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Abstract

Storage systems usually have many parameters that affect
their behavior. Tuning those parameters can provide sig-
nificant gains in performance. Alas, both manual and au-
tomatic tuning methods struggle due to the large number
of parameters and exponential number of possible configu-
rations. Since previous research has shown that some pa-
rameters have greater performance impact than others, fo-
cusing on a smaller number of more important parameters
can speed up auto-tuning systems because they would have
a smaller state space to explore. In this paper, we propose
Carver, which uses (1) a variance-based metric to quantify
storage parameters’ importance, (2) Latin Hypercube Sam-
pling to sample huge parameter spaces; and (3) a greedy but
efficient parameter-selection algorithm that can identify im-
portant parameters. We evaluated Carver on datasets con-
sisting of more than 500,000 experiments on 7 file systems,
under 4 representative workloads. Carver successfully iden-
tified important parameters for all file systems and showed
that importance varies with different workloads. We demon-
strated that Carver was able to identify a near-optimal set of
important parameters in our datasets. We showed Carver’s
efficiency by testing it with a small fraction of our dataset;
it was able to identify the same set of important parameters
with as little as 0.4% of the whole dataset.

1 Introduction

Storage systems are critical components of modern com-
puter systems that have significant impact on application per-
formance and efficiency. Most storage systems have many
configurable parameters that control and affect their overall
behavior. For example, Linux’s Ext4 [22] offers about 60
parameters, representing over 1037 potential configuration
states. The default settings are often sub-optimal; previous
research has shown that tuning storage parameters can im-
prove system performance by a factor of as much as 9x [59].

To cope with the vast number of possible configurations,
system administrators usually focus on using their domain
expertise to tune a few frequently used and well-studied pa-
rameters that are believed to significantly impact system per-
formance. However, this manual-tuning approach does not
scale well in the face of increasing complexity. Modern stor-
age systems use different file system types [21, 37, 56, 65],
new hardware (SSDs [26,46], SMR [1, 2], NVM [33,73]),
multi-tier and hybrid storage, and multiple virtualization lay-
ers (e.g., LVM, RAID). Storage systems range from one or
a few identical nodes to hundreds of highly heterogeneous
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configurations [23,57]. Worse, tuning results depend heav-
ily on hardware and the running workloads [10, 11, 70].

Recently, several optimization methods have been used to
auto-tune storage systems, achieving good performance im-
provements within reasonable time frames [11,40]. These
auto-tuning techniques model the storage system as a black
box, iteratively trying different configurations, measuring an
objective function’s value, and—based on previously learned
information—selecting new configurations to try. However,
many black-box auto-tuning techniques have difficulty scal-
ing to high dimensions and can take a long time to converge
on good solutions [61]. Therefore, the problem of dealing
with the vast number of storage-parameter configurations re-
mains largely unsolved.

In machine learning and information theory, dimensional-
ity reduction is often applied to explosively sized datasets [,
48]. We believe it can also be applied to storage-parameter
selection. Previous research has reported that certain stor-
age parameters have greater impact on performance than
others [11]. By eliminating the less important parameters,
and ordering parameters by importance, the parameter search
space—and thus the number of configurations that need to be
considered by either humans or algorithms—can be reduced
significantly [28].

Evaluating a single storage configuration is time consum-
ing, and a thorough analysis requires many configurations to
be explored; these evaluations can span days or even months.
One purpose of a storage parameter-selection algorithm is to
be able to pick important parameters by evaluating only a
small number of configurations, yet still select the important
parameters with high accuracy.

In this paper, we propose Carver, which efficiently selects
a subset of important storage parameters. Carver consists
of three components: 1) a variance-based metric to quantify
the importance of a storage parameter; 2) a sampling method
to intelligently pick a small number of configurations rep-
resenting the whole parameter space; and 3) a greedy al-
gorithm to select important parameters. Carver outputs a
set of selected important parameters; these can be used as
pre-selected parameters for auto-tuning algorithms, as well
as helping human experts better understand the behaviors of
targeted storage systems. As shown in Section 5, the afore-
mentioned three components give Carver the ability to select
a near-optimal subset of important parameters by exploring
relatively few configurations. With this efficiency, Carver
could complete its parameter selection in a relatively short
period of time in a real deployment.

Carver was thoroughly evaluated on (publicly available)



experimental data collected from our previous work [11],
in which we conducted benchmarks on 7 file systems un-
der 4 workloads over a time span of around four years. In
that work, for each file system we picked 8-10 frequently
tuned parameters and evaluated all possible storage configu-
rations resulting from changing the values of these selected
parameters. We collected I/O throughput and latency data
throughout the evaluation. The data set consists of more than
500,000 benchmark runs (data points) in total. One advan-
tage of having collected the datasets from the whole configu-
ration space is that they can be used as the ground truth when
testing Carver with only a small subset of configurations.

With the collected datasets, we first confirmed that cer-
tain parameters have more impact on system throughput or
latency than other parameters, using Carver’s proposed im-
portance metric. We found that in all datasets there is always
a small set of parameters that have significantly more impact
on throughput than all the others. For example, under a File-
server workload, the two most important parameters for Ext4
were Journal Option and I/O Scheduler. We also observed
that the set of important parameters varies with different
workloads. In the same Ext4 example, the two most impor-
tant parameters became Block Size and Inode Size when the
workload changed to Dbserver. We also demonstrated that
our variance-based metric can always find a near-optimal set
of important parameters in these datasets.

We then demonstrated Carver’s efficiency in identifying
important parameters by applying it to different measure-
ments, such as I/O throughput and latency. Carver can easily
be extended and applied equally well to other quantifiable
objectives such as energy consumption, and even compos-
ite cost functions [41]. In our evaluation, Carver uses Latin
Hypercube Sampling (LHS) as the sampling method. LHS
allows Carver to identify the set of important parameters us-
ing a small number of experimental runs that explore only a
fraction of all configurations. For instance, among all 1,000
repeated runs, Carver was able to find the two most impor-
tant parameters for Ext4 using only 0.4% of the evaluation
results. We believe Carver’s efficiency in finding the most
important parameters quickly and accurately is critical and
promising, since (1) it can be applied to new storage systems
or environments, and (2) the parameters it identifies can then
be used by storage administrators or auto-tuning algorithms
to further optimize the system.

The three key contributions of this paper are:

1. We provide a thorough quantitative analysis of the ef-
fects of storage parameters on system performance, for
7 different file systems across 4 representative work-
loads.

2. We propose Carver, which uses a variance-based metric
of storage-parameter importance and Latin Hypercube
Sampling to drive a greedy algorithm that can identify

the most important parameters using only a small num-
ber of experimental runs.

3. We thoroughly evaluated Carver’s ability to identify
important parameters in terms of I/O throughput and
latency. We demonstrated that Carver successfully
chose a near-optimal set of important parameters for all
datasets used.

2 Motivation

In this paper, we define a storage system as the entire storage
stack from file systems to physical devices, including all in-
termediate layers. Storage systems have many configurable
options that affect their performance [10, 66], energy con-
sumption [59], reliability [63], etc. We define a parameter
as one configurable option, and a configuration as a com-
bination of parameter values. For example, Ext4’s Journal
Option parameter can take three values: data=writeback,
data=ordered, and data=journal. Based on this, [jour-
nal=“data=writeback”, block_size=4K, inode_size=4K] is
one configuration with three specific parameter values (Jour-
nal Option, Block Size, and Inode Size). The list of all possi-
ble (legal) configurations forms a parameter space.

Storage systems usually come with many configurable pa-
rameters that control and affect their overall behavior. An
earlier study [59] showed that tuning even a tiny set of pa-
rameters could improve performance and energy efficiency
by as much as 9x. However, tuning storage systems is not
an easy task; we believe its challenges arise from at least the
following four aspects:

1. Large parameter spaces. Storage systems are com-
plex, incorporating numerous file system types [21,37,
56, 65], devices [1, 2, 26, 33,46, 73], and intermediate
layers [52,54]. They often span large networks and
distributed environments [6, 23, 30, 57]. Modern stor-
age systems have hundreds or even thousands of tun-
able parameters—and networks are also parameterized.
Worse, evaluating a single configuration can take many
minutes or even hours, making experimental tuning un-
usually time-consuming.

2. Nontransferable tuning results. Evaluation results de-
pend on the specific environment, including the hard-
ware, software, and workload [10,11,59]. A good con-
figuration for one setup might perform poorly when the
environment changes even slightly [60].

3. Nonlinear parameters. A system is nonlinear when
the output is not directly proportional to the input.
Many computer systems are nonlinear [16], including
storage systems [66]. This makes traditional regression-
based analysis more challenging [50, 58].

4. Discrete and non-numeric (categorical) parameters.
Some storage parameters are continuous, but many are



discrete and take only a limited set of values. Worse,
some are categorical (e.g., the I/O scheduler name or
file system type). Many optimization techniques per-
form poorly on discrete values, and often cannot ad-
dress categorical values efficiently or at all [24,49].

Given these challenges, manually tuning storage systems
becomes nearly impossible, and automatic tuning can be
computationally infeasible. Recent efforts have used black-
box optimization techniques to auto-tune storage configura-
tions [11,40], addressing several of the above challenges and
achieving useful performance improvements. However, we
believe that the challenge of tuning storage systems is far
from being solved. It has been shown that several of these
black-box optimization techniques have scalability problems
in high-dimensional spaces [61]. Therefore, directly apply-
ing them to tuning systems with hundreds or thousands of
parameters would be difficult.

In machine learning and information theory, dimensional-
ity reduction is a common technique for coping with large-
sized datasets [5,48]. If it can be applied in storage systems,
it will significantly reduce the search space [28], making it
easier for humans or algorithms to tune storage systems.

Previous work has reported that not all storage parameters
have an equally important performance impact: a few have
much greater effect than others [11]. We observed similar
trends from our collected datasets. Figure 1 demonstrates
the impact of the parameters Block Size and I/O Scheduler
on the throughput of an Ext4 file systems under a typical
file server workload. Each boxplot in the figure represents a
median and range of throughput that any Ext4 configuration
can produce after fixing the value of one parameter (shown
on the X axis). We see that setting the I/O Scheduler to dif-
ferent values (blue bars) makes little difference, resulting in
nearly equal medians and ranges of throughput. However,
setting the value of Block Size has a greater impact on both
the median and the throughput range; specifically, to reach
the maximum throughput, Block Size must be set to 4K. Al-
though choosing a large Block Size is a decision that may
be obvious to an expert, we have made similar observations
in other storage systems and with different workloads. This
naturally led us to investigate how we can quantify the im-
pact or importance of each storage parameter, and how we
can select important parameters efficiently.

3 Dimensionality Reduction in a Nutshell

In this section we briefly discuss some commonly applied
approaches to dimensionality reduction, and argue that some
metrics are not suitable for quantifying storage parameters’
importance. Note that different disciplines might use some-
what different terminology than storage systems. For exam-
ple, parameters are analogous to features in machine learn-
ing, independent variables in regression analysis, and dimen-
sions in mathematics; optimization objectives can be called
dependent variables or target variables. When discussing
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Figure 1: Range of throughput after fixing the value of one param-
eter. Red bars represent setting the block size to 1K, 2K, or 4K,
respectively, while blue bars represent setting the 1/0 scheduler to
noop, cfq, or deadline.

different techniques (Section 3), we use the field-appropriate
terms.

Many approaches have been proposed to address the curse
of dimensionality, which refers to the fact that data be-
come sparse in high-dimensional spaces and thus make al-
gorithms designed for low-dimensional spaces less effective.
Dimensionality-reduction approaches can be generally sum-
marized into two categories: feature extraction and feature
selection [25,39].

Feature extraction refers to projecting high-dimensional
data into low-dimensional spaces; the newly constructed fea-
tures are usually linear or nonlinear combinations of the orig-
inals. Common feature-extraction methods include Princi-
pal Component Analysis (PCA) [62], Independent Compo-
nent Analysis [29], and Linear Discriminant Analysis [47].
One major drawback of feature extraction is that the physical
meaning of each feature is lost by the projection and the non-
linear combination of many dimensions into fewer ones [39].
Common feature-extraction techniques thus conflict with our
goal in this paper, which is to select a few original storage
parameters that can be understood and interpreted.

Conversely, feature selection directly selects a subset of
features from the original ones, with the intention of find-
ing only those that are important. Feature-selection methods
can be classified as supervised or unsupervised [39]. Unsu-
pervised feature selection, such as Principle Feature Anal-
ysis [43], chooses a subset that contains most of the essen-
tial information based on relationships among features. It
does not consider the impact of features on optimization ob-
jectives during the selection phase. In contrast, supervised
feature selection chooses a subset that can discriminate be-
tween or approximate the target variables. Examples include
Lasso [68] and decision-tree based algorithms [31]. Since
we are interested in finding parameters that have significant
impact on our optimization objectives, such as I/O through-
put, supervised feature selection best fits our needs.

Several intrinsic properties of our project also limit our
choice of feature-selection methods. Many storage parame-
ters are discrete or categorical (see Sections 2 and 5.1). The



performance of storage systems is usually presented as I/O
throughput or latency, which are continuous. Therefore, an
ideal feature-selection method should work with categori-
cal features and continuous targets. Although there are dis-
cretization techniques that can break continuous target vari-
ables into discrete sections, feature-selection results depend
heavily on the quality of discretization [39]. One common
approach for dealing with categorical features is to trans-
form each of them into dummy binary parameters that take
values of 0 or 1. For instance, io_scheduler with three pos-
sible values (noop, deadline, and cfg) can be converted into
three binary features: “io_scheduler = noop”, “io_scheduler
= deadline”, and “io_scheduler = cfq”. All the binary fea-
tures can take on values O or 1. This approach is unsatisfac-
tory because it selects the individual binary features instead
of the original categorical ones. Moreover, converting a cat-
egorical parameter with N values into N separate binary pa-
rameters would expand the parameter space exponentially.
For this reason, we feel that Lasso [68] is not suitable for
our problem, even though it has been successfully applied
to selecting important knobs in databases [70]. Although
Group Lasso has been proposed to partially address this defi-
ciency [14,34,74], the computational cost of the Lasso-based
methods is still high [39].

Another popular category of feature-selection methods
has been built upon information theory [8,20,31,39]. These
approaches usually define a metric for the homogeneity of the
target variable within certain subsets. Commonly used met-
rics include Gini impurity [39] and Entropy [5] for discrete
target variables, and Variance [7] for continuous variables.
In this paper we propose Carver, which applies a variance-
based metric for parameter importance, as described in Sec-
tion 4.1.

4 Design of Carver

In this section we detail the design of Carver. Carver con-
sists of three components: 1) a variance-based metric for
measuring storage parameters’ importance (Section 4.1), 2) a
sampling method to select a small number of configurations
from huge parameter spaces—in this paper using Latin Hy-
percube Sampling (Section 4.2), and 3) a greedy algorithm
for finding important parameters (Section 4.3). A good sam-
pling method allows Carver to select a near-optimal subset
of important parameters while having to evaluate relatively
few configurations. In this section we use throughput as an
example of the target (objective) variable, but Carver is also
applicable to many other metrics.

4.1 Measuring Parameter Importance

Carver uses a variance-based metric to quantify storage-
parameter importance. The variance of a set S’ of storage

configurations is defined as usual:

Var(S) = ‘—; z:(yZ — )2, (1)

where y; is the throughput of the i-th configuration; is
number of configurations in .S; and  is the average through-
put within S. Inspired by CART (Classification and Regres-
sion Trees) [7], we use the reduction in variance to measure
parameter importance. We extend CART’s original defini-
tion to support categorical parameters taking an arbitrary but
finite number of values, as compared with only two in CART.

We define the parameter importance PI of a parame-
ter P that can take a finite number of categorical values,

{pla "-apn}7n > 1, as:

PI(P) = Var(S ar(Sp=p,) (2
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Here S is the original set of configurations, and Sp—,, is
the subset of configurations with the parameter P taking the
value p;. Intuitively, an important parameter P divides a set
S of configurations into multiple subsets, and the weighted
sum of variances within each subset should be much smaller
than the variance of .S. Thus, a high PI indicates a parameter
that has a significant effect on performance.

The variance-based metric defined in Carver uses a greedy
approach, where the next important parameter will be picked
by calculating its importance when fixing the values of previ-
ously selected parameters. Therefore, for parameter ) with
a total of m possible categorical values {q1, ..., ¢m },m > 1,
we define the conditional parameter importance for @, given
P =pas:

CPI(QIP = p) =

So=q; P=
Var(Sp=p) — Z |C|QSZJ’PP Var(Sg—q, 1 p=p) )
j=1 =P

where Sg—,, p=p denotes the set of configurations with pa-
rameters P and () taking values p and g;, respectively. Sim-
ilar to Equation 2, given P = p, the next most important
parameter () divides Sp—,, into multiple subsets, and if @
is important then the weighted sum of variances within each
subset will be much smaller than variance of Sp—,. To re-
move the restriction to a given value p, we define CPI(Q|P)
as the maximum of CPI(Q|P = p;) over all possible values
p; € {p1,...,pn} that parameter P can take:

CPI(Q|P) = max CPI(Qlp = p:) 4

Note that in this paper we use only variance-based metrics
to measure parameter importance and select the most criti-
cal subset. We leave storage-performance prediction, which
requires a large amount of training data [71], for future work.



4.2 Sampling

Given the large parameter space and the time needed to eval-
uate a single storage configuration, we must limit the num-
ber of experimental runs required to select important pa-
rameters. Therefore, Carver needs an exploratory method
that can cover the space uniformly and comprehensively, yet
sparsely. In this work, we chose Latin Hypercube Sampling
(LHS) [45].

LHS is a stratified sampling method [13]. In two dimen-
sions, a square grid containing samples is a Latin Square iff
there is only one sample in each row and each column. A
Latin Hypercube is the generalization of a Latin Square to
higher dimensions, where each sample is the only one in each
axis-aligned hyperplane containing it [36]. LHS has been
shown to be more effective in exploring parameter spaces
than random sampling [45] and Monte Carlo sampling [15].
It has been successfully applied in sampling configurations
of storage [27] and cloud systems [42].

Previous work has also applied Plackett-Burman (P&B)
Design [53] to evaluate the impact of parameters in storage
benchmarks [51] and databases [18]. However, P&B design
requires each parameter to have only two possible values,
and the target variable must be a monotonic function of the
input parameters. Neither requirement holds in our problem.

We demonstrated that LHS enables Carver to pick impor-
tant storage parameters with only a small number of evalua-
tions; see Section 5.4.

4.3 Parameter-Selection Algorithm

Based on our proposed measurements of parameter impor-
tance and on Latin Hypercube Sampling (LHS), the pseudo-
code for Carver’s parameter-selection algorithm is as fol-
lows:
Algorithm 1 Parameter Selection
Input: P: set of parameters, S initial set of configurations;
stop(S, selected): user-defined stopping function.
selected + {}
S* + LHS(S)
repeat
p* « argmax CPI(p|selected),p € P
selected.insert(p*)
P.remove(p*)
until stop(S, selected) is true or P is empty
Output: selected

In this algorithm, Carver takes a set of initial parameters
and configurations. It first uses LHS to pick a small number
of configurations and evaluates them. Carver then greedily
selects the current most important parameters based on the
evaluation results for the selected configurations. The most-
important parameter is selected based on the highest param-
eter importance value. Carver fixes the value of the most
important parameter and calculates the conditional param-
eter importance (CPI) values for the remaining parameters;

the parameter with the highest CPI is selected as the second-
most important. Carver continues evaluating important pa-
rameters by fixing the values of previously selected parame-
ters, until the stop function returns true. A naive stop func-
tion could be sizeof(selected) > N, which would select
the N most important parameters. An alternative variance-
based stopping function might stop when the variances of
subsets of configurations (given the current selected parame-
ters) are below a certain threshold «J. This stopping condition
indicates that by setting the values of the selected parame-
ters, the system throughput already falls into a small enough
range that there is little potential gain from additional tun-
ing. In our experiments, we applied this idea and used the
Relative Standard Deviation (RSD) [13], or Coefficient of
Variation, to define our stopping condition. The RSD of a
set S of configurations is defined as:

1 [Var(S)
RSD(S) = Vo1

&)

where NNV is the number of configurations and y is the mean
throughput of configurations within S. We chose RSD be-
cause it is normalized to the mean throughput and is repre-
sented as a percentage; that way the same threshold can be
used across different datasets. We used a threshold of 2% in
our experiments; as seen in Section 5, parameters selected
by this criterion gave us near-optimal and stable throughput.

5 Evaluation

In this section we detail our evaluation of Carver. We
first cover the experimental settings we used for collecting
datasets in Section 5.1. Section 5.2 provides an overview
of storage-parameter importance using our variance-based
metric. Section 5.3 demonstrates that the subset of impor-
tant parameters selected by Carver’s importance metric is
near-optimal. We show the efficiency of Carver’s parameter-
selection algorithm in Section 5.4, from multiple perspec-
tives.

5.1 Experiment Settings

To thoroughly study the problem of storage parameter se-
lection and evaluate Carver, we used datasets originally col-
lected for our previous work [11]. The whole dataset con-
sists of more than half a million benchmark results on typical
storage systems. We describe the experimental settings and
collected datasets in this section.

Hardware. We performed experiments using several Dell
PE R710 servers, each with two Intel Xeon quad-core
2.4GHz CPUs, 24GB RAM, and four storage devices: two
SAS HDDs, one SATA HDD, and one SSD. Ubuntu 14.04
was installed on all machines with Linux kernel 3.13. We
denote this configuration as S1. We also collected several
datasets on a slightly different configuration, S2, where we
used the GRUB boot loader to limit the available memory to



4GB. We explain the reasons for this change below. We also
upgraded the system to Ubuntu 16.04 with kernel 4.15. Ex-
periments on S2 were only conducted on the SSD, given the
increasing use of SSDs in production systems.

Workload. We benchmarked storage configurations with
four common macro-workloads generated by Filebench [3,
67]:

1. Mailserver mimics the I/O workload of a multi-
threaded email server;

2. Fileserver emulates a server hosting users’ home direc-
tories;

3. Webserver emulates a typical static Web server with a
high percentage of reads; and

4. Dbserver mimics the behavior of an Online Transaction
Processing (OLTP) database.

Before each experimental run, we formatted and mounted
the storage devices with the selected configuration. In set-
ting S we chose Filebench’s default workload profiles, lim-
iting the working-set size so we could evaluate more config-
urations within a practical time period. We call those pro-
files Mailserver-default, Fileserver-default, etc. Our previ-
ous study’s goal, which applies to this work as well, was
to allow us to explore a large set of parameters and values
quickly. By evaluating each configuration once, saving the
results, and later looking them up in our database, we could
test Carver in seconds instead of waiting for several hours to
run the benchmarks selected by Algorithm 1. Clearly, a real-
world deployment would not have such a database available
and a search for the most important parameters would require
running actual benchmark tests, each of which would take
significant time. However, as shown in Section 5.4, Carver
tests few enough configurations that even these experiments
can be completed in a short time, ranging from a few hours
to a few days. An additional benefit of the full database
is that we were able to compare configurations found by
Carver with the true best configuration found by our com-
plete datasets.

Because we wanted our database to record results of as
many experiments as possible, we decided to trade off a
smaller working set size in favor of increasing the number
of configurations we could explore in a practical time pe-
riod. Our experiments demonstrated a wide range of perfor-
mance numbers and are suitable for the purpose of studying
storage-parameter importance. As shown in Table 2, storage
parameters do have a wide range of importance under these
workloads. We first ran each workload for up to 2 hours
to observe its behavior, and then chose a running time long
enough for the cumulative throughput to stabilize; we found
100 seconds sufficient for this purpose. In setting S2, we in-
creased the working-set size to 10GB and the running time

to 300 seconds, but used relatively fewer total configura-
tions, which we denote Mailserver-10GB, Fileserver-10GB,
etc. The RAM size was set to 4GB in S2 so that the bench-
mark working set could not fit into memory completely, thus
forcing more I/Os.

Parameter space. To evaluate our parameter-selection al-
gorithm, we ideally want our parameter spaces to be large
and complex. Considering that evaluating storage systems
takes a long time, we decided to experiment with a reason-
ably sized set of frequently studied and tuned storage pa-
rameters. We selected them in close collaboration with sev-
eral storage experts who have either contributed to storage-
stack designs or have spent years tuning storage systems in
the field. We chose seven Linux file systems that span a
wide range of designs and features: Exz2 [12], Ext3 [69],
Ext4 [21], XFS [65], Btrfs [56], Nilfs2 [35], and Reiserfs [55].
We experimented with various types of parameters, includ-
ing file-system formatting and mounting options and some
Linux kernel parameters. Table 1 lists all our file systems,
their (abbreviated) parameters, and the number of possible
values that each parameter can take. Note that under S7 we
conducted benchmarks on four storage devices, and we treat
the device as one of the parameters. Under S2 we focused
on Ext4 and XFS experiments with an SSD, but evaluated a
wider variety of parameters. Cells with “~” mean that the pa-
rameters are inapplicable for the given file system. Cells with
“dfit” mean we used the default value for that parameter, and
so that parameter was not considered during the parameter-
selection phase. Note that the total number of configurations
for each file system does not necessarily equal the product
of the number of parameter values, because some parameter
combinations are invalid (e.g., in Ext4 the inode size cannot
exceed the block size). The total number of configurations
across all datasets is 29,544. We ran all configurations in
each parameter space under four workloads. We repeated
each experiment at least three times to get a stable and rep-
resentative measurement of performance. Over a time span
of more than two years, we collected data from more than
500,000 experimental runs.

Although we have been collecting benchmarking data over
a time span of 4 years, we focused on one dataset at a time,
where we benchmarked one file system on the same hard-
ware under the same workload. Each dataset’s collection
took 1-2 months. Therefore, there may be minor hardware
wear-out effects. We repeated each experiment for at least 3
runs, and made sure the variation among the results of these
repeated runs were acceptable [10]. We used the average
throughput and latency numbers among repeated runs when
evaluating Carver.

5.2 Parameter Importance: an Overview

We have collected experimental data from 9 different param-
eter spaces (Table 1) under 4 representative workload types.
Having the complete datasets allowed us to accurately cal-



Set-| File |BIk|Inode Block|Jour-|Flex|Read-| XY > |Alle|LogiLog| \\\ IN de|Spec| Atime| 170 | PTY | Drty
ting | System |Size| Size | Grp | nal |Grp |ahead Sctr| Grp| Buf | Buf Size| Size | Opt | Opt |Schd Bg Ratio Dev | Total
Size | Cnt | Cnt |Size Ratio

S1| Ext2 | 3 7 6 - - - - -1 =-1-=-1- - - 2 3 | dfit | dfit | 4 |2,208
S1| Ext3 | 3 7 6 3 - - - -1 =-1=-1= - - 2 3 | dfit | dfit | 4 |6,624
S1 | Ext4 3 7 6 3 dfit | dfit - - - - - - - 2 3 dfit | dfit 4 16,624
S1| XFS | 3 5 - - - — | dfit| 9 |dfit|dfit|dfit| - - 2 3 | dfit | dfit | 4 {2,592
S1 | Btrfs | — 5 - - - - S T I 3 4 2 3 | dfit | dfit | 4 288
S1 | Nilfs2 | 3 9 2 - - - - - - - - - 2 3 dfit | dfit 4 1,944
S1 |Reiserfs| dfit | - - 3 - - - - -1 -1 - - 2 2 3 dfit | dfit | 4 192
S2 | Ext4 | 3 3 dfit 3 3 3 S T I - - | dfit 3 2 3 |SSD|3,888
S2 | XFS 3 2 - - - - 3 4 2 2 2 - - dfit 3 2 3 [SSD|5,184

Table 1: Details of parameter spaces.

Each cell gives the number of settings we tested for the given parameter and file system; empty cells

represent parameters that are inapplicable to the given file system and “dflt” represents those that were left at their default setting. We
evaluated 29,544 configurations in total under four workloads, and each experiment was repeated 3+ times.

culate and evaluate the importance of different storage pa-
rameters, which serves as the ground truth when evaluating
Carver’s parameter-selection algorithm, whose goal is to ex-
plore only a small fraction of the parameter space yet find the
same subset of important parameters as if we had explored
it all. In this section, we first provide an overview of the
importance of storage parameters.
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Figure 2: Top 3 most important Ext4 parameters under S1,
Fileserver-default. The most important parameter is measured by
its PI; the second and third parameters are evaluated by their CPI
given higher-ranked parameters. The Y-axis scales in the three sub-
figures are different.

Figure 2 shows the three most important parameters for
Ext4 under SI, Fileserver-default. The parameter with the
highest importance was evaluated and selected by its Pa-
rameter Importance (PI), as defined in Section 4.1. The
second most important parameter was chosen by its Con-
ditional Parameter Importance (CPI) given the most impor-
tant one, in this case CPI(X |journal). Similarly, the 3
most important parameter was evaluated by comparing its
CPI(X |journal, device). Note that the Y-axis scales in the
three sub-figures are different (but higher is always better).
The X axis shows the Ext4 parameters that we experimented
with. As shown in the top subfigure in Figure 2, Journal Op-
tion turns out to be the most important parameter for Ext4
under S/, Fileserver-default. It has the highest variance re-

duction, 2.7x107. In comparison, the PI of Device is around
105, while all other parameters are under 5 X 104. Similarly,
the second and third most important parameters are Device
and Block Size, respectively, both with a much higher CPI
value than other parameters.

We discovered that parameter importance depends heavily
on file system types and on the running workload. Table 2
lists the top 4 important parameters for Ext4, XFS, and Btrfs
under various workload types; the column header #N identi-
fies the N™ most important parameter. We also applied the
stopping criterion described in Section 4.3. Cells marked as
“~" here indicate that no parameter gave a large reduction in
variance, and thus no parameter was considered important.
To avoid cluttering the paper, we only list 3 file systems un-
der 4 workloads here, and we show only the top 4 ranked
parameters under each case.

As we can see in Table 2, the important parameters are
quite diverse and depend significantly on the file system
types and workloads. For Ext4 under S2 and Dbserver-
10GB, the top 4 ranked parameters are Block Size, Inode
Size, I/O Scheduler, and Journal Option. When the work-
load changes to Webserver-10GB, the top 4 parameters be-
come Inode Size, Flex BG, Block Size, and Journal Option.
For Fileserver-10GB under Ext4, we found only three im-
portant parameters, indicating that fixing the values of these
three parameters already resulted in quite stable throughputs;
we discuss this observation in more detail in Section 5.3. We
found similar results on XFS: the values and number of im-
portant parameters depended heavily on the workloads. In-
terestingly, for Btrfs under S1, Webserver-default, we did
not find any important parameters. That is because the
Webserver-default workload consists primarily of read op-
erations, and the default working-set size used by Filebench
is small. All Btrfs configurations actually produce quite sim-
ilar throughput under Webserver-default. For this reason, we
also collected datasets from workloads with a much larger
working-set size (10GB), denoted as S2.



Setting Workload File System | Parameter #1 | Parameter #2 Parameter #3 Parameter #4
S2 Fileserver-10GB Ext4 Journal Option | I/O Scheduler Inode Size -
S2 Dbserver-10GB Ext4 Block Size Inode Size I/0O Scheduler Journal Option
S2 Mailserver-10GB Ext4 I/0 Scheduler Inode Size Journal Option Block Size
S2 Webserver-10GB Ext4 Inode Size | Flex Block Group Block Size Journal Option
S2 Fileserver-10GB XFS I/0 Scheduler Inode Size Allocation Group Count -
S2 Dbserver-10GB XFS Block Size Log Bufter Size Dirty Ratio Alloc Group Count
S2 Mailserver-10GB XFS Inode Size I/0 Scheduler Log Buffer Size Allocation Size
S1 Fileserver-default Btrfs Special Option Inode Size Device -
S1 Mailserver-default Btrfs Inode Size Device - -
S1 Webserver-default Btrfs - - - -

Table 2: Top-ranked important parameters for various file systems. The column header #N identifies the N most important parameter.

5.3 Evaluating The Greedy Algorithm

In Section 5.2 we used Carver’s variance-based metric to
pick a set of important parameters for our datasets. However,
we must also establish that the selection results are good, i.e.,
whether there exists another set of parameters, with equal
or smaller size, that can lead to an even narrower range of
throughput. We demonstrate the effectiveness of Carver’s
variance-based metric in this section.
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Figure 3: Impact of parameters on performance and stability (Ext4,
S1, Fileserver-default). Each dot represents a set of configurations
created by fixing N parameters, where different dot sizes and colors
are used for different values of N. Performance is measured by the
average throughput (X axis) of all possible configurations within
each set; stability is measured by the relative standard deviation (Y
axis; lower is better) of the throughput within each set.

Figure 3 shows the results for Ext4 under S/, Fileserver-
default, where each point represents a set of configurations
that fixes the values of NV parameters. For N = 1, we have
28 points, which equals the sum of possible value counts for
each parameter, as shown in Table 1. There are 374 points
for N = 2. We use different point colors and sizes for differ-
ent numbers of parameters. We only plot up to N = 2 here;
we extend to NV = 4 in Figure 4. Larger points are used for
smaller IV values, since fixing fewer parameter values would
result in a larger number of usable configurations. For exam-
ple, fixing journal_option = ordered in our datasets leads to a
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Figure 4: A zoom into the bottom-right part of Figure 3 (the “best”
quadrant), with points for N = 3,4 added. Plotted points show
either the highest average throughput or the lowest relative stan-
dard deviation among all configurations gotten by fixing the values
of N parameters. The labels around the dots show the correspond-
ing fixed parameter values. The parameter values are ordered by
(Journal Option, Device, Block Group, and Inode Size). The tri-
angle marks the point achieved by fixing the values of parameters
selected by Carver.

set of 2,208 configurations; fixing journal_option = ordered,
device=ssd reduces that number to 552.

In Figure 3, performance is measured by the average
throughput within each set of configurations, as presented on
the X axis. The Y axis shows the stability of each set, mea-
sured by the Relative Standard Deviation (RSD) of through-
put within the set. We chose to use the RSD rather than
variance because the figure shows sets of varying numbers
of configurations; RSD is normalized by the configuration
count and the average throughput, and thus is easier to com-
pare. If a set of parameters is important, it should ideally
lead to a larger average throughput and lower RSD; therefore
the best points should cluster in the bottom-right quadrant of
Figure 3. As we can see from that figure, fixing just one
parameter value (purple dots) causes the mean throughput
to range from 2.5Kops/s to around 15Kops/s, and the RSD
ranges from around 7% to 76%. The upper-left purple point
(2,500, 76%) represents the configurations achieved by set-
ting Journal Option to journal. The other two points, repre-
senting Journal Options of ordered and writeback, turn out
to be the best among all purple points. Both are seen near
the bottom right with mean throughput of around 15K and
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Figure 5: Carver’s ability to correctly find the top 3 important parameters within small portions of the dataset. The X1 (bottom) axis (loga
scale) shows the percentage of the dataset that was used; for each percentage we ran Carver 1,000 times on different, random LHS-compatible
subsets of that size. The X2 (top) axis (log2) shows the running time that would be needed to benchmark the selected configurations. We
used the PI calculated from the whole dataset as ground truth. The Y axis shows the percentage of runs that were able to correctly find the
important parameters. The solid, dashed, and dotted lines show the results for finding the parameters ranked 1%, 2" and 37, respectively.
Note that although Btrfs required a larger percentage of the dataset, the absolute numbers are similar in both figures, and the running times

for Btrfs are shorter (see text).

an RSD value of 7%. Clearly, the Journal Option parame-
ter has the highest impact on performance; setting it to an
improper value could lead to low throughput and high RSD,
while setting it correctly provides significant benefits. The
points with N = 2 form several clusters. All points with
mean throughput less than 9K result from setting Journal
Option to journal (and with another parameter set to various
valid values). Conversely, all points with mean throughput
larger than 14K result from a Journal Option of ordered or
writeback. Journal Option is actually the most important pa-
rameter selected by Carver (as seen in Table 2).

To probe this question further, we zoomed into the bottom-
right part of Figure 3 and added points for N = 3 and
N = 4, as shown in Figure 4. The X and Y axes are similar
but with narrower ranges (and the X axis starts at 14K). The
label “Max” on the X axis, with a small tick mark, shows
the global maximum throughput of all Ext4 configurations
within the parameter space. For each N, we plotted only
the point(s) with the highest average throughput or lowest
RSD. The labels around each point show the associated pa-
rameter values, ordered by (Journal Option, Device, Block
Group, and Inode Size). The black triangle marks the point
with highest mean throughput, gotten by fixing the values of
the three most important parameters selected by Carver. For
N =1, the best two points resulted from setting Journal Op-
tion to either ordered or writeback. These two points overlap
with each other in this figure, as they share nearly identical
mean throughput and RSD values. Only one point is plot-
ted for N = 2, since the point (journal_option=ordered, de-
vice=ssd) shows both the highest throughput and the lowest
RSD among all N = 2 points; the same is true for N = 3.
For N = 4, the left red point shows the lowest RSD value
while the right red point shows the highest average through-
put. In Figure 4, the top three parameters selected by Carver
are Journal Option, Device, and Block Size. By setting the

values of these three parameters, the best average throughput
(denoted as a triangle in Figure 4) is quite close to the global
best average throughput achieved by fixing 3 parameter val-
ues (blue point). By comparing the two sets of parameters,
we can see that Carver successfully identified the top 2 im-
portant parameters; the final average throughput and relative
standard deviation achieved by the selected top 3 parameters
are quite close to the global optimum. We believe the differ-
ence in the 3™ selection is due to two reasons:

1. In Carver, the definition of parameter importance fo-
cuses on measuring the impact of the parameter on
performance, which can be either positive or negative.
When discussing “optimality” in Figure 4, we only con-
sidered positive impacts.

2. Carver stops after selecting 3 parameters, as the RSD
has already dropped below our 2% threshold at that
point. If we removed the stopping criterion, the 4" pa-
rameter that Carver would select would be Block Group,
which aligns with the globally optimal set of top 4 pa-
rameters, denoted as red dots in Figure 4.

5.4 Carver: Evaluation

All evaluations and analysis in Section 5.2 and 5.3 were con-
ducted on the complete dataset of all possible parameter con-
figurations. However, collecting such datasets for storage
parameters is usually impractical, given the challenges dis-
cussed in Section 2. One design goal of Carver is to select
important parameters while evaluating only a small fraction
of configurations. Carver does so by utilizing Latin Hyper-
cube Sampling (LHS), which has been effective in exploring
system parameter spaces [27,42]. We demonstrate the ef-
fectiveness of Carver’s parameter-selection algorithm from
the following two perspectives: selecting important parame-
ters for I/O throughput (see Section 5.4.1) and latency (see



Section 5.4.2).

5.4.1 Selecting Important Parameters for
Throughput

A critical question is whether Carver can reliably find the im-
portant parameters of a system, and how many experimental
runs are necessary to do so. To answer this question, we used
our entire dataset of experimental runs on Ext4, Fileserver-
default and Btrfs, Fileserver-default to represent the “ground
truth” of which parameters matter. For Ext4, Fileserver-
default, the top 3 important parameters are Journal Option,
Device, and Block Size. For Btrfs, Fileserver-default, they
are Special Option, Node Size, and Device.

We then tested Carver by repeatedly choosing a random
subset of the full dataset, simulating a real-world environ-
ment in which an experimenter would use LHS to choose
configurations to test, and then using the results of those tests
to identify important parameters. In all cases we constrained
the random subset to be compatible with Latin Hypercube
Sampling (LHS), as our hypothetical investigator would do,
and tested whether Carver correctly located the first, second,
and third most important parameters. We varied the size of
the subsets as a percentage of the entire dataset and ran 1,000
iterations of each trial (with different random subsets).

Figure 5 presents the results of running these experiments.
The X1 (bottom) axis shows the percentage of the whole
dataset that was used by Carver, and is in log, scale. The
X2 (top) axis shows the actual running time for benchmark-
ing the selected configurations, and is also in log, scale. The
Y axis shows the fraction of runs that successfully found the
same important parameters as the ground truth. The solid,
dashed, and dotted lines show the results of finding the 1%,
27 and 3" most important parameters, respectively.

Figure 5(a) shows that even with only 0.1% of the dataset
(7 configurations), Carver has a 60% probability of correctly
identifying the most important parameter. When using 0.4%
(26), Carver was able to find the 1% and 2" ranked parameter
in 100% and 99.8% of the 1,000 runs, respectively. Setting
the values of the most important two parameters would al-
ready produce high average throughput (97% of the global
optimum) with high stability (2% of RSD), as shown in Fig-
ure 4. The chance of correctly selecting the third most impor-
tant parameter increases with the percentage of the dataset
used by Carver. With 1% (67) of the dataset, the probability
of correctly finding the 3™ parameter is around 50%, while
sampling 5% (331) successfully identifies the 3™ parameter
in all 1,000 runs.

For Btrfs, shown in Figure 5(b), Carver needed a larger
fraction of the dataset to make correct selections. This is
because Btrfs has only 288 configurations, compared with
6,624 for Ext4. Yet by evaluating only 16% (45) of all con-
figurations, Carver found the 1% and 2" parameters with
greater than 80% probability. Carver identified the 3 pa-
rameter in more than 80% of runs with 31% (90) sampled.
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Figure 6: Carver’s ability to correctly find the top 3 important pa-
rameters for the latency metric within small portions of the dataset.
Experimental settings, graph axes, and legends are the same as in
Figure 5.

5.4.2 Selecting Important Parameters for La-
tency

To further evaluate Carver’s effectiveness in selecting impor-
tant parameters, we collected datasets with latency metrics.
The experimental settings were the same as described in Sec-
tion 5.1. We ran the Fileserver workload on the Ext4 config-
uration with S2 settings (see Table 1). Instead of using the
average 1/0O throughput reported by Filebench, we now used
the average latency. Due to a limitation in Filebench’s cur-
rent implementation, it is difficult to collect and calculate
accurate tail latency numbers, such as the 9gth percentile, so
we leave parameter selection for tail latency as future work.

Figure 6 shows the evaluation results of selecting impor-
tant parameters using the latency metric. The X axis, Y axis,
and legends remain the same as in Figure 5. As shown by
the red line, with barely 0.2% of all configurations evaluated,
Carver was still able to identify the most important param-
eters in more than 800 out of 1,000 runs. With 1.5% (58
configurations) evaluated, Carver was able to correctly pick
the top 2 parameters in almost all the 1,000 runs. Selecting
the third most important parameter required a few more eval-
uation; using 2.5% of the dataset (97 configurations), Carver
successfully identified it in 998 runs.

In sum, Carver is effective in selecting parameters using
only a few evaluations. In our experiments, Carver found the
top 2 important parameters with higher than 80% probability
by evaluating fewer than 50 configurations. Fixing the values
of the most important two parameters can already result in
high and stable system throughput, as shown in Section 5.3.
Carver can find the 3™ parameter with about 50% probability
using only about 50 evaluations. Furthermore, the total run-
ning time for these evaluations is tractable: the worst case,
in Figure 6, is under 4 days. Moreover, auto-tuning a stor-
age system with an optimization algorithms often requires
an initialization phase to explore the whole space [11, 42].
Carver can use the data collected during the initialization
phase to select parameters; in this case, no extra evaluation
needs to be conducted. Integrating Carver with auto-tuning



algorithms is part of our future work.

6 Related Work

Parameter selection for computer systems. There have
been several attempts to select important parameters for var-
ious types of software systems. Aken er al. [70] applied
Lasso to choose important knobs for databases. They con-
verted categorical parameters into binary dummy features
and included polynomial features to deal with parameter
interactions. As discussed in Section 3, Lasso does not
scale well when the system has many categorical parame-
ters. Plackett-Burman (P&B) design of experiments [53] has
been applied to evaluating the impact of parameters in stor-
age benchmarks [51] and databases [18]. However, P&B
assumes that each parameter has only two possible values
and that the target variable is a monotonic function of the
input parameters; neither assumption holds for storage pa-
rameter spaces. Adaptive Sampling [19] and Probabilistic
Reasoning [64] have been applied to evaluating the impact
of database knobs. They either only work for continuous
parameters, or have scalability issues in high-dimensional
spaces. In comparison, Carver applies variance-based met-
rics for storage-parameter importance. To the best of our
knowledge, we have conducted the first thorough quanti-
tative study of storage-parameter importance by evaluating
Carver on datasets collected from a variety of file systems
and workloads. Carver also provides insights into the inter-
actions between parameters.

Auto-tuning storage systems. Several researchers have
built systems to automate storage-system tuning. Strunk
et al. [63] applied Genetic Algorithms (GAs) to auto-
mate storage-system provisioning. Babak et al. [4] used
GAs to optimize the I/O performance of HDF5 applica-
tions. GAs have also been applied to storage-recovery prob-
lems [32]. Deep Q-Networks have been successfully ap-
plied in optimizing performance for Lustre [40]. More re-
cently, Madireddy et al. applied a Gaussian process-based
machine learning algorithm to model Lustre’s I/O perfor-
mance and its variability [44]. Our own previous work [11]
provided a comparative study of applying multiple opti-
mization algorithms to auto-tune storage systems. However,
many auto-tuning algorithms have scalability issues in high-
dimensional spaces [61], which is one of the motivations for
Carver. Selecting the important subset of parameters could
reduce the search space dramatically, which would then ben-
efit either auto-tuning algorithms or manual tuning by ex-
perts.

General feature selection. Many feature-selection tech-
niques have been proposed in various disciplines. Li et
al. [39] provide a thorough summary and comparison for
most state-of-the-art feature-selection algorithms. Based on
our arguments in Section 3, we chose to use variance-based
metrics for storage-parameter selection.

7 Conclusions

Modern storage systems come with many parameters that af-
fect their behavior. Tuning parameter settings can bring sig-
nificant performance gains, but both manual tuning by ex-
perts and automated tuning have difficulty dealing with large
numbers of parameters and configurations. In this paper, we
propose Carver, which addresses this problem with the fol-
lowing three contributions:

1. Carver uses a variance-based metric for quantifying
storage parameter importance, and proposes a greedy
yet efficient parameter-selection algorithm.

2. To the best of our knowledge, we provide the first thor-
ough study of storage-parameter importance. We evalu-
ated Carver across multiple datasets (chosen from more
than 500,000 experimental runs) and showed that there
is always a small subset of parameters that have the
most impact on performance—but that the set of impor-
tant parameters changes with different workloads, and
that there are interactions between parameters.

3. We demonstrated Carver’s efficiency by testing it on
small fractions of the configuration space. This effi-
ciency gives Carver the potential to be easily applied to
new systems and environments and to identify impor-
tant parameters in a short time, with a small number of
configuration evaluations.

In the future, we plan to extend Carver to support other
parameter-selection techniques, such as Group Lasso [14,34,
74] and ANOVA [9,13,38,72]. We will evaluate and improve
Carver with more optimization objectives (e.g., reliability),
and even larger storage-parameter spaces. Currently Carver
can only measure storage importance for one objective at
a time (e.g., throughput, latency). We plan to investigate
how to extend Carver’s parameter selection algorithm into
the problem of multi-objective optimization [17]. We also
plan to integrate Carver with auto-tuning algorithms [11].
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