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ABSTRACT 

This paper explores computational, semantic labeling for scholarly big data in materials science. We 

report on a baseline comparative analysis involving ontology-based automatic indexing with the Helping 

Interdisciplinary Vocabulary Engineering (HIVE-4-MAT) application, using the RAKE algorithm, and 

the MATScholar system, which uses named entity recognition (NER), supported by an RNN (Recursive 

Neural Network). Results demonstrate that ontology-based automatic indexing requires less preparation 

time and provides useful output supporting recall; while NER/RNN requires greater preparation, but 

produces more precise labels that are likely better for deep learning. 
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1 Introduction 
Scholarly big data continues to grow exponentially across all disciplines, with estimates predicting 35 

million open access documents by 2022 (Wu and Giles, 2020).  Materials science researchers recognizes 

this growth, and that it is impossible for a human to extract knowledge from the vast stores of published 

research (Weston et al., 2019). This challenge underscores the need for computational  approaches to 

semantic labeling, which is a goal of the NSF-Harnessing the Data Revolution (HDR) initiative, 

Accelerating the Discovery of Electronic Materials through Human-Computer Active Search. This paper 

reports on baseline research in this area, specifically a comparative analysis exploring ontology-based 

automatic indexing and named entity recognition (NER), with two applications accommodating 

materials science. 

2 Materials Science 
Materials are an essential part of our everyday lives, from the metals and plastics that comprise smart 

phones and their encasings, to plastic, glass, and paper for food packaging. Materials science is an 

interdisciplinary field bringing together chemistry, engineering, physics, and other disciplines to study 

properties and discover cheaper, more functional, and less harmful materials. Materials science, like 

every other discipline, has increasingly embraced computation; however, the massive store of 

unstructured, scholarly big remains untapped. Research in computational semantic labeling can help 

address this challenge. 

3 Computational Semantic Labeling 
Semantic labeling is a broad area covering the assignment of descriptors representing topicality and the 

identification of  named entities. Semantic labels are important for resource discovery and deep learning. 

We describe two common, computational approaches below. 
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3.1 Ontology-based automatic indexing 

Ontology-based automatic indexing can support semantic labeling. The process involves automatic 

indexing to extract key terms from a document; followed by matching these initial results to terms 

encoded in a knowledge structure, such as an ontology. Automatic indexing sequence generally involves 

term frequency counts; the most popular method is term frequency–inverse document frequency (tf–idf) 

to determine the significance of a ‘term’ or ‘phrase’ in a document, and in comparison to the full corpus. 

Automatic indexing can also involve more sophisticated information retrieval methods, such as term 

weighting, similarity and probabilistic measures, and clustering (Melucci and Baeza-Yates, 2011). 

3.2 Named Entity Recognition (NER) 

NER is a subtask of Information extraction (IE) that can support semantic labeling. NER involves natural 

language processing to detect named entities (e1 and e2) and their type in a sentence (S). Entity include 

personal or organization names, a geographic area, chemicals and so forth. Today’s state-of-the-art NER 

involves Neural Network models (Jia et al., 2019), which have been extremely effective supporting drug 

discovery (Wan and Poon, 2018); and this approach has recently attracted attention material science 

community (Weston et al., 2019) 

 

Overall, both approaches reviewed here motivate the research goals and objectives posited below. 

4 Research Goals and Objectives 
The goal of this research is to explore computational approaches for semantic labeling of unstructured, 

scholarly big data. Specific objectives are to: 

1) Evaluate the performance of ontologies-based automatic indexing and NER for semantic 

labeling. 

2) Consider how the two approaches may be improved to enhance knowledge discovery in 

materials science. 

5 Method and Procedures  
We conducted a baseline comparative analysis to explore two approaches supporting semantic labeling. 

Test Applications and Algorithms 

We selected HIVE-4-MAT and the MatScholar given that each application supports computational 

semantic labeling in materials science. 

HIVE-4-MAT1 is a linked data automatic indexing application. HIVE-4-MAT  builds off the 

HIVE system incorporated into the DataNet Federation Consortium’s iRODS system 
(Conway, et al, 2013). The HIVE-4-MAT prototype includes the following four ontologies: 1) 

BioAssay Ontology, 2) Library of Congress Subject Headings (LCSH), 3) Smart Appliances 

REFerence ontology (SAREF) and 4) US Geological Survey (USGS) terminology, and 

supports automatic indexing with the RAKE (Rapid Automatic Keyword Extraction) 

algorithm. RAKE is an unsupervised algorithm that processes and parses text into a set of 

candidate keywords based on co-occurrence (Rose et al., 2010). Once the list of candidate 

keywords is selected, the HIVE system matches candidate keywords with terms from 

ontologies.  

MATScholar2 is a NER web-accessible application supporting entity extraction and 

classification, and uses RNN/LSTM (Recurrent Neural Network-Long Short Term Memory ). 

RNN-LSTM is a classic type of neural network that is widely applied in natural language 

processing tasks (Jia et al., 2019; Miwa and Basal, 2016). MATScholar’s NER algorithm is 
supported by a training set of 800 hand-annotated abstracts and uses color and codes to 

identify seven entity classes: 1) inorganic material (MAT), 2) symmetry/phase label (SPL), 3) 

 
1 HIVE: http://hive2.cci.drexel.edu:8080/  

2 MATScholar: https://www.matscholar.com  
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sample descriptor (DSC), 4) material property (PRO), 5) material application (APL), 6) 

synthesis method (SMT), and 7) characterization method (CMT).  

Sample and Evaluation 

The sample included a set of nine randomly selected abstracts, drawn from MATScholar, 

which includes a collection of over 3 million abstracts drawn from the from the Scopus API.  

The sample size of nine, while small, was considered sufficient for this baseline study, given 

human evaluation requirements, and the goals to assess the performance and value of each 

algorithm for semantic labeling. The evaluation was conducted by information science and 

materials science experts included 3-tier scale of relevant (R), partially relevant (PR), and 

non-relevant (NR) HIVE-4-MAT outputs; while the F score was calculated for results with 

MatScholar. 

6 Results  
The results include an examination of both the output and performance evaluation. Figure 1 incudes an 

example of unstructured, scholarly big data form the sample.  

 
Figure 1. Example Input 

 

Figure 2 includes output from each application and their algorithm. HIVE-4-MAT/RAKE (left-hand 

side) presents a list of terms drawn from the ontologies. The hierarchical structure helps determine 

contextual meaning. MATScholar/RNN-LSTM results (right-hand side), presents the color encoded, 

labeled entities. 

HIVE-4-MAT/RAKE MATScholar/RNN-LSTM 

Figure 2. Outputs from Each Application 

Example: Input Abstract

To obtain enhanced room temperature ferromagnetism (RTFM) along with the increase in optical bandgap in the 

compound semiconductors has been an interesting topic. Here, we report RTFM along with increase in energy 

bandgap in chemically synthesized Zn1−xCuxS (0 ≤ x ≤ 0.04) DMS nanoparticles. Structural properties of the 

synthesized samples studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) show the formation of cubic phase Cu doped ZnS nanoparticles of ~3–5 nm size. An 

intrinsic weak ferromagnetic behavior was observed in pure ZnS sample (at 300 K) which got increased in Cu doped 

samples and was understood due to defect induced ferromagnetism. UV–vis measurement showed increase in the 

energy bandgap with the increase in Cu doping. The PL study suggested the presence of sulfur and zinc vacancies 

and surface defects which were understood contributing to the intrinsic FM behavior. (Patel et al., 2017, Effect of 

impurity concentration on optical and magnetic properties in ZnS:Cu nanoparticles)
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Figure 3 shows the number of potentially relevant terms extracted with RAKE varies from 14 to 18 for 

the three ontologies (BioAssay, USGS, and SAREF), and 205 terms from LCSH.  

 
Figure 3. Number of Terms Extracted by Ontologies 

 

Relevance results indicate that 14 BioAssy BioAssay ontology tersm were considered relevant—on 

some level and slightly over half the LCSH terms (51.71%) were considered “relevant,” with 18.54% 

“partially relevant” Additionally, SAREF and USGS ontology, were promising, with 83.33% and 

73.33% of terms considered “relevant” to the abstracts respectively. 

 

MatScholar results are reported in Table 1, which calculates the extraction accuracy of each category 

(entity), followed by a total accuracy including all entities. 

 
Table 1. Output Accuracy f1 score (%) of Entity Extraction Algorithm (Weston et al., 2019) 

 

The f1 score as the indicator for accuracy, a measure that widely used in information retrieval and 

NER. The accuracy falls into the range from 80.19% to 92.13%. 

7 Discussion  
The initial results reported on in this paper give insight into ontology-based automatic indexing and 

entity extraction algorithms for semantic labeling in materials science. Results demonstrate that 

ontology-driven algorithm provide  general-relevant labels, while entity extraction algorithm may 

provide more precise labels. In assessing if we should use one approach over  the other, it depends on 

the circumstance and the broader goals of leveraging semantic labels. 

The two approaches studied have different requirements and costs. Developing a neural network model 

requires the acquisition and labeling of large amounts of data, incurring a cost; although precise labels 

generally have greater value for deep learning. Compared to RNN model, RAKE algorithm requires 

significantly less data: the list of candidate keywords is simply extracted based on the given abstract, 

regardless of size. Current results are further challenged by limited availability materials science 

ontologies, particularly compared to biomedicine.  More ontologies may vastly improve these results 

and prospects. 

8 Conclusion  
Overall, our research suggests that both approaches have value. Ontology-based automatic indexing 

requires less preparation time and provides useful output supporting a view of the field and recall; and 

NER/RNN requires greater preparation, but more precise labels will better support deep learning. The 

results here are part of a baseline study, and more research is underway involving a larger data-set. 

Given limitations with materials science ontologies, we are also looking toward relation extraction and 

building robust ontologies to improve computational label and, ultimately accelerate the discovery of 

new materials. 
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