = E[(µA01 − µ01)X1j ] = O(n−1/2(log p)κ) with κ > 0, which allows the
identification of the leading order term. This condition restricts that ∆j is a small term,
which further implies that ψA(γ) − ψ̃(γ) and ω2

A(γ) − ω̃2(γ) are relatively small. Under
the local alternative, we denote the set of locations of the signal variables by Sη = {j :
∆j 6= 0; 1 ≤ j ≤ p} and the cardinality of Sη by p1−η, where 0 ≤ η ≤ 1 is the parameter
controlling the sparsity level.

We now analyze the power of the proposed aiSPU test. Let pα be the critical threshold
for the aiSPU test under H0 with the significance level α. Because TaiSPU = minγ∈Γ PL(γ),
the statistical power underHA satisfies Pr(TaiSPU = minγ∈Γ PiSPU(γ) < pα) ≥ Pr(PiSPU(γ) <
pα). Thus the asymptotic power of aiSPU is 1 if there exists a γ ∈ Γ such that Pr(PiSPU(γ) <
pα) → 1. In other words, to study the asymptotic power of the aiSPU, we only need to
discuss the power of iSPU(γ) for γ ∈ Γ. For that purpose, Theorem 2 shows the asymptotic
distribution of L(γ, µ0) with any finite and fixed γ under 0 ≤ η < 1/2.

Theorem 2.Under the assumptions C8–C9 in Appendix A and the alternative HA with
0 ≤ η < 1/2 and ∆j = O(n−1/2(log p)κ) with κ > 0, for any fixed and finite Γ′ set,
[{L(γ, µ0)−ψA(γ)}/ωA(γ)]

′
γ∈Γ′ converges weakly to a multivariate normal distribution with

mean zero as n, p→∞.

Remark 8 Under the local alternative 0 ≤ η < 1/2, by noting that (log p)cκ/pη = o(1),
we have ψA(γ) − ψ̃(γ) =

∑p
j=1

∑γ
c=1

(
γ
c

)
∆c
jO(n−(γ−c)/2) = o(pn−γ/2). Similarly, we have

ω2
A(γ) − ω̃2(γ) = o(pn−γ). Then a proof similar to that of Theorem 1 for any fixed and

finite Γ set (part one) yields Theorem 2.
For simplicity, we assume µ0 is known under HA and derive Theorem 2 with L(γ) =

L(γ, µ0). While this simplification ignores the estimation errors of µ̂0 and thus induces
a gap between Theorem 2 and our proposed test, Theorem 2 still provides useful insights
regarding which iSPU(γ) achieves the highest power under different alternatives. These
insights are in line with our simulation results. To establish Theorem 2 with estimated µ̂0 is
quite challenging because we need to estimate and quantify the estimation error of µ̂0 under
a misspecified model, which is unknown and an interesting question. We leave it for future
research.

Theorem 2 gives the asymptotic power of iSPU(γ) at the significance level pα as

Pr(PiSPU(γ) < pα) =

Φ
{
ψA(γ)−ψ̃(γ)−zpα ω̃(γ)

ωA(γ)

}
, γ is even,

Φ
{ψA(γ)−ψ̃(γ)−zpα/2 ω̃(γ)

ωA(γ)

}
+ Φ

{
−

ψA(γ)−ψ̃(γ)+zpα/2 ω̃(γ)

ωA(γ)

}
, γ is odd,

where Φ and zpα is the standard normal cumulative distribution function and its (1− pα)th
quantile, respectively. Because ω̃(γ)/ωA(γ) is bounded, the asymptotic power of iSPU(γ) is
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mainly determined by {ψA(γ)−ψ̃(γ)}/ωA(γ). Further note that ωA(γ) is of order p1/2n−γ/2

and thus the power goes to 1 if (ψA(γ)−ψ̃(γ))nγ/2p−1/2 →∞. In particular, the asymptotic
power of iSPU(1) and iSPU(2) goes to 1 if p−1/2n1/2

∑
i ∆i →∞ and p−1/2n

∑
i ∆2

i →∞,
respectively.

Note that iSPU(∞) is expected to lose power substantially when maxj |∆j | is small, i.e.,
maxj |∆j | = o(log(p)1/2n−1/2) (Cai et al., 2014), while iSPU(1) and iSPU(2) are expected to
be powerful under dense but weak signals (e.g., maxj |∆j | = o(n−1/2)) alternatives. Thus,
we discuss dense alternatives (0 ≤ η < 1/2) and sparse alternatives (η ≥ 1/2) separately.

Under different dense alternatives, different iSPU(γ) tests achieve the highest power. To
further study the power of different iSPU tests and gain insights about how to choose the
Γ set, we consider a particular alternative where the ∆j is fixed at the same level. To be
specific, we consider the local alternative such that ∆1 = · · · = ∆p = ∆ = n−1/2r1/2, where
r → 0 as n, p→∞. As shown in the Appendix D, under this alternative, iSPU(1) is more
powerful than any other iSPU(γ) tests. Similarly, we show that iSPU(2) is asymptotically
more powerful than other iSPU(γ) tests under the alternative where the absolute values of
the ∆j are the same but about half being positive while the other half being negative.

We then briefly discuss the sparse alternatives with η > 1/2. Under the sparse HA with
η ≥ 1/2, any iSPU test with a finite γ loses power. For example, for any η < 1/2, the power
of iSPU(1) converges to 1 when p−1/2n1/2

∑
j ∆j → ∞; however, ∆j = O

(
n−1/2(log p)κ

)
and

∑
j ∆j = p1−ηO

(
n−1/2(log p)κ

)
, leading to p−1/2n1/2

∑
j ∆j ∼ p1/2−η(log p)κ → 0 when

η > 1/2. Thus the asymptotic power of iSPU(1) is strictly less than 1 when η ≥ 1/2.
For other finite γ, we have similar results. On the other hand, a supremum-type test like
iSPU(∞) is known to be powerful against sparse alternatives (Cai et al., 2014), therefore,
the asymptotic power of aiSPU is 1 if that of iSPU(∞) converges to 1.

Overall, we recommend including small γ values such as 1, 2 to maintain high power
under dense alternatives. As to be shown in simulations, iSPU with a medium γ value is
often the most powerful in a finite sample. To achieve a balance between the asymptotic and
finite-sample performances, including medium γ values such as 3, . . . , 6 in Γ is recommended.
This recommendation is also supported by our previous studies (Xu et al., 2016; Wu et al.,
2019). Because iSPU(∞) is powerful under the sparse alternative, we recommend including
∞ in Γ. In summary, we recommend use Γ = {1, 2, . . . , 6,∞} as our default setting.

3. Simulations

3.1. Simulation settings

To facilitate fair and unbiased comparisons, we adopted the simulation settings similar to
those in Lin et al. (2013); Zhang and Cheng (2017).

Simulation settings for G× E interactions. We simulated genotypes as in Wang and
Elston (2007). First, a latent vector s = (s1, . . . , sp)

′ was generated from a multivariate
normal distribution N(0,V), where V = (Vkj) had a first-order autoregressive covariance
structure with Vkj = ρ|k−j|. Second, a haplotype was generated by dichotomizing the la-
tent vector s with some pre-specified minor allele frequencies (MAFs), each of which was
randomly sampled from a uniform distribution between 0.1 and 0.3 for common variants
(unless otherwise stated for rare variants). Third, the above two steps were repeated to gen-
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erate two independent haplotypes and for subject i, the genotype value Gi = (Gi1, . . . , Gip)
′

was the sum of the two haplotypes. We set ρ = 0 to generate independent SNPs unless
otherwise stated.

As in Lin et al. (2013), we generated a binary outcome by the following logistic regression
model

logit[P (Yi = 1|Zi, Ei, Gi)] = ϑ0 + ϑ1Z1i + ϑ2Z2i + ϑ3Ei + ϑ′4Gi + β′Gi × Ei,

where ϑ0 = log(0.4/0.6), ϑ1 = 0.05, ϑ2 = 0.057, ϑ3 = 0.64, and

ϑ4 = (0.4, . . . , 0.4︸ ︷︷ ︸
q1

,−0.4, . . . ,−0.4︸ ︷︷ ︸
q2

, 0, . . . , 0︸ ︷︷ ︸
p−q1−q2

)′.

Z1 was generated from a normal distribution while Z2 was generated from a Bernoulli
distribution. Environmental variable E was generated from a Bernoulli distribution, taking
on 1 and -1 with an equal probability. Gi × Ei is the gene-environmental interaction for
subject i. As in a case-control study, we sampled n/2 cases and n/2 controls in each data set.
We were interested in testing H0 to see whether there is any gene-environment interaction.
Under HA, the gene-environmental interaction effect patterns are generally complex and
unknown. For example, for xeroderma pigmentosum, there is no main genetic effect, but
both environmental (ultraviolet light) effect and gene-environmental interaction effect exist
(Hunter, 2005). To consider various scenarios, we randomly chose bpsc elements in β to
be non-zero and their values were generated from a uniform distribution U(−c, c) unless
otherwise stated.

Simulation settings for high-dimensional linear models. We generated Xn×p and
Zn×q from a multivariate normal distribution; that is, we had independent draws Xi ∼
N(0,Ξ1) and Zi ∼ N(0,Ξ2) for i = 1, . . . , n, where Ξ1 and Ξ2 were block diagonal sym-
metric matrices. The response Y was generated from a high-dimensional linear model:

Y = Zϑ+ Xβ + ε,

where ϑ = (ϑ1, . . . , ϑq)
′, β = (β1, . . . , βp)

′, and each element of ε followed a standard normal
distribution. We set ϑ1 = ϑ2 = 0.4 and other ϑj = 0. We considered testing H0 and HA in
(2).

Under HA, bpsc elements in β were set to be non-zero, where s ∈ [0, 1] controlled the
level of signal sparsity. The indices of non-zero elements of β were uniformly distributed, and
their values were generated from a uniform distribution U(−c, c) unless specified otherwise.
We set n = 200, q = 1000, and p = 1000.

For each simulation setting, we generated 1,000 data sets to evaluate the empirical size
and power at the significance level α = 0.05. The candidate set of γ for the aiSPU was
taken to be Γ = {1, . . . , 6,∞} unless otherwise stated.

To evaluate the effect of penalization, we further presented the results of aiSPU with two
different ways of estimating the nuisance parameter ϑ under H0. First, we considered the
oracle estimator, which is defined as the MLE with the knowledge/oracle about which co-
variates are non-informative (i.e. their effect size is 0) under H0, denoted as aiSPU(Oracle).

11
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Second, under the situation with n > p, we considered using the MLE to estimate ϑ, denoted
as aiSPU(Full). Note that aiSPU(Full) equals to the aSPU (Wu et al., 2019).

For comparison, under G×E interaction settings, we applied GESAT (Lin et al., 2013)
for common variants, and applied both iSKAT (Lin et al., 2016) and MiSTi (Su et al., 2017)
for rare variants. To confirm that the theoretical null distribution of GESAT may not hold
under a relatively high-dimensional situation, we calculated the p-value of GESAT by a
simulation-based method, denoted as GESAT-sim. As a benchmark, we further considered
the univariate minimum p-value (UminP) test, which first tests for SNP-environment in-
teraction for each SNP, then takes their minimum p-value as the test statistic, and finally
performs a corresponding Bonferroni adjustment. Under high-dimensional linear model
settings, we conducted the three-step procedure with NST and ST statistics (Zhang and
Cheng, 2017).

3.2. Results for G× E interactions

In many set-based G×E testing applications, the number of genetic variants p is relatively
large but still smaller than the sample size n. Thus, we conducted two types of simulations:
n > p or n < p.

Simulations with n > p. First, we conducted simulations with n = 2000, q1 = 2, q2 = 0,
and varying p to evaluate Type I error rates of different tests under different scenarios,
ranging from low-dimensional to relatively high-dimensional. Note that the dimension of
the nuisance parameter ϑ was q = p+ 4, while that of the parameter β being tested was p.
Table 1 shows the empirical Type I error rates, indicating that GESAT (Lin et al., 2013)
yielded an inflated Type I error rate when p was large. Of note, even though by search-
ing a much larger upper bound for the tuning parameter (say,

√
n instead of the default√

n/ log(n)) somewhat alleviated the problem, GESAT still yielded an inflated Type I error
rate. For example, the Type I error rate of GESAT with tuning parameter searching up
to
√
n was 0.253 for the situation with n = 2000 and p = 300. In contrast, GESAT-sim

maintained the correct Type I error rate, confirming that the theoretical null distribution
of GESAT was not applicable when q was relatively large. As expected, aiSPU(Full) main-
tained the correct Type I error rate when q was relatively small and yielded an inflated
Type I error rate when q was large, indicating penalized estimation of ϑ was necessary
when q was relatively large. As expected, both aiSPU(Oracle) and aiSPU(TLP) yielded
well-controlled Type I error rates for all the situations considered.

Next, we studied the effect of the number of non-zero nuisance parameters. Here we
evaluated the performance of iSPU and aiSPU with some popular penalties, such as the
Lasso and ridge. Table 2 shows the results of n = 2000, p = 300, and varying q1 = q2.
When q1 = q2 was relatively large (q1 = q2 = 20 or q1 = q2 = 30), both the ridge and
Lasso yielded slightly conservative Type I error rates and thus power loss (Figure 1). In
contrast, aiSPU(TLP) provided results that were similar to those of aiSPU(Oracle). Again,
GESAT yielded inflated Type I error rates because its theoretical null distribution was not
applicable with relatively larger p and p > n. The results of n = 2000, p = 200, and varying
q1 = q2 show similar conclusions (Table S1 in Appendix E).

To evaluate empirical power, we considered two cases: (a) under relatively low di-
mensional situations; (b) under relatively high-dimensional situations. Figure 1 shows the
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Table 1: Empirical Type I error rates of various tests for G× E interaction in simulations
with n = 2000, q1 = 2, q2 = 0, and varying p. n, p, q1, and q2 stand for the sample
size, number of terms in G × E interaction, number of the positive genetic main
effects, and number of the negative genetic main effects, respectively. * Inflated
Type I error rates.

p 25 50 70 100 200 300 400 500

GESAT 0.061 0.055 0.090* 0.103* 0.277* 0.636* 0.944* 1.000*
GESAT-sim 0.050 0.048 0.062 0.050 0.051 0.044 0.051 0.047
aiSPU(Full) 0.071 0.057 0.080* 0.085* 0.199* 0.551* 0.944* 1.000*
aiSPU(Oracle) 0.067 0.049 0.064 0.052 0.052 0.046 0.057 0.047
aiSPU(TLP) 0.061 0.054 0.057 0.053 0.053 0.042 0.060 0.047

Table 2: Empirical Type I error rates of various tests for G× E interaction in simulations
with n = 2000, p = 300 and varying q1 = q2. n, p, q1, and q2 stand for the sample
size, number of terms in G × E interaction, number of the positive genetic main
effects, and number of the negative genetic main effects, respectively. * Inflated
Type I error rates; ** Conservative Type I error rates.

q1 = q2 2 5 7 10 20 30

GESAT 0.637* 0.636* 0.628* 0.641* 0.657* 0.633*
GESAT-sim 0.043 0.030 0.026 0.010** 0.004** 0.002**
aiSPU(Ridge) 0.058 0.046 0.045 0.027 0.023** 0.017**
aiSPU(Lasso) 0.048 0.039 0.035 0.028 0.023** 0.016**
aiSPU(Full) 0.584* 0.594* 0.598* 0.634* 0.690* 0.712*
aiSPU(Oracle) 0.054 0.057 0.054 0.056 0.062 0.055
aiSPU(TLP) 0.058 0.052 0.057 0.053 0.058 0.057
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powerofdifferentmethodsunderrelativelyhigh-dimensionalsituationswithn=2000,
p=300,andq1=q2=20.BecauseboththeLassoandridgeyieldedslightlyconservative
TypeIerrorrates,aiSPU(Ridge)andaiSPU(Lasso)werelesspowerfulthanaiSPU(TLP).
PerhapsbecauseTLPbetterapproximatedtheoptimalL0constraint(Shenetal.,2012),
aiSPU(TLP)achievedhigherpowerthanaiSPU(MCP)andaiSPU(SCAD).Asabench-
mark,UminPperformedrelativelywellwhenthesignalwassparse.FigureS1showsthat
iSPUwithdifferentγwasmorepowerfulunderdifferentsparsitylevels.However,duetoits
adaptivity,aiSPUwastheoverallwinner(FigureS1inAppendixE).Theresultsforcorre-
latedSNPs(ρ=0.3)orq1=q2=50showedsimilarpatternsasinFigure1andthuswere
relegatedtotheAppendixE(FiguresS2andS3).Underrelativelylow-dimensionalsitua-
tionswithn=2000andp=25or50(FiguresS4andS5),GESATyieldedwell-controlled
TypeIerrorratesandachievedverysimilarpowerasGESAT-simandiSPU(2). Asex-
pected,GESATachievedhigherpowerthaniSPU(∞)underdensesignalsituations,but
lowerpowerthaniSPU(∞)undersparsesignalsituations.Incomparison,aiSPUachieved
robustlyhighpowerundervariousscenarios.Forthesituationwithn=2000andp
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Figure1:PowercomparisonfordifferentmethodsinunderG×Einteractionsimulations
withn=2000,p=300andq1=q2=20.n,p,q1,andq2standforthesample
size,numberoftermsinG×Einteraction,numberofthepositivegeneticmain
effects,andnumberofthenegativegeneticmaineffects,respectively. Wevaried
thesparsitylevels.

Next,similartothatinSuetal.(2017),weconsideredrarevariantsbygenerating
SNPswith MAFsrangingfrom0.005to0.05whilekeepingtheothersimulationaspects
unchanged. Asexpected,whenpwasrelativelyhigh,bothiSKATand MiSTiyielded
inflatedTypeIerrorratesduetothetheoreticalnulldistributionisnotapplicableunder
relativelylargerpandp>nsituations.Incontrast,aiSPU(TLP)maintainedthecorrect
TypeIerrorrateunderrelativelyhigh-dimensionalsituation(TablesS2andS3inAppendix
E).FigureS7showsthepowercomparisonunderthedifferentlowdimensionalsituations.
Again,eventhoughdifferenttestsmaybemorepowerfulundercertainsituations,aiSPU
achievedrobusthighpoweracrossallthesituationsconsidered.
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Simulations with n < p. We conducted simulations with n = 200, p = 1000, q1 = 2,
q2 = 2, and varying sparsity level s. Since GESAT yielded incorrect Type I error rates in
high dimensional settings, the results of GESAT were not shown here.

First, we evaluated the performance of the asymptotic theory in Theorem 1 for finite
samples. Table 3 shows the empirical Type I error rates and statistical power under s =
0.005. The iSPU and aiSPU yielded well-controlled Type I error rates. The results of
the tests based on asymptotics were close to those based on the bootstrap, supporting
Theorem 1. The results of other simulation settings (s = 0.001, s = 0.01,s = 0.05, s = 0.2,
and informative variables in β were generated from a uniform distribution U(0, c)) showed
similar patterns and were relegated into the Appendix E (Tables S4–S8). We further studied
the situation when both main effects and interaction effects exist for the same set of SNPs
and again showed similar patterns as expected (Table S9 in Appendix E).

Table 3: Empirical Type I errors and power (in percentage) of various tests under G × E
interactions with p = 1000 and n = 200. Zero signal strength c = 0 represents
Type I errors, while c 6= 0 represents powers. The sparsity level was s = 0.005,
leading to 5 non-zero elements in β. The results outside and inside parenthe-
ses were calculated from parametric bootstrap- and asymptotics-based methods,
respectively.

c 0 1 2 3 4 5

iSPU(1) 4.9 (4.8) 5.9 (5.6) 6.2 (6.1) 6.4 (6.6) 5.8 (6) 5.8 (5.7)
iSPU(2) 2.6 (5.2) 6.8 (11.8) 22.2 (28.5) 43.5 (47.5) 58.2 (61.3) 64.2 (67.8)
iSPU(3) 5.8 (5.6) 8.5 (8.1) 29.9 (28.7) 52.2 (51.4) 63.9 (62.1) 70.3 (69.2)
iSPU(4) 3 (3.9) 14.9 (17.1) 65.7 (67.1) 89.7 (90.4) 96 (96) 98.2 (98.4)
iSPU(5) 5.9 (5) 17 (15.6) 61.5 (60) 82.8 (81.3) 90.1 (88.9) 92.3 (92.5)
iSPU(6) 3.7 (3.2) 21.8 (19) 75.6 (74) 94.9 (93.7) 98.4 (97.9) 99.2 (99.2)
iSPU(∞) 8.5 (7.5) 26.8 (22.2) 85 (83.3) 97.6 (97.4) 99.6 (99.6) 100 (100)
aiSPU 5.8 (6.1) 20.7 (21.5) 79.4 (80.5) 95.4 (96.1) 98.8 (99.4) 99.8 (99.7)

Next, we compared statistical power. Figure 2 shows the empirical power for the tests
under different sparsity levels s. When the signal was highly sparse, iSPU(∞) was more
powerful than other tests (s = 0.001 and s = 0.005). As signal became relatively sparse
(s = 0.05), iSPU(4) was the most powerful, closely followed by iSPU(6) and aiSPU, demon-
strating the power gain by using some iSPU(γ) test with 2 < γ < ∞ in a finite sample
situation. When the signal became relatively dense with different association directions
(s = 0.2), iSPU(2) was more powerful. For last sub-figure of Figure 2, we generated non-
zero values of the parameter from a uniform distribution U(0, c) instead, and iSPU(1) was
the winner. All these simulation results confirmed the previous asymptotic power analysis.
By combining information from different iSPU tests, aiSPU was an overall winner, either
achieving the highest power or having power close to that of the winner in any setting. In
comparison, UminP achieved relatively high power when the signal was sparse (s = 0.001,
s = 0.005, and s = 0.01), but lost power substantially when the signal was dense (s = 0.05
and s = 0.2).
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Figure2:PowercomparisonfordifferentmethodsunderG×Einteractionsimulationswith
n=200,p=1000. Wevariedthesparsitylevels.Inlastsub-figure,wegenerated
informativevariablesinβfromauniformdistributionU(0,c).

Next,webrieflydiscussedthesensitivityoftheaiSPUtesttothechoiceofΓset.Figure3
showstheresultsofaiSPUwithdifferentΓsetsunderdifferentsparsitylevels(s=0.01,
s=0.05,ands=0.
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2),indicatingthattheaiSPUtestwasrobusttothechoiceofΓ.The
resultsforothersettingsshowedsimilarpatternsandwererelegatedtotheAppendixE
(FigureS8).

l

l

l

l l
l

0.05

0.20

0.40

0.60

0.80

0 1 2 3 4 5
Effect c

Po
we
r

Methods

l aiSPU_1

aiSPU_2

aiSPU_3

aiSPU_4

s = 0.05

ll

l

l

l
l

0.05

0.20

0.40

0.60

0.80

1.00

0.0 0.1 0.2 0.3 0.4 0.5
Effect c

Po
we
r

Methods

l aiSPU_1

aiSPU_2

aiSPU_3

aiSPU_4

s = 0.2; all positively associated

Figure3:EmpiricalpowerofaiSPUwithdifferentΓsetunderG×Einteractionsimulations
withn=200,p=1000.aiSPU1,aiSPU2,aiSPU3,aiSPU4representaiSPU
withΓ1={1,2,3,4;∞},Γ2={1,2,...,6,∞},Γ3={1,...,8,∞},andΓ4=
{1,2,...,10,∞},respectively. Wevariedthesparsitylevels.Inlastsub-figure,
wegeneratednone-zeroelementsofβfromauniformdistributionU(0,c).
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Next,webrieflyevaluatedtherobustnessoftheaiSPUtest.Theorem1assumesthat
theeffectofZissparseandstrong. Whilethisassumptionisusuallyrequiredbyape-
nalizedregressionmethod,itmightbeviolatedinrealapplications. Forexample,under
anomnigenicmodel(Liuetal.,2019),manyvariablesinZ(i.e.,SNPs)haveweakeffects,
andonlyafewvariableshavestrongeffects. Toevaluatetheimpactoftheviolationof
thesparseeffectassumptiononZ,wekeptthesimulationsettingunchangedexceptthat
werandomlyselectedapre-specifiednumberofvariablesinZandsetnon-zerosmalleffect
sizesforthoseselectedvariables.Figure4showsthataiSPUyieldedwell-controlledType
Ierrorratesandachievedhighpower.Perhapsbecausethecontributionofthesmall-effect
variablesinZisrelativelysmalltotheestimationof̂Y,theresultsofthetestsbasedon
asymptoticswereclosetothosebasedonthebootstrap,indicatingTheorem1isrelatively
robusttotheviolationofsparseeffectassumptiononZ. Wefurthervariedtheeffectsize
fortherandomlyselectedsmalleffectvariablesinZ
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andobtainedsimilarresults(FigureS9
inAppendixE).

Next,weinvestigatedwhetheraiSPUwithothernon-convexpenaltiessuchasSCAD
(FanandLi,2001)andMCP(Zhang,2010)wouldyieldresultssimilartothatwithTLP.
PerhapsbecauseTLPenjoystheselectionconsistencyandoptimalparameterestimation
undersomemildassumptions(Shenetal.,2012),aiSPU(TLP)oftenachievedhigherpower
thanbothaiSPU(MCP)andaiSPU(SCAD)(FigureS10).Interestingly,aiSPU(SCAD)
yieldedinflatedTypeIerrorratesunderalinearmodelsetting(FigureS11).InSummary,
aiSPU(TLP)generallyachievedhigherpowerandcontrolledTypeIerrorrates.Further-
more,wehaveprovidedsometheoreticalguaranteeforaiSPU(TLP)andthusrecommend
usingaiSPUwithTLPasourdefaultsetting.

l

l

l

l
l

0.00

0.05

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.0 0.5 1.0 1.5 2.0
Effect c

Po
we
r

Methods

l iSPU(2)−boot

iSPU(2)−asy

iSPU(3)−boot

iSPU(3)−asy

aiSPU−boot

aiSPU−asy

100 small effects

l

l

l

l
l

0.00

0.05

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.0 0.5 1.0 1.5 2.0
Effect c

Po
we
r

Methods

l iSPU(2)−boot

iSPU(2)−asy

iSPU(3)−boot

iSPU(3)−asy

aiSPU−boot

aiSPU−asy

200 small effects

Figure4:EmpiricalpowerofaiSPUunderG×Einteractionsimulationswithn=200,
p=1000,andsparsitylevels=0.2. Werandomlyselectedapre-specified
numberofvariablesinZandsettheeffectsizefollowedauniformdistribution
U(−0.01,0.01).-bootand-asystandfortheresultsbasedonbootstrapand
asymptotics,respectively.

3.3. Resultsforlinear models

First,theaiSPUtestmaintainedcorrectTypeIerrorrates,forwhichtheasymptotics-and
bootstrap-basedmethodsgavesimilarresultsunderdifferentsparsitylevelsandassociation
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directions(TablesS10–S13inAppendixE).Similarly,bothNSTandSTyieldedwell-
controlledTypeIerrorrates(NST:0.055andST:0.061atthesignificancelevelα=0.05).

Next,weassessstatisticalpower.Figure5showstheempiricalpowerforthetestsunder
differentsparsitylevelss.BecausetheTLPestimatorcouldconsistentlyreconstructtheor-
acleestimatorundermildassumptions(Shenetal.,2012),aiSPU(TLP)andaiSPU(Oracle)
yieldedsimilarresults. NotethatbothNSTandSTbasetheirteststatisticsonasub-
sample,whileaiSPUisonthewholesample;partlyduetothisdifferenceinusingthe
sample,aiSPUandiSPU(∞)weremorepowerfulthanbothNSTandSTevenundera
highlysparsealternative(i.e.,withonlyonenonzerocomponentinβ;s=0.001). Under
otherdenseralternatives,aiSPUwaswaymorepowerfulthanbothNSTandST.Asin
thesimulationsforG×Einteraction,whenthesignalwasrelativelysparse(s=0.01),
iSPU(6)wasthemostpowerful,highlightingthepowergainbyusingsomeiSPU(γ)test
with2<γ<∞.Incontrast,SPU(2)wasmorepowerfulwhenthesignalbecamedense
(s=0.
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2). Again,allthesesimulationresultsconfirmedthepreviousasymptoticpower
analysis.BycombiningdifferentiSPUtests,aiSPUmaintainedhighpoweracrossawide
rangeofalternativescenarios.
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Figure5:Powercomparisonfordifferenttestsunderhigh-dimensionallinearmodelssimu-
lations. Wevariedthesparsitylevels.

Intheend,webrieflycomparedthecomputationaltimeamongsomecompetingmeth-
ods,theparametricbootstrap-basedaiSPU,andtheasymptotics-basedaiSPU(FigureS12
inAppendixE),showingthattheasymptotic-basedaiSPUwasgenerallycomputationally
moreefficient.Ofnote,weimplementedpenalizedregressionwithTLPinR,whichisnot
computationallyefficientinhigh-dimensionalsettings. Weexpectthatthecomputational
timefortheasymptotics-basedaiSPUcanbefurtherreducedonceweimplementaiSPUin
Corothermoreefficientcomputerlanguages.

Insummary,owingtoitsadaptivity,thepowerofaiSPUremainedhigh,beingeitherthe
winnerorclosetothewinnerinanysetting.Inparticular,theaiSPU(TLP)testperformed
similarlytoaiSPU(Oracle)andyieldedwell-controlledTypeIerrorrates,presumablybe-
causetheTLPestimatorcouldconsistentlyreconstructtheoracleestimatorundermild
conditions.
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4. Real data analyses

Alzheimer’s disease (AD) is the most common form of dementia, affecting millions of pa-
tients worldwide. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longitudi-
nal, multisite observational study of elderly subjects with normal cognitive (healthy con-
trols), mild cognitive impairment, or AD (Jack et al., 2008). The major goal of ADNI is to
better understand the underlying mechanism of mild cognitive impairment (MCI) and AD
(Jack et al., 2008). ADNI1 has recruited 819 elderly subjects to participate in the research.
See www.adni-info.org for the latest information.

Several case-control studies suggest that AD is far more pronounced in females and
gene-gender interaction may play roles in AD. Thus, we reanalyzed the ADNI1 data set to
study whether the effect of genetic variants on AD risk is modified by gender.

Following set-ups in Altmann et al. (2014), we used the data of the Caucasian subjects
in either the healthy control or MCI group, who had complete information on the envi-
ronmental factor (gender) and covariates (age, years of education, and intracranial volume
measured at baseline). For the outcome of interest, we set Yi = 1 for any subject i in the
MCI group, while setting Yi = 0 for the other group. For the genotype data, we ran stan-
dard quality control steps to pre-process the data. In brief, we filtered out all SNPs with a
genotyping rate < 0.95, those with a minor allele frequency < 0.05, and those failing to pass
the Hardy-Weinberg equilibrium test (p-value < 10−5). Further, we imputed the missing
SNPs by a Michigan Imputation Server (Das et al., 2016) with the 1000 Genomes Phase 1
v3 European samples as the reference panel. We restricted our analysis to the HapMap3
SNP subset and pruned SNPs with a criterion of linkage disequilibrium r2 > 0.2 using a
sliding window of size 200 SNPs and a moving step of 20. According to the human genome
reference hg19, we obtained the genomic coordinates of SNPs and genes, and assigned an
SNP to a gene if it is located within 5,000 base pairs upstream or downstream of the gene’s
coding region. We extracted candidate pathways from the KEGG database (Kanehisa et al.,
2009). As other pathway-based analyses (O’Dushlaine et al., 2015; Pan et al., 2015), we
restricted our analyses to the pathways containing between 10 and 200 genes. In total, we
analyzed 578 subjects and 96 KEGG pathways. To account for multiple testing, we applied
the Bonferroni correction and used a slightly conservative cutoff 0.05/100 = 5× 10−4. Be-
cause other studies have reported an APOE gene and gender interaction on AD (Altmann
et al., 2014), we tested the APOE and gender interaction as well. For testing main genetic
effects, we applied aSPU (Pan et al., 2014) while adjusting for the same covariates as in
testing G× E interactions.

Table 4 summarizes the results of our analysis. aiSPU identified one significant pathway
“Fructose and mannose metabolism” (hsa00051, p-value = 0.0003) for G × E interaction,
while GESAT failed to identify any significant pathways, showcasing possibly improved
power of aiSPU over GESAT. Note that pathway “Fructose and mannose metabolism” con-
tained 134 SNPs and thus, relative to the sample size, can be regarded as high-dimensional.
The p-value of aiSPU was smaller than that of iSPU(1) and iSPU(2) but larger than
iSPU(∞). Interestingly, aSPU failed to reject the null hypothesis of no main effects of
the pathway (p-value = 0.54 by aSPU).

Next, we tested the APOE and gender interaction. Note that APOE contained 5
SNPs and can be viewed as a low dimensional situation. aSPU yielded a p-value of 0.007,
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confirming the strong association of APOE on AD. Further, aiSPU yielded a p-value of
0.039 for the G × E interaction, suggesting a potential APOE and gender interaction.
In contrast, GESAT yielded a p-value of 0.56, failing to detect any G × E interactions.
Similarly, with a Bonferroni-adjusted p-value of 0.30, UminP also failed to detect G × E
interactions. By analyzing a large, multisite, longitudinal data from National Alzheimer’s
Coordinating Center, Altmann et al. (2014) discovered APOE -gender interaction. They
found that healthy female APOE4 carriers had an almost 2-fold increased risk to develop
MCI or AD when compared to female noncarriers (Altmann et al., 2014). By contrast,
healthy male APOE4 carriers had little increase in risk (Altmann et al., 2014). These
findings support a possible interaction between APOE and gender on AD. In summary,
our analyses have demonstrated that aiSPU is more powerful than GESAT in identifying
gene-environment interactions when analyzing the ADNI1 data set.

Table 4: P-values from the association analysis of the ADNI1 data set to detect interactions
between gender and genetic variants (in KEGG pathway hsa00051 or gene APOE).

iSPU(γ)
aiSPU GESAT

γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 γ = 6 γ =∞
hsa00051 0.017 0.017 0.014 0.010 0.006 0.003 0.0001 0.0003 0.016
APOE 0.022 0.032 0.042 0.059 0.068 0.079 0.112 0.039 0.56

5. Discussion

In this paper, we have proposed and studied an adaptive aiSPU test for high-dimensional
parameters in GLMs in the presence of high-dimensional nuisance parameters. Our pro-
posed aiSPU test takes advantage of both the TLP estimator (Shen et al., 2012) and data
adaptive testing ideas (Pan et al., 2014), and thus enjoys several theoretical and practical
benefits: first, the Type I error rate is well controlled; second, it maintains high statisti-
cal power under various scenarios, ranging from highly sparse to highly dense alternatives;
third, it is computationally efficient as its p-values can be calculated via its asymptotic null
distribution.

Several new methods (Ma et al., 2020; Shi et al., 2019; Sur and Candès, 2019; Fei and
Li, 2019; Zhu et al., 2019) have recently been proposed for statistical inference with high-
dimensional generalized linear models. However, they mainly focused on related but differ-
ent questions with different approaches. Specifically, Ma et al. (2020) considered a global
testing problem using a debiased Lasso based method with generalized low-dimensional
projection. Sur and Candès (2019) quantified and corrected the bias of maximum like-
lihood estimators when the sample size and the dimensionality of parameters are in the
same order. Fei and Li (2019) proposed a multi-sample splitting and averaging method
to test a fixed subset of parameters. Shi et al. (2019) and Zhu et al. (2019) extended the
score/Wald/likelihood ratio tests to (non-convex) penalized/constrained regression to test
a subset of parameters of size much smaller than the sample size. In principle, due to its
data-adaptive feature, aiSPU (with suitable modifications) may be a powerful tool to tackle
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these related problems, though rigorous investigation is warranted. We leave it for future
research.

We conclude with several potential extensions of our approach. First, as transcriptome-
wide association studies (TWAS) (Gamazon et al., 2015; Gusev et al., 2016) that incorporate
eQTL-derived weights into a weighted Sum test (Xu et al., 2017) to both improve statis-
tical power and enhance biological interpretation, our proposed method can incorporate
eQTL-derived weights into the test statistics of iSPU(γ) and aiSPU. Also, some other func-
tional weights (He et al., 2017; Ma and Wei, 2019) can be equally applied. We expect
that integrating functional genomic information will improve power and gain insights into
the mechanisms of complex traits. Second, we mainly considered interactions between a
genetic marker set and an environmental variable. We expect the same approach can be
applied to other biological problems. For example, by replacing the environmental vari-
able E with a treatment, we can test for interactions between a genetic marker set and
the treatment, which is at the core of personalized medicine. More generally, our method
can be potentially applied to other high-dimensional problems. For example, with some
technical modifications, our method may be capable of simultaneous inference on submatri-
ces of a high-dimensional precision matrix. The proposed method can also be extended to
the asymptotically independent U -statistics framework as recently introduced in He et al.
(2020). We leave these for future research.
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Appendix A. Assumptions

We further decompose ϑ0 into two parts: ϑ0 ≡ (ϑ0
1, . . . , ϑ

0
q)
′ = (ϑ0

A0
, 0Ac0)′, where A0 ≡ {j :

ϑ0
j 6= 0} is the set of nonzero coefficients of ϑ0 with size |A0| = q0, and 0Ac0 is a vector of 0’s.

Define Z̃ as the (nuisance) covariate matrix containing the variables in A0, and the oracle
estimate ϑ̂o as the maximum likelihood estimate (MLE) given that A0 is known priori.

We need the following assumptions to establish the asymptotic null distribution.

C1. The eigenvalues of Σ are bounded, that is, B−1 ≤ λmin(Σ), λmax(Σ) ≤ B for some finite
constant B, where λmin(Σ) and λmax(Σ) denote the minimum and maximum eigenvalues
of matrix Σ, respectively. Moreover, the absolute value of any corresponding correlation
element is strictly smaller than 1, i.e., max1≤i6=j≤p |σij |/

√
σiiσjj < 1− ξ for some constant

ξ > 0.

C2. Under H0 : β = 0, we have E
[
S3

1j

]
= 0 for 1 ≤ j ≤ p. There exist some constants %

and K0 > 0 such that E
[

exp
(
%S2

1j/σjj
)]
≤ K0 for 1 ≤ j ≤ p.

C3. Z̃ is uniformly bounded. We further assume E(X1j |Z̃) 6= 0 only holds for j ∈ P0 ⊂
{1, . . . , p} with the size of P0, denoted by p0, satisfying p0 = O(pη1) for a small positive η1.

C4. We assume 1
p

∑
j1,j2

∣∣E[S1j1S1j2 ]
∣∣ = O(1) and 1

p

∑
j1 6∈P0,j2 6∈P0

∣∣E[Xij1Xij2 |Z̃]
∣∣ = O(1).

C5. We assume q ≤ exp
(
nCmin(ϑ0)/d0

)
and pq4

0/n
2 = o(1), where d0 is some constant,

Cmin(ϑ0) ≡ inf{ϑA=(ϑA,0Ac :A6=A0,|A|≤q0}− log(1− h2(ϑA, ϑ0)/max(|A0 \A|, 1), and h(·, ·) is
the Hellinger distance. We further assume the model is sparse under the null, that is,
q0 = O(nη2) for a small positive η2.

C6. There exist some positive constants K1 and K2 such that K1 < E[ε20i|Z = z] < K2,
where ε0i = Yi − µ0i, 1 ≤ i ≤ n. We further assume lim infn→∞ n

−1λmin(Z̃′WZ̃) > 0, where
W = diag{E(ε201|Z), . . . , E(ε20n|Z)}.
C7. − log(1 − h2(ϑ, ϑ0)) ≥ −d1 log(1 − h2(ϑτ+ , ϑ

0)) − d3qτ
d2 for some constants d1, d2,

and d3, where d1 − d3 > 0, ϑτ+ =
(
ϑ1I(|ϑ1| ≥ τ), . . . , ϑqI(|ϑq| ≥ τ)

)
and h(ϑ, ϑ0) is the

Hellinger distance between the two probability distributions specified by ϑ and ϑ0. For some
constant c0 and any ε/24 < t < ε ≤ 1, H(t,BA) ≤ c0(log q)2|A| log(2ε/t), with |A| ≤ q0,
where H(·,BA) is the bracketing Hellinger metric entropy of BA, BA = FA∩{h(ϑ, ϑ0) ≤ 2ε}
is a local parameter space, and FA = {g1/2(ϑ, y) is a collection of square root densities with
g(ϑ, y) be a probability density for Y1.

C8. Under HA : β 6= 0, we have E
[
(S̃ij)

3
]

= 0 for 1 ≤ j ≤ p.
C9. W̃ = {W̃ (j) = (S̃ij , i = 1, . . . , n) : j ≥ 1} is α-mixing such that αW̃ (s) ≤ Mδs, where
δ ∈ (0, 1) and M is some constant.

Remark S1 Assumption C1 is commonly used in the high-dimensional setting (Cai et al.,
2014; Wu et al., 2019), assuming that the underlying true covariance matrix Σ is non-
singular. Assumption C2 assumes sub-Gaussian-type tails of S1j, which is also common.
Both assumptions C1 and C2 are only used to establish the weak convergence of L(∞, µ0)
and not needed for L(γ, µ0) with a finite γ.

Assumption C3 assumes the underlying true model under H0 is sparse, which is often
reasonable in real data applications and penalized regression framework. Note that we as-
sume that each Xj̇ is centered, which partially supports the assumption that E[Xij |Z̃] 6= 0
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only for j ∈ P0 with the size of P0 in a small order of p, i.e., p0 = O(pη1). For exam-
ple, in our motivating gene-environment interaction testing problems, Xij = Gij × Ei and
E[Xij |Z̃] 6= 0 holds if and only if E[Gij |Z̃] 6= 0, where Z̃ contains common covariates, en-
vironmental factors, and important SNPs selected by our penalized regression model. Of
note, genome-wide association studies with around a hundred thousand subjects only iden-
tified from a few hundred to a few thousand significant SNPs for each of the traits, which
were some tiny proportions of all the SNPs being tested (about 10 million) (Buniello et al.,
2018). In other words, the majority of SNPs Gj are independent of common covariates.
Furthermore, because linkage disequilibrium (LD) is often local, SNP Gj is only correlated
with a small proportion of the SNPs being tested (see Figure S13 for an example). Then
E[Xij |Z̃] 6= 0 only for j ∈ P0 with the size of P0, p0 = O(pη1). One caveat is that even
though C3 usually holds for genetic and genomic data, C3 may fail in other applications,
perhaps leading to Theorem 1 invalid. We leave this interesting topic for future research.

Assumption C4 is a moment assumption and assumes a weak dependence structure.
Intuitively speaking, many random vectors meet this moment assumption. For example,
random vectors ζ = (ζ1, ζ2, . . . )

′, where ζi only correlates a finite number of ζj; then ζ
satisfies moment condition. It also includes an α-mixing type weak dependence as a special
case, which has been broadly used in time series and spatial statistics and adopted previously
in high-dimensional testing problems (Xu et al., 2016; Wu et al., 2019). To account for the
effects of nuisance parameters, we further assume conditionally moment assumption, which
is a natural extension of the moment assumption.

Assumption C5 is a relatively strong assumption needed to prove Theorem 1. It imposes
some restrictions on the growth rate of p such that p = O(n2−η3) for a small positive η3.
Zhang and Cheng (2017) assumed (log(pn))7/n ≤ N1n

−N2 for some positive constants N1

and N2 to establish the theory for a bias-correction based test statistic, which is weaker than
C5. A stronger condition is needed here to establish the joint asymptotic distribution of
L(γ) with different γ’s. Nevertheless, C5 allows p/n→∞. Assumption C5 imposes a weak
restriction on q, allowing exponentially many nuisance parameters q = exp

(
nCmin(ϑ0)/d0

)
.

Shen et al. (2012) showed that this is a necessary condition for TLP to be selection con-
sistent. C5 also assumes the sparsity on the ϑ0, which is common adopted by penalized
regression and by bias correction-based methods. For example, under the nearly optimal
condition q0 = o(n/(log p)2), the debiased Lasso estimator follows a Gaussian distribution
asymptotically (Javanmard and Montanari, 2018). Also, the sparsity assumption regarding
q0 may be relaxed. For example, the sparsity assumption is q0 = o(n/ log p) in a directed
graphical model with TLP constraint (Li et al., 2019). More importantly, the sparsity as-
sumption might not be essential for our proposed method. As shown in the simulation
section (Figures 4 and S9), our proposed method still worked when the sparsity assumption
was violated.

The first part of Assumption C6 is common in GLMs, for example, as adopted in
Fan and Song (2010); Guo and Chen (2016). By Theorem 5.39 in Vershynin (2010),
we have lim infn→∞ n

−1λmin(Z̃′WZ̃) > 0 with high probability. To simplify the techni-
cal details in the proof of the weak convergence result in Theorem 1, here we assume
lim infn→∞ n

−1λmin(Z̃′WZ̃) > 0.

Assumption C7 is needed for feature selection consistency and optimal parameter esti-
mation by TLP for GLMs (Shen et al., 2012). However, for linear and logistic regression,
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Assumption C7 can be substituted by the following C7* for verification purpose (Shen et al.,
2012).

C7*. γ2
min minA:|A|≤q0,A6=A0

λmin

(
ΘA0\A − ΘA0\A,AΘ−1

A ΘA,A0\A
)
≥ d0

log q
n , where d0 is

some constant independent of (n, q, q0), Θ is the covariance of Z with the jkth element
cov(Zj , Zk), ΘA0\A is a submatrix of Θ by keeping rows and columns corresponding to a
subset A0 \A of predictors, and ΘA0\A,A is a submatrix of Θ by keeping rows corresponding
to a subset A0 \ A of predictors and columns corresponding to a subset A of predictors,
γmin = γmin(ϑ0) ≡ min{|ϑ0

k| : ϑ0
k 6= 0} is the resolution level of the true regression coeffi-

cients, and λmin

(
ΘA0\A −ΘA0\A,AΘ−1

A ΘA,A0\A
)
≥ minB⊃A0:|B|≤2q0 λmin

(
ΘB

)
.

Of note, C7 involves Hellinger distance, which is hard to verify in practice. For ver-
ification purposes, we propose a stronger than needed assumption C7*, which is sufficient
for C7. C7* imposes a lower bound for coefficient strength (like a beta-min condition),
which might be violated in practice. However, our proposed method might still work when
assumption C7* (i.e., beta-min like assumption) is violated but C7 holds. In addition, we
use this technical assumption to prove the TLP-based estimator achieves feature selection
consistency, and thus the difference between µ0 and µ̂0 can be well controlled. In prac-
tice, as long as we have a good estimate µ̂0, our proposed method works. For example, as
shown in simulations, our proposed method aiSPU still worked when the coefficient for Z
was non-sparse but with sparse and strong signals, which violated the assumption C7* but
not necessarily C7. To further illustrate this, we provide an example. Suppose the coeffi-
cient ϑ0 = (1, 1√

n
, 1√

n
, . . . , 1√

n
)′, τ = 1

2
√

2
, and d1 = 1. Then log(1 − h2(ϑ, ϑ0)) equals to

log(1−h2(ϑτ+ , ϑ
0)). This leads to the assumption C7 holds, coefficient for Z is non-sparse,

and C7* may not hold. A similar example has been provided for TLP in the context of
constrained maximum likelihood inference (Zhu et al., 2019). We leave the exciting topic
on further relaxing Assumption C7 for future research.

Appendix B. Calculating p-values

In this subsection, we describe how to calculate p-values by both parametric bootstrap and
asymptotics-based methods in details.

Asymptotics-based method

First, we calculate p-values for iSPU separately. We apply the Theorem 1 to ap-
proximate ψ(γ), ω(γ) and R(Γ′) = (ρst), respectively. Specifically, ψ(1) = 0, ψ(γ) =
γ!
d!2d

n−d
∑p

j=1 σ
d
jj + o(pn−d) if γ = 2d and ψ(γ) = o(pn−(d+1)) if γ = 2d + 1; ω2(1) =

1
n

∑
1≤i,j≤p σij + o(pn−1) and

ω2(γ) = ψ(2γ)−
p∑
j=1

{ψ(j)(γ)}2 +
1

nγ

∑
i6=j

∑
2c1+c3=γ
2c2+c3=γ
c3>0

(γ!)2

c3!c1!c2!2c1+c2
σc1ii σ

c2
jjσ

c3
ij + o(pn−γ)

if γ ≥ 2;
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cov[L(t, µ0), L(s, µ0)]

= ψ(t+ s)−
p∑
j=1

ψ(j)(t)ψ(j)(s) +
1

nc

∑
k 6=j

∑
2c1+c3=t
2c2+c3=s
c3>0

t!s!

c3!c1!c2!2c1+c2
σc1kkσ

c2
jjσ

c3
kj + o(pn−(t+s)/2)

if s+t is even and cov[L(t, µ0), L(s, µ0)] = o(pn−(t+s)/2) if s+t is odd; ρss = 1 for s ∈ Γ′ and
ρst = cov

[
L(s, µ0), L(t, µ0)

]
/(ω(s)ω(t)) for s 6= t ∈ Γ′. Then by Theorem 1, the p-values for

individual iSPU(γ) can be calculated via either a normal or an extreme value distribution.

Remark S2 In practice, Σ = (σkj) is unknown and has to be estimated, which is a chal-
lenging problem under a high-dimensional setting. We discussed two situations separately:
when Σ satisfies certain structures and when the structure is unknown.

When the covariance matrix Σ satisfies certain structures, we can apply some existing
methods, such as banding and thresholding techniques (Bickel and Levina, 2008; Cai and
Liu, 2011). See Fan et al. (2016) for an excellent review. For example, we can apply the
banding method of Bickel and Levina (2008) to estimate covariance matrix Σ if the follow-
ing α-mixing assumption holds: W = {W (j) = (Sij , i = 1, . . . , n) : j ≥ 1} is α-mixing such
that αW (s) ≤ M1δ

s
1, where δ1 ∈ (0, 1) and M1 is some constant. Specifically, we calculate

the sample covariance matrix S = (skj) and then calculate the bandable covariance matrix
as Σ̂kn =

(
skjI(|k−j| ≤ kn)

)
. An optimal bandwidth kn has been selected by five-fold cross-

validation. For a properly chosen kn = o(n1/2), the difference induced by estimating Σ is
ignorable (Xu et al., 2016; Wu et al., 2019). We further define ψ̂(γ) and ω2(γ) as the corre-
sponding estimated ψ(γ) and ω2(γ) by replacing Σ with Σ̂kn. Under the mixing assumption,
for any j, k, and ε > 0, there exists some constant C such that σkj ≤ Cδ|k−j|ε/(2+ε), where
δ ∈ (0, 1) (Guyon, 1995). Then for kn →∞ as n→∞, the summation of terms involving
σkj with |k − j| > kn in ω2(γ) is ignorable, i.e., n−γ

∑
k 6=j;|k−j|>kn Cσ

c1
kkσ

c2
jjσ

c3
kj = o(pn−γ).

Furthermore, there are O(knp) terms in ω2(γ) involving σkj with |k − j| ≤ kn. By not-
ing that skj = σkj + Op(n

−1/2), we have ω2(γ) − ω2(γ) = op(pn
−γ) if kn = o(n1/2).

Because ω2(γ) ∼ O(pn−γ), we have ω2(γ) = (1 + o(1))ω2(γ). Similarly, we can derive
ψ̂(γ) = (1 + o(1))ψ(γ). Under our motivating gene-environmental interaction problems, the
genetic variants are weakly dependent, and the dependent structure is often local. In other
words, the α-mixing assumption holds and the banding method of Bickel and Levina (2008)
works.

On the other hand, when the structure of the covariance matrix Σ is unknown, applying
the banding method of Bickel and Levina (2008) might be problematic. As an alternative,
we propose a parametric bootstrap-based method to estimate ψ(γ), ω2(γ) and R(Γ′) = (ρst),
which circumvents the challenging problem of estimating the covariance matrix Σ. Specif-
ically, we first fit a penalized regression model under H0 to obtain µ̂0i and then simulate

a new set of responses Y
(b)
i based on µ̂0i for b = 1, 2, . . . , B. Second, we refit the model

with the same tuning parameters and calculate the corresponding score vector U (b) and null

statistics L(γ)(b) =
∑p

j=1

(
1
n

∑n
i=1 U

(b)
ij

)γ
. In practice, we only need to repeat the above

procedures for a relatively small B (say, 100) times. Then we estimate ψ(γ), ω2(γ) and
R(Γ′) = (ρst) by ψ̂(γ) =

∑B
b=1 L(γ)(b)/B, ω̂2(γ) =

∑B
b=1(L(γ)(b) − ψ̂(γ))2/(B − 1), and

R̂(Γ′) = cor(L(Γ′)(b)), where cor is the sample correlation estimated by cor() function in R.
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Second, we calculate the p-value for aiSPU. Because cov[L(t, µ0), L(s, µ0)] = o(pn−(t+s)/2)
if s + t is odd (Theorem 1 part one), iSPU with even γ and odd γ are asymptotically un-
correlated. By Theorem 1 part one, iSPU with finite γs converge jointly and weakly to
a multivariate normal distribution as n, p → ∞, leading to iSPU with even γ and odd
γ are asymptotically independent. Then by Theorem 1 part three, iSPU with even γ,
odd γ, γ = ∞ are asymptotically independent to each other. Because for a finite γ,
L(γ)− ψ(γ)/ω(γ) follows a standard normal distribution, taking the minimum p-values as
test statistics equals to taking the maximum of |L(γ)− ψ(γ)|/ω(γ) as test statistics. Then
we can analytically calculate the p-value for aiSPU by the following two steps. First, define
tO = maxodd γ∈Γ

∣∣(L(γ) − ψ(γ)
)∣∣/ω(γ) and tE = maxeven γ∈Γ

(
L(γ) − ψ(γ)

)
/ω(γ) as the

observed test statistics from the data and calculate the p-values for tO and tE as pO =
Pr[maxodd γ∈Γ |

(
L(γ)−ψ(γ)

)
/ω(γ)| > tO] and pE = Pr[maxeven γ∈Γ

(
L(γ)−ψ(γ)

)
/ω(γ) >

tE ]. We use pmvnorm() in R package mvrnorm to calculate the normal tail probabilities of
pO and pE . Further, let p∞ denote the p-value of iSPU(∞), which can be calculated by a
extreme value distribution (Theorem 1 part 2). Second, take the minimum p-value from the
above three categories, that is, pmin = min{pO, pE , p∞}. By the asymptotic independence,
the asymptotic p-value for the aiSPU test is paiSPU = 1− (1− pmin)3.

Parametric bootstrap-based method

We can calculate p-values by parametric bootstrap as follows: first, we fit a penalized

regression model under H0 to obtain µ̂0i and then simulate a new set of responses Y
(b)
i

based on µ̂0i for b = 1, 2, . . . , B; second, we refit the model with the same tuning pa-
rameters and calculate the corresponding score vector U (b) and null statistics L(γ)(b) =∑p

j=1

(
1
n

∑n
i=1 U

(b)
ij

)γ
; third, the p-value of iSPU(γ) is PL(γ) = [1 +

∑B
b=1 I(|L(γ)(b)| ≥

|L(γ)|)]/(B+1), and the p-value for aiSPU, PaiSPU = [1+
∑B

b=1 I(T
(b)
aiSPU ≤ TaiSPU)]/(B+1),

with T
(b)
aiSPU = minγ∈Γ P

(b)
L(γ) and P

(b1)
L(γ) = [

∑
b6=b1 I(|L(γ)(b)| ≥ |L(γ)(b1)|)]/B.

In practice, selecting a good B is important for saving computational sources. Here,
we start with a smaller B, say B = 1000 to scan all the tests and then repeatedly increase
B for the tests that that pass the following criterion: p-value < 5/B in the previous step
(Pan et al., 2014). Of note, the accuracy is bounded by the number of bootstraps B and
calculating a very small p-value requires a very large B. This is different from asymptotics-
based method, in which we only use a relatively small number of bootstraps (say, B = 100)
to estimate mean, variance, and covariance matrix of iSPU and calculate the p-values by
Theorem 1.

Appendix C. Proof of Theorem 1

We prove each part in Theorem 1 separately.

(i) Similar to the proof of Theorem 1 in Wu et al. (2019), we can show that if the conditional
mean of Y , µ0, is known, Theorem 1 holds. Specifically, by assumption C4, the order of
double summation (across j1 and j2) of terms involving σj1j2 is O(p). Then by similar
techniques used in Wu et al. (2019), we can calculate ψ(γ), ω(γ), and R(Γ′) as shown in
Appendix B. We can further use Bernstein’s block idea (Ibragimov and Linnik, 1971) to
prove iSPU with finite γs follows a multivariate normal distribution asymptotically. Of note,
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in our previous work (Wu et al., 2019), we derive a similar Theorem under the α-mixing
assumption, which is a special case of Theorem 1.

Then for any fixed and finite γ, we prove Theorem 1 holds by showing that the difference
between L(γ, µ0) and L(γ, µ̂0) with the TLP estimates is negligible.

Note that the Hellinger distance for linear regression is

h2(ϑ, ϑ0) = 1− E
[

exp
(
− 1

8
||Zϑ− Zϑ0||2

)]
and for logistic regression is

h2(ϑ, ϑ0) =
1

2
E
[
ν1/2

(
(ϑ0)′Z

)
− ν1/2(ϑ′Z) +

(
1− ν

(
(ϑ0)′Z

))1/2 − (1− ν(ϑ′Z))1/2],
where ν(s) = (1 + exp(s))−1. We decompose A ≡ {j : 1 ≤ j ≤ q} into two parts: A =
Aτ

+ ∪ Aτ− , where Aτ
+ ≡ {j : |ϑj | ≥ τ} and Aτ

− ≡ {j : |ϑj | < τ}. Further note that∣∣∂h2(ϑ,ϑ0)
∂ϑj

∣∣ ≤ 1/2E[|Zj |] for 1 ≤ j ≤ q and ϑ ∈ Rq. Then

∣∣h2(ϑ, ϑ0)− h2(ϑτ+ , ϑ
0)
∣∣ ≤ τ ∣∣∣ ∑

j∈Aτ−

∂h2(ϑ, ϑ0)

∂ϑj

∣∣∣ ≤ 2τ
∑
j∈Aτ−

E[|Zj |] ≤ 2τqmax
j

Σjj ,

where ϑτ+ = (ϑ1I(|ϑ1| ≥ τ), . . . , ϑqI(|ϑq| ≥ τ)). Then by assumption C7*, − log(1−x) > x
for any 0 < x < 1, and the derivative of 1− exp(−1/8x2) and (1 + exp(x))−1/2 are bounded
away from zero, the assumption C7 can be validated.

By assumption C5 and C7, through tuning, Theorem 2 in Shen et al. (2012) yields
P (ϑ̂ 6= ϑ̂o) ≤ exp(−cn + 2 log(q + 1) + 3), where c is some positive constant. Then we
can apply Theorem 2 in Shen et al. (2012) and get the feature selection consistency for ϑ̂,
that is, E[h2(ϑ̂, ϑ0)] = E[h2(ϑ̂o, ϑ0)] = O(q0/n) → 0 as n → ∞. Then by the consistency
property of MLE ||ϑ̂o − ϑ0|| = Op(q0n

−1/2), we have ||ϑ̂− ϑ0|| = Op(q0n
−1/2).

Using Taylor expansion and the approach in Le Cessie and Van Houwelingen (1991), we
have

D̂ =
(
In −WZ̃{I(ϑ)}−1Z̃′

)
D + op(n

−1/2),

where D̂ = (Y − µ̂0) = {Y1 − µ̂01, . . . , Yn − µ̂0n}′, D = (Y − µ0) = {Y1 − µ01, . . . , Yn −
µ0n}′, In is the n × n identity matrix, W is a diagonal matrix, which is defined as W =
diag{E(ε201|Z), . . . , E(ε20n|Z)}, Z̃ contains the variables corresponding to A0 = {j : ϑ0

j 6= 0},
and I(ϑ) is a q0 × q0 matrix given by I(ϑ) = Z̃′WZ̃. Since the smaller order term op(n

−1/2)
can be ignored, we focus on the leading term in the subsequent analysis. For notation
simplicity, further define B = WZ̃{I(ϑ)}−1Z̃′ = (bij)n×n. By Cauchy-Schwarz inequality,

bij = WiiZ̃i{I(ϑ)}−1Z̃j ≤Wii(Z̃i{I(ϑ)}−1Z̃i)
1/2(Z̃j{I(ϑ)}−1Z̃j)

1/2.

By assumption C6, W is uniformly bounded and lim inf n−1λmin(I(ϑ)) > 0. Then by as-
sumption C3, Z̃ is uniformly bounded, we have Z̃i{I(ϑ)}−1Z̃i ≤ O(q0) × λmin(I(ϑ))−1 =
O(q0n

−1). This leads to bij = O(q0n
−1) uniformly over i, j. By linear algebra, we have

µ0i − µ̂0i =
∑n

l=1 bilε0l for 1 ≤ i ≤ n, where bil = O(q0n
−1). To prove the difference be-

tween L(γ, µ0) and L(γ, µ̂0) can be ignored, we discuss two cases: γ = 1 and 1 < γ < ∞
separately. To simplify the notation, we denote all the constants by C which may vary from
place to place.
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For γ = 1: we decompose the statistic L(1, µ̂0) as

L(1, µ̂0) =
1

n

p∑
j=1

n∑
i=1

(Yi − µ̂0i)Xij =

p∑
j=1

n∑
i=1

1

n
Sij +

p∑
j=1

n∑
i=1

(µ0i − µ̂0i)Xij

n
= T10 + T11.

Under the null hypothesis and proposed assumptions, Theorem 1 in Wu et al. (2019) leads
to

T10/ω(1)
d−→ N(0, 1) as n→∞ and p→∞.

For T11, since µ0i − µ̂0i =
∑n

l=1 bilε0l, we have

E[(T11)2] =
1

n2

p∑
j1=1

p∑
j2=1

n∑
i1=1

n∑
i2=1

E
[
(µ0i1 − µ̂0i1)Xi1j1(µ0i2 − µ̂0i2)Xi2j2

]
=

1

n2

p∑
j1=1

p∑
j2=1

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2

n∑
l=1

ε0lbi1l

n∑
l=1

ε0lbi2l

]
=

1

n2

p∑
j1=1

p∑
j2=1

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2

(
ε0i1bi1i1 + ε0i2bi1i2 +

∑
l 6=i1,i2

ε0lbi1l
)

×
(
ε0i1bi2i1 + ε0i2bi2i2 +

∑
l 6=i1,i2

ε0lbi2l
)]
.

Since i1 and i2 are symmetrical, we have

E[(T11)2]

=
C

n2

∑
j1,j2,i1,i2

E
[
Xi1j1Xi2j2ε

2
0i1bi1i1bi2i1

]
+
C

n2

∑
j1,j2,i1,i2

E
[
Xi1j1Xi2j2ε0i1bi1i1ε0i2bi2i2

]
+
C

n2

∑
j1,j2,i1,i2

E
[
Xi1j1Xi2j2ε0i1bi1i1

∑
l 6=i1,i2

ε0lbi2l
]

+
C

n2

∑
j1,j2,i1,i2

E
[
Xi1j1Xi2j2

∑
l 6=i1,i2

ε20lbi1lbi2l
]

=E[T111] + E[T112] + E[T113] + E[T114].
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We discuss the order of each term and show that |T11| = op(
√
pn−1/2) and thus can be

ignored. By assumption C3, |E[Xij |Z̃]| 6= 0 only holds for j ∈ P0, then

E[T111|Z̃] =
C

n2

p∑
j1=1

p∑
j2=1

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1bi1i1bi2i1 |Z̃

]
=
C

n2

∑
j1 6∈P0

∑
j2 6∈P0

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1bi1i1bi2i1 |Z̃

]
+
C

n2

∑
j1∈P0

∑
j2 6∈P0

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1bi1i1bi2i1 |Z̃

]
+
C

n2

∑
j1 6∈P0

∑
j2∈P0

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1bi1i1bi2i1 |Z̃

]
+
C

n2

∑
j1∈P0

∑
j2∈P0

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1bi1i1bi2i1 |Z̃

]
.

For the first term, by Assumptions C3 and C4, we have

C

n2

∑
j1 6∈P0

∑
j2 6∈P0

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1bi1i1bi2i1 |Z̃]

=O(n−2)
∑
j1 6∈P0

∑
j2 6∈P0

n∑
i1=1

E
[
Xi1j1Xi1j2ε

2
0i1 |Z̃

]
×O(q2

0n
−2)

=O(n−2)×O(np2)×O(q2
0n
−2)

=O(pn−1)×O(pq2
0n
−2) = o(pn−1).

Of note, because bij is a function of Z̃, it can be taken out of the expectation when condi-
tional on Z̃. For the second term, we have

C

n2

∑
j1∈P0

∑
j2 6∈P0

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1bi1i1bi2i1 |Z̃

]
=O(n−2)

∑
j1∈P0

∑
j2 6∈P0

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1 |Z̃

]
×O(q2

0n
−2)

=O(n−2)×O(pp0n
2)×O(q2

0n
−2) = O(pp0q

2
0n
−2) = o(pn−1).

By noting that p0 = O(pη1) for a small positive η1 and assumption C5 pq4
0/n

2 = o(1), we
can derive the last equation. Similar to the derivation of the second term, for the third
term, we have

C

n2

∑
j1 6∈P0

∑
j2∈P0

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1bi1i1bi2i1 |Z̃

]
= o(pn−1).
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For the last term, we have

C

n2

∑
j1∈P0

∑
j2∈P0

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1bi1i1bi2i1 |Z̃

]
=O(n−2)

∑
j1∈P0

∑
j2∈P0

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε

2
0i1 |Z̃

]
×O(q2

0n
−2)

=O(n−2)×O(p2
0n

2)×O(q2
0n
−2) = O(n−2q2

0p
2
0) = o(pn−1).

By combining the above derivations, we have E[T111|Z̃] = o(pn−1). Importantly,

∑
j1,j2

∑
i1,i2

E[Xi1j1Xi2j2ε
2
0i1 |Z̃] = o(pq2

0n
2).

Next, we discuss the order of E[T112|Z̃]. By noting that E[Xijε0i|Z̃] = 0, we have

E[T112|Z̃] =
C

n2

p∑
j1=1

p∑
j2=1

n∑
i1=1

n∑
i2=1

E
[
Xi1j1Xi2j2ε0i1bi1i1ε0i2bi2i2 |Z̃

]
= O(n−2)

p∑
j1=1

p∑
j2=1

n∑
i1=1

E
[
Xi1j1ε

2
0i1Xi1j2 |Z̃

]
×O(q2

0n
−2)

= O(n−2)×O(p2n)×O(q2
0n
−2) = O(pn−1pq2

0n
−2) = o(pn−1).

Next, we discuss the order of E[T113|Z̃]:

E[T113|Z̃] =
C

n2

∑
j1,j2,i1,i2

E
[
Xi1j1Xi2j2ε0i1bi1i1

∑
l 6=i1,i2

ε0lbi2l|Z̃
]

=O(n−2)
∑

j1,j2,i1,i2

E
[
Xi1j1Xi2j2ε0i1bi1i1 |Z̃

]
E
[ ∑
l 6=i1,i2

ε0lbi2l|Z̃
]

=O(n−2)
∑

j1,j2,i1,i2

E
[
Xi1j1Xi2j2ε0i1bi1i1 |Z̃

]
× 0 = 0.
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Next, we discuss the order of E[T114|Z̃]. Similarly, we decompose E[T114|Z̃] into three
parts and bound each part separately.

E[T114|Z̃] =
C

n2

∑
j1,j2,i1,i2

E
[
Xi1j1Xi2j2

∑
l 6=i1,i2

ε20lbi1lbi2l|Z̃
]

= O(n−2)
∑
j1,j2

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
E
[ ∑
l 6=i1,i2

ε20lbi1lbi2l|Z̃
]

= O(n−2)
∑
j1,j2

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
×O(q2

0n
−1)

= O(n−2)
∑

j1 6∈P0,j2 6∈P0

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
×O(q2

0n
−1)

+O(n−2)
∑

j1 6∈P0,j2∈P0

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
×O(q2

0n
−1)

+O(n−2)
∑

j1∈P0,j2∈P0

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
×O(q2

0n
−1).

By assumption C3, E(X1j |Z̃) = 0 for j 6∈ P0. Then by assumption C4, for the first part,
we have

O(n−2)
∑

j1 6∈P0,j2 6∈P0

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
×O(q2

0n
−1)

=O(q2
0n
−3)

n∑
i1=1

∑
j1 6∈P0,j2 6∈P0

E
[
Xi1j1Xi1j2 |Z̃

]
=O(q2

0n
−3)×O(pn)

=O(pn−1n−1q2
0) = o(pn−1).

Similarly, we have the following for the second part:

O(n−2)
∑

j1 6∈P0,j2∈P0

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
×O(q2

0n
−1)

=O(q2
0n
−3)

∑
j1 6∈P0,j2∈P0

n∑
i1=1

E
[
Xi1j1Xi1j2 |Z̃

]
=O(q2

0n
−3)×O(p0pn)

=O(pn−1p0q
2
0n
−1) = o(pn−1).

Note that by assumptions C3 and C5, p0 = O(pη1) for a small positive η1 and q0 = O(nη2)
for a small positive η2. Then O(p0q

2
0n
−1) = O(pη1n1−2η2) = o(1) and the above last equation

holds.
For the last part, we have

O(n−2)
∑

j1∈P0,j2∈P0

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
×O(q2

0n
−1)

=O(n−2)×O(p2
0n

2)×O(q2
0n
−1) = O(q2

0p
2
0n
−1) = o(pn−1).
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By Combining the above equations, we have E[T114|Z̃] = o(pn−1). Importantly, we have∑
j1,j2

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
= o(pn2q−2

0 ).

In summary, we have E[(T11)2] = E
[
E[T111|Z̃] + E[T112|Z̃] + E[T113|Z̃] + E[T113|Z̃]

]
=

o(pn−1), leading to |T11| = op(n
−1/2√p). Thus T11 can be ignored and this completes the

proof for γ = 1.

For 1 < γ <∞: we decompose the statistic L(γ, µ̂0) as

L(γ, µ̂0) =

p∑
j=1

( 1

n

n∑
i=1

(Yi − µ̂0i)Xij

)γ
=

p∑
j=1

( 1

n

n∑
i=1

(
(Yi − µ0i) + (µ0i − µ̂0i)

)
Xij

)γ
=

p∑
j=1

( 1

n

n∑
i=1

Sij

)γ
+
∑

1≤v≤γ

(
γ

v

) p∑
j=1

( 1

n

n∑
i=1

Sij

)γ−v( 1

n

n∑
i=1

(µ0i − µ̂0i)Xij

)v
= Tγ0 +

γ∑
v=1

Tγv, say.

Under the null hypothesis and proposed assumptions, we have {Tγ0−ψ(γ)}/ω(γ)
d−→ N(0, 1)

as n, p→∞. Then we discuss two cases: v = 1 and v > 1 separately for the orders of Tγv,
1 ≤ v ≤ γ.

When v = 1, we have

E[(Tγ1)2]

= E
[ C
n2

p∑
j1

p∑
j2

( n∑
i=1

1

n
Sij1

)γ−1( n∑
i=1

1

n
Sij2

)γ−1
n∑
i=1

((µ0i − µ̂0i)Xij1)

n∑
i=1

((µ0i − µ̂0i)Xij2)
]

=
C

n2

∑
j1,j2

∑
i1,i2,i3,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4 ×

( ∑
l∈{i1,i2,i3,i4}

ε0lXlj1

n
+

∑
l 6∈{i1,i2,i3,i4}

ε0lXlj1

n

)γ−1

×
( ∑
l∈{i1,i2,i3,i4}

ε0lXlj2

n
+

∑
l 6∈{i1,i2,i3,i4}

ε0lXlj2

n

)γ−1
]
.

By Binomial theorem, we have

(∑
l

ε0lXlj1

n

)γ−1 ≤
( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−1
+ C

∑
l∈{i1,...,i4}

ε0lXlj1

n

( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−2
+ . . .

+ C
( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)γ−2
∑

l 6∈{i1,...,i4}

ε0lXlj1

n
) + C

( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)γ−1
.
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Then

E[(Tγ1)2] =

γ∑
k1=1

γ∑
k2=1

C

n2

∑
j1,j2

∑
i1,i2,i3,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)k1−1

×
( ∑
l∈{i1,...,i4}

ε0lXlj2

n

)k2−1( ∑
l 6∈{i1,i2,i3,i4}

ε0lXlj1

n

)γ−k1( ∑
l 6∈{i1,i2,i3,i4}

ε0lXlj2

n

)γ−k2]

=

γ∑
k1=1

γ∑
k2=1

Tγ1k1k2 , say.

To prove the order of |Tγ1| is ignorable, we discuss two situations: k1+k2 ≤ 6 and k1+k2 > 6.
First, we focus on the situation with k1+k2 ≤ 6 and discuss the order of each term separately.
For Tγ111, we have

Tγ111

=
C

n2

∑
j1,j2

∑
i1,i2,i3,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l 6∈{i1,i2,i3,i4}

ε0lXlj1

n

)γ−1( ∑
l 6∈{i1,i2,i3,i4}

ε0lXlj2

n

)γ−1
]

=
C

n2

∑
j1,j2

∑
i1,i2,i3,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

]
E
[( ∑

l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−1( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−1
]

=O(n−2)
∑
j1,j2

∑
i1,i2,i3,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

]
×O(n−(γ−1))

=O(n−2)
∑
j1,j2

∑
i1,i2,i3,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

]
×O(n−(γ−1)).

Note that

∑
j1,j2

∑
i1,i2,i3,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4 |Z̃

]
×O(n−(γ−1))

=
∑
j1,j2

∑
i1,i2,i3,i4

E
[
Xi1j1Xi2j2ε0i3ε0i4 |Z̃

]
×O(q2

0n
−(γ+1))

=
∑
j1,j2

∑
i1,i2,i3

E
[
Xi1j1Xi2j2ε

2
0i3 |Z̃

]
×O(q2

0n
−(γ+1))

+
∑
j1,j2

∑
i1,i2

E
[
Xi1j1ε0i1Xi2j2ε0i2 |Z̃

]
×O(q2

0n
−(γ+1))

+
∑
j1,j2

∑
i1,i2

E
[
Xi1j1ε

2
0i1Xi2j2 |Z̃

]
×O(q2

0n
−(γ+1)).
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We discuss each term separately. By a similar discussion of E[T114|Z̃], for the first term in
Tγ111, we have ∑

j1,j2

∑
i1,i2,i3

E
[
Xi1j1Xi2j2ε

2
0i3 |Z̃

]
×O(q2

0n
−(γ+1))

=
∑
j1,j2

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
×O(q2

0n
−γ)

=o(pn2q−2
0 )×O(q2

0n
−γ) = o(pn−γ+2).

For the second term in Tγ111, by noting that E[Xijε0i|Z] = 0, we have∑
j1,j2

∑
i1,i2

E
[
Xi1j1ε0i1Xi2j2ε0i2 |Z̃

]
×O(q2

0n
−(γ+1))

=
∑
j1,j2

∑
i1

E
[
Xi1j1Xi1j2ε

2
0i1 |Z̃

]
×O(q2

0n
−(γ+1))

=O(p2n)×O(q2
0n
−(γ+1)) = O(q2

0p
2n−γ) = o(pn−γ+2).

For the third term in Tγ111, similar to the discussion of T111, we have∑
j1,j2

∑
i1,i2

E
[
Xi1j1ε

2
0i1Xi2j2 |Z̃

]
×O(q2

0n
−(γ+1))

=o(pn2q−2
0 )×O(q2

0n
−(γ+1)) = o(pn−γ+1) = o(pn−γ+2).

By combing the above three equations, we have Tγ111 = o(pn−γ).

Similarly,

Tγ121

=
C

n2

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

∑
l∈{i1,...,i4}

ε0lXlj1

n

×
( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−2( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−1
]

=
C

n2

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

∑
l∈{i1,...,i4}

ε0lXlj1

n

]
× E

[( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−2( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−1
]

=
C

n3

∑
j1,j2

∑
i1,i2,i3

E
[
X2
i1j1Xi2j2ε0i1bi1i3bi2i3ε

2
0i3 +Xi1j1Xi2j2bi1i3bi2i3ε

3
0i3Xi3j1

]
×O(n−(γ−1))

=O(n−γ−2)
∑
j1,j2

∑
i1,i2,i3

(
E
[
X2
i1j1Xi2j2ε0i1bi1i3bi2i3ε

2
0i3

]
+ E

[
Xi1j1Xi2j2bi1i3bi2i3ε

3
0i3Xi3j1

])
.
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Again, we discuss each term separately. Note that since E[ε|X, Z̃] = 0, we have E[X2
ijε0i|Z̃] =

0. Thus

∑
j1,j2

∑
i1,i2,i3

E
[
X2
i1j1Xi2j2ε0i1bi1i3bi2i3ε

2
0i3 |Z̃

]
×O(n−γ−2)

=
∑
j1,j2

∑
i1,i2

E
[
X2
i1j1Xi2j2ε

3
0i1 |Z̃

]
×O(q2

0n
−γ−4)

=O(p2n2)×O(q2
0n
−γ−4) = O(pn−γpq2

0n
−2) = o(pn−γ).

Similarly, for the second term in Tγ121, we have

∑
j1,j2

∑
i1,i2,i3

E
[
Xi1j1Xi2j2bi1i3bi2i3ε

3
0i3Xi3j1 |Z̃

]
×O(n−γ−2)

=
∑
j1,j2

∑
i1,i2,i3

E
[
Xi1j1Xi2j2 |Z̃

]
E
[
ε30i3Xi3j1 |Z̃

]
×O(q2

0n
−γ−4)

=
∑
j1,j2

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
×O(q2

0n
−γ−3)

=o(pn2q−2
0 )×O(q2

0n
−γ−3) = o(pn−γ).

Combining the above two equations, we have Tγ121 = o(pn−γ).

For Tγ122, we have

Tγ122

=
C

n2

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

∑
l∈{i1,...,i4}

ε0lXlj1

n

∑
l∈{i1,...,i4}

ε0lXlj2

n

×
( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−2( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−2
]

=
C

n2

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

∑
l∈{i1,...,i4}

ε0lXlj1

n

∑
l∈{i1,...,i4}

ε0lXlj2

n

]
× E

[( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−2( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−2
]

=
C

n4

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

∑
l∈{i1,...,i4}

ε0lXlj1

∑
l∈{i1,...,i4}

ε0lXlj2

]
×O(n−γ+2).
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Note that∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

∑
l∈{i1,...,i4}

ε0lXlj1

∑
l∈{i1,...,i4}

ε0lXlj2 |Z̃
]
×O(n−γ+2)

=
∑
j1,j2

∑
i1,i2

E
[
X2
i1j1X

2
i2j2ε

2
0i1ε

2
0i2 +X2

i1j1Xi1j2Xi2j2ε
4
0i1 |Z̃

]
×O(q2

0n
−γ)

+
∑
j1,j2

∑
i1,i2,i3

E
[
X2
i1j1ε0i1X

2
i2j2ε0i2ε

2
0i3 |Z̃

]
×O(q2

0n
−γ)

+
∑
j1,j2

∑
i1,i2,i3

E
[
X2
i1j1Xi1j2ε

2
0i1Xi2j2ε

2
0i3 |Z̃

]
×O(q2

0n
−γ)

+
∑
j1,j2

∑
i1,i2,i3

E
[
Xi1j1Xi2j2ε

4
0i3Xi3j1Xi3j2 |Z̃

]
×O(q2

0n
−γ)

+
∑
j1,j2

∑
i1,i2,i3,i4

E
[
Xi1j1Xi2j2Xi3j1ε

2
0i3Xi4j2ε

2
0i4 |Z̃

]
×O(q2

0n
−γ).

Then we discuss each term separately. For the first term, we have∑
j1,j2

∑
i1,i2

E
[
X2
i1j1X

2
i2j2ε

2
0i1ε

2
0i2 +X2

i1j1Xi1j2Xi2j2ε
4
0i1 |Z̃

]
×O(q2

0n
−γ)

=O(p2n2)×O(q2
0n
−γ) = o(pn−γ+4).

For the second term, by noting that E[X2
ijε0i|Z̃] = 0, we have

∑
j1,j2

∑
i1,i2,i3

E
[
X2
i1j1ε0i1X

2
i2j2ε0i2ε

2
0i3 |Z̃

]
×O(q2

0n
−γ)

=
∑
j1,j2

∑
i1,i2,i3

E
[
X2
i1j1ε0i1X

2
i2j2ε0i2 |Z̃

]
× E

[
ε20i3 |Z̃

]
×O(q2

0n
−γ)

=
∑
j1,j2

∑
i1,i3

E
[
X2
i1j1ε

2
0i1X

2
i1j2 |Z̃

]
× E

[
ε20i3 |Z̃

]
×O(q2

0n
−γ)

=O(p2n)×O(n)×O(q2
0n
−γ) = o(pn−γ+4).

For the third term, we have∑
j1,j2

∑
i1,i2,i3

E
[
X2
i1j1Xi1j2ε

2
0i1Xi2j2ε

2
0i3 |Z̃

]
×O(q2

0n
−γ)

=
∑
j1,j2

∑
i1,i2

E
[
X2
i1j1Xi1j2ε

2
0i1Xi2j2 |Z̃

]
×
∑
i3

E
[
ε20i3 |Z̃

]
×O(q2

0n
−γ)

=
∑
j1,j2

∑
i1,i2

E
[
X2
i1j1Xi1j2ε

2
0i1Xi2j2 |Z̃

]
×O(q2

0n
−γ+1)

=
∑
j1,j2

∑
i1 6=i2

E
[
X2
i1j1Xi1j2ε

2
0i1Xi2j2 |Z̃

]
×O(q2

0n
−γ+1) +

∑
j1,j2

∑
i1

E
[
X2
i1j1X

2
i1j2ε

2
0i1 |Z̃

]
×O(q2

0n
−γ+1).
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We discuss each term separately as follows. First,∑
j1,j2

∑
i1 6=i2

E
[
X2
i1j1Xi1j2ε

2
0i1Xi2j2 |Z̃

]
×O(q2

0n
−γ+1)

=
∑
i1 6=i2

∑
j1 6∈P0,j2 6∈P0

E
[
X2
i1j1Xi1j2ε

2
0i1 |Z̃

]
× E

[
Xi2j2 |Z̃

]
×O(q2

0n
−γ+1)

+
∑
i1 6=i2

∑
j1 6∈P0,j2∈P0

E
[
X2
i1j1Xi1j2ε

2
0i1 |Z̃

]
× E

[
Xi2j2 |Z̃

]
×O(q2

0n
−γ+1)

+
∑
i1 6=i2

∑
j1∈P0,j2 6∈P0

E
[
X2
i1j1Xi1j2ε

2
0i1 |Z̃

]
× E

[
Xi2j2 |Z̃

]
×O(q2

0n
−γ+1)

+
∑
i1 6=i2

∑
j1∈P0,j2∈P0

E
[
X2
i1j1Xi1j2ε

2
0i1 |Z̃

]
× E

[
Xi2j2 |Z̃

]
×O(q2

0n
−γ+1)

By noting that E[Xi2j2 |Z̃] = 0, we have∑
j1,j2

∑
i1 6=i2

E
[
X2
i1j1Xi1j2ε

2
0i1Xi2j2 |Z̃

]
×O(q2

0n
−γ+1)

=
∑
i1 6=i2

∑
j1 6∈P0,j2∈P0

E
[
X2
i1j1Xi1j2ε

2
0i1 |Z̃

]
× E

[
Xi2j2 |Z̃

]
×O(q2

0n
−γ+1)

+
∑
i1 6=i2

∑
j1∈P0,j2∈P0

E
[
X2
i1j1Xi1j2ε

2
0i1 |Z̃

]
× E

[
Xi2j2 |Z̃

]
×O(q2

0n
−γ+1)

=
[
O(n2pp0) +O(n2p2

0)
]
×O(q2

0n
−γ+1)

=O(pn−γ+4)×
[
O(p0q

2
0n
−1) +O(p2

0p
−1q2

0n
−1)
]

=o(pn−γ+4).

According to assumptions C3 and C4, p0 = O(pη1) for a small positive η1 and q0 = O(nη2)
for a small positive η2. Then p1/2−η3/2q2

0n
−1 = o(n−1) and we can derive the last equation

accordingly.
Second, by the discussion of T111, we have∑

j1,j2

∑
i1

E
[
X2
i1j1X

2
i1j2ε

2
0i1 |Z̃

]
×O(q2

0n
−γ+1)

=O(p2n)×O(q2
0n
−γ+1) = O(pn−γ+4)×O(pq2

0n
−2) = o(pn−γ+4).

For the fourth term, similar to the derivation of E[T114|Z̃], we have∑
j1,j2

∑
i1,i2,i3

E
[
Xi1j1Xi2j2ε

4
0i3Xi3j1Xi3j2 |Z̃

]
×O(q2

0n
−γ)

=
∑
j1,j2

∑
i1,i2,i3

E
[
Xi1j1Xi2j2 |Z̃

]
E
[
ε40i3Xi3j1Xi3j2 |Z̃

]
×O(q2

0n
−γ)

=
∑
j1,j2

∑
i1,i2

E
[
Xi1j1Xi2j2 |Z̃

]
×O(n)×O(q2

0n
−γ)

=o(pn2q−2
0 )×O(q2

0n
−γ+1) = o(pn−γ+4).
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For the last term, by the derivation of E[T114|Z̃], we have∑
j1,j2

∑
i1,i2,i3,i4

E
[
Xi1j1Xi2j2Xi3j1ε

2
0i3Xi4j2ε

2
0i4 |Z̃

]
×O(q2

0n
−γ)

=
∑
j1,j2

∑
i1,i2

E[Xi1j1Xi2j2 |Z̃]×O(n2)×O(q2
0n
−γ)

=
∑
j1,j2

∑
i1,i2

E[Xi1j1Xi2j2 |Z̃] = o(pn2q−2
0 )×O(q2

0n
−γ+2) = o(pn−γ+4).

Combining the above equations, we have Tγ122 = o(pn−γ).
Then we discuss the order of Tγ131, we have

Tγ131 =
C

n2

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)2
×
( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−3( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−1
]

= O(n−2)
∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)2]
× E

[( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−3( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−1
]

= O(n−2)
∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)2]×O(n−γ+2).

(
∑

l∈{i1,...,i4} ε0lXlj1/n)2 and (
∑

l∈{i1,...,i4} ε0lXlj1/n)×(
∑

l∈{i1,...,i4} ε0lXlj2/n) have the same

effect to the order. Similar to the discussion of Tγ122, we have Tγ131 = o(pn−γ). Next, we
discuss the order of Tγ132:

Tγ132

=
C

n2

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)2 ∑
l∈{i1,...,i4}

ε0lXlj2

n

×
( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−3( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−2
]

=O(n−γ−3)
∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l∈{i1,...,i4}

ε0lXlj1

)2 ∑
l∈{i1,...,i4}

ε0lXlj2

]
.

For a fixed j1 and j2,∑
j1,j2

∑
i1,...,i4

E[Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4(
∑

l∈{i1,...,i4}

ε0lXlj1)2
∑

l∈{i1,...,i4}

ε0lXlj2 ]

contains 5 ε0i and E[ε0i|X, Z̃] = 0. Then it at most contains n2 terms with non-zero
expectation. Since bij = O(q0n

−1), we have

Tγ132 = O(n−γ−3)×O(p2n2q2
0n
−2) = O(p2q2

0n
−γ−3) = O(pn−γ)×O(pq2

0n
−3) = o(pn−γ).
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Similarly, we can prove Tγ141 = o(pn−γ). For Tγ133, we have

Tγ133

=
C

n2

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)2( ∑
l∈{i1,...,i4}

ε0lXlj2

n

)2
×
( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−3( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−3
]

=O(n−γ−3)
∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l∈{i1,...,i4}

ε0lXlj1

)2( ∑
l∈{i1,...,i4}

ε0lXlj2

)2]
.

Since
∑

i1,...,i4
E[Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4(

∑
l∈{i1,...,i4} ε0lXlj1)2(

∑
l∈{i1,...,i4} ε0lXlj2)2] con-

tains 6 ε0i and E[ε0i|X, Z̃] = 0, for a fixed j1 and j2, it at most contains n3 terms with
non-zero expectation. Thus

Tγ133 = O(n−γ−3)×O(p2n3q2
0n
−2) = O(q2

0p
2n−γ−2) = O(pn−γ)×O(pq2

0n
−2) = o(pn−γ).

Similarly, we can prove Tγ1k1k2 = o(pn−γ) for k1 + k2 = 6.
For k1 + k2 ≥ 7, we have

C

n2

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4 ×

( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)k1−1

×
( ∑
l∈{i1,...,i4}

ε0lXlj2

n

)k2−1( ∑
l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−k1( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−k2]
=O(n−2)

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)k1−1( ∑
l∈{i1,...,i4}

ε0lXlj2

n

)k2−1
]

× E
[( ∑

l 6∈{i1,...,i4}

ε0lXlj1

n

)γ−k1( ∑
l 6∈{i1,...,i4}

ε0lXlj2

n

)γ−k2]
=O(n−2)

∑
j1,j2

∑
i1,...,i4

E
[
Xi1j1Xi2j2ε0i3bi1i3ε0i4bi2i4

( ∑
l∈{i1,...,i4}

ε0lXlj1

n

)k1−1( ∑
l∈{i1,...,i4}

ε0lXlj2

n

)k2−1
]

×O(n−γ+b(k1+k2)/2c)

=O(n−2)O(p2 × n4 × q2
0n
−2 × n−(k1+k2−2))×O(n−γ+b(k1+k2)/2c)

=O(pn−γ)×O(q2
0pn

−(k1+k2−2)+b(k1+k2)/2c) = o(pn−γ).

By noting that pq2
0 = o(n2) and for k1 + k2 ≥ 7, −(k1 + k2− 2) + b(k1 + k2)/2c ≥ 2, we can

derive the last equation. In summary, we have |Tγ1| = op(n
−γ/2√p).

Next, we discuss 1 < v ≤ γ.
By Minkowski’s inequality, we have

E[|Tγv|] ≤ C
p∑
j=1

E
[∣∣∣( 1

n

n∑
i=1

Sij

)γ−v( 1

n

n∑
i=1

(µ0i − µ̂0i)Xij

)v∣∣∣].
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Then by Cauchy-Schwarz inequality,

E[|Tγv|] ≤ C
p∑
j=1

E
[( 1

n

n∑
i=1

Sij
)2(γ−v)

]1/2
E
[( 1

n

n∑
i=1

(µ0i − µ̂0i)Xij

)2v]1/2

≤ O(n−(γ−v)/2)

p∑
j=1

E
[( 1

n

n∑
i=1

(µ0i − µ̂0i)Xij

)2v]1/2
.

Next, we derive the order of T2v,j =
(

1
n

∑n
i=1(µ0i − µ̂0i)Xij

)2v
for any positive integer v.

For j ∈ P0, we have

E[T2v,j |Z̃] =
1

n2v

∑
i1,i2,...,i4v

E[Xi1jbi1i2v+1ε0i2v+1Xi2jbi2i2v+2ε0i2v+1 × · · · ×Xi2vjbi2vi4vε0i4v |Z̃]

≤ Cq2v
0

n4v

∑
i1,i2,...,i3v

E[Xi1jXi2j × · · · ×Xi2vj × ε20i2v+1
ε20i2v+2

× · · · × ε20i3v |Z̃]

= O(q2v
0 n−v).

Note that for j 6∈ P0, E[Xij |Z̃] = 0. Then for For j 6∈ P0,

E[T2v,j |Z̃] =
1

n2v

∑
i1,i2,...,i4v

E[Xi1jbi1i2v+1ε0i2v+1Xi2jbi2i2v+2ε0i2v+1 × · · · ×Xi2vjbi2vi4vε0i4v |Z̃]

≤ Cq2v
0

n4v

∑
i1,i2,...,i2v

E[X2
i1jX

2
i2j × · · · ×X

2
ivj × ε

2
0iv+1

ε20iv+2
× · · · × ε20i2v |Z̃]

= O(q2v
0 n−2v).

In summary, E[T2v,j ] = O(q2v
0 n−v) if j ∈ P0 and E[T2v,j ] = O(q2v

0 n−2v) if j 6∈ P0. Then we

have
∑p

j=1E
[(

1
n

∑n
i=1(µ0i − µ̂0i)Xij

)2v]1/2
= O(p0q

v
0n
−v/2 + pqv0n

−v). This leads to

E[|Tγv|] ≤ O(n−(γ−v)/2)×O(p0q
v
0n
−v/2 + pqv0n

−v)

= O(p0q
v
0n
−γ/2 +

√
pn−γ/2

√
pn−v/2qv0).

Note that by assumption C5, pq4
0 = o(n2), v ≥ 2, and by assumption C4, p0 = O(pη1),

q0 = O(nη2) for some small positive η1 and η2, we have E[|Tγv|] = o(
√
pn−γ/2), leading to

|Tγv| = op(
√
pn−γ/2).

In summary, we have proved for any finite γ,

[{L(γ, µ̂0)− ψ(γ)}/ω(γ)]
′
γ∈Γ′ = [{L(γ, µ0)− ψ(γ)}/ω(γ)]

′
γ∈Γ′ + op(1).

(ii) Asymptotic null distribution for iSPU(∞). Define

Ṽij = (Yi − µ̂0i)Xij/
√
σjj , 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Let W̃j =
∑n

i=1 Ṽij/
√
n. We discuss two cases: j ∈ P0 and j 6∈ P0.
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For case j ∈ P0: we define ε is a small constant. Note that

Pr
(

max
j∈P0

W̃ 2
j > ε log p

)
≤Pr

(
max
j∈P0

|W̃j | > ε(log p)1/2
)

≤Pr
(

max
j∈P0

∣∣∣∑n
i=1(Yi − µ0i + µ0i − µ̂0i)Xij√

σjjn

∣∣∣ > (ε log p)1/2
)

≤Pr
(

max
j∈P0

∣∣∣∑n
i=1(Yi − µ0i)Xij√

σjjn

∣∣∣ > (ε log p)1/2

2

)
+ Pr

(
max
j∈P0

∣∣∣∑n
i=1(µ0i − µ̂0i)Xij√

σjjn

∣∣∣ > (ε log p)1/2

2

)
.

For the first term, we have

Pr
(

max
j∈P0

∣∣∣∑n
i=1(Yi − µ0i)Xij√

σjjn

∣∣∣ > (ε log p)1/2

2

)
≤ p0Pr

(∣∣∣∑n
i=1 Sij√
σjjn

∣∣∣ > (ε log p)1/2

2

)
.

Note that Sij follows a sub-Gaussian distribution (C2) and Si1j and Si2j are independent
for i1 6= i2. Suppose S1j , . . . , Snj be n independent random variables such that Sij follows
sub-Gaussian distribution subG(0, σ2). Then for any a ∈ Rn, using a Chernoff bound, we
have Pr (|

∑n
i=1 aiSij | > t) ≤ 2 exp

(
−t2/(2σ2||a||22)

)
. Similarly, we have

Pr
(

max
j∈P0

∣∣∣∑n
i=1(Yi − µ0i)Xij√

σjjn

∣∣∣ > (ε log p)1/2

2

)
≤p0 × 2 exp

(
− ε log p/4

2

)
= 2p0p

−ε/8 = o(1).

By noting that p0 = pη1 , where η1 is a small constant, we have the last equation.

For the second term, we have

Pr
(

max
j∈P0

∣∣∣∑n
i=1(µ0i − µ̂0i)Xij√

σjjn

∣∣∣ > (ε log p)1/2

2

)
≤Pr

(
max
j∈P0

∣∣∣∑i1,i2
Xi1jε0i2bi1i2
√
σjjn

∣∣∣ > (ε log p)1/2

2

)
≤Pr

(
max
j∈P0

∣∣ n∑
i2=1

ε0i2
(∑i1

Xi1jbi1i2√
σjjn

)∣∣ > (ε log p)1/2

2

∣∣∣max
i2

∑
i1
Xi1jbi1i2√
σjjn

<
C
√
σjjn

)
+ Pr

(
max
i2

∑
i1
Xi1jbi1i2√
σjjn

≥ C
√
σjjn

)
.
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We discuss these two terms separately. For the first term, we have

Pr
(

max
j∈P0

∣∣ n∑
i2=1

ε0i2
(∑i1

Xi1jbi1i2√
σjjn

)∣∣ > (ε log p)1/2

2

∣∣∣max
i2

∑
i1
Xi1jbi1i2√
σjjn

<
C
√
σjjn

)
≤p0Pr

(∣∣ n∑
i2=1

ε0i2
(∑i1

Xi1jbi1i2√
σjjn

)∣∣ > (ε log p)1/2

2

∣∣∣max
i2

∑
i1
Xi1jbi1i2√
σjjn

<
C
√
σjjn

)
≤p0E

[
Pr
(∣∣ n∑

i2=1

ε0i2
(∑i1

Xi1jbi1i2√
σjjn

)∣∣ > (ε log p)1/2

2

∣∣∣max
i2

∑
i1
Xi1jbi1i2√
σjjn

<
C
√
σjjn

,X, Z̃
)]
.

By noting that ε0i follows a sub-Gaussian distribution, we have

Pr
(

max
j∈P0

∣∣ n∑
i2=1

ε0i2
(∑i1

Xi1jbi1i2√
σjjn

)∣∣ > (ε log p)1/2

2

∣∣∣max
i2

∑
i1
Xi1jbi1i2√
σjjn

<
C
√
σjjn

,X, Z̃
)

≤p0 × 2 exp
(
− ε log p/4

2C2

)
= 2p0p

−ε/(8C2) = o(1).

For the second term, we have

Pr
(

max
i2

∑
i1
Xi1jbi1i2√
σjjn

≥ C
√
σjjn

)
≤ nE

[
Pr
(∑

i1
Xi1j

n
≥ C/q0

∣∣Z̃)].
By central limit theorem and the Gaussian tail inequality, we have

Pr
(

max
i2

∑
i1
Xi1jbi1i2√
σjjn

≥ C
√
σjjn

)
≤ n× 2 exp(−(Cn1/2/q0)2/2)

Cn1/2/q0
.

By noting that q0 = nη2 for a small positive η2, we have

Pr
(

max
i2

∑
i1
Xi1jbi1i2√
σjjn

≥ C
√
σjjn

)
≤ Cn1/2+η2 × exp(−n1−2η2/2) = o(1).

In summary, as n, p → ∞, Pr
(

maxj∈P0 W̃
2
j > ε log p

)
= o(1). Then we focus on the

second situation. Define Vij = (Yi−µ0i)Xij/
√
σjj , V̂ij = VijI(|Vij | ≤ τn) for i = 1, . . . , n and

j = 1, . . . , p, where τn = 2η−0.5
√

log(p+ n). Further define Wj =
∑n

i=1(Yi−µ0i)Xij/
√
σjjn

and Ŵj =
∑n

i=1 V̂ij/
√
n. Then we have

Pr
(

max
j 6∈P0

|W̃j −Wj | ≥
1

log p

)
≤ npmax

j 6∈P0

Pr(|V1j | ≥ τn) + Pr
(

max
j 6∈P0

∣∣ n∑
i=1

(µ0i − µ̂0i)Xij√
σjjn

∣∣ ≥ 1

log p

)
.

From the proof of Lemma 1, the first term is O(1/p+ 1/n) and thus we only need discuss
the second term. By the Markov inequality and the Jensen’s inequality,
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Pr
(

max
j 6∈P0

∣∣ n∑
i=1

(µ0i − µ̂0i)Xij√
σjjn

∣∣ ≥ 1

log p

)
≤ Pr

(
max
j 6∈P0

( n∑
i=1

(µ0i − µ̂0i)Xij√
σjjn

)32 ≥ 1

(log p)32

)
≤ pPr

(( n∑
i=1

(µ0i − µ̂0i)Xij√
σjjn

)32 ≥ 1

(log p)32

)
≤ p log pE

[( n∑
i=1

(µ0i − µ̂0i)Xij√
σjjn

)32
]

≤ p log p×O(n−16q16
0 ) = o(1).

Thus, we have Pr
(

max1≤j≤p |W̃j −Wj | ≥ 1/ log p
)

= o(1) as n, p→∞. Further note that

|max
j 6∈P0

W 2
j −max

j 6∈P0

W̃ 2
j | ≤ 2 max

j 6∈P0

|Wj |max
j 6∈P0

|Wj − W̃j |+ max
j 6∈P0

|Wj − W̃j |2.

The above two inequalities indicate that when n, p→∞, |maxj 6∈P0 W
2
j −maxj 6∈P0 W̃

2
j | → 0.

By Cai et al. (2014), we have

Pr
(

max
j 6∈P0

W̃ 2
j − 2 log p+ log log p ≤ x

)
→ exp{−π−1/2 exp(−x/2)}.

Note that

max
1≤j≤p

W̃ 2
j = max

(
max
j∈P0

W̃ 2
j ,max

j 6∈P0

W̃ 2
j

)
= max

j 6∈P0

W̃ 2
j .

Thus,

Pr
(

max
1≤j≤p

W̃ 2
j − 2 log p+ log log p ≤ x

)
→ exp{−π−1/2 exp(−x/2)}.

Note that σ̂jj = (1 + o(1))σjj and by Slutsky’s theorem, we have

Pr
(

max
1≤j≤p

n( 1
n

∑n
i=1 Uij)

2

σ̌jj
− 2 log p+ log log p ≤ x

)
→ exp{−π−1/2 exp(−x/2)}.

(iii) By proof in (i) and (ii), we have

[{L(γ, µ̂0)− ψ(γ)}/ω(γ)]
′
γ∈Γ′ = [{L(γ, µ0)− ψ(γ)}/ω(γ)]

′
γ∈Γ′ + op(1)

and L(∞, µ̂0) = L(∞, µ0) +op(1). By Lemma 1, [{L(γ, µ0)−ψ(γ)}/ω(γ)]
′
γ∈Γ′ is asymptoti-

cally independent with L(∞, µ0). Note that op(1) is asymptotic independent with L(∞, µ0)
and [{L(γ, µ0) − ψ(γ)}/ω(γ)]

′
γ∈Γ′ , thus [{L(γ, µ̂0) − ψ(γ)}/ω(γ)]

′
γ∈Γ′ is asymptotically in-

dependent with L(∞, µ̂0). This completes the proof. �
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Appendix D. Details of asymptotic power analysis

To derive some propositions, we define some additional notation. Under an alternative HA :

β 6= 0, we denote the mean and variance of L(γ, µ0) with γ <∞ by ψA(γ) =
∑p

j=1 ψ
(j)
A (γ)

with ψ
(j)
A (γ) = E[L(j)(γ, µ0)|HA] for 1 ≤ j ≤ p, and by ω2

A(γ) = var[L(γ, µ0)|HA], respec-
tively. Define S̃ij ≡ (Yi − µA0i)Xij for 1 ≤ i ≤ n and 1 ≤ j ≤ p and σ̃kj = cov[S̃1k, S̃1j ] for
1 ≤ k, j ≤ p.

Next, we introduce Propositions 1 and 2 to calculate the ψA(γ) and ω2
A(γ), respectively.

Proposition 1. Under assumptions C8–C9 and HA : β 6= 0, we have

ψ
(j)
A (γ) ∼ ψ̃(j)(γ) +

γ∑
c=1

(
γ

c

)
∆c
jψ̃

(j)(γ − c),

where ∼ stands for the two sides are in the same order, ψ̃(j)(1) = 0, ψ̃(j)(γ) = γ!
d!2d

n−dσ̃djj +

o(n−d) if γ = 2d, and ψ̃(j)(γ) = o(n−(d+1)) if γ = 2d + 1. In particular, µ
(j)
A (1) = ∆j and

µA(1) =
∑p

j=1 ∆j.

Proof of Proposition 1. Under the HA, the true conditional mean of Yi is µA0i. Then
similarly to Theorem 1, we can calculate ψ̃(j)(γ) accordingly.

Under the alternative HA, it is trivial to find µA(1) =
∑p

i=1 ∆i since ψ̃(1) = 0. Next,
we focus on γ ≥ 2. The mean function of L(j)(γ) under HA equals

E[L(j)(γ)] =E
[( 1

n

n∑
i=1

Uij
)γ]

=E
[( 1

n

n∑
i=1

(Yi − µA0i)Xij +
1

n

n∑
i=1

(µA0i − µ0i)Xij

)γ]
=
∑

0≤a≤γ

(
γ

a

)
E
[( 1

n

n∑
i=1

(Yi − µA0i)Xij

)a]
E
[( 1

n

n∑
i=1

(µA0i − µ0i)Xij

)γ−a]
.

Note that under the local alternative considered here, ∆j = O(n−1/2(log p)κ) with κ > 0
for 1 ≤ j ≤ p. Then E

[∣∣(µA0i − µ0i)X1j

∣∣] ≤ C|∆j | for any positive integer γ, where C is
some constant. Thus E

[
( 1
n

∑n
i=1(µA0i − µ0i)Xij)

a
]

= ∆a
j (1 + o(1/n)). Then we have

ψ
(j)
A (γ) = ψ̃(j) +

γ∑
c=1

(
γ

c

)
∆c
jψ̃

(j)(γ − c)[1 + o(1/n)].

Then Proposition 1 follows directly from the above equation. �

Proposition 2.Under assumptions C8–C9 and HA : β 6= 0, we have

ω2
A(γ) ∼ ψA(2γ)−

p∑
j=1

ψ
(j)
A (γ)2 +

∑
k 6=j

γ∑
h=0

γ∑
l=0

(
γ

h

)(
γ

l

)
∆h
k∆l

jrkj(γ − h, γ − l),
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where

rkj(h, l) =


1
nc
∑

2c1+c3=h
2c2+c3=l
c3>0

h!l!
c3!c1!c2!2c1+c2

σ̃c1kkσ̃
c2
jj σ̃

c3
kj + o(n−c) if h+ l = 2c;

1
nc+1

∑
a+b=3

2c1+c3=h−a
2c2+c3=l−b

h!l!
a!b!c3!c1!c2!2c1+c3

σ̃c1kkσ̃
c2
jj σ̃

c3
kjmkajb + o(n−(c+1)) if h+ l = 2c+ 1,

with mkajb = E
[(

(Y1 − µA01)X1k

)a(
(Y1 − µA01)X1j

)b]
.

Proof of Proposition 2. Under the local alternative,

ω2
A(γ) =E

[{ p∑
j=1

( 1

n

n∑
i=1

(Yi − µ0i)Xij

)γ}2
]
− E

[ p∑
j=1

( 1

n

n∑
i=1

(Yi − µ0i)Xij

)γ]2

=ψA(2γ)−
p∑
i=1

{ψ(i)
A (γ)}2 −

∑
k 6=j

ψ
(k)
A (γ)ψ

(j)
A (γ)

+ E
[∑
k 6=j

( 1

n

n∑
i=1

(Yi − µ0i)Xik

)γ( 1

n

n∑
i=1

(Ys − µ0i)Xij

)γ]
=ψA(2γ)−

p∑
i=1

{ψ(i)
A (γ)}2

−
∑
k 6=j

[ γ∑
c=0

(
γ

c

)
∆c
kψ̃

(k)(γ − c)(1 + o(1/n))
][ γ∑

c=0

(
γ

c

)
∆c
jψ̃

(j)(γ − c)(1 + o(1/n))
]

+
∑
k 6=j

γ∑
h=0

γ∑
l=0

(
γ

h

)(
γ

l

)
∆h
k∆l

jE
[( 1

n

n∑
i=1

S̃ik
)γ−h( 1

n

n∑
i=1

S̃ij
)γ−l]

(1 + o(1/n)).

By the derivation of Proposition 3 in Wu et al. (2019), the last two terms in the above
equation can be simplified as

∑
k 6=j

γ∑
h=0

γ∑
l=0

(
γ

h

)(
γ

l

)
∆h
k∆l

j

(
E
[( 1

n

n∑
i=1

S̃ik
)γ−h( 1

n

n∑
i=1

S̃ij
)γ−l]− ψ̃(k)(γ − h)ψ̃(j)(γ − l)

)
∼
∑
k 6=j

γ∑
h=0

γ∑
l=0

(
γ

h

)(
γ

l

)
∆h
k∆l

jrkj(γ − h, γ − l).

This completes the proof. �

Proof of iSPU(1) is more powerful when ∆j is fixed at the same level. We further
assume ∆j equals to ∆ for j ∈ Sη under the alternative. Note that the asymptotic power
of iSPU(γ) goes to 1 if

(
µA(γ)−µ0(γ)

)
nγ/2p−1/2 →∞, which implies that for any finite γ,

a sufficient condition for the asymptotic power of iSPU(γ) goes to 1 is

∆

n−1/2p(2η−1)/(2γ)
→∞, as p, n→∞.

45



Wu, Xu, Shen and Pan

This sufficient condition comes from the fact that ∆ = O(n−1/2(log p)κ) and µA(γ) −
µ0(γ) ∼

∑p
i=1

∑γ
c=1 ∆cO(n−(γ−c)/2) ∼ p1−η∆γ . Since 0 < η < 1/2, p(2η−1)/(2γ) → 0 as

p → ∞. Thus, to compare the asymptotic powers of different iSPU(γ), we focus on the
local alternative such that n1/2∆→ 0, as p, n→∞. Equivalently, we write ∆ = n−1/2r1/2,
where r → 0 as p, n→∞.

Then we calculate ψA(γ)− ψ̃(γ). When γ is odd, by Proposition 1,

ψA(γ)− ψ̃(γ) =

p∑
j=1

γ∑
c=1

(
γ

c

)
∆c
jψ̃

(j)(γ − c)(1 + o(1/n))

∼ γ
p∑
j=1

∆jψ̃
(j)(γ − 1)

∼ γ
p∑
j=1

∆j
(γ − 1)!

((γ − 1)/2)!2(γ−1)/2
n−(γ−1)/2

∼ p1−η∆
γ!

((γ − 1)/2)!2(γ−1)/2
n−γ/2n1/2

∼ γ!

((γ − 1)/2)!2(γ−1)/2
× r1/2p1−ηn−γ/2.

Similarly, when γ is even

ψA(γ)− ψ̃(γ) ∼ γ
p∑
j=1

∆jψ̃
(j)(γ − 1) +

(
γ

2

) p∑
j=1

∆2
j ψ̃

(j)(γ − 2)

∼ p1−ηn−1/2r1/2o
(
n−γ/2

)
+ p1−ηnrO(n−(γ+2)/2)

∼ o(r1/2p1−ηn−γ/2).

Further, under this local alternative, ωA(γ) ∼ ω̃(γ) ∼ cγp
1/2n−γ/2, where cγ is some con-

stant and can be calculated by Proposition 2. Next, we study {ψA(γ)− ψ̃(γ)}/ωA(γ), which
determines the power. As n, p→∞,

ψA(γ)− ψ̃(γ)

ωA(γ)
∼ γ!

((γ − 1)/2)!2(γ−1)/2cγ
× r1/2p1/2−η, γ is odd,

ψA(γ)− ψ̃(γ)

ωA(γ)
∼ o(1)× r1/2p1/2−η, γ is odd.

The above results show that the asymptotic power of iSPU(γ) does not converge to 1 if
r1/2p1/2−η < ∞. Thus we focus on the local alternative when r → 0 and r1/2p1/2−η → ∞.
Then the asymptotic power of iSPU with odd γ goes to 1 while iSPU with even γ does
not, that is, under the considered alternative, iSPU with odd γ is more powerful than iSPU
with even γ. Therefore, we only need to focus on odd γ’s and compare their power. To
find which odd γ yields an asymptotically more powerful test, we only need to find which
γ maximizes γ!/

(
((γ − 1)/2)!2(γ−1)/2cγ

)
. To simplify our discussion, we first consider the

situation where σ̃ij = 0 for i 6= j. In this case

γ!

((γ − 1)/2)2(γ−1)/2cγ
=

γ!

((γ − 1)/2)!2(γ−1)/2
√

(2γ)!/(γ!2γ)− (γ!)2/([(γ/2)!]22γ)
,
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which has maximum value 1.66 at γ = 1. More generally, under the situation where σ̃ij ≥ 0,
a similar calculation gives that iSPU(1) is asymptotically more powerful than iSPU test with
other γ. This completes the proof. �

Proof of iSPU(2) is more powerful when the absolute values of ∆j are the
same but half being positive while the other half being negative. We assume |∆j |
equals to ∆ for j ∈ Sη under the alternative. Like previous subsection, we consider the
local alternative with ∆ = n−1/2r1/2, where r → 0 as p, n → ∞. Similarly, we calculate
ψA(γ)− ψ̃(γ) for both odd and even γ.

For γ = 1, we have

ψA(1)− ψ̃(1) ∼
p∑
j=1

∆j ∼ 0.

When γ = 3, by noting that ψ̃(j)(1) = 0 for 1 ≤ j ≤ p, we have

ψA(3)− ψ̃(3) =

p∑
j=1

3∑
c=1

(
3

c

)
∆c
jψ̃

(j)(3− c)(1 + o(1/n))

∼
p∑
j=1

(
∆3
j + ∆jψ̃

(j)(2)
)

∼ 0.

For odd γ > 3, we have

ψA(γ)− ψ̃(γ) =

p∑
j=1

γ∑
c=1

(
γ

c

)
∆c
jψ̃

(j)(γ − c)(1 + o(1/n))

∼
(
γ

2

) p∑
j=1

∆2
j ψ̃

(j)(γ − 2)

∼ p1−ηnr × o(n−(γ−1)/2)

∼ o(rp1−ηn−(γ+1)/2).

Similarly, for even γ ≥ 2, we have

ψA(γ)− ψ̃(γ) =

p∑
j=1

γ∑
c=1

(
γ

c

)
∆c
jψ̃

(j)(γ − c)(1 + o(1/n))

∼
(
γ

2

) p∑
j=1

∆2
j ψ̃

(j)(γ − 2)

∼ γ(γ − 1)

2
p1−η∆2 (γ − 2)!

((γ − 2)/2)!2(γ−2)/2
n−(γ−2)/2

∼ γ!

((γ − 2)/2)!2γ/2
p1−ηrn−γ/2.
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Again, under this local alternative, ωA(γ) ∼ ω̃(γ) ∼ cγp1/2n−γ/2, where cγ is some constant.
Next, we study {µA(γ)− µ0(γ)}/σA(γ), which determines the power. As n, p→∞,

ψA(γ)− ψ̃(γ)

ωA(γ)
∼ o(rp1/2−ηn−1/2), γ is odd,

ψA(γ)− ψ̃(γ)

ωA(γ)
∼ γ!

cγ((γ − 2)/2)!2γ/2
rp1/2−η, γ is even.

These results show that if rp1/2−η <∞, the asymptotic power of iSPU(γ) does not converge
to 1. Thus we discuss the local alternative when r → 0 and rp1/2−η → ∞. Then the
asymptotic power of iSPU with even γ goes to 1 while iSPU with odd γ does not. In other
words, under the considered alternative here, iSPU with even γ is more powerful than iSPU
with odd γ. Therefore, we only need to focus on iSPU with even γs and compare their
power. To find which even γ yields an asymptotically more powerful test, we need to find
which γ maximizes γ!/

(
cγ((γ − 2)/2)!2γ/2

)
. We first consider the situation where σ̃ij = 0

for i 6= j. In this case

γ!

cγ((γ − 2)/2)2γ/2
=

γ!

((γ − 2)/2)!2γ/2
√

(2γ)!/(γ!2γ)− (γ!)2/([(γ/2)!]22γ)
,

which has maximum value
√

2 at γ = 2. More generally, under the situation where σ̃ij ≥ 0,
a similar calculation yields that iSPU(2) is asymptotically more powerful than iSPU test
with other γ. This completes the proof. �
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Appendix E. Supplementary Tables and Figures

Table S1: Empirical Type I error rates of various tests under G×E interaction simulations
with n = 2000, p = 200 and various q1 = q2. n, p, q1, and q2 stand for the
sample size, number of coefficients in G×E interaction effects, number of positive
coefficients in main genetics effects, and number of negative coefficients in main
genetics effects, respectively. * Conservative Type I error rates.

q1 = q2 2 5 7 10 20 30

GESAT 0.098 0.105 0.108 0.094 0.095 0.095
aiSPU(Oracle) 0.060 0.053 0.067 0.056 0.052 0.055
aiSPU(Lasso) 0.054 0.045 0.056 0.046 0.031 0.030*
aiSPU(Ridge) 0.052 0.044 0.058 0.044 0.037 0.029*
aiSPU(TLP) 0.058 0.056 0.067 0.059 0.056 0.064
aiSPU(Full) 0.085 0.104 0.107 0.097 0.084 0.093

Table S2: Empirical Type I error rates of various tests in rare variants simulations with
n = 2000, q1 = 2, q2 = 0, and various p. n, p, q1, and q2 stand for the sample
size, number of terms in G×E interaction, number of the positive genetic main
effects, and number of the negative genetic main effects, respectively. * Inflated
Type I error rates.

p 25 50 70 100 200 300 400 500

iSKAT 0.050 0.077 0.079 0.114* 0.229* 0.560* 0.909* 0.999*
MiSTi 0.051 0.060 0.085 0.088 0.201* 0.514* 0.881* 0.995*
Full 0.043 0.054 0.080 0.089 0.197* 0.557* 0.953* 1.000*
aiSPU(Oracle) 0.037 0.041 0.066 0.066 0.048 0.060 0.060 0.049
aiSPU(TLP) 0.043 0.039 0.060 0.064 0.043 0.053 0.058 0.049
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Table S3: Empirical Type I error rates (in percentage) of various tests in rare variants
simulations with n = 2000, p = 300 and various q1 = q2. n, p, q1, and q2

stand for the sample size, number of terms in G× E interaction, number of the
positive genetic main effects, and number of the negative genetic main effects,
respectively. * Inflated Type I error rates.

q1 = q2 2 5 7 10 20 30 50

iSKAT 0.535* 0.534* 0.53* 0.545* 0.550* 0.573* 0.573*
MiSTi 0.508* 0.504* 0.502* 0.508* 0.509* 0.503* 0.536*
Full 0.538* 0.539* 0.535* 0.555* 0.550* 0.573* 0.602*
aiSPU(Oracle) 0.046 0.041 0.052 0.051 0.061 0.071 0.070
aiSPU(TLP) 0.047 0.042 0.054 0.047 0.058 0.071 0.061

Table S4: Empirical Type I errors and power (in percentage) of various tests under G×E
interactions with p = 1000 and n = 200. Zero signal strength c = 0 represents
Type I errors, while c 6= 0 represents powers. The sparsity level was s = 0.001,
leading to 1 non-zero elements in β. The results outside and inside parenthe-
ses were calculated from parametric bootstrap- and asymptotics-based methods,
respectively.

c 0 1 2 3 4 5

iSPU(1) 4.9 (4.7) 5.7 (5.5) 4.5 (4.5) 4.9 (4.6) 6.2 (5.7) 5.9 (5.8)
iSPU(2) 2.7 (5.4) 2.3 (5.8) 6.3 (9.9) 11.6 (16.8) 20.6 (25.9) 26.9 (31.9)
iSPU(3) 5.8 (5.6) 6.8 (6.4) 15.6 (14.9) 31.7 (31.1) 42.7 (42.4) 52.4 (52.5)
iSPU(4) 3.1 (4.1) 5.9 (7.1) 23.4 (24.4) 42.6 (43.7) 54.4 (55.3) 61.4 (62.9)
iSPU(5) 5.8 (4.9) 9.1 (8.2) 29 (28.1) 47.6 (46.5) 59.8 (58.5) 67.6 (67)
iSPU(6) 3.8 (3.5) 8.9 (8) 30.8 (28.9) 51 (49.7) 60.1 (59.4) 69.7 (69)
iSPU(∞) 9 (7.6) 15.1 (13.1) 43.6 (40.8) 63.2 (61.8) 70.1 (69.3) 76.6 (75.9)
aiSPU 5.8 (6.3) 10 (10.6) 37.5 (38.6) 58.5 (58.3) 67.6 (68.1) 74.6 (74.8)
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Table S5: Empirical Type I errors and power (in percentage) of various tests under G×E
interactions with p = 1000 and n = 200. Zero signal strength c = 0 represents
Type I errors, while c 6= 0 represents powers. The sparsity level was s = 0.01,
leading to 10 non-zero elements in β. The results outside and inside parenthe-
ses were calculated from parametric bootstrap- and asymptotics-based methods,
respectively.

c 0 1 2 3 4 5

iSPU(1) 4.8 (4.7) 4.1 (3.9) 5.1 (4.9) 5 (4.9) 5.7 (5.4) 5.7 (5.7)
iSPU(2) 2.6 (5.3) 11.7 (17.7) 40.9 (44.3) 62.7 (65.3) 73.1 (73.9) 78.5 (78.5)
iSPU(3) 5.9 (5.7) 9.2 (8.5) 28.8 (28) 44.9 (43) 50.3 (49.5) 55 (53.3)
iSPU(4) 3 (4) 25.4 (26.7) 82.5 (82.9) 95.1 (95.6) 98.2 (98.2) 99.1 (99.2)
iSPU(5) 5.9 (5) 19 (18.1) 64.2 (62) 79.3 (78.2) 84.6 (83.9) 86.9 (86.2)
iSPU(6) 3.7 (3.3) 30.1 (27.7) 89.3 (87.9) 97.5 (97.3) 98.9 (98.9) 99.6 (99.3)
iSPU(∞) 9 (7.5) 32.4 (28.7) 91.7 (89.1) 98.7 (98.3) 99.5 (99.5) 99.9 (99.9)
aiSPU 5.8 (6.2) 27.2 (29.7) 89.3 (89.4) 98.1 (98.3) 99.4 (99.4) 99.8 (99.8)

Table S6: Empirical Type I errors and power (in percentage) of various tests under G×E
interactions with p = 1000 and n = 200. Zero signal strength c = 0 represents
Type I errors, while c 6= 0 represents powers. The sparsity level was s = 0.05,
leading to 50 non-zero elements in β. The results outside and inside parenthe-
ses were calculated from parametric bootstrap- and asymptotics-based methods,
respectively.

c 0 1 2 3 4 5

iSPU(1) 5.8 (5.5) 4.8 (5.5) 6.2 (5.4) 6.1 (6) 7.3 (6.9) 6.9 (7.3)
iSPU(2) 2.3 (5.4) 45.3 (48.7) 75.4 (76.6) 84.8 (83.6) 86.2 (85.6) 86.9 (86.1)
iSPU(3) 5.4 (5.2) 11.4 (11.6) 17.8 (15.8) 19.8 (18.7) 20.3 (19.2) 21.8 (19.4)
iSPU(4) 2.7 (4.1) 56.7 (55.9) 88.5 (86.8) 93.7 (91.8) 95 (93.8) 95.4 (94.8)
iSPU(5) 6.1 (5) 25 (22.4) 37 (34.5) 40.6 (37.4) 43.6 (40.8) 45.5 (41.8)
iSPU(6) 4.1 (3.9) 53.7 (48.6) 83.7 (79.8) 90.8 (88.2) 91.5 (88.6) 92.3 (90.6)
iSPU(∞) 8.5 (7.3) 34.2 (27.5) 61.7 (52.1) 69.3 (59) 75 (63.4) 75.4 (64.1)
aiSPU 5.7 (6.5) 46.4 (46.9) 78.5 (78.9) 86.7 (86.2) 89.2 (88.2) 90.2 (89.8)
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Table S7: Empirical Type I errors and power (in percentage) of various tests under high-
dimensional linear models simulations. Zero signal strength c = 0 represents
Type I errors, while c 6= 0 represents powers. Zero signal strength c = 0 rep-
resents Type I errors, while c 6= 0 represents powers. The sparsity level was
s = 0.2, leading to 200 non-zero elements in β. The results outside and inside
parentheses were calculated from parametric bootstrap- and asymptotics-based
methods, respectively.

c 0 0.5 1 1.5 2

iSPU(1) 5.8 (5.5) 5.9 (5.1) 5.6 (5.5) 6.5 (6.1) 5.7 (5.9)
iSPU(2) 2.3 (5.4) 47.6 (51.6) 76.5 (75.5) 83 (81.1) 85.4 (85.3)
iSPU(3) 5.4 (5.2) 10.2 (9.1) 11.5 (10.5) 13.2 (11.5) 12.7 (10.8)
iSPU(4) 2.7 (4.1) 43.1 (42) 70.9 (67.2) 78.6 (71.7) 81 (77.1)
iSPU(5) 6.1 (5) 12.5 (11) 16.3 (14.4) 18.1 (15.7) 18.4 (16.5)
iSPU(6) 4.1 (3.9) 30.8 (25.2) 52.8 (43.1) 59.4 (52.6) 62.3 (53.8)
iSPU(Inf) 8.5 (7.4) 16.6 (11.7) 23.3 (15.5) 26.5 (19.4) 27.1 (19.4)
aiSPU 5.7 (6.5) 32.9 (34.4) 61.2 (58.6) 68.5 (65) 73.3 (71.4)

Table S8: Empirical Type I errors and power (in percentage) of various tests under G×E
interactions with p = 1000 and n = 200. Zero signal strength c = 0 represents
Type I errors, while c 6= 0 represents powers. The sparsity level was s = 0.2, lead-
ing to 200 non-zero elements in β. The informative variables in β was generated
from a uniform distribution U(0, c). The results outside and inside parenthe-
ses were calculated from parametric bootstrap- and asymptotics-based methods,
respectively.

c 0 0.01 0.05 0.1 0.3 0.5

iSPU(1) 5.8 (5.5) 5.8 (5.7) 19.9 (19.2) 54.9 (53.1) 98.3 (98.4) 100 (99.9)
iSPU(2) 2.3 (5.4) 2.1 (5.8) 2.3 (7.6) 7.1 (12.7) 47.8 (52.8) 67.8 (70.2)
iSPU(3) 5.4 (5.2) 4.8 (5.1) 7.5 (7.9) 25.3 (23.8) 87.8 (86.2) 97.1 (96.5)
iSPU(4) 2.7 (4.2) 2.4 (3.1) 3.1 (4.3) 6.3 (7.5) 41.8 (39.1) 62.5 (56.3)
iSPU(5) 6.1 (5) 6.5 (5.4) 6.3 (5.4) 10 (8.9) 52.6 (48.3) 74.3 (70.1)
iSPU(6) 4.2 (4) 4.5 (4.1) 4.1 (3.6) 5.9 (5.2) 27.2 (22.2) 38.8 (32.4)
iSPU(∞) 8.5 (7.4) 9.2 (7.7) 10.5 (9.2) 10.2 (8.2) 21.2 (15.1) 21.9 (15.1)
aiSPU 5.7 (6.6) 6.2 (6.9) 13.8 (11.8) 34.3 (31.5) 96.3 (93.9) 99.3 (98.5)
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Table S9: Empirical Type I errors and power (in percentage) of various tests under G×E
interactions with p = 1000 and n = 200. Zero signal strength c = 0 represents
Type I errors, while c 6= 0 represents powers. The informative variables in β was
selected to be those with main effects and generated from a uniform distribu-
tion U(−c, c). The results outside and inside parentheses were calculated from
parametric bootstrap- and asymptotics-based methods, respectively.

c 0 1 2 3 4 5

iSPU(1) 4.9 (4.8) 5.6 (5.2) 6.4 (6) 6.1 (5.9) 6 (5.3) 6.1 (5.7)
iSPU(2) 2.7 (5.3) 6.9 (10.3) 19.4 (24.8) 37 (42) 51.2 (53.4) 58.5 (62)
iSPU(3) 5.9 (5.6) 6.3 (6.1) 27.3 (26.6) 50.4 (50.1) 62.3 (61.5) 69.7 (68.2)
iSPU(4) 3.1 (4) 12.4 (14.3) 58.1 (59.3) 85 (85.8) 94.5 (93.9) 97.2 (97.2)
iSPU(5) 5.9 (5) 13.6 (12.5) 58.7 (57.1) 80.7 (79.7) 88.6 (87.1) 92.6 (92.3)
iSPU(6) 3.8 (3.3) 18 (16.6) 70.6 (68.5) 91.8 (91.5) 96.9 (96.3) 98.6 (98.2)
iSPU(Inf) 9 (7.6) 24.1 (21.5) 82.6 (80.5) 96.5 (95.5) 98.7 (98.4) 99.7 (99.4)
aiSPU 5.8 (6.3) 17.3 (19.7) 76.2 (77.1) 94.5 (94.7) 98.4 (98) 99.1 (99.3)

Table S10: Empirical Type I errors and power (in percentage) of various tests under high-
dimensional linear models simulations. Zero signal strength c = 0 represents
Type I errors, while c 6= 0 represents powers. The sparsity level was s = 0.001,
leading to 1 non-zero element in β. The results outside and inside parentheses
were calculated from parametric bootstrap- and asymptotics-based methods,
respectively.

c 0 0.3 0.5 0.7 1

iSPU(1) 5.6 (5.4) 6.7 (6.1) 6.6 (6.3) 7.5 (7.2) 8.9 (8.6)
iSPU(2) 3.6 (3.3) 4.2 (5.7) 6.6 (8.2) 15.3 (18.9) 32.2 (38.7)
iSPU(3) 5 (4.8) 6.4 (5.6) 14.6 (13.5) 41.7 (40.1) 64.2 (63.1)
iSPU(4) 3.8 (1.8) 9.1 (7.5) 29.5 (26.4) 54.6 (52.1) 71.3 (71.1)
iSPU(5) 5.5 (3.5) 16.5 (12.8) 36.1 (32.7) 57.7 (54.5) 72.1 (70.6)
iSPU(6) 4.9 (2.2) 18.2 (13.3) 38.8 (33.8) 61.9 (58.2) 73.7 (71.9)
iSPU(∞) 3.5 (4.6) 16.1 (18.3) 36.5 (38.7) 61.4 (61.9) 74.1 (74.5)
aiSPU 5.3 (4.1) 16.6 (16.5) 38.5 (38.3) 61.4 (60.1) 73.7 (73.7)
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Table S11: Empirical Type I errors and power (in percentage) of various tests under high-
dimensional linear models simulations. Zero signal strength c = 0 represents
Type I errors, while c 6= 0 represents powers. The sparsity level was s = 0.01,
leading to 10 non-zero elements in β. The results outside and inside parentheses
were calculated from parametric bootstrap- and asymptotics-based methods,
respectively.

c 0 0.1 0.2 0.3 0.4 0.5

iSPU(1) 5.2 (5.5) 7.1 (6) 6 (5.3) 7.7 (8.4) 9 (8.4) 8.7 (7.3)
iSPU(2) 4.1 (4.3) 4 (6.2) 10.4 (13.3) 24.4 (29.8) 42.6 (49.4) 52.9 (64.7)
iSPU(3) 5.1 (4.6) 5.7 (4.5) 10.2 (9) 21.2 (18.5) 35.7 (33.6) 47.3 (44)
iSPU(4) 5.6 (2.1) 5.9 (3.9) 19.5 (16.2) 55.3 (52.4) 84.4 (83.2) 95.3 (95.8)
iSPU(5) 5.2 (3.3) 5.6 (4) 18.3 (13) 40.8 (36.8) 68.4 (64.1) 81.4 (79.8)
iSPU(6) 5.9 (2.3) 6.6 (3.4) 24.7 (16.5) 67.9 (60.5) 93.9 (90) 98.8 (98.1)
iSPU(∞) 3.5 (4.6) 4.5 (5.2) 12.7 (16.2) 48.5 (52.8) 81.1 (83.6) 94.1 (96)
aiSPU 5.2 (4.5) 6.6 (5.4) 17.7 (16.9) 58.3 (55.7) 88.1 (86.7) 96.2 (96.5)

Table S12: Empirical Type I errors and power (in percentage) of various tests under high-
dimensional linear models simulations. Zero signal strength c = 0 represents
Type I errors, while c 6= 0 represents powers. The sparsity level was s = 0.2,
leading to 200 non-zero elements in β. The results outside and inside parentheses
were calculated from parametric bootstrap- and asymptotics-based methods,
respectively.

c 0 0.05 0.07 0.1 0.2 0.3

iSPU(1) 6.3 (6) 5.5 (6.1) 7.4 (5.7) 3.4 (4) 5.3 (4.3) 6.4 (6.4)
iSPU(2) 2.8 (3.5) 13.9 (18.6) 23.3 (29.5) 42.7 (51.7) 85 (87.9) 95.7 (96.4)
iSPU(3) 5.4 (5.4) 6.1 (4.9) 6.7 (6.2) 8.4 (7.2) 12.1 (10.1) 15.7 (13.6)
iSPU(4) 3.7 (1.7) 12.4 (9.1) 22.8 (19.3) 41.7 (40.2) 84.5 (82.1) 95 (92.9)
iSPU(5) 6.1 (3.9) 7 (4) 6.7 (3.5) 8.7 (4.7) 23.2 (16.4) 27.1 (18.6)
iSPU(6) 4.7 (2) 9.9 (4.6) 14.9 (9.2) 33 (23.4) 77.8 (67.1) 85.7 (77.1)
iSPU(∞) 2.8 (4.3) 4.6 (5.5) 5.2 (6.4) 5.9 (7.8) 18.8 (20.8) 29.3 (27.9)
aiSPU 4.7 (3.7) 8.9 (8.9) 15.3 (15.3) 27.7 (33) 73.9 (79.2) 87.1 (89.3)
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TableS13:EmpiricalTypeIerrorsandpower(inpercentage)ofvarioustestsunderhigh-
dimensionallinearmodelssimulations. Zerosignalstrengthc=0represents
TypeIerrors,whilec=0representspowers. Thesparsitylevelwass=0.2,
leadingto200non-zeroelementsinβ. Wegeneratedinformativevariablesinβ
fromauniformdistributionU(0,c).Theresultsoutsideandinsideparentheses
werecalculatedfromparametricbootstrap-andasymptotics-basedmethods,
respectively.

c 0 0.01 0.02 0.03 0.04 0.05

iSPU(1) 6.2(6.1) 24.6(24) 59.6(58.2) 86.2(85.9) 96.1(95.8) 98.7(98.7)
iSPU(2) 3(3.3) 4.5(6.8) 18(21.5) 40.6(47) 65.8(74.7) 82.2(88.1)
iSPU(3) 5.2(5.2) 19.3(16.7) 51.7(48.8) 80.4(78.8) 93.8(92.6) 98.7(98)
iSPU(4) 3.6(1.5) 5.6(3.2) 16.6(11.3) 38.2(33.9) 59.8(58.9) 78.2(78.9)
iSPU(5) 5.5(3.4) 12.1(7.3) 32.1(22.8) 60.1(50.9) 80.4(74.7) 92.4(86.8)
iSPU(6) 4.4(1.8) 7(2.6) 13.3(7.7) 26.7(18.2) 46.7(32.1) 63(50.5)
iSPU(∞) 3.2(4.1) 4.5(6) 5.2(7) 7.6(8.8) 8.9(11) 10.2(13.9)
aiSPU 5.1(3.9) 13.4(11.4) 46.3(41.8) 80.9(77.4) 93.8(92.9) 97.7(97)
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FigureS1:PowercomparisonfordifferentmethodsunderG×Einteractionsimulations
withn=2000,p=300,andq1=q2=20.n,p,q1,andq2standforthesample
size,numberoftermsinG×Einteraction,numberofthepositivegeneticmain
effects,andnumberofthenegativegeneticmaineffects,respectively.Alltests
werebasedonTLP. Wevariedthesparsitylevels.
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FigureS2:PowercomparisonfordifferentmethodsunderG×Einteractionsimulations
withn=2000,p=300,andq1=q2=20.n,p,q1,andq2standforthesample
size,numberoftermsinG×Einteraction,numberofthepositivegeneticmain
effects,andnumberofthenegativegeneticmaineffects,respectively.TheSNPs
werecorrelated(ρ=0.3). Wevariedthesparsitylevels
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FigureS3:PowercomparisonfordifferentmethodsunderG×Einteractionsimulationwith
n=2000,p=300,andq1=q2=50. n,p,q1,andq2standforthesample
size,numberoftermsinG×Einteraction,numberofthepositivegeneticmain
effects,andnumberofthenegativegeneticmaineffects,respectively.TheSNPs
werecorrelated(ρ=0.3). Wevariedthesparsitylevels.
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FigureS4:PowercomparisonfordifferentmethodsunderG×Einteractionsimulations
withn=2000,q1=2,q2=0,andp=25.n,p,q1,andq2standforthesample
size,numberofcoefficientsinG×Einteractioneffects,numberofpositive
coefficientsinmaingeneticseffects,andnumberofnegativecoefficientsinmain
geneticseffects,respectively. Wevariedthesparsitylevels.
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FigureS5:PowercomparisonfordifferentmethodsunderG×Einteractionsimulations
withn=2000,q1=2,q2=0,andp=50.n,p,q1,andq2standforthesample
size,numberofcoefficientsinG×Einteractioneffects,numberofpositive
coefficientsinmaingeneticseffects,andnumberofnegativecoefficientsinmain
geneticseffects,respectively. Wevariedthesparsitylevels.
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FigureS6:PowercomparisonfordifferentmethodsunderG×Einteractionsimulations
withn=2000,q1=2,q2=0,andp=75.n,p,q1,andq2standforthesample
size,numberofcoefficientsinG×Einteractioneffects,numberofpositive
coefficientsinmaingeneticseffects,andnumberofnegativecoefficientsinmain
geneticseffects,respectively.GESAT2standsfortheGESATwithmuchalarger
searchingregion(from1×10−6to44.7(i.e.

√
n))fortuningparameterλ. We

variedthesparsitylevels.

59





l

l

l

l

l

l

0.05

0.20

0.40

0.60

0 1 2 3 4 5
Effect c

P
o
w
er

Methods

l aiSPU_1

aiSPU_2

aiSPU_3

aiSPU_4

s = 0.001

ARegularization-BasedAdaptiveTestforHigh-DimensionalGLMs

l

l

l

l
l l

0.05

0.20

0.40

0.60

0.80

1.00

0 1 2 3 4 5
Effect c

P
o
w
er

Methods

l aiSPU_1

aiSPU_2

aiSPU_3

aiSPU_4

s = 0.005

l

l

l

l

l

0.05

0.20

0.40

0.60

0.0 0.5 1.0 1.5 2.0
Effect c

P
o
w
er

Methods

l aiSPU_1

aiSPU_2

aiSPU_3

aiSPU_4

s = 0.2

FigureS8:EmpiricalpowerofaiSPUwithdifferentΓsetsforG×Einteractionswith
n=200,p=1000. aiSPU1,aiSPU2,aiSPU3,aiSPU4representaiSPU
withΓ1={1,2,3,4;∞},Γ2={1,2,...,6,∞},Γ3={1,...,8,∞},andΓ4=
{1,2,...,10,∞},respectively. Wevariedthesparsitylevels
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FigureS9:EmpiricalpowerofaiSPUunderG×Einteractionwithn=200,p=1000,
andsparsitylevels=0.2. Werandomlyselected100variablesinZandsetthe
effectsizefollowedauniformdistribution.-bootand-asystandfortheresults
basedonbootstrapandasymptotics,respectively.
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FigureS10:EmpiricalpowerofaiSPUwithdifferentnon-convexpenalitiesunderG×E
interactionwithn=200,p=1000,andvariedsparsitylevels
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FigureS11:EmpiricalpowerofaiSPUwithdifferentnon-convexpenalitiesunderhigh-
dimensionallinearmodelswithn=200,p=1000,andsparsitylevels=0.01.
Forafaircomparison,alltheaiSPUresultswerebasedontheparametric
bootstrap.
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Figure S12: Computational time comparison under both G × E interaction models (left
panel) and linear models (right panel) with n = 200, sparsity level s = 0. In
Zhang and Cheng (2017), ST and NST have been calculated simultaneously;
ST/NST stands for the runtime for ST plus NST. We varied the number of
variables being tested, p.
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Figure S13: The correlation heatmap for SNPs used in pathway hsa00051. Pathway
hsa00051 is the significant pathway identified by aiSPU.
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Ruben Dezeure, Peter Bühlmann, and Cun-Hui Zhang. High-dimensional simultaneous
inference with the bootstrap. TEST, 26(4):685–719, 2017.

Noureddine El Karoui and Elizabeth Purdom. Can we trust the bootstrap in high-
dimensions? The case of linear models. The Journal of Machine Learning Research,
19(1):170–235, 2018.

Jianqing Fan. Test of significance based on wavelet thresholding and neyman’s truncation.
Journal of the American Statistical Association, 91(434):674–688, 1996.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association, 96(456):1348–1360,
2001.

Jianqing Fan and Rui Song. Sure independence screening in generalized linear models with
np-dimensionality. The Annals of Statistics, 38(6):3567–3604, 2010.

Jianqing Fan, Yuan Liao, and Han Liu. An overview of the estimation of large covariance
and precision matrices. The Econometrics Journal, 19(1):C1–C32, 2016.

Zhe Fei and Yi Li. Estimation and inference for high dimensional generalized linear models:
A splitting and smoothing approach. arXiv preprint arXiv:1903.04408, 2019.

64



A Regularization-Based Adaptive Test for High-Dimensional GLMs

Eric R Gamazon, Heather E Wheeler, Kaanan P Shah, Sahar V Mozaffari, Keston Aquino-
Michaels, Robert J Carroll, Anne E Eyler, Joshua C Denny, Dan L Nicolae, Nancy J Cox,
et al. A gene-based association method for mapping traits using reference transcriptome
data. Nature Genetics, 47(9):1091–1098, 2015.

Bin Guo and Song Xi Chen. Tests for high dimensional generalized linear models. Journal
of the Royal Statistical Society: Series B, 78(5):1079–1102, 2016.

Alexander Gusev, Arthur Ko, Huwenbo Shi, Gaurav Bhatia, Wonil Chung, Brenda WJH
Penninx, Rick Jansen, Eco JC De Geus, Dorret I Boomsma, Fred A Wright, et al. Integra-
tive approaches for large-scale transcriptome-wide association studies. Nature Genetics,
48(3):245–252, 2016.

Xavier Guyon. Random fields on a network: modeling, statistics, and applications. Springer
Science & Business Media, 1995.

Yinqiu He, Gongjun Xu, Chong Wu, and Wei Pan. Asymptotically independent U-statistics
in high-dimensional testing. Annals of Statistics, to appear, arXiv:1809.00411, 2020.

Zihuai He, Bin Xu, Seunggeun Lee, and Iuliana Ionita-Laza. Unified sequence-based asso-
ciation tests allowing for multiple functional annotations and meta-analysis of noncoding
variation in metabochip data. The American Journal of Human Genetics, 101(3):340–
352, 2017.

David J Hunter. Gene-environment interactions in human diseases. Nature Reviews Genet-
ics, 6(4):287–298, 2005.

Il’dar Abdulovich Ibragimov and IUrii Vladimirovich Linnik. Independent and stationary
sequences of random variables. 1971.

Clifford R Jack, Matt A Bernstein, Nick C Fox, Paul Thompson, Gene Alexander, Danielle
Harvey, Bret Borowski, Paula J Britson, Jennifer L Whitwell, Chadwick Ward, et al. The
Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic
Resonance Imaging, 27(4):685–691, 2008.

Adel Javanmard and Andrea Montanari. Confidence intervals and hypothesis testing for
high-dimensional regression. Journal of Machine Learning Research, 15(1):2869–2909,
2014.

Adel Javanmard and Andrea Montanari. Debiasing the lasso: Optimal sample size for
gaussian designs. The Annals of Statistics, 46(6A):2593–2622, 2018.

Minoru Kanehisa, Susumu Goto, Miho Furumichi, Mao Tanabe, and Mika Hirakawa. KEGG
for representation and analysis of molecular networks involving diseases and drugs. Nu-
cleic Acids Research, 38(1):D355–D360, 2009.

Keith Knight and Wenjiang Fu. Asymptotics for lasso-type estimators. Annals of Statistics,
28(5):1356–1378, 2000.

65



Wu, Xu, Shen and Pan

S Le Cessie and JC Van Houwelingen. A goodness-of-fit test for binary regression models,
based on smoothing methods. Biometrics, 47(4):1267–1282, 1991.

Jason D Lee, Dennis L Sun, Yuekai Sun, and Jonathan E Taylor. Exact post-selection
inference, with application to the lasso. The Annals of Statistics, 44(3):907–927, 2016.

Chunlin Li, Xiaotong Shen, and Wei Pan. Likelihood ratio tests for a large directed acyclic
graph. Journal of the American Statistical Association, pages 1–36, 2019.

Xinyi Lin, Seunggeun Lee, David C Christiani, and Xihong Lin. Test for interactions
between a genetic marker set and environment in generalized linear models. Biostatistics,
14(4):667–681, 2013.

Xinyi Lin, Seunggeun Lee, Michael C Wu, Chaolong Wang, Han Chen, Zilin Li, and Xihong
Lin. Test for rare variants by environment interactions in sequencing association studies.
Biometrics, 72(1):156–164, 2016.

Xuanyao Liu, Yang I Li, and Jonathan K Pritchard. Trans effects on gene expression can
drive omnigenic inheritance. Cell, 177(4):1022–1034, 2019.

Rong Ma, T Tony Cai, and Hongzhe Li. Global and simultaneous hypothesis testing for high-
dimensional logistic regression models. Journal of the American Statistical Association,
pages 1–15, 2020.

Yiding Ma and Peng Wei. FunSPU: A versatile and adaptive multiple functional annotation-
based association test of whole-genome sequencing data. PLoS Genetics, 15(4):e1008081,
2019.

Stephen B Manuck and Jeanne M McCaffery. Gene-environment interaction. Annual Review
of Psychology, 65:41–70, 2014.

Nicolai Meinshausen, Lukas Meier, and Peter Bühlmann. P-values for high-dimensional
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