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ABSTRACT

Students acquire knowledge as they interact with a vari-
ety of learning materials, such as video lectures, problems,
and discussions. Modeling student knowledge at each point
during their learning period and understanding the contri-
bution of each learning material to student knowledge are
essential for detecting students’ knowledge gaps and recom-
mending learning materials to them. Current student knowl-
edge modeling techniques mostly rely on one type of learn-
ing material, mainly problems, to model student knowledge
growth. These approaches ignore the fact that students also
learn from other types of material. In this paper, we pro-
pose a student knowledge model that can capture knowledge
growth as a result of learning from a diverse set of learn-
ing resource types while unveiling the association between
the learning materials of di↵erent types. Our multi-view
knowledge model (MVKM) incorporates a flexible knowl-
edge increase objective on top of a multi-view tensor fac-
torization to capture occasional forgetting while represent-
ing student knowledge and learning material concepts in a
lower-dimensional latent space. We evaluate our model in
di↵erent experiments to show that it can accurately predict
students’ future performance, di↵erentiate between knowl-
edge gain in di↵erent student groups and concepts, and un-
veil hidden similarities across learning materials of di↵erent
types.
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1. INTRODUCTION

Both student knowledge modeling and domain knowledge
modeling are important problems in the educational data
mining community. In this context, student knowledge trac-
ing and knowledge modeling approaches aim to evaluate stu-
dents’ state of knowledge or quantify students’ knowledge in

⇤First two authors contributed equally to this work.

the concepts that are presented in learning materials at each
point of the learning period [15, 6, 51, 25, 53, 32, 14, 47].
Domain knowledge modeling, on the other hand, focuses on
understanding and quantifying the topics, knowledge com-
ponents, or concepts that are presented in the learning mate-
rial [7, 12, 27]. It is useful in creating a coherent study plan
for students, modeling students’ knowledge, and analyzing
students’ knowledge gaps.

A successful student knowledge model should be personal-
ized to capture individual di↵erences in learning [51, 28],
understand the association and relevance between learning
from various concepts [42, 53], model knowledge gain as
a gradual process resulting from student interactions with
learning material [21, 38, 18], and allow for occasional for-
getting of concepts in students [14, 32, 18]. Despite recent
success in capturing these complexities in student knowledge
modeling, a simple, but important aspect of student learning
is still under-investigated: that students learn from di↵er-
ent types of learning materials. Current research has focused
on modeling one single type of learning resource at a time
(typically, “problems”), ignoring the heterogeneity of learn-
ing resources from which students may learn. Modern online
learning systems frequently o↵er students to learn and assess
their knowledge using various learning resource types, such
as readings, video lectures, assignments, quizzes, and dis-
cussions. Previous research has demonstrated considerable
benefits of interacting with multiple types of materials on
student learning. For example, worked examples can lead to
faster and more e↵ective learning compared to unsupported
problem solving [33]; and enriching textbooks with addi-
tional forms of content, such as images and videos, increases
the helpfulness of learning material [2, 1]. Ignoring diverse
types of learning materials in student knowledge modeling
limits our understanding of how students learn.

One of the obstacles in considering the combined e↵ect of
learning material types is the lack of explicit learning feed-
back from all of them. Some learning material types, such
as problems and quizzes, are gradable. As students interact
with such material types, the system can perceive student
grade as an explicit feedback or indication of student knowl-
edge: if a student receives a high grade in a problem, it
is likely that the student has gained enough knowledge re-
quired to solve that problem. On the other hand, some of
the learning materials are not gradable and their impact on
student knowledge cannot be explicitly measured. For exam-
ple, we cannot directly measure the consequent knowledge
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gain from watching a video lecture or studying an example.

As an alternative for quantifying student knowledge gain,
the system can measure other quantities, such as the binary
indication of student activity with a learning material or the
time they spent on it. However, this kind of measure may
result in contradictory conclusions [8, 23, 22]. For example,
spending more time to study the examples provided by the
system may both increase the student’s knowledge, and at
the same time, be an indicator of a weaker student, who
does not have enough knowledge in the provided concepts.
These weaker students may select to study more examples to
compensate for their lower knowledge levels. Consequently,
the knowledge gain of studying these auxiliary learning ma-
terials is usually overpowered by the student selection bias
and is not represented correctly in the overall dataset.

A similar issue exists in the current domain knowledge mod-
els. The automatic domain knowledge models that are based
on students’ activities mainly model one type of learning ma-
terial and ignore the relationship between various kinds of
learning materials [17, 12]. Alternatively, an ideal domain
knowledge model should be able to model and discover the
similarities between learning materials of di↵erent types.

In this paper, we simultaneously address the problems of
student knowledge modeling and domain knowledge model-
ing, while considering the heterogeneity of learning material
types. We introduce a new student knowledge model that is
the first to concurrently represent student interactions with
both graded and non-graded learning material. Meanwhile,
we discover the hidden concepts and similarities between dif-
ferent types of learning materials, as in a domain knowledge
model. To do this, we pose this concurrent modeling as a
multi-view tensor factorization problem, using one tensor for
modeling student interactions with each learning material
type. By experimenting on both synthetic and real-world
datasets, we show that we can improve student performance
prediction in graded learning materials, as measured by the
Root Mean Squared Error (RMSE) and Mean Absolute Er-
ror (MAE).

In summary, the contributions of this paper are:
1) proposing a personalized, multi-view student knowledge
model (MVKM) that can capture learning from multiple

learning material types and allow for occasional student for-
getting, while modeling all types of learning materials;
2) conducting experiments on both synthetic and real-world
datasets showing that our proposed model outperforms con-
ventional methods in predicting student performance;
3) examining the resulting learning material and student
knowledge latent features to show the captured similarity
between learning material types and interpretability of stu-
dent knowledge model.

2. RELATEDWORK

Knowledge Modeling Student knowledge modeling aims
to quantify student knowledge state in the concepts or skills
that are covered by learning materials at each learning point.

Pioneer approaches of student knowledge modeling, despite
being successful, were not personalized, relied on a prede-
fined (sometimes expert-labeled) set of concepts in learning

material, did not allow for learned concepts to be forgotten
by students, and modeled each concept independently from
one another [19, 15, 36, 45]. Later, some student knowl-
edge models aimed to solve these shortcomings by learning
di↵erent parameters for each (type of) student [35, 51, 26],
including decays to capture forgetting of concepts in learner
models [39, 29, 31] and capturing the relationship between
concepts that are present in a course [44, 21]. Yet, these
models assume that a correct domain knowledge model, that
maps learning material into course concepts, exists.

In recent years, new approaches aim to learn both domain
knowledge model and student knowledge model at the same
time [28, 20, 42, 48, 53, 18]. Our proposed model falls into
this latest category as it does not require any manual la-
beling of learning materials, while having the ability to use
such information if they are available. It is personalized by
learning lower-dimensional student representations, allows
forgetting of concepts during student learning by adding a
rank-based constraint on student knowledge, and models the
relationship between learning material.

Learning from Multiple Material Types In the edu-
cational data mining (EDM) literature, learning materials
are provided in various types, such as problems, examples,
videos, and readings. While there have been some stud-
ies in the literature on the value of having various types
of learning materials for educating students [2, 8, 33], the
relationship between these material types, and their com-
bined e↵ect on student knowledge and student performance
is under-investigated.

Multiple learning material types have been studied in the lit-
erature in finding insights into di↵erent activity distributions
or cluster patterns between high-grade and low-grade stu-
dents [46, 49], have been used as contextual features in scaf-
folding or choosing among the existing student models [52,
43], have been added to improve existing domain knowledge
models only for graded material types while ignoring student
sequences [10, 13, 16, 30, 34, 41, 37], or have been classified
into beneficial or non-beneficial for students [3]. However,
to the best of our knowledge, none of these studies have ex-
plicitly modeled the contribution of various kinds of learning
materials on student knowledge during the learning period,
the interrelations among these learning materials, and their
e↵ect on student performance. The Bayesian Evaluation and
Assessment framework found that assistance promoted stu-
dents’ long-term learning. More recently, Huang et al. dis-
covered that adaptation of their framework (FAST) for stu-
dent modeling by including various activity types may lead
researchers to contradictory conclusions [23]. More specifi-
cally, in one of their formulations student example activity
suggests a positive association with model parameters, such
as probability of learning, while in another formulation this
type of activity has a negative association with model pa-
rameters. Also, Hosseini et al. concluded that annotated
examples show a negative relationship with students’ learn-
ing, because of a selection e↵ect: while annotated examples
may help students to learn, weaker students may study more
annotated examples [22]. The model proposed in this paper
considers student interactions from multiple learning mate-
rial types, mitigating over-estimation of student knowledge
by transferring information from interactions with graded
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material, while accounting for knowledge increase that hap-
pen as a result of student interaction with non-graded ma-
terial.

3. MULTI-VIEWKNOWLEDGEMODELING

3.1 Problem Formulation and Assumptions

We consider an online learning system in which M students
interact with and learn from multiple types (r 2 R) of learn-
ing materials. Each learning material type r includes a set
of P [r] learning materials. A material type can be either
graded or non-graded. Students’ normalized grade in tests,
success or failure in compiling a piece of code, or scores in
solving problems are all examples of graded learning feed-
back. Whereas, watching videos, posting comments in dis-
cussion forums, or interacting with annotated examples are
instances of non-graded learning feedback that the system
can receive. We model the learning period as a series of stu-
dent attempts on learning materials, or time points (a 2 A).
To represent student interaction feedback with learning ma-
terials of each type r during the whole learning period A,
we use a M ⇥ P [r] ⇥ A three-dimensional tensor X [r]. The
ath slice of tensor X [r], denoted by X [r]

a , is a matrix repre-
senting student interactions with the learning material type
r during one snapshot of the learning period. The sth row
of this interaction matrix x[r]

a,s shows feedback from student
s’s interactions with all learning materials of type r at at-
tempt a; and the tensor element x[r]

a,s,p is the feedback value
of student s’s activity on learning material p of type r at
learning point a.

We use the following assumptions in our model: (a) Each
learning material covers some concepts that are presented
in a course; the set of all course concepts are shared across
learning materials; and the training data does not include
the learning materials’ contents nor their concepts.(b) Dif-
ferent learning materials have di↵erent di�culty or help-
fulness levels for students. For example, one quiz can be
more di�cult than another one, and one video lecture can
be more helpful than the other one. (c) The course may fol-
low a trend in presenting the learning material: going from
easier concepts to more di�cult ones or alternating between
easy and di�cult concepts; despite that, students can freely
interact with the learning materials and are not bound to a
specific sequence. (d) As students interact with these ma-
terials, they learn the concepts that are presented in them;
meaning that their knowledge in these concepts increases.
(e) Since students may forget some course concepts, this
knowledge increase is not strict. (f) Di↵erent students come
with di↵erent learning abilities and initial knowledge values.
(g) The gradual change of knowledge varies among di↵erent
students. But, students can be grouped together according
to how their knowledge changes in di↵erent concepts, e.g.,
some students are fast learners compared to others. (h)
Eventually, a student’s performance in a graded learning
material, represented by a score, depends on the concepts
covered in that material, student’s knowledge in those con-
cepts, the learning material di�culty/helpfulness, and the
general student ability.

In addition to the above, we have an essential assumption (i)
that connects the di↵erent parts of our model: a student’s
knowledge that is obtained from interacting with one learn-
ing material type is transferable to be used in other types of
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Figure 1: Decomposing student interaction tensors
with two learning material types X [1] and X [2].

learning materials. In other words, students’ knowledge can
be modeled and quantified in the same latent space for all
di↵erent learning material types. In the following, we first
propose a single-view model for capturing the knowledge
gained using one type of learning material (MVKM-Base)
and then extend it to a multi-view model that can represent
multiple types of learning materials.

3.2 MVKM Factorization Model

The Proposed Base Model (MVKM-Base). Follow-
ing the mentioned assumptions in Section 3.1, particularly
assumptions (a), (g), and (h), and assuming that students
interact with only one learning material type, we model stu-
dent interaction tensor X as a factorization (n-mode tensor
product) of three lower-dimensional representations: 1) an
M ⇥ K student latent feature matrix S, 2) a K ⇥ C ⇥ A
temporal dynamic knowledge tensor T , and 3) a C ⇥P ma-
trix Q serving as a mapping between learning materials and
course concepts. In other words, we have x̂s,a,p ⇡ ss ·Ta ·qp.
Matrix S here represents students being mapped to latent
learning features that can be used to group the students (as-
sumption (g)). Tensor T quantifies the knowledge growth
of students with each learning feature in each of the con-
cepts while attempting the learning material. Accordingly,
the resulting tensor from product K = ST represents each
student’s knowledge in each concept at each attempt.

To increase interpretability, we enforce the contribution of
di↵erent concepts in each learning material to be non-negative
and sum to one. Similarly, we enforce the same constraints
on each student’s membership in the student latent features.
Since each student can have a di↵erent ability (assumption
(f)) and each learning material can have its own di�culty
level (assumption (b)), we add two bias terms to our model
(bs for each student s, and bp for each learning material p)
to account for such di↵erences. To capture the general score
trends in the course (assumption (c)), we add a parameter
ba for each attempt. Accordingly, we estimate student s’s
score in a graded learning material p at attempt a (x̂a,s,p)
as in Equation 1. Here, Ta is a matrix capturing the rela-
tionship between student features and concepts at attempt
a, ss represents student s’s latent feature vector, qp shows
material p’s concept vector.
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x̂s,a,p ⇡ ss · Ta · qp + bs + bp + ba (1)

We use a sigmoid function �(·) to estimate student inter-
action with a non-graded learning material, or graded ones
with binary feedback:

x̂s,a,p ⇡ �(ss · Ta · qp + bs + bp + ba)

Modeling Knowledge Gain while Allowing Forget-
ting. So far, this simple model captures latent feature vec-
tors of students and learning materials, and learns T as a
representation of knowledge in students. However, it does
not explicitly model students’ gradual knowledge gain (as-
sumption (d)). We note that students’ knowledge increase
is associated with the strength of concepts in the learning
material that they interact with. As students interact with
learning materials with some specific concepts, it is more
likely for their predicted scores in the relevant learning ma-
terials to increase. With a Markovian assumption, we can
say that if students have practiced some concepts, we expect
their scores in attempt a+1 to be more than their scores in
attempt a:

ss · Ta+1 · qp � ss · Ta · qp � 0

However, this inequality constraint is too strict as the stu-
dents may occasionally forget the learned concepts (assump-
tion (e)). To allow for this occasional forgetting and soften
this constraint, we model the knowledge increase as a rank-
based constraint, that allows for knowledge loss, but penal-
izes it. We formulate this constraint as maximising the value
for L2 in Equation 2. Essentially, this penalty term can be
viewed as a prediction-consistent regularization. It helps to
avoid significant changes in students’ knowledge level since
their performance is expected to transit gradually over time.

L2 =
a�1X

j=1

X

s,p

log (�(ss · Ta · qp � ss · Tj · qp)) (2)

The Proposed Multi-View Model (MVKM). We rely
on our main assumption (i) to extend our model to cap-
ture learning from di↵erent learning material types. So far,
we have assumed that course concepts are shared among
learning materials (assumption (a)). With the knowledge
transfer assumption (i), all learning materials of di↵erent
types will share the same latent space. Also, we represent
student knowledge and student ability as shared parameters
across all di↵erent learning material types. Consequently,
for each set of learning materials of type r 2 R, we can
rewrite Equation 1 as:

x̂[r]
s,a,p ⇡ ss · Ta · q[r]

p + bs + b[r]p + ba

An illustration of this decomposition, when considering two
learning material types, is presented in Figure 1. Note that
we represent one shared matrix student S and one shared
knowledge gain tensor T in both types of learning materials.

We can learn the parameters of our model by minimizing
the sum of squared di↵erences between the observed (x[r]

s,a,p)

and estimated (x̂[r]
s,a,p) values over all learning material types

r 2 R. For the learned parameters to be generalizable to un-
seen data, we regularize the unconstrained parameters using
their L-2 norms. As a result, we minimize the objective func-
tion in Equation 3, in which �[r] are hyper-parameters that
represent the relative importance of di↵erent learning mate-

rials types. �t and �s are hyper-parameters to control the
weights of regularization term of T and S.

L1 =
X

r,s,a,p

�[r](x̂[r]
s,a,p � x[r]

s,a,p)
2 + �tkTak2F + �skssk2F

s.t. 8r,c,p q[r]c,p � 0 ,
X

c

q[r]c,p = 1
(3)

Similarly, the knowledge gain and forgetting constraint pre-
sented in Equation 2 can be extended to the multi-view
model. Eventually, we use a combination of the recon-
struction objective function (Equation 3) and the learning
and forgetting objective function (Equation 2) to model stu-
dents’ knowledge increase, while representing their personal-
ized knowledge and finding learning material latent features,
as in Equation 4. Note that, since our goal is to minimize L1

and maximize L2, we use �L2 to minimize L . To balance
between the accuracy of student performance prediction and
modeling student knowledge increase, we use a nonnegative
trade-o↵ parameter !:

L = L1 � !L2 (4)

We use stochastic gradient descent algorithm to minimize
L in Equation 4. The parameters need to learn are stu-
dents’ latent feature matrix (S), dynamic knowledge in each
concept at any attempt (T ), importance of each concept in
every learning material (Q[r]), each student’s general abil-

ity (bs), each learning material’s di�culty/helpfulness (b[r]p ),

and each attempt’s bias (b[r]a ).

4. EXPERIMENTS

We evaluate our model with three sets of experiments. First,
to validate if the model captures the variability of observed
data, we use it to predict unobserved student performances
(Sec. 4.3). Second, to check if our model represents valid
student knowledge growth, we study the knowledge increase
patterns between di↵erent types of students and across dif-
ferent concepts (Sec. 4.4). Finally, to study if the model
meaningfully recovers learning materials’ latent concepts,
we analyze their similarities according to the learned latent
feature vectors (Sec. 4.5). Without loss of generalizability,
although the model is designed to handle multiple learn-
ing material types, we experiment on two learning material
types. Before the experiments, we will go over our datasets,
and experiment setup.

Dataset
material
type 1 (#)

material
type 2 (#)

#stu
act.
seq.
len.

#rcds.
avg.
sco.

Synthetic NG quiz (10) discussion (15) 1000 20 19991 0.6230
Synthetic NG2 quiz (10) discussion (15) 1000 20 19991 0.6984
Synthetic G quiz (10) assignment (15) 1000 20 19980 0.6255
MORF QD assignment (18) discussion (525) 459 25 6800 0.8693
MORF QL assignment (10) lecture (52) 1329 76 58956 0.7731
Canvas H quiz (10) discussion (43) 1091 20 13633 0.8648

Table 1: Statistics for each datasets, where #stu is
number of students, act. seq. len. is the maximum
activity length, #rcds. is number of records that
student interact with learning materials and avg.
sco. is graded learning material’s average score.

4.1 Datasets

We use three synthetic and three real-world datasets (from
two MOOCs) to evaluate the proposed model. Our choice
of real-world datasets is guided by two factors, aligned with
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Figure 2: Histogram of graded materials’ Scores in Synthetic Data and Real-World Data.

our assumptions: that they include multiple types of learn-
ing material, and that they allow the students to work freely
with the learning material in the order they choose. In
the real-world datasets, we select the students that work
with both types of learning materials, removing the learn-
ing materials that none of these students have interacted
with. General statistics of each dataset are presented in
Table 1. Figure 2 shows score distributions of the graded
learning material types in these datasets.

Synthetic Data. We generate three synthetic datasets ac-
cording to two characteristics: (1) if both learning material
types are graded vs. if one of them is non-graded (or has
binary observations); (2) if the student scores are capped
and their distribution is highly skewed vs. if the score dis-
tribution in not capped and less skewed.

For creating the datasets, we follow similar assumptions as
to the ones made by our model. Expecting P [1] learning ma-
terials of type 1, and P [2] materials of type 2, we first gener-
ate a random sequence Ls for each student s, which repre-
sents the student’s attempts on di↵erent learning materials.
Considering C latent concepts, we then create two random

matrices Q[1] 2 RC⇥P [1]
and Q[2] 2 RC⇥P [2]

as the mapping
between the learning material and the C underlying con-
cepts, such that the sum of values for each underlying learn-
ing material is one. For the student knowledge gain assump-
tion, we represent each student’s knowledge increase sepa-
rately. Hence, we directly create a student knowledge tensor
K, instead of creating S and T , and multiplying them. To
generate K, we first generate a random matrix K1 that rep-
resents all students’ initial knowledge in all C concepts. For
generating the knowledge matrix in the next attempts (Ka),
we use the following random process. For each student s, we
generate a random number ↵ representing the probability of
forgetting. If ↵ > ✓ (forgetting threshold), we assume no for-
getting happens and increase the value in the knowledge ma-
trix according to the learning material that the student has
interacted with: ks,a = ks,a�1+�q[r]

Ls[a]
. Here, � is a random

e↵ect of increasing and Ls[a] is the learning material that
student has selected to interact with at timestamp a. Other-
wise (↵ < ✓, or forget), we set ks,a,c = ks,a�1,c � rand(0, ✏),
for 8c 2 C. we use n-mode tensor product to build X [1]

and X [2], where X [1] = KQ[1], X [2] = KQ[2]. Finally, ac-
cording to the student learning sequences Ls, we remove the
“unobserved” values that are not in Ls from X [1] and X [2].

To create di↵erent data types according to the first charac-
teristic above, for the graded learning material type r, we
keep the values in X [r]. For the non-graded ones, we use
the same process as above, except that in the final step we

set x[r]
s,a,p = 1 according to the student sequence Ls. How-

ever, in many real-world scenarios, the score distribution of
students is highly skewed especially towards higher scores
(Figure 2 show it). To represent this skewness, in some of

the generated datasets, we clip all x[r]
s,a,p > 1 to 1.

Then, we create following three datasets according to above
process: Synthetic G, in which both learning material types
are graded and scores are skewed; Synthetic NG, in which
one of the learning material types is graded and scores are
skewed; and Synthetic NG2, in which one of the learning
material types is graded and scores are not skewed. We
generate all synthetic data with 1000 students, P [1] = 10
learning materials of type 1, P [2] = 15 learning materials
of type 2, C = 3 latent concepts, and maximum sequence
length of 20 for students.

Canvas Network [11]. This is an online available dataset
collected from various courses on the Canvas network plat-
form 1. The available open online course data comes from
various study fields, such as computer science, business and
management, and humanities. For each course, its general
field of study is presented in the data. The rest of the dataset
is anonymized such that course names, discussion contents,
student IDs, submission contents, or course contents are not
available. Each course can have di↵erent learning material
types, including assignments, discussions, and quizzes. We
experiment on the data from one course in this system, with
course id 770000832960975, which is in the humanities field
(Canvas H dataset). We use quizzes as the graded learning
material type and discussions as the non-graded one.

MORF [4]. This is a dataset of the “educational data
mining” course [5] at Coursera2, available via the MOOC
Replication Framework (MORF). The course includes vari-
ous learning material types, including video lectures, assign-
ments, and discussion forums. Students’ history, in terms of
their watched video lectures, submitted assignments, and
participated discussions, in addition to the score they re-
ceived in assignments, is available in data. In this course, we
experiment with two datasets, each focusing on two sets of
learning material types: one with assignments as the graded
type and discussions as the non-graded type (MORF QD),
another with assignments as the graded type and video lec-
ture views as the non-graded type (MORF QL).

4.2 Experiment Setup

We use 5-fold student-stratified cross-validation to separate
our datasets into test and train. At each fold, we use interac-
tion records from 80% of students as training data. For the
1
http://canvas.net

2
https://www.coursera.org/
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rest (20%) of the students (target students), we split their
attempt sequences on the graded learning material type into
two parts: the first 50% and the last 50%. For performance
prediction experiments, we predict the performance of the
graded learning material type in the last 50%, given the first
50%. In order to see how the proposed model captures the
knowledge growth, we do online testing, in which we pre-
dict the test data attempt by attempt (next attempt predic-
tion). Eventually, we report the average performance on all
five folds. For selecting the best hyper-parameters, we use
a separate validation dataset. Our code and synthetic data
are available at GitHub3.

4.3 Student Performance Prediction
In this set of experiments, we test our model on predicting
student scores on their future unobserved graded learning
material attempts. More specifically, we estimate student
scores on their future attempts, and compare them with
their actual scores in the test data.

4.3.1 Baselines
We compare our model with state-of-the-art student perfor-
mance prediction baselines:
Individualized Bayesian Knowledge Tracing (IBKT)
[24, 51]: This is a variant of the standard BKT model, which
assumes binary observations and provides individualization
on student priors, learning rate, guess, and slip parameters 4.
Deep Knowledge Tracing (DKT) [38]: DKT is a pio-
neer algorithm that uses recurrent neural networks to model
student learning, on binary (success/failure) student scores.
Feedback-Driven Tensor Factorization (FDTF) [40]:
This tensor factorization model decomposes the student in-
teraction tensor into a learning material latent matrix and
a knowledge tensor. However, it only models one type of
learning material, does not capture student latent features,
and does not allow the students to forget the learned con-
cepts. It assumes that students’ knowledge strictly increases
as they interact with learning materials.
Tensor Factorization Without Learning (TFWL): This
is a model similar as FDTF, the only di↵erence is TFWL
does not have constraint that student knowledge is increas-
ing.
Rank-Based Tensor Factorization (RBTF) [18]: This
model has similar assumptions to FDTF. Except, it allows
for occasional forgetting of concepts and has extra bias terms.
Compared to MVKM, it does not di↵erentiate between dif-
ferent student groups. It only uses student previous scores in
graded learning materials to predict students’ future scores,
and it has a di↵erent tensor factorization strategy.
Bayesian Probabilistic Tensor Factorization (BPTF)
[50]: This is a recommender systems model has a smoothing
assumption over student scores in consecutive attempts.
AVG: This baseline uses the average of all students’ scores
for all predictions.

As mentioned before, one major issue in real-world datasets
is their skewness, meaning that, on average, student grades
are skewed towards a full (complete) score on quizzes/assign-
ments. This skewness adds to the complexity of predicting
an accurate score for unobserved quizzes: only using an over-
all average score will provide a relatively good estimate of
3https://github.com/sz612866/MVKM-Multiview-Tensor
4The code is from https://github.com/CAHLR/pyBKT

the real score. As a result, outperforming a simple average
baseline is a challenging task.

The mentioned baselines all work on one type of learning ma-
terial. Since our proposed MVKM model works with more
than one learning material type, to be fair in evaluations,
we run baseline algorithms in a multi-view setup. To do
this, we aggregate the data from all learning material types
and use that as an input to these baselines. In those cases,
we add a “MV” to the end of their names. For example,
FDTF MV represents running FDTF on aggregation of stu-
dent interactions with multiple learning material types. In
addition, for knowledge tracing algorithms (BKT and DKT)
which are designed for binary student responses (correct or
incorrect), we modify their settings to make them predict
numerical scores as described below. First, we binarize stu-
dents’ historical scores based on median score. Specifically,
if the score is greater than the median, it will be set to 1,
and 0 otherwise. Then, we use the probability of success
generated by BKT and DKT as the probability of student
receiving a score more than median score. Eventually, the
numerical predicted scores can be obtained by viewing the
probability output as the percentile of students’ score on
that specific question. Moreover, since these models require
pre-defined knowledge components (KCs), we assume that
each learning material is mapped to one KC in these models.

In addition to the above, we compare our multi-view model
with its basic variation (MVKM-Base) using the data from
graded materials only, and its multi-view variation without
the learning and forgetting constraints (MVKM-W/O-P).

4.3.2 Performance Metrics and Comparison
In this task, our target is to accurately estimate the ac-
tual student scores. To evaluate how close our predicted
values are to the actual ones, we use Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) between
the predicted scores and the actual scores for students. Ta-
ble 2 and 3 show the results of performance among di↵erent
methods on synthetic data and real data, respectively. We
can see that our proposed model outperforms other base-
lines on synthetic data, and has the best performance on
real datasets in general.

MVKM-Base vs. Single Material Type Baselines.
Comparing MVKM-Base with other algorithms that use stu-
dent scores only, shows us that MVKM-Base has consistently
lower error compared to most baselines, in both synthetic
and real-world datasets. This result demonstrates the abil-
ity of MVKM-Base in capturing data variance and validity
of its assumptions for real-world graded data. Compared
to AVG, MVKM-Base can represent more variability; com-
pared to RBTF, the student latent features in MVKM-Base
leads to improved results; compared to FTDF, the forget-
ting factor results in less error; and compared to BKT and
DKT, modeling the learning material concepts inQ and hav-
ing a rank-based constraint to enforce learning improves the
performance. The only baseline algorithm that outperforms
MVKM-Base in some setups is BPTF. Particularly, BPTF
has a lower RMSE and MAE in Synthetic NG and Syn-
thetic G datasets that are skewed. In real-world datasets,
it performs better than MVKM-Base in MORF-QD dataset
that is more sparse and has a slightly higher average score
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Methods
Synthetic NG Synthetic NG2 Synthetic G

RMSE MAE RMSE MAE RMSE MAE
AVG 0.3084±0.0072 0.2820±0.0093 0.5059±0.0115 0.4005±0.0115 0.3070±0.0039 0.2811±0.0050
RBTF 0.2515±0.0126 0.2027±0.0081 0.3374±0.0234 0.2681±0.0146 0.2628±0.0113 0.2103±0.0080
FDTF 0.4906±0.0172 0.4410±0.0207 0.6588±0.0215 0.5529±0.0226 0.5041±0.0184 0.4537±0.0213
TFWL 0.5283±0.0168 0.4632±0.0178 0.6919±0.0132 0.5883±0.0156 0.5490±0.0053 0.5130±0.0076
BPTF 0.1675±0.0048 0.1256±0.0061 0.3454±0.0140 0.2589±0.0072 0.1825±0.0064 0.1381±0.0050
IBKT 0.4744±0.0118 0.4197±0.0140 0.6630±0.0122 0.5494±0.0152 0.4748±0.0076 0.4233±0.0098
DKT 0.2694±0.0275 0.1911±0.0241 0.4536±0.0404 0.3569±0.0413 0.2716±0.0209 0.2047±0.0178

RBTF-MV 0.2920±0.0069 0.2305±0.0078 0.4064±0.0213 0.3227±0.0147 0.2618±0.0155 0.2126±0.0130
FDTF-MV 0.4078±0.0168 0.3402±0.0167 0.5861±0.0211 0.4688±0.0135 0.4888±0.0112 0.4538±0.0131
TFWL-MV 0.4337±0.0139 0.3896±0.0133 0.6386±0.0161 0.5450±0.0194 0.5312±0.0137 0.4626±0.0145
BPTF-MV 0.1718±0.0037 0.1457±0.0055 0.3438±0.0158 0.2603±0.0120 0.1533±0.0055 0.1184±0.0044
IBKT-MV 0.4257±0.0142 0.3585±0.0155 0.6019±0.0124 0.4892±0.0165 0.4844±0.0068 0.4275±0.0089
DKT-MV 0.4278±0.0313 0.3613±0.0318 0.6399±0.0515 0.5320±0.0526 0.3390±0.0252 0.2892±0.0245

MVKM-Base 0.2007±0.1069 0.1498±0.0809 0.3026±0.0697 0.2273±0.0356 0.2097±0.0485 0.1565±0.0348
MVKM-W/O-P 0.1714±0.0089 0.1306±0.0089 0.2817±0.0316 0.2213±0.0245 0.1796±0.0345 0.1357±0.0190

Our Method (MVKM) 0.1388±0.0048 0.1049±0.0056 0.2221±0.0074 0.1739±0.0048 0.1532±0.0128 0.1171±0.0097

Table 2: Performance Prediction results on synthetic datasets, measured by RMSE and MAE, shown with
variance in 5-fold cross-validation

Methods
MORF QD MORF QL CANVAS H

RMSE MAE RMSE MAE RMSE MAE
AVG 0.2410±0.0227 0.1913±0.0161 0.2420±0.0108 0.1957±0.0067 0.0767±0.0121 0.0555±0.0040
RBTF 0.2711±0.0229 0.2132±0.0147 0.2572±0.0114 0.1980±0.0074 0.1571±0.0172 0.1235±0.0103
FDTF 0.3081±0.0437 0.2401±0.0329 0.3006±0.0194 0.2324±0.0151 0.1395±0.0259 0.0929±0.0119
TFWL 0.2750±0.0529 0.2003±0.0249 0.3090±0.3090 0.2237±0.0099 0.2377±0.0803 0.1186±0.0513
BPTF 0.2172±0.0128 0.1776±0.0082 0.2302±0.0068 0.1953±0.0048 0.1114±0.0120 0.0946±0.0082
IBKT 0.2756±0.0070 0.2281±0.0053 0.2646±0.0147 0.2174±0.0096 0.0856±0.0105 0.0692±0.0042
DKT 0.3169±0.0374 0.2498±0.0313 0.2859±0.0061 0.2158±0.0075 0.0911±0.0322 0.0616±0.0173

RBTF-MV 0.2814±0.0282 0.2177±0.0222 0.2624±0.0193 0.1977±0.0136 0.1484±0.0098 0.1171±0.0054
FDTF-MV 0.3138±0.0441 0.2453±0.0387 0.2398±0.0137 0.1866±0.0091 0.1149±0.0085 0.0907±0.0068
TFWL-MV 0.2919±0.0275 0.1975±0.0160 0.3222±0.0208 0.2178±0.0165 0.1748±0.0600 0.0784±0.0269
BPTF-MV 0.2615±0.0129 0.2286±0.0114 0.2313±0.0070 0.1960±0.0041 0.1452±0.0100 0.1343±0.0081
IBKT-MV 0.2774±0.0204 0.2177±0.0099 0.2904±0.0098 0.2137±0.0062 0.0834±0.0125 0.0425±0.0049
DKT-MV 0.2938±0.0310 0.2352±0.0236 0.2540±0.0065 0.2185±0.0047 0.079±0.0247 0.0496±0.0065

MVKM-Base 0.2242±0.0328 0.1669±0.0207 0.2277±0.0119 0.1724±0.0081 0.0666±0.0159 0.0411±0.0040
MVKM-W/O-P 0.2385±0.0196 0.1771±0.0104 0.2450± 0.0145 0.1814±0.009 0.0649±0.0111 0.0388±0.0027

Our Method (MVKM) 0.2088 ± 0.0229 0.1603±0.0142 0.2150±0.0127 0.1654±0.0104 0.0613±0.0112 0.0362±0.0028

Table 3: Performance Prediction results on real-world datasets, measured by RMSE and MAE, shown with
variance in 5-fold cross-validation.

compared to the other two. This shows that BPTF is better
than MVKM-Base in handling skewed data. One potential
reason is BPTF’s smoothing assumption, in contrast with
MVKM-Base’s rank-based knowledge increase, that results
in a more homogeneous score predictions for each student.

MVKM: Multiple vs. Single Material Types. Com-
paring MVKM’s results with MVKM-Base model, we can
see that using data from multiple learning material types
improves performance prediction results. It verifies our as-
sumptions regarding knowledge transfer in di↵erent learn-
ing material types through the knowledge gain in shared
concept latent space. This is given that in other models,
e.g., all models except DKT in MORF-QD, adding di↵erent
learning material types increases the prediction error. This
error increase is particularly happening with BPTF model in
real-world datasets and DKT model in synthetic ones. This
shows that merely aggregating data from various resources,
without appropriate modeling, can even harm the prediction
results. This di↵erence between MVKM and other baselines
is in its specific setup, in which each learning material type is
modeled separately, while keeping a shared knowledge space,
student latent features, and knowledge gain.

Learning and Forgetting E↵ect. To further test the
e↵ect of our knowledge gain and forgetting constraint, we
compare MVKM with MVKM-W/O-P, a variation of our

proposed model without the rank-based constraint in Equa-
tion 2. We can see that MVKM outperforms MVKM-W/O-
P in all datasets. This shows that the soft knowledge in-
crease and forgetting assumption is essential in correctly
capturing the variability in students’ learning. Particularly,
comparing MVKM-W/O-P’s results with MVKM-Base, the
single-view version that includes the rank-based learning
constraints, we can measure the e↵ect of adding multiple
learning material types vs. the e↵ect of adding the learning
and forgetting constraints in MVKM model. In CANVAS H
dataset, adding multiple learning material types is more ef-
fective than learning constraint, and in MORF datasets, re-
alizing learning constraint is more important than modeling
multiple types of learning materials. Nevertheless, they are
not mutually exclusive and both are important in the model.

Hyper-parameter Tuning Using a separate validation
set, we experiment with various values (grid search) for
model hyper-parameters to select the most representative
ones for our data. Specifically, we first vary the student
latent feature dimension K in [1, 5, 10, · · · , 40, 45], the ques-
tion latent feature dimension C in [1, 2, · · · , 9, 10], the penalty
weight ! in [0.01, 0.05, 0.1, 0.5, 1, 2, 3], the Markovian step
m in [1, 2, · · · , 10], and the learning resource importance pa-
rameter �[r] in [0.05, 0.1, 0.2, 0.5, 1, 2]. Once we found a good
set of hyper-parameters from coarse-grained grid search, we
search the values close to the optimal values to find out the
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best fine-grained values for these hyper-parameters. The
best resulting hyper-parameter values for each dataset are
listed in table 4. We use �[1] as the trade-o↵ parameter for
graded learning material, �[2] for anther learning material.
As we can see, in both the synthetic and real-world data, the
learning and forgetting constraint is more important (larger
!) when having a non-graded learning material type. This
shows that binary interaction data, unlike student grades
(or scores), is not precise enough to represent the students’
gradual knowledge gain in the absence of a learning and for-
getting constraint. Also, comparing �[2] in MORF QD vs.
MORF QL we can see that the importance of video lectures
is more than discussions in predicting students’ performance.

Dataset K C ! �[1] �[2] ⌘ m �t �s

Synthetic NG 3 3 0.2 1 0.1 0.1 1 0.01 0.001
Synthetic NG2 3 3 0.2 1 0.1 0.1 1 0.001 0.001
Synthetic G 3 3 0.1 1 0.4 0.1 1 0.001 0.001
MORF QD 39 5 1 1 0.05 0.1 1 0 0
MORF QL 35 9 0.6 1 0.5 0.1 1 0 0
Canvas H 28 7 2.0 1 0.5 0.01 1 0 0

Table 4: Hyperparameters of our model for each
dataset

4.4 Student Knowledge Modeling

In this set of experiments, we answer two main research
questions: 1) Can our model’s learning and forgetting con-
straint capture meaningful knowledge trends across concepts
for students as a whole? and 2) Are the individual student’s
knowledge growth representative of their learning? To an-
swer these questions, we look at the estimated knowledge
tensor of students (K = ST ).

Figure 3: Average knowledge gain of concepts across
all students.

To answer the first question, we check the average student
knowledge growth on di↵erent concepts. Figure 3 shows
the average knowledge of all students in di↵erent concepts
(represented with di↵erent colors) during the whole course
period (X-axis) for MORF QL, and CANVAS H datasets
(MORF QD has similar patterns as MORF QL, we don’t
show it due to the page limitation). Notice that, for a
clear visualization, we only show 3 out of 9 concepts from
MORF QL dataset in the figure. We can see that, on av-
erage, students’ knowledge in di↵erent concepts increase.
Particularly, in MORF QL, the initial average knowledge
on concept 3 is less that concepts 5 and 7. However, stu-
dents learn this concept rapidly as shown by the increase of
knowledge level around the tenth attempt. As the knowledge
growth is less smooth in this concept, compared to the other
two (e.g., the drop around the 15th attempt), students are
more likely to forget it rapidly. Eventually, the average stu-
dent knowledge in all concepts are close to each other. On

the other hand, in CANVAS H, the average initial knowl-
edge in di↵erent concepts are relatively close. However, stu-
dents end up having di↵erent knowledge levels in di↵erent
concepts at the end of the course, especially in concepts 0
and 4. Also, all six concepts show large fluctuations across
the attempts. Overall, the students have a significant knowl-
edge gain at the first few attempts and the knowledge gain
slows down after that. This is aligned with our expectation
on students’ knowledge acquisition through out the course.

Figure 4: Average knowledge gain of each concept
across all students.

To show the e↵ect of the learning and forgetting constraint
in MVKM, we look at the student knowledge acquisition
in the MVKM-W/O-P model, that removes this constraint.
The MVKM-W/O-P’s average student knowledge in di↵er-
ent concepts throughout all attempts is shown in Figure 4.
We can see that despite its acceptable performance predic-
tion error, MVKM-W/O-P’s estimated knowledge trends are
elusive and counter-intuitive. For example, many concepts
(such as concept 3 in MORF QL) show a U-shaped curve.
This curve can be interpreted as the students having a high
prior knowledge in these concepts, but forgetting them in the
middle of the course, and then re-learning them at the end of
the course. In some cases, such as concept 1 in CANVAS H,
students lose some knowledge and forget what they already
knew, by the end of the course. This demonstrates the ne-
cessity of learning and forgetting penalty term in MVKM.

For second question, we check if there are meaningful di↵er-
ences between knowledge gain trends of di↵erent students.
To do this, we apply spectral clustering on students’ latent
features matrix S to discover di↵erent groups of students.
Then, we compare students’ learning curves from di↵erent
clusters. The number of clusters is determined by the signif-
icance of di↵erence on average performance in each cluster.
We obtained 3 clusters of students for MORF QD course,
and 2 clusters for MORF QL and CANV AS H courses
based on students’ latent features from our model.

To see the di↵erences in these groups, we sample one stu-
dent from each cluster in each real-world dataset. Figure 5
shows these sample students’ knowledge gain, averaged over
all concepts, in datasets MORF QD and MORF QL (CAN-
VAS H is not showed due to the page limitaion, it has simi-
lar patterns as MORF QD). The figures show that di↵erent
students start with di↵erent initial prior knowledge. For ex-
ample, in MORF QL, student #5 starts with a lower prior
knowledge than student #100 and ends up with a lower final
knowledge. Also, the figure shows that di↵erent knowledge
gain trends across students, particularly in MORF QD. For
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Figure 5: Sample students’ knowledge gain across
all concepts in two di↵erent courses.

example, student #0 starts with a lower prior knowledge
than the other two students, but has a faster knowledge
growth, and catches up with them around attempt 8. How-
ever, this student’s knowledge growth slows down after a
while end up to be lower than the other two at the end of
course. To see if the quantified knowledge is meaningful, we
compare student’s knowledge growth with their scores. Stu-
dents #0, #8, and #189 in MORF QD have average grades
0.202, 0.636, and 0.909, in MORF QL, #5 and #100 have
average grades 0.9 and 0.98. This align with the knowl-
edge levels shown in the figure. These observations show
that MVKM can meaningfully di↵erentiate between di↵er-
ent students’ knowledge growth.

4.5 Learning Resource Modeling

In this section, we evaluate our model on how well it can
represent the variability and similarity of di↵erent learn-
ing materials. We mainly focus on two questions: 1) Are
the learning materials’ biases consistent with their di�culty
levels? 2) Are the discovered latent concepts for learning
materials (matrix Q[r]) representative of actual conceptual
groupings of learning materials in the real datasets?

Bias Evaluation. For the first question, since we do not
have access to the learning materials’ di�culty levels, we use
average student scores on them, as a proxy for di�culty. As
a result, we only use graded learning materials for this anal-
ysis. We calculated the spearman correlation between ques-
tion bias captured by our model and average score of each
question. The spearman correlation on MORF QD is 0.779,
on MORF QL is 0.597, and on CANVAS H is 0.960.We find
that question bias derived from MCKM is highly correlated
with average question score, where the lower the actual av-
erage grades are, the lower the bias values are learned.

Within-Type Concept Evaluation. For the second ques-
tion, we would like to know how much the learning materials’
discovered latent concepts resemble the real-world similar-
ities in them. To evaluate the real-world similarities, we
rely on two scenarios: 1) the learning material that are ar-
ranged closely to each other in the course structure, either in
same module or in consequent modules, are similar to each
other (course structure similarity); 2) the learning materials
that are similar to each other have similar concepts and con-
tents (content similarity). Since only one of our real-world
datasets, MORF QL, includes the required information for
these scenarios, we use this dataset in the continuation of
this paper. For first scenario, the course includes an ordered
list modules, each of which include an ordered list of videos,

in addition to the assignments associated with each module.

For the second scenario, because our learning materials are
not labeled with their concepts in our datasets, we use their
textual contents (not used in MVKM) as a representation of
their concepts. Particularly, we have subscripts for 40 video
lectures, and text of questions for 8 quizzes. We note that
if two learning materials present the same concepts, their
textual contents should also be similar to each other. As
a result, we build content-based clusters of learning mate-
rials, each of which containing the learning materials that
are conceptually similar to each other. Specifically, to clus-
ter the learning material according to their contents, we use
Spectral Clustering on the latent topics that are discovered
using Latent Dirichlet Analysis (LDA)[9] on the learning
material’s textual contents. In the same way, we can cluster
the learning materials according to their discovered latent
concepts by MVKM. Similar to the textual analysis, we use
spectral clustering on the discovered Q[r] matrices to form
clusters of learning materials. To do this, we first consider
only one learning material type (the video lectures) and then
move on to the similarities between two types of learning
materials (both video lectures and assignments).

The results are shown in Figure 6 for within-type learning
material similarity in video-lectures. Figure 6(a) shows the 8
clusters that were discovered using MVKM, and Figure 6(b)
shows the 8 clusters that were discovered using video-lecture
transcripts. Each cluster is shown within a box with a num-
ber associated with it. Each video-lecture is shown by its
module (or week in the course), its order in the module se-
quence, and its name. For ease of comparison, we colored the
video names according to their LDA content clusters. Look-
ing at the LDA content clusters, we can see that although
some lectures in same module fit in same cluster (e.g., videos
1, 2, 3, and 4 from week 7 are all in cluster 7), some of the
lectures do not cluster with other videos in their module.
For example, video 5 in week 7 is in cluster 2, with pioneer
knowledge tracing methods. This shows that in addition
to structural similarities, content similarities also exist in
learning materials. Looking at MVKM clusters, we can see
that the clusters mostly represent the course structure sim-
ilarity: learning materials from same module are grouped.
For example, all videos of week 3 are grouped in cluster 2.
However, we can see that in many cases, whenever the struc-
ture similarity in clusters are disrupted, it is because of the
content similarity in video lectures. For example, video 5 in
week 7 that was clustered with pioneer knowledge tracing
method in LDA content clusters is also clustered with them
in MVKM clusters.

Between-Type Concept Evaluation. To evaluate MV-
KM’s discovered similarities between di↵erent types of learn-
ing materials, we evaluate assignments’ and video lectures’
in MORF QL. To do this, we build LDA-based clusters us-
ing assignment texts and video lecture transcripts. These
clusters are shown in Figure 7(b). We also cluster the learn-
ing materials using spectral clustering on the concatenation
of their Q[r] matrices (Figure 7(a)). Because the assign-
ments bring more information to the clustering algorithms,
the clustering results are di↵erent from the clusters of video
lectures only. Similar to within-type concept evaluation re-
sults, we can still see the e↵ect of both content and structure
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Figure 7: Clusters discovered by using MVKM (a), clusters discovered by using video-lecture transcripts and
assignment texts(b).

similarities in video lectures that are clustered together by
MVKM. For example, videos 1 and 3 of week 2 are clus-
tered with later weeks’ videos because of content similarity
(cluster 1 in Figure 7(a)). While videos 2 of week 2 is also
clustered with them because it comes between these two
videos in course sequence.

Additionally, between video lectures and assignments, the
clusters closely follow the course structure. The assignments
in this course come at the end of their module and right be-
fore the next module starts. For example, “Assignment 3”
appears after video 5 at week 3 and before video 1 at week
4. We can see that all assignments, except “Assignment 1”
that is the first one, are clustered with their immediate next
video lecture. Moreover, we can see the e↵ect of content sim-
ilarity between assignments and video lectures in di↵erences
of Figures 6(a) and 7(a). For example, without including
assignments, “Week 1 Introduction” and “W1 V1: Big Data
in Education” were clustered together in cluster 7 of Fig-
ure 6(a). However, after adding assignments, because of the
content similarity between “Assignment 3” and “Week 1 In-
troduction” ( Figure 7(b) cluster 2), “Week 1 Introduction”
and “W1 V1: Big Data in Education” are clustered with
video lectures that are structurally close to “Assignment 3”.

Altogether, we demonstrated that learning materials’ bias
parameters in MVKM are aligned with their di�culties;
learning materials’ latent concepts discovered by our model
well represent learning materials’ real-world similarities, both
in structure and in content; and MVKM can successfully
unveil these similarities between di↵erent types of learning
materials, without observing their content or structure.

5. CONCLUSIONS
In this paper, we proposed a novel Multi-View Knowledge
Model (MVKM) that can model students’ knowledge gain
from di↵erent learning materials types, while simultaneously
discovering materials’ latent concepts. Our proposed ten-
sor factorization model explicitly represents students’ knowl-
edge growth and allows for occasional forgetting of learned
concepts. Our extensive evaluations on synthetic and real-
world datasets show that MVKM outperforms other base-
lines in the task of student performance prediction, can ef-
fectively capture students’ knowledge growth, and represent
similarities between di↵erent learning materials types.
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