Scholarly Big Data: Computational Approaches to
Semantic Labeling in Materials Science

Xintong Zhao, Jane Greenberg, Xiaohua Hu

College of Computing and Informatics, Drexel University, Philadelphia, PA USA
{x7485, jg324, xh92} @drexel.edu

Vanessa Meschke, Eric Toberer

Department of Physics, Colorado School of Mines, Golden, CO, USA
{vnilsen, etoberer} @ mines.edu

ABSTRACT

This paper explores computational, semantic labeling for scholarly big data in materials science. We
report on a baseline comparative analysis involving ontology-based automatic indexing with the Helping
Interdisciplinary Vocabulary Engineering (HIVE-4-MAT) application, using the RAKE algorithm, and
the MATScholar system, which uses named entity recognition (NER), supported by an RNN (Recursive
Neural Network). Results demonstrate that ontology-based automatic indexing requires less preparation
time and provides useful output supporting recall; while NER/RNN requires greater preparation, but
produces more precise labels that are likely better for deep learning.
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1 Introduction

Scholarly big data continues to grow exponentially across all disciplines, with estimates predicting 35
million open access documents by 2022 (Wu and Giles, 2020). Materials science researchers recognizes
this growth, and that it is impossible for a human to extract knowledge from the vast stores of published
research (Weston et al., 2019). This challenge underscores the need for computational approaches to
semantic labeling, which is a goal of the NSF-Harnessing the Data Revolution (HDR) initiative,
Accelerating the Discovery of Electronic Materials through Human-Computer Active Search. This paper
reports on baseline research in this area, specifically a comparative analysis exploring ontology-based
automatic indexing and named entity recognition (NER), with two applications accommodating
materials science.

2 Materials Science

Materials are an essential part of our everyday lives, from the metals and plastics that comprise smart
phones and their encasings, to plastic, glass, and paper for food packaging. Materials science is an
interdisciplinary field bringing together chemistry, engineering, physics, and other disciplines to study
properties and discover cheaper, more functional, and less harmful materials. Materials science, like
every other discipline, has increasingly embraced computation; however, the massive store of
unstructured, scholarly big remains untapped. Research in computational semantic labeling can help
address this challenge.

3 Computational Semantic Labeling

Semantic labeling is a broad area covering the assignment of descriptors representing fopicality and the
identification of named entities. Semantic labels are important for resource discovery and deep learning.
We describe two common, computational approaches below.



3.1 Ontology-based automatic indexing

Ontology-based automatic indexing can support semantic labeling. The process involves automatic
indexing to extract key terms from a document; followed by matching these initial results to terms
encoded in a knowledge structure, such as an ontology. Automatic indexing sequence generally involves
term frequency counts; the most popular method is term frequency—inverse document frequency (tf—idf)
to determine the significance of a ‘term’ or ‘phrase’ in a document, and in comparison to the full corpus.
Automatic indexing can also involve more sophisticated information retrieval methods, such as term
weighting, similarity and probabilistic measures, and clustering (Melucci and Baeza-Yates, 2011).

3.2 Named Entity Recognition (NER)

NER is a subtask of Information extraction (IE) that can support semantic labeling. NER involves natural
language processing to detect named entities (e/ and e2) and their type in a sentence (S). Entity include
personal or organization names, a geographic area, chemicals and so forth. Today’s state-of-the-art NER
involves Neural Network models (Jia et al., 2019), which have been extremely effective supporting drug
discovery (Wan and Poon, 2018); and this approach has recently attracted attention material science
community (Weston et al., 2019)

Overall, both approaches reviewed here motivate the research goals and objectives posited below.

4 Research Goals and Objectives

The goal of this research is to explore computational approaches for semantic labeling of unstructured,
scholarly big data. Specific objectives are to:
1) Evaluate the performance of ontologies-based automatic indexing and NER for semantic
labeling.
2) Consider how the two approaches may be improved to enhance knowledge discovery in
materials science.

5 Method and Procedures

We conducted a baseline comparative analysis to explore two approaches supporting semantic labeling.
Test Applications and Algorithms

We selected HIVE-4-MAT and the MatScholar given that each application supports computational
semantic labeling in materials science.

HIVE-4-MAT! is a linked data automatic indexing application. HIVE-4-MAT builds off the
HIVE system incorporated into the DataNet Federation Consortium’s iRODS system
(Conway, et al, 2013). The HIVE-4-MAT prototype includes the following four ontologies: 1)
BioAssay Ontology, 2) Library of Congress Subject Headings (LCSH), 3) Smart Appliances
REFerence ontology (SAREF) and 4) US Geological Survey (USGS) terminology, and
supports automatic indexing with the RAKE (Rapid Automatic Keyword Extraction)
algorithm. RAKE is an unsupervised algorithm that processes and parses text into a set of
candidate keywords based on co-occurrence (Rose et al., 2010). Once the list of candidate
keywords is selected, the HIVE system matches candidate keywords with terms from
ontologies.

MATScholar’ is a NER web-accessible application supporting entity extraction and
classification, and uses RNN/LSTM (Recurrent Neural Network-Long Short Term Memory ).
RNN-LSTM is a classic type of neural network that is widely applied in natural language
processing tasks (Jia et al., 2019; Miwa and Basal, 2016). MATScholar’s NER algorithm is
supported by a training set of 800 hand-annotated abstracts and uses color and codes to
identify seven entity classes: 1) inorganic material (MAT), 2) symmetry/phase label (SPL), 3)

U HIVE: http://hive2.cci.drexel.edu:8080/

2 MATScholar: https://www.matscholar.com



sample descriptor (DSC), 4) material property (PRO), 5) material application (APL), 6)
synthesis method (SMT), and 7) characterization method (CMT).

Sample and Evaluation

The sample included a set of nine randomly selected abstracts, drawn from MATScholar,
which includes a collection of over 3 million abstracts drawn from the from the Scopus API.

The sample size of nine, while small, was considered sufficient for this baseline study, given
human evaluation requirements, and the goals to assess the performance and value of each
algorithm for semantic labeling. The evaluation was conducted by information science and
materials science experts included 3-tier scale of relevant (R), partially relevant (PR), and

non-relevant (NR) HIVE-4-MAT outputs; while the F score was calculated for results with
MatScholar.

6 Results

The results include an examination of both the output and performance evaluation. Figure 1 incudes an
example of unstructured, scholarly big data form the sample.

Example: Input Abstract

To obtain enhanced room temperature ferromagnetism (RTFM) along with the increase in optical bandgap in the
compound semiconductors has been an interesting topic. Here, we report RTFM along with increase in energy
bandgap in chemically synthesized Zn1-xCuxS (0 < x < 0.04) DMS nanoparticles. Structural properties of the
synthesized samples studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) show the formation of cubic phase Cu doped ZnS nanoparticles of ~3—5 nm size. An
intrinsic weak ferromagnetic behavior was observed in pure ZnS sample (at 300 K) which got increased in Cu doped
samples and was understood due to defect induced ferromagnetism. UV—vis measurement showed increase in the
energy bandgap with the increase in Cu doping. The PL study suggested the presence of sulfur and zinc vacancies
and surface defects which were understood contributing to the intrinsic FM behavior. (Patel et al., 2017, Effect of
impurity concentration on optical and magnetic properties in ZnS:Cu nanoparticles)

Figure 1. Example Input

Figure 2 includes output from each application and their algorithm. HIVE-4-MAT/RAKE (left-hand
side) presents a list of terms drawn from the ontologies. The hierarchical structure helps determine

contextual meaning. MATScholar/RNN-LSTM results (right-hand side), presents the color encoded,
labeled entities.
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Figure 3 shows the number of potentially relevant terms extracted with RAKE varies from 14 to 18 for
the three ontologies (BioAssay, USGS, and SAREF), and 205 terms from LCSH.
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Figure 3. Number of Terms Extracted by Ontologies

Relevance results indicate that 14 BioAssy BioAssay ontology tersm were considered relevant—on

some level and slightly over half the LCSH terms (51.71%) were considered “relevant,” with 18.54%
“partially relevant” Additionally, SAREF and USGS ontology, were promising, with 83.33% and
73.33% of terms considered “relevant” to the abstracts respectively.

MatScholar results are reported in 7able 1, which calculates the extraction accuracy of each category

(entity), followed by a total accuracy including all entities.

Accuracy(f1) | Total MAT SPL DSC PRO APL SMT CMT
Development Set 87.09 92.58 85.24 91.4 80.19 80.6 81.32 86.52
Test Set 87.04 90.3 82.05 92.13 83.19 80.63 81.37 86.01

Table 1. Output Accuracy fl score (%) of Entity Extraction Algorithm (Weston et al., 2019)

The f1 score as the indicator for accuracy, a measure that widely used in information retrieval and
NER. The accuracy falls into the range from 80.19% to 92.13%.

7 Discussion

The initial results reported on in this paper give insight into ontology-based automatic indexing and
entity extraction algorithms for semantic labeling in materials science. Results demonstrate that

ontology-driven algorithm provide general-relevant labels, while entity extraction algorithm may
provide more precise labels. In assessing if we should use one approach over the other, it depends on
the circumstance and the broader goals of leveraging semantic labels.

The two approaches studied have different requirements and costs. Developing a neural network model
requires the acquisition and labeling of large amounts of data, incurring a cost; although precise labels
generally have greater value for deep learning. Compared to RNN model, RAKE algorithm requires
significantly less data: the list of candidate keywords is simply extracted based on the given abstract,
regardless of size. Current results are further challenged by limited availability materials science
ontologies, particularly compared to biomedicine. More ontologies may vastly improve these results

and prospects.

8 Conclusion

Overall, our research suggests that both approaches have value. Ontology-based automatic indexing
requires less preparation time and provides useful output supporting a view of the field and recall; and
NER/RNN requires greater preparation, but more precise labels will better support deep learning. The

results here are part of a baseline study, and more research is underway involving a larger data-set.

Given limitations with materials science ontologies, we are also looking toward relation extraction and
building robust ontologies to improve computational label and, ultimately accelerate the discovery of

new materials.




ACKNOWLEDGMENTS
NSF/OAC-Office of Advanced Cyberinfrastructure #1940239.

REFERENCES

Conway, M. C., Greenberg, J., Moore, R., Whitton, M., & Zhang, L. (2013). Advancing the DFC
Semantic Technology Platform via HIVE Innovation. Proceedings of the 7th Metadata and
Semantics Research Conference. Thessaloniki, Greece, November 19-22, 2013,pp. 14-21.
https://doi.org/0.1007/978-3-319-03437-9_3.

Jia, R., Wong, C., & Poon, H. (2019). Document-Level N-ary Relation Extraction with Multiscale
Representation Learning. Proceedings of the 2019 Conference of the North. Presented at the
Proceedings of the 2019 Conference of the North. https://doi.org/10.18653/v1/n19-1370

Melucci, M., & Baeza-Yates, R. (Eds.). (2011). Advanced topics in information retrieval (Vol. 33).
Springer Science & Business Media.

Miwa, M., & Bansal, M. (2016). End-to-End Relation Extraction using LSTMs on Sequences and Tree
Structures. Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). https://doi.org/10.18653/v1/p16-1105

Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic Keyword Extraction from Individual
Documents. In Text Mining (pp. 1-20). https://doi.org/10.1002/9780470689646.chl

Wang, H., & Poon, H. (2018). Deep Probabilistic Logic: A Unifying Framework for Indirect Supervision.
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
https://doi.org/10.18653/v1/d18-1215

Weston, L., Tshitoyan, V., Dagdelen, J., Kononova, O., Trewartha, A., Persson, K. A., Ceder, G., & Jain,
A. (2019). Named Entity Recognition and Normalization Applied to Large-Scale Information
Extraction from the Materials Science Literature. Journal of Chemical Information and Modeling,
59(9), 3692-3702. https://doi.org/10.1021/acs.jcim.9b00470

Wu, J., & Giles, C. L. (2020). Scholarly Very Large Data: Challenges for Digital Libraries (White Paper):
https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=102 1 &context=hugedata



	1 Introduction
	2 Materials Science
	3 Computational Semantic Labeling
	3.1 Ontology-based automatic indexing
	3.2 Named Entity Recognition (NER)

	4 Research Goals and Objectives
	5 Method and Procedures
	6 Results
	7 Discussion
	8 Conclusion

