
Carver: Finding Important Parameters for Storage System Tuning
Zhen Cao,1 Geoff Kuenning,2 and Erez Zadok1

1Stony Brook University and 2Harvey Mudd College

Abstract

Storage systems usually have many parameters that affect

their behavior. Tuning those parameters can provide sig-

nificant gains in performance. Alas, both manual and au-

tomatic tuning methods struggle due to the large number

of parameters and exponential number of possible configu-

rations. Since previous research has shown that some pa-

rameters have greater performance impact than others, fo-

cusing on a smaller number of more important parameters

can speed up auto-tuning systems because they would have

a smaller state space to explore. In this paper, we propose

Carver, which uses (1) a variance-based metric to quantify

storage parameters’ importance, (2) Latin Hypercube Sam-

pling to sample huge parameter spaces; and (3) a greedy but

efficient parameter-selection algorithm that can identify im-

portant parameters. We evaluated Carver on datasets con-

sisting of more than 500,000 experiments on 7 file systems,

under 4 representative workloads. Carver successfully iden-

tified important parameters for all file systems and showed

that importance varies with different workloads. We demon-

strated that Carver was able to identify a near-optimal set of

important parameters in our datasets. We showed Carver’s

efficiency by testing it with a small fraction of our dataset;

it was able to identify the same set of important parameters

with as little as 0.4% of the whole dataset.

1 Introduction

Storage systems are critical components of modern com-

puter systems that have significant impact on application per-

formance and efficiency. Most storage systems have many

configurable parameters that control and affect their overall

behavior. For example, Linux’s Ext4 [22] offers about 60

parameters, representing over 1037 potential configuration

states. The default settings are often sub-optimal; previous

research has shown that tuning storage parameters can im-

prove system performance by a factor of as much as 9× [59].

To cope with the vast number of possible configurations,

system administrators usually focus on using their domain

expertise to tune a few frequently used and well-studied pa-

rameters that are believed to significantly impact system per-

formance. However, this manual-tuning approach does not

scale well in the face of increasing complexity. Modern stor-

age systems use different file system types [21, 37, 56, 65],

new hardware (SSDs [26, 46], SMR [1, 2], NVM [33, 73]),

multi-tier and hybrid storage, and multiple virtualization lay-

ers (e.g., LVM, RAID). Storage systems range from one or

a few identical nodes to hundreds of highly heterogeneous

configurations [23, 57]. Worse, tuning results depend heav-

ily on hardware and the running workloads [10, 11, 70].

Recently, several optimization methods have been used to

auto-tune storage systems, achieving good performance im-

provements within reasonable time frames [11, 40]. These

auto-tuning techniques model the storage system as a black

box, iteratively trying different configurations, measuring an

objective function’s value, and—based on previously learned

information—selecting new configurations to try. However,

many black-box auto-tuning techniques have difficulty scal-

ing to high dimensions and can take a long time to converge

on good solutions [61]. Therefore, the problem of dealing

with the vast number of storage-parameter configurations re-

mains largely unsolved.

In machine learning and information theory, dimensional-

ity reduction is often applied to explosively sized datasets [5,

48]. We believe it can also be applied to storage-parameter

selection. Previous research has reported that certain stor-

age parameters have greater impact on performance than

others [11]. By eliminating the less important parameters,

and ordering parameters by importance, the parameter search

space—and thus the number of configurations that need to be

considered by either humans or algorithms—can be reduced

significantly [28].

Evaluating a single storage configuration is time consum-

ing, and a thorough analysis requires many configurations to

be explored; these evaluations can span days or even months.

One purpose of a storage parameter-selection algorithm is to

be able to pick important parameters by evaluating only a

small number of configurations, yet still select the important

parameters with high accuracy.

In this paper, we propose Carver, which efficiently selects

a subset of important storage parameters. Carver consists

of three components: 1) a variance-based metric to quantify

the importance of a storage parameter; 2) a sampling method

to intelligently pick a small number of configurations rep-

resenting the whole parameter space; and 3) a greedy al-

gorithm to select important parameters. Carver outputs a

set of selected important parameters; these can be used as

pre-selected parameters for auto-tuning algorithms, as well

as helping human experts better understand the behaviors of

targeted storage systems. As shown in Section 5, the afore-

mentioned three components give Carver the ability to select

a near-optimal subset of important parameters by exploring

relatively few configurations. With this efficiency, Carver

could complete its parameter selection in a relatively short

period of time in a real deployment.

Carver was thoroughly evaluated on (publicly available)



experimental data collected from our previous work [11],

in which we conducted benchmarks on 7 file systems un-

der 4 workloads over a time span of around four years. In

that work, for each file system we picked 8–10 frequently

tuned parameters and evaluated all possible storage configu-

rations resulting from changing the values of these selected

parameters. We collected I/O throughput and latency data

throughout the evaluation. The data set consists of more than

500,000 benchmark runs (data points) in total. One advan-

tage of having collected the datasets from the whole configu-

ration space is that they can be used as the ground truth when

testing Carver with only a small subset of configurations.

With the collected datasets, we first confirmed that cer-

tain parameters have more impact on system throughput or

latency than other parameters, using Carver’s proposed im-

portance metric. We found that in all datasets there is always

a small set of parameters that have significantly more impact

on throughput than all the others. For example, under a File-

server workload, the two most important parameters for Ext4

were Journal Option and I/O Scheduler. We also observed

that the set of important parameters varies with different

workloads. In the same Ext4 example, the two most impor-

tant parameters became Block Size and Inode Size when the

workload changed to Dbserver. We also demonstrated that

our variance-based metric can always find a near-optimal set

of important parameters in these datasets.

We then demonstrated Carver’s efficiency in identifying

important parameters by applying it to different measure-

ments, such as I/O throughput and latency. Carver can easily

be extended and applied equally well to other quantifiable

objectives such as energy consumption, and even compos-

ite cost functions [41]. In our evaluation, Carver uses Latin

Hypercube Sampling (LHS) as the sampling method. LHS

allows Carver to identify the set of important parameters us-

ing a small number of experimental runs that explore only a

fraction of all configurations. For instance, among all 1,000

repeated runs, Carver was able to find the two most impor-

tant parameters for Ext4 using only 0.4% of the evaluation

results. We believe Carver’s efficiency in finding the most

important parameters quickly and accurately is critical and

promising, since (1) it can be applied to new storage systems

or environments, and (2) the parameters it identifies can then

be used by storage administrators or auto-tuning algorithms

to further optimize the system.

The three key contributions of this paper are:

1. We provide a thorough quantitative analysis of the ef-

fects of storage parameters on system performance, for

7 different file systems across 4 representative work-

loads.

2. We propose Carver, which uses a variance-based metric

of storage-parameter importance and Latin Hypercube

Sampling to drive a greedy algorithm that can identify

the most important parameters using only a small num-

ber of experimental runs.

3. We thoroughly evaluated Carver’s ability to identify

important parameters in terms of I/O throughput and

latency. We demonstrated that Carver successfully

chose a near-optimal set of important parameters for all

datasets used.

2 Motivation

In this paper, we define a storage system as the entire storage

stack from file systems to physical devices, including all in-

termediate layers. Storage systems have many configurable

options that affect their performance [10, 66], energy con-

sumption [59], reliability [63], etc. We define a parameter

as one configurable option, and a configuration as a com-

bination of parameter values. For example, Ext4’s Journal

Option parameter can take three values: data=writeback,

data=ordered, and data=journal. Based on this, [jour-

nal=“data=writeback”, block size=4K, inode size=4K] is

one configuration with three specific parameter values (Jour-

nal Option, Block Size, and Inode Size). The list of all possi-

ble (legal) configurations forms a parameter space.

Storage systems usually come with many configurable pa-

rameters that control and affect their overall behavior. An

earlier study [59] showed that tuning even a tiny set of pa-

rameters could improve performance and energy efficiency

by as much as 9×. However, tuning storage systems is not

an easy task; we believe its challenges arise from at least the

following four aspects:

1. Large parameter spaces. Storage systems are com-

plex, incorporating numerous file system types [21, 37,

56, 65], devices [1, 2, 26, 33, 46, 73], and intermediate

layers [52, 54]. They often span large networks and

distributed environments [6, 23, 30, 57]. Modern stor-

age systems have hundreds or even thousands of tun-

able parameters—and networks are also parameterized.

Worse, evaluating a single configuration can take many

minutes or even hours, making experimental tuning un-

usually time-consuming.

2. Nontransferable tuning results. Evaluation results de-

pend on the specific environment, including the hard-

ware, software, and workload [10, 11, 59]. A good con-

figuration for one setup might perform poorly when the

environment changes even slightly [60].

3. Nonlinear parameters. A system is nonlinear when

the output is not directly proportional to the input.

Many computer systems are nonlinear [16], including

storage systems [66]. This makes traditional regression-

based analysis more challenging [50, 58].

4. Discrete and non-numeric (categorical) parameters.

Some storage parameters are continuous, but many are



discrete and take only a limited set of values. Worse,

some are categorical (e.g., the I/O scheduler name or

file system type). Many optimization techniques per-

form poorly on discrete values, and often cannot ad-

dress categorical values efficiently or at all [24, 49].

Given these challenges, manually tuning storage systems

becomes nearly impossible, and automatic tuning can be

computationally infeasible. Recent efforts have used black-

box optimization techniques to auto-tune storage configura-

tions [11,40], addressing several of the above challenges and

achieving useful performance improvements. However, we

believe that the challenge of tuning storage systems is far

from being solved. It has been shown that several of these

black-box optimization techniques have scalability problems

in high-dimensional spaces [61]. Therefore, directly apply-

ing them to tuning systems with hundreds or thousands of

parameters would be difficult.

In machine learning and information theory, dimensional-

ity reduction is a common technique for coping with large-

sized datasets [5,48]. If it can be applied in storage systems,

it will significantly reduce the search space [28], making it

easier for humans or algorithms to tune storage systems.

Previous work has reported that not all storage parameters

have an equally important performance impact: a few have

much greater effect than others [11]. We observed similar

trends from our collected datasets. Figure 1 demonstrates

the impact of the parameters Block Size and I/O Scheduler

on the throughput of an Ext4 file systems under a typical

file server workload. Each boxplot in the figure represents a

median and range of throughput that any Ext4 configuration

can produce after fixing the value of one parameter (shown

on the X axis). We see that setting the I/O Scheduler to dif-

ferent values (blue bars) makes little difference, resulting in

nearly equal medians and ranges of throughput. However,

setting the value of Block Size has a greater impact on both

the median and the throughput range; specifically, to reach

the maximum throughput, Block Size must be set to 4K. Al-

though choosing a large Block Size is a decision that may

be obvious to an expert, we have made similar observations

in other storage systems and with different workloads. This

naturally led us to investigate how we can quantify the im-

pact or importance of each storage parameter, and how we

can select important parameters efficiently.

3 Dimensionality Reduction in a Nutshell

In this section we briefly discuss some commonly applied

approaches to dimensionality reduction, and argue that some

metrics are not suitable for quantifying storage parameters’

importance. Note that different disciplines might use some-

what different terminology than storage systems. For exam-

ple, parameters are analogous to features in machine learn-

ing, independent variables in regression analysis, and dimen-

sions in mathematics; optimization objectives can be called

dependent variables or target variables. When discussing

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

bs=1k bs=2k bs=4k io=noop io=cfq io=deadline

T
h

ro
u

g
h

p
u

t 
(K

o
p

s/
se

c)

Figure 1: Range of throughput after fixing the value of one param-

eter. Red bars represent setting the block size to 1K, 2K, or 4K,

respectively, while blue bars represent setting the I/O scheduler to

noop, cfq, or deadline.

different techniques (Section 3), we use the field-appropriate

terms.

Many approaches have been proposed to address the curse

of dimensionality, which refers to the fact that data be-

come sparse in high-dimensional spaces and thus make al-

gorithms designed for low-dimensional spaces less effective.

Dimensionality-reduction approaches can be generally sum-

marized into two categories: feature extraction and feature

selection [25, 39].

Feature extraction refers to projecting high-dimensional

data into low-dimensional spaces; the newly constructed fea-

tures are usually linear or nonlinear combinations of the orig-

inals. Common feature-extraction methods include Princi-

pal Component Analysis (PCA) [62], Independent Compo-

nent Analysis [29], and Linear Discriminant Analysis [47].

One major drawback of feature extraction is that the physical

meaning of each feature is lost by the projection and the non-

linear combination of many dimensions into fewer ones [39].

Common feature-extraction techniques thus conflict with our

goal in this paper, which is to select a few original storage

parameters that can be understood and interpreted.

Conversely, feature selection directly selects a subset of

features from the original ones, with the intention of find-

ing only those that are important. Feature-selection methods

can be classified as supervised or unsupervised [39]. Unsu-

pervised feature selection, such as Principle Feature Anal-

ysis [43], chooses a subset that contains most of the essen-

tial information based on relationships among features. It

does not consider the impact of features on optimization ob-

jectives during the selection phase. In contrast, supervised

feature selection chooses a subset that can discriminate be-

tween or approximate the target variables. Examples include

Lasso [68] and decision-tree based algorithms [31]. Since

we are interested in finding parameters that have significant

impact on our optimization objectives, such as I/O through-

put, supervised feature selection best fits our needs.

Several intrinsic properties of our project also limit our

choice of feature-selection methods. Many storage parame-

ters are discrete or categorical (see Sections 2 and 5.1). The



performance of storage systems is usually presented as I/O

throughput or latency, which are continuous. Therefore, an

ideal feature-selection method should work with categori-

cal features and continuous targets. Although there are dis-

cretization techniques that can break continuous target vari-

ables into discrete sections, feature-selection results depend

heavily on the quality of discretization [39]. One common

approach for dealing with categorical features is to trans-

form each of them into dummy binary parameters that take

values of 0 or 1. For instance, io scheduler with three pos-

sible values (noop, deadline, and cfq) can be converted into

three binary features: “io scheduler = noop”, “io scheduler

= deadline”, and “io scheduler = cfq”. All the binary fea-

tures can take on values 0 or 1. This approach is unsatisfac-

tory because it selects the individual binary features instead

of the original categorical ones. Moreover, converting a cat-

egorical parameter with N values into N separate binary pa-

rameters would expand the parameter space exponentially.

For this reason, we feel that Lasso [68] is not suitable for

our problem, even though it has been successfully applied

to selecting important knobs in databases [70]. Although

Group Lasso has been proposed to partially address this defi-

ciency [14,34,74], the computational cost of the Lasso-based

methods is still high [39].

Another popular category of feature-selection methods

has been built upon information theory [8, 20, 31, 39]. These

approaches usually define a metric for the homogeneity of the

target variable within certain subsets. Commonly used met-

rics include Gini impurity [39] and Entropy [5] for discrete

target variables, and Variance [7] for continuous variables.

In this paper we propose Carver, which applies a variance-

based metric for parameter importance, as described in Sec-

tion 4.1.

4 Design of Carver

In this section we detail the design of Carver. Carver con-

sists of three components: 1) a variance-based metric for

measuring storage parameters’ importance (Section 4.1), 2) a

sampling method to select a small number of configurations

from huge parameter spaces—in this paper using Latin Hy-

percube Sampling (Section 4.2), and 3) a greedy algorithm

for finding important parameters (Section 4.3). A good sam-

pling method allows Carver to select a near-optimal subset

of important parameters while having to evaluate relatively

few configurations. In this section we use throughput as an

example of the target (objective) variable, but Carver is also

applicable to many other metrics.

4.1 Measuring Parameter Importance

Carver uses a variance-based metric to quantify storage-

parameter importance. The variance of a set S of storage

configurations is defined as usual:

Var(S) =
1

|S|

|S|
∑

i=1

(yi − µ)2, (1)

where yi is the throughput of the i-th configuration; |S| is

number of configurations in S; and µ is the average through-

put within S. Inspired by CART (Classification and Regres-

sion Trees) [7], we use the reduction in variance to measure

parameter importance. We extend CART’s original defini-

tion to support categorical parameters taking an arbitrary but

finite number of values, as compared with only two in CART.

We define the parameter importance PI of a parame-

ter P that can take a finite number of categorical values,

{p1, ..., pn}, n > 1, as:

PI (P ) = Var(S)−

n
∑

i=1

|SP=pi
|

|S|
Var(SP=pi

) (2)

Here S is the original set of configurations, and SP=pi
is

the subset of configurations with the parameter P taking the

value pi. Intuitively, an important parameter P divides a set

S of configurations into multiple subsets, and the weighted

sum of variances within each subset should be much smaller

than the variance of S. Thus, a high PI indicates a parameter

that has a significant effect on performance.

The variance-based metric defined in Carver uses a greedy

approach, where the next important parameter will be picked

by calculating its importance when fixing the values of previ-

ously selected parameters. Therefore, for parameter Q with

a total of m possible categorical values {q1, ..., qm},m > 1,

we define the conditional parameter importance for Q, given

P = p as:

CPI (Q|P = p) =

Var(SP=p)−

m
∑

j=1

|SQ=qj ,P=p|

|SP=p|
Var(SQ=qj |P=p) (3)

where SQ=qj ,P=p denotes the set of configurations with pa-

rameters P and Q taking values p and qj , respectively. Sim-

ilar to Equation 2, given P = p, the next most important

parameter Q divides SP=p into multiple subsets, and if Q

is important then the weighted sum of variances within each

subset will be much smaller than variance of SP=p. To re-

move the restriction to a given value p, we define CPI (Q|P )
as the maximum of CPI (Q|P = pi) over all possible values

pi ∈ {p1, ..., pn} that parameter P can take:

CPI (Q|P ) =
n

max
i=1

CPI (Q|p = pi) (4)

Note that in this paper we use only variance-based metrics

to measure parameter importance and select the most criti-

cal subset. We leave storage-performance prediction, which

requires a large amount of training data [71], for future work.



4.2 Sampling

Given the large parameter space and the time needed to eval-

uate a single storage configuration, we must limit the num-

ber of experimental runs required to select important pa-

rameters. Therefore, Carver needs an exploratory method

that can cover the space uniformly and comprehensively, yet

sparsely. In this work, we chose Latin Hypercube Sampling

(LHS) [45].

LHS is a stratified sampling method [13]. In two dimen-

sions, a square grid containing samples is a Latin Square iff

there is only one sample in each row and each column. A

Latin Hypercube is the generalization of a Latin Square to

higher dimensions, where each sample is the only one in each

axis-aligned hyperplane containing it [36]. LHS has been

shown to be more effective in exploring parameter spaces

than random sampling [45] and Monte Carlo sampling [15].

It has been successfully applied in sampling configurations

of storage [27] and cloud systems [42].

Previous work has also applied Plackett-Burman (P&B)

Design [53] to evaluate the impact of parameters in storage

benchmarks [51] and databases [18]. However, P&B design

requires each parameter to have only two possible values,

and the target variable must be a monotonic function of the

input parameters. Neither requirement holds in our problem.

We demonstrated that LHS enables Carver to pick impor-

tant storage parameters with only a small number of evalua-

tions; see Section 5.4.

4.3 Parameter-Selection Algorithm

Based on our proposed measurements of parameter impor-

tance and on Latin Hypercube Sampling (LHS), the pseudo-

code for Carver’s parameter-selection algorithm is as fol-

lows:

Algorithm 1 Parameter Selection

Input: P : set of parameters, S: initial set of configurations;

stop(S, selected): user-defined stopping function.

selected ← {}
S∗ ← LHS(S)
repeat

p∗ ← argmaxCPI (p|selected), p ∈ P

selected .insert(p∗)
P.remove(p∗)

until stop(S, selected) is true or P is empty

Output: selected

In this algorithm, Carver takes a set of initial parameters

and configurations. It first uses LHS to pick a small number

of configurations and evaluates them. Carver then greedily

selects the current most important parameters based on the

evaluation results for the selected configurations. The most-

important parameter is selected based on the highest param-

eter importance value. Carver fixes the value of the most

important parameter and calculates the conditional param-

eter importance (CPI) values for the remaining parameters;

the parameter with the highest CPI is selected as the second-

most important. Carver continues evaluating important pa-

rameters by fixing the values of previously selected parame-

ters, until the stop function returns true. A naı̈ve stop func-

tion could be sizeof(selected) ≥ N , which would select

the N most important parameters. An alternative variance-

based stopping function might stop when the variances of

subsets of configurations (given the current selected parame-

ters) are below a certain threshold ϑ. This stopping condition

indicates that by setting the values of the selected parame-

ters, the system throughput already falls into a small enough

range that there is little potential gain from additional tun-

ing. In our experiments, we applied this idea and used the

Relative Standard Deviation (RSD) [13], or Coefficient of

Variation, to define our stopping condition. The RSD of a

set S of configurations is defined as:

RSD(S) =
1

µ

√

Var(S)

N − 1
(5)

where N is the number of configurations and µ is the mean

throughput of configurations within S. We chose RSD be-

cause it is normalized to the mean throughput and is repre-

sented as a percentage; that way the same threshold can be

used across different datasets. We used a threshold of 2% in

our experiments; as seen in Section 5, parameters selected

by this criterion gave us near-optimal and stable throughput.

5 Evaluation

In this section we detail our evaluation of Carver. We

first cover the experimental settings we used for collecting

datasets in Section 5.1. Section 5.2 provides an overview

of storage-parameter importance using our variance-based

metric. Section 5.3 demonstrates that the subset of impor-

tant parameters selected by Carver’s importance metric is

near-optimal. We show the efficiency of Carver’s parameter-

selection algorithm in Section 5.4, from multiple perspec-

tives.

5.1 Experiment Settings

To thoroughly study the problem of storage parameter se-

lection and evaluate Carver, we used datasets originally col-

lected for our previous work [11]. The whole dataset con-

sists of more than half a million benchmark results on typical

storage systems. We describe the experimental settings and

collected datasets in this section.

Hardware. We performed experiments using several Dell

PE R710 servers, each with two Intel Xeon quad-core

2.4GHz CPUs, 24GB RAM, and four storage devices: two

SAS HDDs, one SATA HDD, and one SSD. Ubuntu 14.04

was installed on all machines with Linux kernel 3.13. We

denote this configuration as S1. We also collected several

datasets on a slightly different configuration, S2, where we

used the GRUB boot loader to limit the available memory to



4GB. We explain the reasons for this change below. We also

upgraded the system to Ubuntu 16.04 with kernel 4.15. Ex-

periments on S2 were only conducted on the SSD, given the

increasing use of SSDs in production systems.

Workload. We benchmarked storage configurations with

four common macro-workloads generated by Filebench [3,

67]:

1. Mailserver mimics the I/O workload of a multi-

threaded email server;

2. Fileserver emulates a server hosting users’ home direc-

tories;

3. Webserver emulates a typical static Web server with a

high percentage of reads; and

4. Dbserver mimics the behavior of an Online Transaction

Processing (OLTP) database.

Before each experimental run, we formatted and mounted

the storage devices with the selected configuration. In set-

ting S1 we chose Filebench’s default workload profiles, lim-

iting the working-set size so we could evaluate more config-

urations within a practical time period. We call those pro-

files Mailserver-default, Fileserver-default, etc. Our previ-

ous study’s goal, which applies to this work as well, was

to allow us to explore a large set of parameters and values

quickly. By evaluating each configuration once, saving the

results, and later looking them up in our database, we could

test Carver in seconds instead of waiting for several hours to

run the benchmarks selected by Algorithm 1. Clearly, a real-

world deployment would not have such a database available

and a search for the most important parameters would require

running actual benchmark tests, each of which would take

significant time. However, as shown in Section 5.4, Carver

tests few enough configurations that even these experiments

can be completed in a short time, ranging from a few hours

to a few days. An additional benefit of the full database

is that we were able to compare configurations found by

Carver with the true best configuration found by our com-

plete datasets.

Because we wanted our database to record results of as

many experiments as possible, we decided to trade off a

smaller working set size in favor of increasing the number

of configurations we could explore in a practical time pe-

riod. Our experiments demonstrated a wide range of perfor-

mance numbers and are suitable for the purpose of studying

storage-parameter importance. As shown in Table 2, storage

parameters do have a wide range of importance under these

workloads. We first ran each workload for up to 2 hours

to observe its behavior, and then chose a running time long

enough for the cumulative throughput to stabilize; we found

100 seconds sufficient for this purpose. In setting S2, we in-

creased the working-set size to 10GB and the running time

to 300 seconds, but used relatively fewer total configura-

tions, which we denote Mailserver-10GB, Fileserver-10GB,

etc. The RAM size was set to 4GB in S2 so that the bench-

mark working set could not fit into memory completely, thus

forcing more I/Os.

Parameter space. To evaluate our parameter-selection al-

gorithm, we ideally want our parameter spaces to be large

and complex. Considering that evaluating storage systems

takes a long time, we decided to experiment with a reason-

ably sized set of frequently studied and tuned storage pa-

rameters. We selected them in close collaboration with sev-

eral storage experts who have either contributed to storage-

stack designs or have spent years tuning storage systems in

the field. We chose seven Linux file systems that span a

wide range of designs and features: Ext2 [12], Ext3 [69],

Ext4 [21], XFS [65], Btrfs [56], Nilfs2 [35], and Reiserfs [55].

We experimented with various types of parameters, includ-

ing file-system formatting and mounting options and some

Linux kernel parameters. Table 1 lists all our file systems,

their (abbreviated) parameters, and the number of possible

values that each parameter can take. Note that under S1 we

conducted benchmarks on four storage devices, and we treat

the device as one of the parameters. Under S2 we focused

on Ext4 and XFS experiments with an SSD, but evaluated a

wider variety of parameters. Cells with “–” mean that the pa-

rameters are inapplicable for the given file system. Cells with

“dflt” mean we used the default value for that parameter, and

so that parameter was not considered during the parameter-

selection phase. Note that the total number of configurations

for each file system does not necessarily equal the product

of the number of parameter values, because some parameter

combinations are invalid (e.g., in Ext4 the inode size cannot

exceed the block size). The total number of configurations

across all datasets is 29,544. We ran all configurations in

each parameter space under four workloads. We repeated

each experiment at least three times to get a stable and rep-

resentative measurement of performance. Over a time span

of more than two years, we collected data from more than

500,000 experimental runs.

Although we have been collecting benchmarking data over

a time span of 4 years, we focused on one dataset at a time,

where we benchmarked one file system on the same hard-

ware under the same workload. Each dataset’s collection

took 1–2 months. Therefore, there may be minor hardware

wear-out effects. We repeated each experiment for at least 3

runs, and made sure the variation among the results of these

repeated runs were acceptable [10]. We used the average

throughput and latency numbers among repeated runs when

evaluating Carver.

5.2 Parameter Importance: an Overview

We have collected experimental data from 9 different param-

eter spaces (Table 1) under 4 representative workload types.

Having the complete datasets allowed us to accurately cal-



Set-

ting

File

System

Blk

Size

Inode

Size

Block

Grp

Jour-

nal

Flex

Grp

Read-

ahead

XFS

Sctr

Size

Allc

Grp

Cnt

Log

Buf

Cnt

Log

Buf

Size

Allc

Size

Node

Size

Spec

Opt

Atime

Opt

I/O

Schd

Drty

Bg

Ratio

Drty

Ratio
Dev Total

S1 Ext2 3 7 6 – – – – – – – – – – 2 3 dflt dflt 4 2,208

S1 Ext3 3 7 6 3 – – – – – – – – – 2 3 dflt dflt 4 6,624

S1 Ext4 3 7 6 3 dflt dflt – – – – – – – 2 3 dflt dflt 4 6,624

S1 XFS 3 5 – – – – dflt 9 dflt dflt dflt – – 2 3 dflt dflt 4 2,592

S1 Btrfs – 5 – – – – – – – – – 3 4 2 3 dflt dflt 4 288

S1 Nilfs2 3 – 9 2 – – – – – – – – – 2 3 dflt dflt 4 1,944

S1 Reiserfs dflt – – 3 – – – – – – – – 2 2 3 dflt dflt 4 192

S2 Ext4 3 3 dflt 3 3 3 – – – – – – – dflt 3 2 3 SSD 3,888

S2 XFS 3 2 – – – – 3 4 2 2 2 – – dflt 3 2 3 SSD 5,184

Table 1: Details of parameter spaces. Each cell gives the number of settings we tested for the given parameter and file system; empty cells

represent parameters that are inapplicable to the given file system and “dflt” represents those that were left at their default setting. We

evaluated 29,544 configurations in total under four workloads, and each experiment was repeated 3+ times.

culate and evaluate the importance of different storage pa-

rameters, which serves as the ground truth when evaluating

Carver’s parameter-selection algorithm, whose goal is to ex-

plore only a small fraction of the parameter space yet find the

same subset of important parameters as if we had explored

it all. In this section, we first provide an overview of the

importance of storage parameters.

0

3*10
7

P
I

PI

0

4*10
6

C
P

I

PI

CPI (X | journal)

0

5*10
5

Block
Size

Inode
Size

Block
Group

Atime
Option

Journal
Option

Special
Option

I/O
Schd.

Dev.

C
P

I

PI

CPI (X | journal)

CPI (X | journal, device)

Figure 2: Top 3 most important Ext4 parameters under S1,

Fileserver-default. The most important parameter is measured by

its PI; the second and third parameters are evaluated by their CPI

given higher-ranked parameters. The Y-axis scales in the three sub-

figures are different.

Figure 2 shows the three most important parameters for

Ext4 under S1, Fileserver-default. The parameter with the

highest importance was evaluated and selected by its Pa-

rameter Importance (PI), as defined in Section 4.1. The

second most important parameter was chosen by its Con-

ditional Parameter Importance (CPI) given the most impor-

tant one, in this case CPI (X|journal). Similarly, the 3rd

most important parameter was evaluated by comparing its

CPI (X|journal , device). Note that the Y-axis scales in the

three sub-figures are different (but higher is always better).

The X axis shows the Ext4 parameters that we experimented

with. As shown in the top subfigure in Figure 2, Journal Op-

tion turns out to be the most important parameter for Ext4

under S1, Fileserver-default. It has the highest variance re-

duction, 2.7×107. In comparison, the PI of Device is around

106, while all other parameters are under 5× 104. Similarly,

the second and third most important parameters are Device

and Block Size, respectively, both with a much higher CPI

value than other parameters.

We discovered that parameter importance depends heavily

on file system types and on the running workload. Table 2

lists the top 4 important parameters for Ext4, XFS, and Btrfs

under various workload types; the column header #N identi-

fies the Nth most important parameter. We also applied the

stopping criterion described in Section 4.3. Cells marked as

“–” here indicate that no parameter gave a large reduction in

variance, and thus no parameter was considered important.

To avoid cluttering the paper, we only list 3 file systems un-

der 4 workloads here, and we show only the top 4 ranked

parameters under each case.

As we can see in Table 2, the important parameters are

quite diverse and depend significantly on the file system

types and workloads. For Ext4 under S2 and Dbserver-

10GB, the top 4 ranked parameters are Block Size, Inode

Size, I/O Scheduler, and Journal Option. When the work-

load changes to Webserver-10GB, the top 4 parameters be-

come Inode Size, Flex BG, Block Size, and Journal Option.

For Fileserver-10GB under Ext4, we found only three im-

portant parameters, indicating that fixing the values of these

three parameters already resulted in quite stable throughputs;

we discuss this observation in more detail in Section 5.3. We

found similar results on XFS: the values and number of im-

portant parameters depended heavily on the workloads. In-

terestingly, for Btrfs under S1, Webserver-default, we did

not find any important parameters. That is because the

Webserver-default workload consists primarily of read op-

erations, and the default working-set size used by Filebench

is small. All Btrfs configurations actually produce quite sim-

ilar throughput under Webserver-default. For this reason, we

also collected datasets from workloads with a much larger

working-set size (10GB), denoted as S2.



Setting Workload File System Parameter #1 Parameter #2 Parameter #3 Parameter #4

S2 Fileserver-10GB Ext4 Journal Option I/O Scheduler Inode Size –

S2 Dbserver-10GB Ext4 Block Size Inode Size I/O Scheduler Journal Option

S2 Mailserver-10GB Ext4 I/O Scheduler Inode Size Journal Option Block Size

S2 Webserver-10GB Ext4 Inode Size Flex Block Group Block Size Journal Option

S2 Fileserver–10GB XFS I/O Scheduler Inode Size Allocation Group Count –

S2 Dbserver-10GB XFS Block Size Log Buffer Size Dirty Ratio Alloc Group Count

S2 Mailserver-10GB XFS Inode Size I/O Scheduler Log Buffer Size Allocation Size

S1 Fileserver-default Btrfs Special Option Inode Size Device –

S1 Mailserver-default Btrfs Inode Size Device – –

S1 Webserver-default Btrfs – – – –

Table 2: Top-ranked important parameters for various file systems. The column header #N identifies the Nth most important parameter.

5.3 Evaluating The Greedy Algorithm

In Section 5.2 we used Carver’s variance-based metric to

pick a set of important parameters for our datasets. However,

we must also establish that the selection results are good, i.e.,

whether there exists another set of parameters, with equal

or smaller size, that can lead to an even narrower range of

throughput. We demonstrate the effectiveness of Carver’s

variance-based metric in this section.

0%

20%

40%

60%

80%

100%

 0  5  10  15  20

R
el

at
iv

e 
S

ta
n
d
ar

d
 D

ev
ia

ti
o
n

Average Throughput (kop/s)

N = 2

N = 1

Figure 3: Impact of parameters on performance and stability (Ext4,

S1, Fileserver-default). Each dot represents a set of configurations

created by fixing N parameters, where different dot sizes and colors

are used for different values of N. Performance is measured by the

average throughput (X axis) of all possible configurations within

each set; stability is measured by the relative standard deviation (Y

axis; lower is better) of the throughput within each set.

Figure 3 shows the results for Ext4 under S1, Fileserver-

default, where each point represents a set of configurations

that fixes the values of N parameters. For N = 1, we have

28 points, which equals the sum of possible value counts for

each parameter, as shown in Table 1. There are 374 points

for N = 2. We use different point colors and sizes for differ-

ent numbers of parameters. We only plot up to N = 2 here;

we extend to N = 4 in Figure 4. Larger points are used for

smaller N values, since fixing fewer parameter values would

result in a larger number of usable configurations. For exam-

ple, fixing journal option = ordered in our datasets leads to a

0%

2%

4%

6%

8%

10%

14 15 16 Max

R
el

at
iv

e 
S

ta
n

d
ar

d
 D

ev
ia

ti
o

n

Average Throughput (kop/s)

N = 1

(ordered)

(writeback)

N = 2

(ordered, ssd)

N = 3

(ordered, ssd, 32)

N = 4

(ordered, ssd,
32, 512)

(ordered, sas,
32, 512)

Carver

Figure 4: A zoom into the bottom-right part of Figure 3 (the “best”

quadrant), with points for N = 3, 4 added. Plotted points show

either the highest average throughput or the lowest relative stan-

dard deviation among all configurations gotten by fixing the values

of N parameters. The labels around the dots show the correspond-

ing fixed parameter values. The parameter values are ordered by

(Journal Option, Device, Block Group, and Inode Size). The tri-

angle marks the point achieved by fixing the values of parameters

selected by Carver.

set of 2,208 configurations; fixing journal option = ordered,

device=ssd reduces that number to 552.

In Figure 3, performance is measured by the average

throughput within each set of configurations, as presented on

the X axis. The Y axis shows the stability of each set, mea-

sured by the Relative Standard Deviation (RSD) of through-

put within the set. We chose to use the RSD rather than

variance because the figure shows sets of varying numbers

of configurations; RSD is normalized by the configuration

count and the average throughput, and thus is easier to com-

pare. If a set of parameters is important, it should ideally

lead to a larger average throughput and lower RSD; therefore

the best points should cluster in the bottom-right quadrant of

Figure 3. As we can see from that figure, fixing just one

parameter value (purple dots) causes the mean throughput

to range from 2.5Kops/s to around 15Kops/s, and the RSD

ranges from around 7% to 76%. The upper-left purple point

(2,500, 76%) represents the configurations achieved by set-

ting Journal Option to journal. The other two points, repre-

senting Journal Options of ordered and writeback, turn out

to be the best among all purple points. Both are seen near

the bottom right with mean throughput of around 15K and



 0

 20

 40

 60

 80

 100

0.1 0.2 0.4 0.8 1.6 3.2 6.4

10 20 40 80 160 320 640

P
er

ce
n

ta
g

e 
o

f 
R

u
n

s 
(%

)

Percentage of Dataset (%)

Running Time (min)

#1
#2
#3

(a) Ext4, Fileserver-default

 0

 20

 40

 60

 80

 100

 4  8  16  32

20 40 80

P
er

ce
n
ta

g
e 

o
f 

R
u
n
s 

(%
)

Percentage of Dataset (%)

Running Time (min)

#1
#2
#3

(b) Btrfs, Fileserver-default

Figure 5: Carver’s ability to correctly find the top 3 important parameters within small portions of the dataset. The X1 (bottom) axis (log2
scale) shows the percentage of the dataset that was used; for each percentage we ran Carver 1,000 times on different, random LHS-compatible

subsets of that size. The X2 (top) axis (log2) shows the running time that would be needed to benchmark the selected configurations. We

used the PI calculated from the whole dataset as ground truth. The Y axis shows the percentage of runs that were able to correctly find the

important parameters. The solid, dashed, and dotted lines show the results for finding the parameters ranked 1st, 2nd, and 3rd, respectively.

Note that although Btrfs required a larger percentage of the dataset, the absolute numbers are similar in both figures, and the running times

for Btrfs are shorter (see text).

an RSD value of 7%. Clearly, the Journal Option parame-

ter has the highest impact on performance; setting it to an

improper value could lead to low throughput and high RSD,

while setting it correctly provides significant benefits. The

points with N = 2 form several clusters. All points with

mean throughput less than 9K result from setting Journal

Option to journal (and with another parameter set to various

valid values). Conversely, all points with mean throughput

larger than 14K result from a Journal Option of ordered or

writeback. Journal Option is actually the most important pa-

rameter selected by Carver (as seen in Table 2).

To probe this question further, we zoomed into the bottom-

right part of Figure 3 and added points for N = 3 and

N = 4, as shown in Figure 4. The X and Y axes are similar

but with narrower ranges (and the X axis starts at 14K). The

label “Max” on the X axis, with a small tick mark, shows

the global maximum throughput of all Ext4 configurations

within the parameter space. For each N , we plotted only

the point(s) with the highest average throughput or lowest

RSD. The labels around each point show the associated pa-

rameter values, ordered by (Journal Option, Device, Block

Group, and Inode Size). The black triangle marks the point

with highest mean throughput, gotten by fixing the values of

the three most important parameters selected by Carver. For

N = 1, the best two points resulted from setting Journal Op-

tion to either ordered or writeback. These two points overlap

with each other in this figure, as they share nearly identical

mean throughput and RSD values. Only one point is plot-

ted for N = 2, since the point (journal option=ordered, de-

vice=ssd) shows both the highest throughput and the lowest

RSD among all N = 2 points; the same is true for N = 3.

For N = 4, the left red point shows the lowest RSD value

while the right red point shows the highest average through-

put. In Figure 4, the top three parameters selected by Carver

are Journal Option, Device, and Block Size. By setting the

values of these three parameters, the best average throughput

(denoted as a triangle in Figure 4) is quite close to the global

best average throughput achieved by fixing 3 parameter val-

ues (blue point). By comparing the two sets of parameters,

we can see that Carver successfully identified the top 2 im-

portant parameters; the final average throughput and relative

standard deviation achieved by the selected top 3 parameters

are quite close to the global optimum. We believe the differ-

ence in the 3rd selection is due to two reasons:

1. In Carver, the definition of parameter importance fo-

cuses on measuring the impact of the parameter on

performance, which can be either positive or negative.

When discussing “optimality” in Figure 4, we only con-

sidered positive impacts.

2. Carver stops after selecting 3 parameters, as the RSD

has already dropped below our 2% threshold at that

point. If we removed the stopping criterion, the 4th pa-

rameter that Carver would select would be Block Group,

which aligns with the globally optimal set of top 4 pa-

rameters, denoted as red dots in Figure 4.

5.4 Carver: Evaluation

All evaluations and analysis in Section 5.2 and 5.3 were con-

ducted on the complete dataset of all possible parameter con-

figurations. However, collecting such datasets for storage

parameters is usually impractical, given the challenges dis-

cussed in Section 2. One design goal of Carver is to select

important parameters while evaluating only a small fraction

of configurations. Carver does so by utilizing Latin Hyper-

cube Sampling (LHS), which has been effective in exploring

system parameter spaces [27, 42]. We demonstrate the ef-

fectiveness of Carver’s parameter-selection algorithm from

the following two perspectives: selecting important parame-

ters for I/O throughput (see Section 5.4.1) and latency (see



Section 5.4.2).

5.4.1 Selecting Important Parameters for

Throughput

A critical question is whether Carver can reliably find the im-

portant parameters of a system, and how many experimental

runs are necessary to do so. To answer this question, we used

our entire dataset of experimental runs on Ext4, Fileserver-

default and Btrfs, Fileserver-default to represent the “ground

truth” of which parameters matter. For Ext4, Fileserver-

default, the top 3 important parameters are Journal Option,

Device, and Block Size. For Btrfs, Fileserver-default, they

are Special Option, Node Size, and Device.

We then tested Carver by repeatedly choosing a random

subset of the full dataset, simulating a real-world environ-

ment in which an experimenter would use LHS to choose

configurations to test, and then using the results of those tests

to identify important parameters. In all cases we constrained

the random subset to be compatible with Latin Hypercube

Sampling (LHS), as our hypothetical investigator would do,

and tested whether Carver correctly located the first, second,

and third most important parameters. We varied the size of

the subsets as a percentage of the entire dataset and ran 1,000

iterations of each trial (with different random subsets).

Figure 5 presents the results of running these experiments.

The X1 (bottom) axis shows the percentage of the whole

dataset that was used by Carver, and is in log
2

scale. The

X2 (top) axis shows the actual running time for benchmark-

ing the selected configurations, and is also in log
2

scale. The

Y axis shows the fraction of runs that successfully found the

same important parameters as the ground truth. The solid,

dashed, and dotted lines show the results of finding the 1st,

2nd, and 3rd most important parameters, respectively.

Figure 5(a) shows that even with only 0.1% of the dataset

(7 configurations), Carver has a 60% probability of correctly

identifying the most important parameter. When using 0.4%

(26), Carver was able to find the 1st and 2nd ranked parameter

in 100% and 99.8% of the 1,000 runs, respectively. Setting

the values of the most important two parameters would al-

ready produce high average throughput (97% of the global

optimum) with high stability (2% of RSD), as shown in Fig-

ure 4. The chance of correctly selecting the third most impor-

tant parameter increases with the percentage of the dataset

used by Carver. With 1% (67) of the dataset, the probability

of correctly finding the 3rd parameter is around 50%, while

sampling 5% (331) successfully identifies the 3rd parameter

in all 1,000 runs.

For Btrfs, shown in Figure 5(b), Carver needed a larger

fraction of the dataset to make correct selections. This is

because Btrfs has only 288 configurations, compared with

6,624 for Ext4. Yet by evaluating only 16% (45) of all con-

figurations, Carver found the 1st and 2nd parameters with

greater than 80% probability. Carver identified the 3rd pa-

rameter in more than 80% of runs with 31% (90) sampled.

 0

 20

 40

 60

 80

 100

0.1 0.2 0.4 0.8 1.5 2.5 5

10 20 40 80 160 280 5600

P
er

ce
n

ta
g

e 
o

f 
R

u
n

s 
(%

)

Percentage of Dataset (%)

Running Time (min)

#1
#2
#3

Figure 6: Carver’s ability to correctly find the top 3 important pa-

rameters for the latency metric within small portions of the dataset.

Experimental settings, graph axes, and legends are the same as in

Figure 5.

5.4.2 Selecting Important Parameters for La-

tency

To further evaluate Carver’s effectiveness in selecting impor-

tant parameters, we collected datasets with latency metrics.

The experimental settings were the same as described in Sec-

tion 5.1. We ran the Fileserver workload on the Ext4 config-

uration with S2 settings (see Table 1). Instead of using the

average I/O throughput reported by Filebench, we now used

the average latency. Due to a limitation in Filebench’s cur-

rent implementation, it is difficult to collect and calculate

accurate tail latency numbers, such as the 99th percentile, so

we leave parameter selection for tail latency as future work.

Figure 6 shows the evaluation results of selecting impor-

tant parameters using the latency metric. The X axis, Y axis,

and legends remain the same as in Figure 5. As shown by

the red line, with barely 0.2% of all configurations evaluated,

Carver was still able to identify the most important param-

eters in more than 800 out of 1,000 runs. With 1.5% (58

configurations) evaluated, Carver was able to correctly pick

the top 2 parameters in almost all the 1,000 runs. Selecting

the third most important parameter required a few more eval-

uation; using 2.5% of the dataset (97 configurations), Carver

successfully identified it in 998 runs.

In sum, Carver is effective in selecting parameters using

only a few evaluations. In our experiments, Carver found the

top 2 important parameters with higher than 80% probability

by evaluating fewer than 50 configurations. Fixing the values

of the most important two parameters can already result in

high and stable system throughput, as shown in Section 5.3.

Carver can find the 3rd parameter with about 50% probability

using only about 50 evaluations. Furthermore, the total run-

ning time for these evaluations is tractable: the worst case,

in Figure 6, is under 4 days. Moreover, auto-tuning a stor-

age system with an optimization algorithms often requires

an initialization phase to explore the whole space [11, 42].

Carver can use the data collected during the initialization

phase to select parameters; in this case, no extra evaluation

needs to be conducted. Integrating Carver with auto-tuning



algorithms is part of our future work.

6 Related Work

Parameter selection for computer systems. There have

been several attempts to select important parameters for var-

ious types of software systems. Aken et al. [70] applied

Lasso to choose important knobs for databases. They con-

verted categorical parameters into binary dummy features

and included polynomial features to deal with parameter

interactions. As discussed in Section 3, Lasso does not

scale well when the system has many categorical parame-

ters. Plackett-Burman (P&B) design of experiments [53] has

been applied to evaluating the impact of parameters in stor-

age benchmarks [51] and databases [18]. However, P&B

assumes that each parameter has only two possible values

and that the target variable is a monotonic function of the

input parameters; neither assumption holds for storage pa-

rameter spaces. Adaptive Sampling [19] and Probabilistic

Reasoning [64] have been applied to evaluating the impact

of database knobs. They either only work for continuous

parameters, or have scalability issues in high-dimensional

spaces. In comparison, Carver applies variance-based met-

rics for storage-parameter importance. To the best of our

knowledge, we have conducted the first thorough quanti-

tative study of storage-parameter importance by evaluating

Carver on datasets collected from a variety of file systems

and workloads. Carver also provides insights into the inter-

actions between parameters.

Auto-tuning storage systems. Several researchers have

built systems to automate storage-system tuning. Strunk

et al. [63] applied Genetic Algorithms (GAs) to auto-

mate storage-system provisioning. Babak et al. [4] used

GAs to optimize the I/O performance of HDF5 applica-

tions. GAs have also been applied to storage-recovery prob-

lems [32]. Deep Q-Networks have been successfully ap-

plied in optimizing performance for Lustre [40]. More re-

cently, Madireddy et al. applied a Gaussian process-based

machine learning algorithm to model Lustre’s I/O perfor-

mance and its variability [44]. Our own previous work [11]

provided a comparative study of applying multiple opti-

mization algorithms to auto-tune storage systems. However,

many auto-tuning algorithms have scalability issues in high-

dimensional spaces [61], which is one of the motivations for

Carver. Selecting the important subset of parameters could

reduce the search space dramatically, which would then ben-

efit either auto-tuning algorithms or manual tuning by ex-

perts.

General feature selection. Many feature-selection tech-

niques have been proposed in various disciplines. Li et

al. [39] provide a thorough summary and comparison for

most state-of-the-art feature-selection algorithms. Based on

our arguments in Section 3, we chose to use variance-based

metrics for storage-parameter selection.

7 Conclusions

Modern storage systems come with many parameters that af-

fect their behavior. Tuning parameter settings can bring sig-

nificant performance gains, but both manual tuning by ex-

perts and automated tuning have difficulty dealing with large

numbers of parameters and configurations. In this paper, we

propose Carver, which addresses this problem with the fol-

lowing three contributions:

1. Carver uses a variance-based metric for quantifying

storage parameter importance, and proposes a greedy

yet efficient parameter-selection algorithm.

2. To the best of our knowledge, we provide the first thor-

ough study of storage-parameter importance. We evalu-

ated Carver across multiple datasets (chosen from more

than 500,000 experimental runs) and showed that there

is always a small subset of parameters that have the

most impact on performance—but that the set of impor-

tant parameters changes with different workloads, and

that there are interactions between parameters.

3. We demonstrated Carver’s efficiency by testing it on

small fractions of the configuration space. This effi-

ciency gives Carver the potential to be easily applied to

new systems and environments and to identify impor-

tant parameters in a short time, with a small number of

configuration evaluations.

In the future, we plan to extend Carver to support other

parameter-selection techniques, such as Group Lasso [14,34,

74] and ANOVA [9,13,38,72]. We will evaluate and improve

Carver with more optimization objectives (e.g., reliability),

and even larger storage-parameter spaces. Currently Carver

can only measure storage importance for one objective at

a time (e.g., throughput, latency). We plan to investigate

how to extend Carver’s parameter selection algorithm into

the problem of multi-objective optimization [17]. We also

plan to integrate Carver with auto-tuning algorithms [11].

Acknowledgments

We thank the anonymous FAST reviewers and our shep-

herd, Bill Bolosky, for their valuable comments. This work

was made possible in part thanks to Dell-EMC, NetApp,

and IBM support; and NSF awards CCF-1918225, CNS-

1900706, CNS-1729939, and CNS-1730726.

References

[1] Abutalib Aghayev, Mansour Shafaei, and Peter

Desnoyers. Skylight—a window on shingled disk oper-

ation. Trans. Storage, 11(4):16:1–16:28, October 2015.

[2] Abutalib Aghayev, Theodore Ts’o, Garth Gibson, and

Peter Desnoyers. Evolving ext4 for shingled disks.

In Proceedings of the 15th USENIX Conference on

File and Storage Technologies (FAST), pages 105–120,



Santa Clara, CA, February-March 2017. USENIX As-

sociation.

[3] George Amvrosiadis and Vasily Tarasov. Filebench

github repository, 2016. https://github.com/filebench/

filebench/wiki .

[4] Babak Behzad, Huong Vu Thanh Luu, Joseph

Huchette, Surendra Byna, Prabhat, Ruth Aydt, Quincey

Koziol, and Marc Snir. Taming parallel I/O complex-

ity with auto-tuning. In Proceedings of the Interna-

tional Conference on High Performance Computing,

Networking, Storage and Analysis, SC ’13, pages 68:1–

68:12, New York, NY, USA, 2013. ACM.

[5] Christopher M. Bishop. Pattern Recognition and Ma-

chine Learning, volume 1. Springer New York, 2006.

[6] Dhruba Borthakur et al. HDFS architecture guide.

Hadoop Apache Project, 53, 2008.

[7] Leo Breiman, Jerome Friedman, Charles J. Stone, and

Richard A. Olshen. Classification and regression trees.

CRC press, 1984.

[8] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and

Mikel Luján. Conditional likelihood maximisation:

A unifying framework for information theoretic fea-

ture selection. Journal of Machine Learning Research,

13(Jan):27–66, 2012.

[9] Morton B. Brown and Alan B. Forsythe. Robust tests

for the equality of variances. Journal of the American

Statistical Association, 69(346):364–367, 1974.

[10] Zhen Cao, Vasily Tarasov, Hari Raman, Dean Hilde-

brand, and Erez Zadok. On the performance variation

in modern storage stacks. In Proceedings of the 15th

USENIX Conference on File and Storage Technologies

(FAST), pages 329–343, Santa Clara, CA, February-

March 2017. USENIX Association.

[11] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez

Zadok. Towards better understanding of black-box

auto-tuning: A comparative analysis for storage sys-

tems. In Proceedings of the Annual USENIX Tech-

nical Conference, Boston, MA, July 2018. USENIX

Association. Data set at http://download.filesystems.org/

auto-tune/ATC-2018-auto-tune-data.sql.gz.

[12] R. Card, T. Ts’o, and S. Tweedie. Design and imple-

mentation of the second extended filesystem. In Pro-

ceedings to the First Dutch International Symposium

on Linux, Amsterdam, Netherlands, December 1994.

[13] George Casella and Roger L. Berger. Statistical Infer-

ence, volume 2. Duxbury Pacific Grove, CA, 2002.

[14] Christophe Chesneau and Mohamed Hebiri. Some the-

oretical results on the grouped variables Lasso. Mathe-

matical Methods of Statistics, 17(4):317–326, 2008.

[15] Liu Chu, Eduardo Souza De Cursi, Abdelkhalak

El Hami, and Mohamed Eid. Reliability based opti-

mization with metaheuristic algorithms and Latin hy-

percube sampling based surrogate models. Applied and

Computational Mathematics, 4(6):462–468, 2015.

[16] Yvonne Coady, Russ Cox, John DeTreville, Peter Dr-

uschel, Joseph Hellerstein, Andrew Hume, Kimberly

Keeton, Thu Nguyen, Christopher Small, Lex Stein,

and Andrew Warfield. Falling off the cliff: When sys-

tems go nonlinear. In Proceedings of the 10th Confer-

ence on Hot Topics in Operating Systems (HOTOS ’05),

2005.

[17] Kalyanmoy Deb. Multi-objective optimization using

evolutionary algorithms, volume 16. John Wiley &

Sons, 2001.

[18] Biplob K. Debnath, David J. Lilja, and Mohamed F.

Mokbel. SARD: A statistical approach for ranking

database tuning parameters. In IEEE 24th International

Conference on Data Engineering Workshop (IDEW),

pages 11–18, 2008.

[19] Songyun Duan, Vamsidhar Thummala, and Shivnath

Babu. Tuning database configuration parameters with

iTuned. Proc. VLDB Endow., 2(1):1246–1257, August

2009.

[20] Pablo A. Estévez, Michel Tesmer, Claudio A. Perez,

and Jacek M. Zurada. Normalized mutual information

feature selection. IEEE Transactions on Neural Net-

works, 20(2):189–201, 2009.

[21] Ext4. http:// ext4.wiki.kernel.org/ .

[22] Ext4 documentation. https://www.kernel.org/doc/

Documentation/filesystems/ext4.txt .

[23] S. Ghemawat, H. Gobioff, and S. T. Leung. The

Google file system. In Proceedings of the 19th ACM

Symposium on Operating Systems Principles (SOSP

’03), pages 29–43, Bolton Landing, NY, October 2003.

ACM SIGOPS.

[24] Gradient descent. https:// en.wikipedia.org/wiki/Gradient

descent .

[25] Isabelle Guyon and André Elisseeff. An introduction

to variable and feature selection. Journal of Machine

Learning Research, 3(Mar):1157–1182, 2003.

[26] Mingzhe Hao, Gokul Soundararajan, Deepak

Kenchammana-Hosekote, Andrew A. Chien, and

Haryadi S. Gunawi. The tail at store: A revelation

from millions of hours of disk and SSD deployments.

In 14th USENIX Conference on File and Storage

Technologies (FAST 16), pages 263–276, 2016.

[27] Jun He, Duy Nguyen, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. Reducing file system tail

latencies with Chopper. In Proceedings of the 13th



USENIX Conference on File and Storage Technologies,

FAST’15, pages 119–133, Berkeley, CA, USA, 2015.

USENIX Association.

[28] J. H. Holland. Adaptation in natural and artificial sys-

tems: An introductory analysis with applications to bi-

ology, control, and artificial intelligence. U. Michigan

Press, 1975.

[29] Aapo Hyvärinen and Erkki Oja. Independent compo-

nent analysis: Algorithms and applications. Neural

Networks, 13(4-5):411–430, 2000.

[30] M. Kaminsky, G. Savvides, D. Mazieres, and M. F.

Kaashoek. Decentralized user authentication in a

global file system. In Proceedings of the 19th

ACM Symposium on Operating Systems Principles

(SOSP ’03), Bolton Landing, NY, October 2003. ACM

SIGOPS.

[31] Jalil Kazemitabar, Arash Amini, Adam Bloniarz, and

Ameet S Talwalkar. Variable importance using decision

trees. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-

lach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-

itors, Advances in Neural Information Processing Sys-

tems 30, pages 426–435. Curran Associates, Inc., 2017.

[32] Kimberly Keeton, Dirk Beyer, Ernesto Brau, Arif Mer-

chant, Cipriano Santos, and Alex Zhang. On the road to

recovery: Restoring data after disasters. In Proceedings

of the 1st ACM SIGOPS/EuroSys European Conference

on Computer Systems, pages 235–248, New York, NY,

USA, 2006. ACM.

[33] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu. Evalu-

ating phase change memory for enterprise storage sys-

tems: A study of caching and tiering approaches. In

Proceedings of the 12th USENIX Conference on File

and Storage Technologies, pages 33–45, Berkeley, CA,

2014. USENIX.

[34] Seyoung Kim and Eric P. Xing. Tree-guided group

Lasso for multi-task regression with structured sparsity.

In ICML, pages 543–550, 2010.

[35] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi

Hifumi, Seiji Kihara, and Satoshi Moriai. The Linux

implementation of a log-structured file system. ACM

SIGOPS Operating Systems Review, 40(3):102–107,

2006.

[36] Latin hypercube sampling. https:// en.wikipedia.org/wiki/

Latin hypercube sampling.

[37] Changman Lee, Dongho Sim, Jooyoung Hwang, and

Sangyeun Cho. F2FS: A new file system for flash stor-

age. In Proceedings of the 13th USENIX Conference on

File and Storage Technologies (FAST), pages 273–286,

Santa Clara, CA, February 2015. USENIX Association.

[38] Howard Levene. Robust tests for equality of variances.

Contributions to Probability and Statistics. Essays in

Honor of Harold Hotelling, pages 279–292, 1961.

[39] Jundong Li, Kewei Cheng, Suhang Wang, Fred

Morstatter, Robert P Trevino, Jiliang Tang, and Huan

Liu. Feature selection: A data perspective. ACM Com-

puting Surveys (CSUR), 50(6):94, 2017.

[40] Yan Li, Kenneth Chang, Oceane Bel, Ethan L. Miller,

and Darrell D. E. Long. Capes: Unsupervised system

performance tuning using neural network-based deep

reinforcement learning. In Proceedings of the Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’17, 2017.

[41] Z. Li, A. Mukker, and E. Zadok. On the importance of

evaluating storage systems’ $costs. In Proceedings of

the 6th USENIX Conference on Hot Topics in Storage

and File Systems, HotStorage’14, 2014.

[42] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He,

Lianjie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong

Sun. Metis: robustly optimizing tail latencies of cloud

systems. In Proceedings of the 2018 USENIX Con-

ference on Usenix Annual Technical Conference, pages

981–992. USENIX Association, 2018.

[43] Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian.

Feature selection using principal feature analysis. In

Proceedings of the 15th ACM international conference

on Multimedia, pages 301–304. ACM, 2007.

[44] Sandeep Madireddy, Prasanna Balaprakash, Philip

Carns, Robert Latham, Robert Ross, Shane Snyder, and

Stefan M Wild. Machine learning based parallel i/o

predictive modeling: A case study on lustre file sys-

tems. In International Conference on High Perfor-

mance Computing, pages 184–204. Springer, 2018.

[45] M. D. McKay, R. J. Beckman, and W. J. Conover. A

comparison of three methods for selecting values of in-

put variables in the analysis of output from a computer

code. Technometrics, 21(2):239–245, 1979.

[46] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur

Mutlu. A large-scale study of flash memory failures

in the field. In Proceedings of the 2015 ACM Inter-

national Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS 2015), pages 177–

190, Portland, OR, June 2015. ACM.

[47] Sebastian Mika, Gunnar Ratsch, Jason Weston, Bern-

hard Scholkopf, and Klaus-Robert Mullers. Fisher dis-

criminant analysis with kernels. In Proceedings of the

IEEE Signal Processing Society Workshop on Neural

Networks for Signal Processing, pages 41–48. IEEE,

1999.

[48] Kevin P. Murphy. Machine Learning: A Probabilistic

Perspective. MIT press, 2012.



[49] John A. Nelder and Roger Mead. A simplex method

for function minimization. The Computer Journal,

7(4):308–313, 1965.

[50] John Neter, Michael H. Kutner, Christopher J. Nacht-

sheim, and William Wasserman. Applied Linear Statis-

tical Models, volume 4. Irwin Chicago, 1996.

[51] Nohhyun Park, Weijun Xiao, Kyubaik Choi, and

David J. Lilja. A statistical evaluation of the im-

pact of parameter selection on storage system bench-

marks. In Proceedings of the 7th IEEE International

Workshop on Storage Network Architecture and Paral-

lel I/Os (SNAPI), volume 6, 2011.

[52] D. Patterson, G. Gibson, and R. Katz. A case for redun-

dant arrays of inexpensive disks (RAID). In Proceed-

ings of the ACM SIGMOD, pages 109–116, Chicago,

IL, June 1988. ACM Press.

[53] Robin L. Plackett and J. Peter Burman. The design

of optimum multifactorial experiments. Biometrika,

pages 305–325, 1946.

[54] LVM2 resource page. http:// sources.redhat.com/ lvm2/ .

[55] H. Reiser. ReiserFS v.3 whitepaper. http://web.archive.

org/web/20031015041320/http://namesys.com/ .

[56] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:

The Linux B-tree filesystem. Trans. Storage, 9(3):9:1–

9:32, August 2013.

[57] F. Schmuck and R. Haskin. GPFS: A shared-disk file

system for large computing clusters. In Proceedings

of the First USENIX Conference on File and Storage

Technologies (FAST ’02), pages 231–244, Monterey,

CA, January 2002. USENIX Association.

[58] George A.F. Seber and Alan J. Lee. Linear Regression

Analysis, volume 329. John Wiley & Sons, 2012.

[59] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evaluat-

ing performance and energy in file system server work-

loads. In Proceedings of the USENIX Conference on

File and Storage Technologies (FAST), pages 253–266,

San Jose, CA, February 2010. USENIX Association.

[60] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Op-

timizing energy and performance for server-class file

system workloads. ACM Transactions on Storage

(TOS), 6(3), September 2010.

[61] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P

Adams, and Nando de Freitas. Taking the human out

of the loop: A review of Bayesian optimization. Pro-

ceedings of the IEEE, 104(1):148–175, 2016.

[62] Jonathon Shlens. A tutorial on principal component

analysis. arXiv preprint arXiv:1404.1100, 2014.

[63] John D. Strunk, Eno Thereska, Christos Faloutsos, and

Gregory R. Ganger. Using utility to provision stor-

age systems. In Proceedings of the 6th USENIX Con-

ference on File and Storage Technologies, FAST’08,

pages 313–328, Berkeley, CA, USA, 2008. USENIX

Association.

[64] David G. Sullivan, Margo I. Seltzer, and Avi Pfef-

fer. Using probabilistic reasoning to automate software

tuning, volume 32. ACM, 2004.

[65] A. Sweeney, D. Doucette, W. Hu, C. Anderson,

M. Nishimoto, and G. Peck. Scalability in the XFS file

system. In Proceedings of the Annual USENIX Tech-

nical Conference, pages 1–14, San Diego, CA, January

1996.

[66] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and

Margo Seltzer. Benchmarking file system benchmark-

ing: It *IS* rocket science. In Proceedings of HotOS

XIII:The 13th USENIX Workshop on Hot Topics in Op-

erating Systems, Napa, CA, May 2011.

[67] Vasily Tarasov, Erez Zadok, and Spencer Shepler.

Filebench: A flexible framework for file system bench-

marking. ;login: The USENIX Magazine, 41(1):6–12,

March 2016.

[68] Robert Tibshirani. Regression shrinkage and selection

via the lasso. Journal of the Royal Statistical Society.

Series B (Methodological), pages 267–288, 1996.

[69] Stephen Tweedie. Ext3, journaling filesys-

tem. In Ottawa Linux Symposium, July 2000.

http://olstrans.sourceforge.net/ release/OLS2000-ext3/

OLS2000-ext3.html .

[70] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon,

and Bohan Zhang. Automatic database management

system tuning through large-scale machine learning. In

Proceedings of the 2017 ACM International Confer-

ence on Management of Data, SIGMOD ’17, pages

1009–1024, 2017.

[71] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, An-

thony Brockwell, Christos Faloutsos, and Gregory R.

Ganger. Storage device performance prediction with

CART models. In The IEEE Computer Society’s 12th

Annual International Symposium on Modeling, Analy-

sis, and Simulation of Computer and Telecommunica-

tions Systems. (MASCOTS), pages 588–595, 2004.

[72] Bernard Lewis Welch. On the comparison of several

mean values: An alternative approach. Biometrika,

38(3/4):330–336, 1951.

[73] H.-S. Philip Wong, Simone Raoux, SangBum Kim,

Jiale Liang, John P. Reifenberg, Bipin Rajen-

dran, Mehdi Asheghi, and Kenneth E. Goodson.

Phase change memory. Proceedings of the IEEE,

98(12):2201–2227, Dec 2010.

[74] Ming Yuan and Yi Lin. Model selection and estimation

in regression with grouped variables. Journal of the



Royal Statistical Society: Series B (Statistical Method-

ology), 68(1):49–67, 2006.


