
Published as a conference paper at ICLR 2020

HYPER-SAGNN: A SELF-ATTENTION BASED GRAPH
NEURAL NETWORK FOR HYPERGRAPHS

Ruochi Zhang
School of Computer Science
Carnegie Mellon University

Yuesong Zou
School of Computer Science
Carnegie Mellon University
IIIS, Tsinghua University

Jian Ma
School of Computer Science
Carnegie Mellon University
jianma@cs.cmu.edu

ABSTRACT

Graph representation learning for hypergraphs can be used to extract patterns
among higher-order interactions that are critically important in many real world
problems. Current approaches designed for hypergraphs, however, are unable to
handle different types of hypergraphs and are typically not generic for various
learning tasks. Indeed, models that can predict variable-sized heterogeneous hy-
peredges have not been available. Here we develop a new self-attention based
graph neural network called Hyper-SAGNN applicable to homogeneous and het-
erogeneous hypergraphs with variable hyperedge sizes. We perform extensive
evaluations on multiple datasets, including four benchmark network datasets and
two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN
significantly outperforms the state-of-the-art methods on traditional tasks while
also achieving great performance on a new task called outsider identification.
Hyper-SAGNN will be useful for graph representation learning to uncover com-
plex higher-order interactions in different applications.

1 INTRODUCTION

Graph structure is a widely used representation for data with complex interactions. Learning
on graphs has also been an active research area in machine learning on how to predict or dis-
cover patterns based on the graph structure (Hamilton et al., 2017b). Although existing meth-
ods can achieve strong performance in tasks such as link prediction and node classification,
they are mostly designed for analyzing pair-wise interactions and thus are unable to effectively
capture higher-order interactions in graphs. In many real-world applications, however, rela-
tionships among multiple instances are key to capturing critical properties, e.g., co-authorship
involving more than two authors or relationships among multiple heterogeneous objects such
as “(human, location, activity)”. Hypergraphs can be used to represent higher-order interac-
tions (Zhou et al., 2007). To analyze higher-order interaction data, it is straightforward to ex-
pand each hyperedge into pair-wise edges with the assumption that the hyperedge is decomposable.

Corresponding
Author (node)
Coauthor (node)

Coauthorship (hyperedge)

Figure 1: An example of the co-
authorship hypergraph. Here authors are
represented as nodes (in dark blue and
light blue) and coauthorships are repre-
sented as hyperedges.

Several previous methods were developed based on this no-
tion (Sun et al., 2008; Feng et al., 2018). However, earlier
work DHNE (Deep Hyper-Network Embedding) (Tu et al.,
2018) suggested the existence of heterogeneous indecom-
posable hyperedges where relationships within an incom-
plete subset of a hyperedge do not exist. Although DHNE
provides a potential solution by modeling the hyperedge di-
rectly without decomposing it, due to the neural network
structure used in DHNE, the method is limited to the fixed
type and fixed-size heterogeneous hyperedges and is unable
to consider relationships among multiple types of instances
with variable size. For example, Fig. 1 shows a heteroge-
neous co-authorship hypergraph with two types of nodes
(corresponding author and coauthor). Due to the variable number of both authors and corresponding
authors in a publication, the hyperedges (co-authorship) have different sizes or types. Unfortunately,
methods for representation learning of heterogeneous hypergraph with variable-sized hyperedges,
especially those that can predict variable-sized hyperedges, have not been developed.

1

Published as a conference paper at ICLR 2020

In this work, we developed a self-attention based graph neural network, called Hyper-SAGNN that
can work with both homogeneous and heterogeneous hypergraphs with variable hyperedge size.
Using the same datasets in the DHNE paper (Tu et al., 2018), we demonstrated the advantage of
Hyper-SAGNN over DHNE in multiple tasks. We further tested the effectiveness of the method in
predicting edges and hyperedges and showed that the model can achieve better performance from
the multi-tasking setting. We also formulated a novel task called outsider identification and showed
that Hyper-SAGNN performs strongly. Importantly, as an application of Hyper-SAGNN to single-
cell genomics, we were able to learn the embeddings for the most recently produced single-cell
Hi-C (scHi-C) datasets to uncover the clustering of cells based on their 3D genome structure (Ra-
mani et al., 2017; Nagano et al., 2017). We showed that Hyper-SAGNN achieved improved results
in identifying distinct cell populations as compared to existing scHi-C clustering methods. Taken
together, Hyper-SAGNN can significantly outperform state-of-the-art methods and can be applied
to a wide range of hypergraphs for different applications.

2 RELATED WORK

Deep learning based models have been developed recently to generalize from graphs to hyper-
graphs (Gui et al., 2016; Tu et al., 2018). The HyperEdge Based Embedding (HEBE) method (Gui
et al., 2016) aims to learn the embeddings for each object in a specific heterogeneous event by rep-
resenting it as a hyperedge. However, as demonstrated in Tu et al. (2018), HEBE does not perform
well on sparse hypergraphs. Notably, previous methods typically decompose the hyperedge into
pair-wise relationships where the decomposition methods can be divided into two categories: ex-
plicit and implicit. For instance, given a hyperedge (v1, v2, v3), the explicit approach would decom-
pose it directly into three edges, (v1, v2), (v2, v3), (v1, v3), while the implicit approach would add
a hidden node e representing the hyperedge before decomposition, i.e., (v1, e), (v2, e), (v3, e). The
deep hypergraph embedding (DHNE) model, however, directly models the tuple-wise relationship
using MLP (Multilayer Perceptron). The method is able to achieve better performance on multiple
tasks as compared to other methods designed for graphs or hypergraphs such as Deepwalk (Per-
ozzi et al., 2014), node2vec (Grover & Leskovec, 2016), and HEBE. Unfortunately, the structure of
MLP takes fixed-size input, making DHNE only capable of handling k-uniform hypergraphs, i.e.,
hyperedges containing k nodes. To use DHNE for non-k-uniform hypergraphs or hypergraphs with
different types of hyperedges, a function for each type of hyperedges needs to be trained individu-
ally, which leads to significant computational cost and loss of the capability to generalize to unseen
types of hyperedges. Similarly, heterogeneous hyper-network embedding (Baytas et al., 2018) also
used MLP as part of the model which requires fixed size input to train the model. Another recent
method, hyper2vec (Huang et al., 2019), can also generate embeddings for nodes within the hyper-
graph and outperforms other hypergraph embedding methods such as HGE (Yu et al., 2018) in the
node classification task. However, hyper2vec cannot solve the link prediction problem directly as
it only generates the embeddings of nodes in an unsupervised manner without a learned function
to map from embeddings of nodes to hyperedges. Also, for k-uniform hypergraphs, hyper2vec is
equivalent to node2vec, which cannot capture the high-order network structures for indecomposable
hyperedges (as shown in Tu et al. (2018)). Moreover, graph neural network based methods (Yadati
et al., 2018; Feng et al., 2019; Bai et al., 2019) have been proposed to generalize the convolution
operation or attention mechanism from graphs to hypergraphs. However, these methods mainly fo-
cus on the hypergraphs where node attributes are known and are typically used for semi-supervised
node classification tasks. Similar to hyper2vec, these methods cannot be directly used for predicting
hyperedges. Our Hyper-SAGNN in this work addresses all these challenges with a self-attention
based graph neural network that can learn embeddings of the nodes and predict hyperedges for
non-k-uniform heterogeneous hypergraphs.

3 METHOD

3.1 DEFINITIONS AND NOTATIONS

Definition 1. (Hypergraph) A hypergraph is defined as G = (V,E), where V = {v1, ..., vn}
represents the set of nodes in the graph, and E = {ei = (v

(i)
1 , ..., v

(i)
k)} represents the set of

hyperedges. For any hyperedge e, it can contain more than two nodes (i.e., δ(e) ≥ 2). If all
hyperedges within a hypergraph have the same size of k, it is called a k-uniform hypergraph. Note

2

Published as a conference paper at ICLR 2020

that even if a hypergraph is k-uniform, it can still have different types of hyperedges because the
node type can vary for nodes within the hyperedges.
Definition 2. (The hyperedge prediction problem) We formally define the hyperedge prediction
problem. For a given tuple (v1, v2, ..., vk), our goal is to learn a function f that satisfies:

f(v1, v2, ..., vk) =

{
≥ s, if (v1, v2, ..., vk) ∈ E
< s, if (v1, v2, ..., vk) /∈ E (1)

where s is the threshold to binarize the continuous value of f into a label, which indicates whether
the tuple is an hyperedge or not. Specifically, when we are given the pre-trained embedding vectors
or the features of nodes X = {x1, ..., xi}, we can rewrite this function as:

f(v1, v2, ..., vk) , f(g(x1), g(x2), ..., g(xk)) (2)

where the vectors g(xi) can be considered as the fine-tuned embedding or embedding vectors for
the nodes. For convenience, we refer to xi as the features and g(xi) as the learned embeddings.

3.2 STRUCTURE OF HYPER-SAGNN

Our goal is to learn the functions f and g that take tuples of node features (x1, ..., xk) as in-
put and produce the probability of these nodes forming a hyperedge. Without the assumption
that the hypergraph is k-uniform and the type of each hyperedge is identical, we require that f
can take variable-sized, non-ordered input. Although simple functions such as average pooling
f(g(x1), ..., g(xk)) =

1
K

∑k
i=1 g(xi) satisfy this tuple-wise condition, previous work showed that

the linear function is not sufficient to model this relationship (Tu et al., 2018). DHNE used an
MLP to model the non-linear function, but it requires that an individual function needs to be trained
for different types of hyperedges. Here we propose a new method to tackle the general hyperedge
prediction problem.

Figure 2: Structure of the neural network used in Hyper-
SAGNN. The input (~x1, ~x2, ..., ~xk), representing the features
for nodes 1 to k, passes through two branches of the network
resulting in static embeddings (~s1, ~s2, ..., ~sk) and dynamic em-
beddings (~d1, ~d2, ..., ~dk), respectively. The layer for generat-
ing dynamic embeddings is the multi-head attention layer. An
example for its mechanism on node 1 here is shown in the
figure as well. Then the pseudo-euclidean distance of each
pair of static and dynamic embeddings is calculated by one-
layered position-wise feed-forward network to produce proba-
bility scores (p1, p2, ..., pk). These scores are further averaged
to represent whether this group of nodes form a hyperedge.

Graph neural network based methods
such as GraphSAGE (Hamilton et al.,
2017a) typically define a unique com-
putational graph for each node, al-
lowing it to perform efficient informa-
tion aggregation for nodes with differ-
ent degrees. Graph Attention Network
(GAT) (Veličković et al., 2017) utilizes
a self-attention mechanism in the infor-
mation aggregation process. Motivated
by these properties, we propose our
method Hyper-SAGNN based on the
self-attention mechanism within each
tuple to learn the function f .

We first briefly introduce the self-
attention mechanism. We use the same
terms as the self-attention mechanism
described in Vaswani et al. (2017);
Veličković et al. (2017). Given a group
of nodes (~x1, ~x2, ..., ~xk) and weight
matrices WQ,WK ,WV that represent
linear transformations of features be-
fore applying the dot-product attention
to be trained, we first compute the at-
tention coefficients that reflect the pair-
wise importance of nodes:

eij =
(
WT
Qxi

)T (
WT
Kxj

)
, ∀1 ≤ i, j ≤ k (3)

We then normalize eij by all possible j within the tuple through the softmax function, i.e.,

αij =
exp(eij)∑

1≤l≤k exp(eil)
(4)

3

Published as a conference paper at ICLR 2020

Finally, a weighted sum of the transformed features with an activation function is calculated:

~di = tanh

 ∑
1≤j≤k,i6=j

αijW
T
V xj

 (5)

In GAT, each node is applied to the self-attention mechanism usually with all its first-order neigh-
bors. In Hyper-SAGNN, we aggregate the information for a node vi only with its neighbors for a
given tuple. The structure of Hyper-SAGNN is illustrated in Fig. 2.

The input to our model can be represented as tuples, i.e., (~x1, ~x2, ..., ~xk). Each tuple first passes
through a position-wise feed-forward network to produce (~s1, ~s2, ..., ~sk), where ~si = tanh(WT

s ~xi).
We refer to each ~si as the static embedding for node i since it remains the same for node i no matter
what the given tuple is. The tuple also passes through a multi-head graph attention layer to produce
a new set of node embedding vectors (~d1, ~d2, ..., ~dk), which we refer to as the dynamic embeddings
because they are dependent on all the node features within this tuple.

Note that unlike the standard attention mechanism described above, when calculating ~di, we require
that j 6= i in Eqn. (5). In other words, we exclude the term αiiW

T
V xi in the calculation of dynamic

embeddings. Based on our results we found that including ~αii would lead to either similar or worse
performance in terms of hyperedge prediction and node classification (see Appendix A.6 for details).
We will elaborate on the motivation of this choice later in this section.

With the static and dynamic embedding vectors for each node, we calculate the Hadamard power
(element-wise power) of the difference of the corresponding static/dynamic pair. It is then fur-
ther passed through a one-layered neural network with sigmoid as the activation function to pro-
duce a probability score pi. Finally, all the output pi ∈ [0, 1] is averaged to get the final p, i.e.,

Figure 3: Illustration of the method for generating
node features for node i in the hypergraph. In the
walk based approach, a biased random walk on hy-
pergraphs is used to produce walking paths (the yel-
low circles in the walking paths represent node i).
These walks are further used to train a skip-gram
model to generate features. In the encoder based
approach, the i-th row of the adjacency matrix (as
shown in the figure where the orange/white blocks
represent whether or not node i is adjacent to other
nodes in the graph) is used as the input to an auto-
encoder. The output of the encoder part is used as the
features for node i.

oi =WT
o ((~di − ~si)◦2) + b (6)

p =
1

K

k∑
i=1

pi =
1

K

k∑
i=1

σ(oi) (7)

By design, oi can be regarded as the squared
weighted pseudo-euclidean distance between the
static embedding ~si and the dynamic one ~di. It
is called pseudo-euclidean distance because we
do not require the weight to be non-zero or to
sum up to 1. One rationale for allowing nega-
tive weights when calculating the distance could
be the Minkowski space where the distance is de-
fined as d2 = x2 + y2 + z2 − t2. Therefore, for
these high-dimensional embedding vectors, we
do not specifically treat them as euclidean vec-
tors.

Our network essentially aims to build the
correlation of the average “distance” of the
static/dynamic embedding pairs with the proba-
bility of the node group forming a hyperedge.
Since the dynamic embedding is the weighted
sum of features (with potential non-linear trans-
formation) from neighbors within the tuple, this
“distance” reflects how well the static embedding
of each node can be approximated by the features
of their neighbors within that tuple. This design
strategy shares some similarities with the CBOW
model in natural language processing (Mikolov
et al., 2013), where the model aims to predict the target word given its context (see Appendix A.5
for the analysis of the static/dynamic embedding pairs). In principle, we could still include the ~αii

4

Published as a conference paper at ICLR 2020

term to obtain the embedding ~d∗i . Alternatively, we can directly pass ~d∗i through a fully connected
layer to produce p∗i while the rest remains the same. However, we argue that our proposed model
would be able to produce si that can be directly used for tasks such as node classification while the
alternative approach is unable to achieve that (see Appendix A.6 for detailed analysis).

3.3 APPROACHES FOR GENERATING FEATURES

In an inductive learning setting with known attributes for the nodes, ~xi can just be the attributes of
the node. However, in a transductive learning setting without knowing the attributes of the nodes,
we have to generate ~xi based on the graph structure solely. Here we use two existing strategies to
generate features ~xi. As shown in Fig. 3, the first approach is the random walk based method. We
designed a biased random walk scheme for nodes in hypergraphs and used that to sample walks.
Then, similar to node2vec, a skip-gram model is trained to generate features. The second approach
is the encoder based approach where the corresponding row of the adjacency matrix is used as
the features. The features are further passed through an autoencoder-like structure to reduce the
dimensionality with the output of the hidden layer used as the features. The detailed description of
these two approaches can be found in Appendix A.1.

4 RESULTS

We sought to compare Hyper-SAGNN with the state-of-the-art method DHNE as it has already
been demonstrated with superior performance over previous algorithms such as DeepWalk, LINE,
and HEBE. We first used the same four datasets in the DHNE paper to have a direct comparison. The
details on these datasets can be found in the Appendix A.2. The details on the parameters used in
this section for both Hyper-SAGNN and other methods can also be found in the Appendix A.3. The
details of the tasks and the evaluation metrics used in this section are explained in the Appendix A.4.

4.1 PERFORMANCE COMPARISON WITH EXISTING METHODS

We evaluated the effectiveness of our embedding vectors and the learned function with the network
reconstruction task. We compared our Hyper-SAGNN using the encoder based approach and also
the model using the random walk based pre-trained embeddings against DHNE and the baseline
node2vec. We first trained the model and then used the learned embeddings to predict the hyper-
edges of the original network. We sampled the negative samples to be 5 times the amount of the
positive samples following the same setup of DHNE. We evaluated the performance based on both
the AUROC (Area Under the Receiver Operating Characteristic curve) and the AUPR (Area under
the Precision-Recall curve). As shown in Table 1, Hyper-SAGNN can capture the network structure
better than DHNE over all datasets either using the encoder based approach or the random walk
based approach.

Table 1: AUC and AUPR values for network reconstruction. The models trained with the random walk
based approach and the encoder based approach are marked as Hyper-SAGNN-W and Hyper-SAGNN-E,
respectively.

GPS MOVIELENS DRUG WORDNET
AUC AUPR AUC AUPR AUC AUPR AUC AUPR

node2vec-mean 0.572 0.188 0.557 0.197 0.668 0.246 0.613 0.215
node2vec-min 0.570 0.187 0.535 0.186 0.682 0.257 0.576 0.201
DHNE 0.959 0.836 0.974 0.878 0.952 0.873 0.989 0.953
Hyper-SAGNN-E 0.971 0.877 0.991 0.952 0.977 0.916 0.989 0.950
Hyper-SAGNN-W 0.976 0.857 0.998 0.986 0.988 0.945 0.994 0.956

We further assessed the performance of Hyper-SAGNN on the hyperedge prediction task. We ran-
domly split the hyperedge set into training and testing set by a ratio of 4:1. The way to generate
negative samples is the same as the network reconstruction task. As shown in Table 2, our model
again achieves significant improvement over DHNE for predicting the unseen hyperedges. The most
significant improvement is from the wordnet dataset, which is about a 24.6% increase on the AUPR
score. For network reconstruction and hyperedge prediction tasks, the difference between the ran-
dom walk based Hyper-SAGNN and the encoder based Hyper-SAGNN is minor.

In addition to the tasks related to the prediction of hyperedges, we also evaluated whether the learned
embeddings are effective for node classification tasks. A multi-label classification experiment and
a multi-class classification experiment were carried out for the MovieLens dataset and the wordnet
dataset, respectively. We used Logistic Regression as the classifier. The proportion of the training

5

Published as a conference paper at ICLR 2020

0.2 0.4 0.6 0.8 0.02 0.04 0.06 0.08 0.2 0.4 0.6 0.8 0.02 0.04 0.06 0.08

DHNE
Hyper-SAGNN-W
Hyper-SAGNN-E
Hyper-SAGNN-W(mix)
Hyper-SAGNN-E(mix)

wordnet Macro F1MovieLens Macro F1wordnet Micro F1MovieLens Micro F1

0.36

0.40

0.44

0.48

0.40

0.50

0.60

0.20

0.24

0.28

0.32

0.25

0.35

0.45

0.55

Figure 4: Performance of classification on MovieLens and wordnet datasets. Hyper-SAGNNs trained with
the random walk based approach and the encoder based approach are marked as Hyper-SAGNN-W, Hyper-
SAGNN-E, respectively. The models trained with a mix of edges and hyperedges are denoted with “(mix)”.

data was chosen to be from 10% to 90% for the MovieLens dataset, and 1% to 10% for the wordnet
dataset. We used averaged Mirco-F1 and Macro-F1 to evaluate the performance. The results are in
Fig. 4. We observed that Hyper-SAGNN consistently achieves both higher Micro-F1 and Macro-F1
scores over DHNE for different fractions of the training data. Also, Hyper-SAGNN based on the
random walk generally achieves the best performance (Hyper-SAGNN-W in Fig. 4).

4.2 PERFORMANCE ON NON-k-UNIFORM HYPERGRAPH

Next, we evaluated Hyper-SAGNN using the non-k-uniform heterogeneous hypergraph. For the
above four datasets, we decomposed each hyperedge into 3 pairwise edges and added them to
the existing graph. We trained our model to predict both the hyperedges and the edges (i.e., non-
hyperedges). We then evaluated the performance for link prediction tasks for both the hyperedges
and the edges. We also performed the node classification task following the same setting as above.
The results for link prediction are in Table 2. Fig. 4 shows the results for the node classification task.

Table 2: Performance evaluation based on AUROC and AUPR for hyperedge/edge prediction. Methods
with annotation (mix) represent Hyper-SAGNN trained with a mixture of edges and hyper-edges. Datasets
marked with “(2)” represent the performance on pair-wise edge prediction (i.e., non-hyperedges).

GPS MOVIELENS DRUG WORDNET
AUC AUPR AUC AUPR AUC AUPR AUC AUPR

node2vec - mean 0.563 0.191 0.562 0.197 0.670 0.246 0.608 0.213
node2vec - min 0.570 0.185 0.539 0.186 0.684 0.258 0.575 0.200
DHNE 0.910 0.668 0.877 0.668 0.925 0.859 0.816 0.459
Hyper-SAGNN-E 0.952 0.798 0.926 0.793 0.961 0.895 0.890 0.705
Hyper-SAGNN-W 0.922 0.722 0.930 0.810 0.955 0.892 0.880 0.706
Hyper-SAGNN-E (mix) 0.950 0.795 0.928 0.799 0.956 0.887 0.881 0.694
Hyper-SAGNN-W (mix) 0.920 0.720 0.929 0.811 0.950 0.889 0.884 0.684

GPS (2) MOVIELENS (2) DRUG (2) WORDNET (2)
AUC AUPR AUC AUPR AUC AUPR AUC AUPR

Hyper-SAGNN-E (mix) 0.921 0.899 0.971 0.967 0.981 0.973 0.891 0.897
Hyper-SAGNN-W (mix) 0.931 0.910 0.999 0.999 0.999 0.999 0.923 0.916

We observed that Hyper-SAGNN can preserve the graph structure on different levels. Compared
to training the model with hyperedges only, including the edges into the training would not cause
obvious changes in performance for hyperedge predictions (about a 1% fluctuation for AUC/AUPR).

We then further assessed the model in a new evaluation setting where there are adequate edges but
only a few hyperedges presented. We asked whether the model can still achieve good performance
on the hyperedge prediction based on this dataset. This scenario is possible in real-world appli-
cations especially when the dataset is combined from different sources. For example, in the drug
dataset, it is possible that, in addition to the (user, drug, reaction) hyperedges, there are also extra
edges that come from other sources, e.g., (drug, reaction) edges from the drug database, (user, drug)
and (user, reaction) edges from the medical record. Here for each dataset that we tested, we used
50% of the edges and only 5% of the hyperedges to train the model. The results are in Fig. 5.

When using only the edges to train the model, our method still achieves higher AUROC and AUPR
score for hyperedge prediction as compared to node2vec (Table 2). We found that when the model
is trained with both the downsampled hyperedge dataset and the edge dataset, it would be able to
reach higher performance or suffer less from overfitting than being trained with each of the datasets
individually. This demonstrates that our model can capture the consensus information on the graph
structure across different sizes of hyperedges.

6

Published as a conference paper at ICLR 2020

0.86

0.90

0.90

0.92

0.94

0.55

0.65

0.75

0 10 20 30

0.55

0.65

0.75

0 10 20 30

0.60

0.64

0 10 20 30

0.75

0.85

0 10 20

0.25

0.35

Both
Edge Only
Hyperedge Only

AUROC of wordnet AUROC of drug AUROC of GPSAUROC of MovieLens

AUPR of wordnet AUPR of drug AUPR of GPSAUPR of MovieLens

0.86

0.90

0.84

30

Figure 5: AUROC and AUPR scores of Hyper-SAGNN for hyperedge prediction on the downsampled
dataset over training epochs.

4.3 OUTSIDER IDENTIFICATION

In addition to the standard link prediction and node classification, we further formulated a new
task called “outsider identification”. Previous methods such as DHNE can answer the question of
whether a specific tuple of nodes (v1, v2, ..., vk) form a hyperedge. However, in many settings,
we might also want to know the reason why this group of nodes will not form a hyperedge. We
first define the outsider of a group of nodes as follows. Node vi is the outsider of the node group
(v1, v2, ..., vk) if it satisfies:

∃e ∈ E, (v1, v2, ..., vi−1, vi+1, ..., vk) ∈ e (8)
@e ∈ E, s.t. ∃j ∈ {1, 2, .., k}, j 6= i, (vi, vj) ∈ e (9)

We speculated that Hyper-SAGNN can answer this question by analyzing the probability score p1
to pk (defined in Eqn. 7). We assume that the node vi with the smallest pi would be the outsider.
We then set the evaluation as follows. We first trained the model as usual, but at the final stage, we
replaced the average pooling layer with the min pooling layer and fine-tuned the model for several
epochs. We then fed the generated triplets with known outsider node into the trained model and
calculated the top-k accuracy of the outsider node matching the node with the smallest probabil-
ity. Because this task is based on the prediction results of the hyperedges, we only tested on the
dataset that achieves the best hyperedge prediction, i.e., the drug dataset. We found that we have
81.9% accuracy for the smallest probability and 95.3% accuracy for the top-2 smallest probability.
These results show that by switching the pooling layer we would have better outsider identification
accuracy (from 78.5% to 81.9%) with the cost of slightly decreased hyperedge prediction perfor-
mance (AUC from 0.955 to 0.935). This demonstrates that our model is able to accurately predict
the outsider within the group even without further labeled information. Moreover, the performance
of outsider identification can be further improved if we include the cross-entropy between pi and the
label of whether vi is an outsider for all applicable triplets in the loss term. Together, these results
show the advantage of Hyper-SAGNN in terms of the interpretability of hyperedge prediction.

4.4 APPLICATION TO SINGLE-CELL HI-C DATASETS

We next applied Hyper-SAGNN to the recently produced single-cell Hi-C (scHi-C) datasets (Ra-
mani et al., 2017; Nagano et al., 2017). Genome-wide mapping of chromatin interactions by Hi-
C (Lieberman-Aiden et al., 2009; Rao et al., 2014) has enabled comprehensive characterization of
the 3D genome organization that reveals patterns of chromatin interactions between genomic loci.
However, unlike bulk Hi-C data where signals are aggregated from cell populations, scHi-C pro-
vides unique information about chromatin interactions at single-cell resolution, thus allowing us to
ascertain cell-to-cell variation of the 3D genome organization. Specifically, we propose that scHi-C
makes it possible to model the cell-to-cell variation of chromatin interaction as a hyperedge, i.e.,
(cell, genomic locus, genomic locus). Note that the hyperedege here is “partially non-ordered”,
namely (cell i, locus j, locus k) should be equivalent to (cell i, locus k, locus j). Our method is
able to guarantee that while DHNE cannot achieve that directly. For the analysis of scHi-C, the

7

Published as a conference paper at ICLR 2020

most common strategy would be revealing the cell-to-cell variation by embedding the cells based
on the contact matrix and then applying the clustering algorithms such as K-means clustering on
the embedded vectors. We performed the following evaluation to assess the effectiveness of Hyper-
SAGNN on learning the embeddings of cells by representing the scHi-C data as hypergraphs.

We tested Hyper-SAGNN on two datasets. The first one consists of scHi-C from four human cell
lines: HAP1, GM12878, K562, and HeLa (Ramani et al., 2017). The second one includes the scHi-
C that represents the cell cycle of the mouse embryonic stem cells (Nagano et al., 2017). We refer
to the first dataset as “Ramani et al. data”, and the second as “Nagano et al. data” for abbreviation.
We trained Hyper-SAGNN with the corresponding datasets. Due to the large average degrees of
cell nodes, the random walk approach would take an extensive amount of time to sample the walks.
Thus, we only applied the encoder version of our method. We visualize the learned embeddings by
reducing them to 2 dimensions with PCA and UMAP (McInnes et al., 2018) (Fig. 6A-D).

We quantified the effectiveness of the embeddings by applying K-means clustering on the Ramani
et al. data and evaluating with Adjusted Rand Index (ARI). In addition, we also assessed the ef-
fectiveness of the embeddings with a supervised scenario. We used Logistic Regression as the
classifier with 10% of the cell as training samples and evaluated the multi-class classification task
with Micro-F1 and Macro-F1. We did not run K-means clustering on the Nagano et al. data as it
represents a state of continuous cell cycle which is not suitable for a clustering task. We instead used
the metric ACROC (Average Circular ROC) developed in the HiCRep/MDS paper (Liu et al., 2018)
to evaluate the performance of the three methods on the Nagano et al. data. We compared the per-
formance with two recently developed computational methods based on dimensionality reduction of
the contact matrix, HiC-Rep/MDS (Liu et al., 2018) and scHiCluster (Zhou et al., 2019). Because
Hyper-SAGNN is not a deterministic method for generating embeddings for scHi-C, we repeated
the training process 5 times and averaged the score. All these results are in Fig. 6E.

HeLa
HAP1
GM12878
K562

G1HeLa
mid-S

early-S
late-S/G2

A

B

C

D

UMAP - Ramani et al. Dataset UMAP - Nagano et al. Dataset

PCA - Nagano et al. Dataset PCA - Ramani et al. Dataset

Ramani et al.
Micro-F1

Ramani et al.
ARI

Nagano et al.
ACROC

Ramani et al.
Macro-F1

Hyper-SAGNN
HiC-Rep/MDS
scHiCluster

Sc
or

e
Sc

or
e

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.97

0.74

0.93

0.42

0.80

0.93 0.93

0.75

0.87

0.88

0.26

0.80

E

Figure 6: (A) and (B): Visualization of the learned embedding based on Hyper-SAGNN for the Ramani
et al. data. (C) and (D): Visualization of the learned embedding based on Hyper-SAGNN for the Nagano
et al. data. Embedding vectors are projected to two dimensional space using either UMAP or PCA. (E):
Quantitative evaluation of the Hyper-SAGNN on two scHi-C datasets

For the Ramani et al. data (Fig. 6A-B), the visualization of the embedding vectors learned by Hyper-
SAGNN exhibits clear patterns that cells with the same cell type are clustered together. Moreover,
cell line HAP1, GM12878, and K562 are all blood-related cell lines, which are likely to be more
similar to each other in terms of 3D genome organization as compared to HeLa. Indeed, we observed
that they are also closer to each other in the embedding space. Quantitative results in Fig. 6E
are consistent with the visualization as our method achieves the highest ARI, Micro-F1, Macro-
F1 score among all three methods. For the Nagano et al. data, as shown in Fig. 6C-D, we found
that the embeddings exhibit a circular pattern that corresponds to the cell cycle. Also, both HiC-
Rep/MDS and Hyper-SAGNN achieve high ACROC scores. All these results show the effectiveness
of representing the scHi-C datasets as hypergraphs using Hyper-SAGNN, which has great potential
to provide insights into the cell-to-cell variation of higher-order genome organization.

8

Published as a conference paper at ICLR 2020

5 CONCLUSION

In this work, we developed a new graph neural network called Hyper-SAGNN for the representation
learning of general hypergraphs. The model has the flexibility to deal with homogeneous and het-
erogeneous, and uniform and non-uniform hypergraphs. We demonstrated that Hyper-SAGNN can
improve or match state-of-the-art performance for hypergraph representation learning while address-
ing the shortcomings of prior methods such as the inability to predict hyperedges for non-k-uniform
heterogeneous hypergraphs. Hyper-SAGNN is computationally efficient as the input size to the
attention layer is bounded by the maximum hyperedge size as opposed to the number of neighbors.

One potential improvement of Hyper-SAGNN as future work would be to allow information aggre-
gation over all the first-order neighbors before calculating the static/dynamic embeddings for a node
with the additional computational cost. With this design, the static embedding for a node would still
satisfy our constraint that it is fixed for a known hypergraph with varying input tuples. This would
allow us to incorporate previously developed methods on graphs, such as GraphSAGE (Hamilton
et al., 2017a) and GCN (Kipf & Welling, 2016), as well as methods designed for hypergraphs like
HyperGCN (Yadati et al., 2018) into this framework for better link prediction performance. Such
improvement may also extend the application of Hyper-SAGNN to semi-supervised learning.

ACKNOWLEDGMENT

J.M. acknowledges support from the National Institutes of Health Common Fund 4D Nucleome
Program grant U54DK107965, National Institutes of Health grant R01HG007352, and National
Science Foundation grant 1717205. Y.Z. (Yao Class, IIIS, Tsinghua University) contributed to this
work as a visiting undergraduate student at Carnegie Mellon University during summer 2019.

9

Published as a conference paper at ICLR 2020

REFERENCES

Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
arXiv preprint arXiv:1901.08150, 2019.

Inci M Baytas, Cao Xiao, Fei Wang, Anil K Jain, and Jiayu Zhou. Heterogeneous hyper-network
embedding. In 2018 IEEE International Conference on Data Mining (ICDM), pp. 875–880. IEEE,
2018.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in Neural Information
Processing Systems 26, pp. 2787–2795. Curran Associates, Inc., 2013.

Fuli Feng, Xiangnan He, Yiqun Liu, Liqiang Nie, and Tat-Seng Chua. Learning on partial-order hy-
pergraphs. In Proceedings of the 2018 World Wide Web Conference, pp. 1523–1532. International
World Wide Web Conferences Steering Committee, 2018.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3558–3565,
2019.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge Discovery and Data Mining,
pp. 855–864. ACM, 2016.

Huan Gui, Jialu Liu, Fangbo Tao, Meng Jiang, Brandon Norick, and Jiawei Han. Large-scale em-
bedding learning in heterogeneous event data. In 2016 IEEE 16th International Conference on
Data Mining (ICDM), pp. 907–912. IEEE, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017b.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4):19:1–19:19, December 2015. ISSN 2160-6455.

Jie Huang, Chuan Chen, Fanghua Ye, Jiajing Wu, Zibin Zheng, and Guohui Ling. Hyper2vec:
Biased random walk for hyper-network embedding. In International Conference on Database
Systems for Advanced Applications, pp. 273–277. Springer, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Erez Lieberman-Aiden, Nynke L Van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy,
Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O Dorschner, et al. Comprehen-
sive mapping of long-range interactions reveals folding principles of the human genome. Science,
326(5950):289–293, 2009.

Jie Liu, Dejun Lin, Galip Gürkan Yardımcı, and William Stafford Noble. Unsupervised embedding
of single-cell hi-c data. Bioinformatics, 34(13):i96–i104, 2018.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Repre-
sentations in Vector Space. arXiv e-prints, art. arXiv:1301.3781, Jan 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems
26, pp. 3111–3119. Curran Associates, Inc., 2013.

10

Published as a conference paper at ICLR 2020

Takashi Nagano, Yaniv Lubling, Csilla Várnai, Carmel Dudley, Wing Leung, Yael Baran,
Netta Mendelson Cohen, Steven Wingett, Peter Fraser, and Amos Tanay. Cell-cycle dynamics
of chromosomal organization at single-cell resolution. Nature, 547(7661):61, 2017.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
Discovery and Data Mining, pp. 701–710. ACM, 2014.

Vijay Ramani, Xinxian Deng, Ruolan Qiu, Kevin L Gunderson, Frank J Steemers, Christine M
Disteche, William S Noble, Zhijun Duan, and Jay Shendure. Massively multiplex single-cell hi-c.
Nature Methods, 14(3):263, 2017.

Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov, James T
Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander, et al. A 3d map of
the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159(7):
1665–1680, 2014.

Liang Sun, Shuiwang Ji, and Jieping Ye. Hypergraph spectral learning for multi-label classification.
In Proceedings of the 14th ACM SIGKDD international Conference on Knowledge Discovery and
Data Mining, pp. 668–676. ACM, 2008.

Ke Tu, Peng Cui, Xiao Wang, Fei Wang, and Wenwu Zhu. Structural deep embedding for hyper-
networks. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and Partha Talukdar. Hy-
pergcn: Hypergraph convolutional networks for semi-supervised classification. arXiv preprint
arXiv:1809.02589, 2018.

Chia-An Yu, Ching-Lun Tai, Tak-Shing Chan, and Yi-Hsuan Yang. Modeling multi-way relations
with hypergraph embedding. In Proceedings of the 27th ACM International Conference on Infor-
mation and Knowledge Management, pp. 1707–1710, 2018.

Vincent W. Zheng, Bin Cao, Yu Zheng, Xing Xie, and Qiang Yang. Collaborative filtering meets
mobile recommendation: A user-centered approach. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI’10, pp. 236–241. AAAI Press, 2010.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,
classification, and embedding. In Advances in Neural Information Processing systems, pp. 1601–
1608, 2007.

Jingtian Zhou, Jianzhu Ma, Yusi Chen, Chuankai Cheng, Bokan Bao, Jian Peng, Terrence J Se-
jnowski, Jesse R Dixon, and Joseph R Ecker. Robust single-cell hi-c clustering by convolution-
and random-walk–based imputation. Proceedings of the National Academy of Sciences, pp.
201901423, 2019.

11

Published as a conference paper at ICLR 2020

A APPENDIX

A.1 DETAILS OF THE STRATEGIES FOR GENERATING FEATURE VECTORS

We first define the functions used in the subsequent sections as follows: a hyperedge e with weight
w(e) is incident with a vertex v if and only if v ∈ e. We denote the indicator function that represents
the incident relationship between v and e by h(v, e), which equals 1 when e is incident with v. The
degree of vertex and the size of hyperedge are defined as:

d(v) ,
∑
e∈E

h(v, e)w(e) (10)

δ(e) ,
∑
v∈V

h(v, e) = |e| (11)

A.1.1 ENCODER BASED APPROACH

As shown on the right side of Fig. 3, the first method to generate features is referred to as the encoder
based approach, which is similar to the structure used in DHNE (Tu et al., 2018). We first obtain the
incident matrix of the hypergraph H ∈ R|V |×|E| with entries h(v, e) = 1 if v ∈ e and 0 otherwise.
We also calculate the diagonal degree matrixDv containing the vertex degree d(v) =

∑
e∈E h(v, e).

We thus have the adjacency matrix A = HHT − Dv , of which the entries a(vi, vj) denote the
concurrent times between each pair of nodes (vi, vj). The i-th row of A, denoted by ~ai, shows the
neighborhood structures of the node vi, which then passes through a one-layer neural network to
produce ~xi:

~xi = tanh
(
Wenc · ~ai +~benc

)
(12)

In DHNE, a symmetric structure was introduced where there are corresponding decoders to trans-
form the ~xi back to ~ai. Tu et al. (2018) remarked that including this reconstruction error term
would help DHNE to learn the graph structure better. We also include the reconstruction error term
into the loss function, but with tied-weights between encoder and decoder to reduce the number of
parameters that need to be trained.

A.1.2 RANDOM WALK BASED APPROACH

Besides the encoder based approach, we also utilize a random walk based framework to generate the
feature vectors ~xi (shown on the left side of Fig. 3). We extend the biased 2nd-order random walks
proposed in node2vec (Grover & Leskovec, 2016) to generalize to hypergraphs. For a walk from v
to x then to t, the strategies are described as follows.

The 1st-order random walk strategy given the current vertex x is to randomly select a hyperedge e
incident with x based on the weight of e and then to choose the next vertex y from e uniformly (Zhou
et al., 2007). Therefore, the 1st-order transition probability is defined as:

π1(t|x) ,
∑
e∈E

w(e)
h(t, e)h(x, e)

δ(e)
(13)

We then generalize the 2nd-order bias αpq from ordinary graph to hypergraph for a walk from v to
x to t as:

αp,q(t, v) =

{
1/p, if ∃e ∈ E, s.t. t, v, x ∈ e
1, else if ∃e ∈ E, s.t. t, x ∈ e
1/q, otherwise

(14)

where the parameters p and q are to control the tendencies that encourage outward exploration and
obtain a local view.

Next we add the above terms to set the biased 2nd-order transition probability as:

π(t|v, x) =
{

π1(t|x)·αpq(t,v)
Z , if ∃e ∈ E, s.t. v, x ∈ e

0, otherwise
(15)

where Z is a normalizing factor.

1

Published as a conference paper at ICLR 2020

With the well-defined 2nd-order transition probability π(t|v, x), we simulate a random walk of fixed
length l through a 2nd-order Markov process marked by P (ci = t|ci−1 = x, ci−2 = v) = π(t|v, x),
where ci is the i-th node in the walk. A Skip-gram model (Mikolov et al., 2013; Mikolov et al.,
2013) is then used to extract the node features from sampled walks such that the nodes that appear
in similar contexts would have similar embeddings.

A.2 DETAILS OF THE DATASETS USED IN THIS WORK

The four datasets used in the first part of our evaluation are:

• GPS (Zheng et al., 2010): GPS network. The hyperedges are based on (user, location,
activity) relations.

• MovieLens (Harper & Konstan, 2015): Social network. The hyperedges are based on (user,
movie, tag) relations, describing peoples’ tagging activities.

• drug: Medicine network from FAERS1. The hyperedges are based on (user, drug, reaction)
relations.

• wordnet (Bordes et al., 2013): Semantic network from WordNet 3.0. The hyperedges are
based on (head entity, relation, tail entity), expressing the relationships between words.

Details of the datasets are shown in Table A1.

Table A1: Datasets used in this work. Note that the columns under “#(V)” correspond to the columns under
“node type” for each dataset.

DATASETS NODE TYPE #(V) #(E)
GPS user location activity 146 70 5 1,436
MovieLens user movie tag 2,113 5,908 9,079 47,957
drug user drug reaction 12 1,076 6,398 171,756
wordnet head relation tail 40,504 18 40,551 145,966

A.3 PARAMETER SETTING

We downloaded the source code of DHNE from its GitHub repository. The structure of the neural
network of DHNE was set to be the same as what the authors described in Tu et al. (2018). We tuned
parameters such as the α term and the learning rate following the same procedure. We also tried
adding dropout between representation vectors and the fully connected layer for better performance
of DHNE. All these parameters were tuned until it was able to replicate or even improve the perfor-
mance reported in the original paper. To make a fair comparison, for all the results below, we made
sure that the training and validation data setups were the same across different methods.

For node2vec, we decomposed the hypergraph into pairwise edges and ran node2vec on the de-
composed graph. For the hyperedge prediction task, we first used the learned embedding to predict
pairwise edges. We then used the mean or min of the pairwise similarity as the probability for the
tuple to form a hyperedge. We set the window size to 10, walk length to 40, the number of walks
per vertex to 10, which are the same parameters used in DHNE for node2vec. However, we found
that for the baseline method node2vec, when we tuned the hyper-parameter p, q and also used larger
walk length, window size and walks per vertex (120, 20, 80 instead of 40, 10, 10), it would achieve
comparable performance for node classification task as DHNE. This observation is consistent with
our designed biased hypergraph random walk. But this would result in a longer time for sampling
the walks and training the skip-gram model. We therefore kept the parameters consistent with what
was used in DHNE paper.

For our Hyper-SAGNN, we set the representation size to 64, which is the same as DHNE. The
number of heads in the multi-head attention layer is set to 8. When using the encoder based approach
to calculate xi, we set the encoder structure to be the same as the encoder part in DHNE. When using
the random walk based approach, we decomposed the hypergraph into a graph as described above.
We set the window size to 10, walk length to 40, the number of walks per vertex to 10, to allow
time-efficient generation of feature vector ~xi. The results in Section 4.1 showed that even when the

1http://www.fda.gov/Drugs/

2

Published as a conference paper at ICLR 2020

pre-trained embeddings are not so ideal, Hyper-SAGNN can still well capture the structure of the
graph.

To train the model, we used the Adam optimizer with learning rate 1e-3. Each batch contains
96 positive hyperedges with 480 negative samples. The training is terminated when it reaches the
maximum training epoch number (100) or the performance on the validation set no longer improves.

A.4 EXPERIMENT SETTING

To compare the performance of Hyper-SAGNN with other baseline methods, we used the same three
tasks in the DHNE paper, i.e., network reconstruction, link prediction, and node classification. In
this section, we describe the setting of these three tasks and the evaluation metrics.

Network reconstruction aims to reconstruct the input hypergraph from the learned embedding.
Specifically, a hypergraph G = (V,E) is used as input to the algorithm. After training, the model
makes predictions for the original hyperedge set E. Link prediction, on the other hand, aims to pre-
dict the unseen hyperedge set E

′
based on the model trained with hypergraph G = (V,E). These

two tasks can be regarded as binary classification tasks and thus can be evaluated by metrics such
as AUROC and AUPR. For both tasks, the negative samples are set to be 5 times the amount of the
positive samples following the same setup of DHNE.

For the node classification, after training the model, the embeddings for the nodes are used to train
a Logistic Regression classifier with targets as the pre-defined labels for the nodes. Here we have
a multi-label classification and a multi-class classification task for dataset MovieLens and wordnet,
respectively, making the metrics defined for binary classification not applicable. Therefore, the per-
formances are evaluated by Micro and Macro F1 scores that are used for quantifying the performance
of multi-label/multi-class classification.

A.5 ANALYSIS OF THE DYNAMIC EMBEDDINGS

In this section, we discuss the relationships between dynamic embeddings and static embeddings.
As mentioned in the Method section, we design the model to establish the connection between the
probability score for a tuple with how well the static embedding of each node can be approximated
by the features of their neighbor within that tuple. If the model works as we designed, the dynamic
embedding of node i conditioned on an actual hyperedge (i, j, ..., k) should approximate the static
embedding of node i better. In contrast, the dynamic embedding of node i when it is a member
of a non-hyperedge tuple would not have a good “approximation”. To evaluate this, after training
the model we collected all the dynamic embeddings for nodes when they are within the tuples of
positive samples, which would be referred to as positive dynamic embeddings. We also collected
the dynamic embeddings for nodes when conditioned on the “hard negative samples” (the negative
samples that are generated by only changing one node in the positive samples), which would be
referred to as negative dynamic embeddings. We tested whether the positive dynamic embeddings
indeed resemble the static embeddings better by comparing the performance of node classification
using dynamic embeddings and static embeddings. For each node, since the number of positive
and negative dynamic embeddings is not finite, we sampled and averaged a number of them as
the features. The remaining setting of node classification is the same as described in the main
text. As shown in Fig. A1, in general, the positive dynamic embeddings can achieve much better
performance as compared to the negative dynamic embeddings. Both the micro and macro F1 scores
increase when more positive dynamic embeddings are sampled and averaged. When averaging all
positive dynamic embeddings and using those as features, the node classification performance is
close to what we achieved using static embeddings. This analysis demonstrates that the positive
dynamic embeddings “approximate” the static embeddings as they contain sufficient information for
accurate node classification. In addition, for the negative dynamic embeddings where only one node
is changed when generating negative samples, it performs dramatically worse. Note that we exclude
the αii term in the calculation of dynamic embeddings, which makes the dynamic embedding for
node i the combination of features of its neighbor within a given tuple. These results demonstrate
that the probability scores for each node indicate the “distances” of static/dynamic embedding pairs
that reflect how well the static embedding of each node can be approximated by the features of their
neighbor within that tuple.

3

Published as a conference paper at ICLR 2020

0.2 0.4 0.6 0.8 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.080.2 0.4 0.6 0.8

0.45

0.35

0.25

0.60

0.40

0.20

0.30

0.20

0.10

0.50

0.30

0.10

Sc
or

e

Fraction of training data

MovieLens Micro F1 wordnet Micro F1 MovieLens Macro F1 wordnet Macro F1

static
dynamic P - 1
dynamic P - 5
dynamic P - 10
dynamic P - all
dynamic N - 1
dynamic N - 5
dynamic N - 10
dynamic N - all

Embedding type

Figure A1: Node classification performance comparison for static embeddings and dynamic embeddings.
The results based on static embeddings are marked as “static”. Results based on positive/negative dynamic
embeddings are marked as “dynamic P/dynamic N”. The numbers of dynamic embeddings sampled during
this process are also included in the legend.

A.6 COMPARISON OF HYPER-SAGNN VS. THE VARIANTS

As mentioned above, unlike the standard GAT model, we exclude the αii term in the self-attention
mechanism. To test whether this constraint would improve or reduce the model’s ability to learn, we
implemented a variant of our model (referred to as variant type I) by including this term. Also, as
mentioned in the Method section, another potential variant of our model would be directly using the
~d∗i to calculate the probability score p∗i . We refer to this variant as variant type II. For variant type
II, on node classification task, since it does not have a static embedding, we used WT

v xi. The rest of
the parameters and structure of the neural network remain the same.

We then compared the performance of Hyper-SAGNN and two variants in terms of AUC and AUPR
values for network reconstruction task and hyperedge link prediction task on the following four
datasets: MovieLens, wordnet, drug, and GPS. We also compared the performance in terms of
the Micro F1 score and Macro F1 score on the node classification task on the MovieLens and the
wordnet dataset. For the MovieLens dataset, we used 90% nodes as training data while for wordnet,
we used 1% of the nodes as training data. All the evaluation setup is the same as described in the
main text. To avoid the effect of randomness from the neural network training, we repeated the
training process for each experiment five times and made the line plot of the score versus the epoch
number. To illustrate the differences more clearly, we started the plot at epoch 3 for the random walk
based approach and epoch 12 for the encoder based approach. The performance of the model using
the random walk based approach is shown in Fig. A2 to Fig. A5. The performance of the model
using the encoder based approach is shown in Fig. A6 to Fig. A9.

For models with the random walk based approach, Hyper-SAGNN is the best in terms of all metrics
for the GPS, MovieLens, and wordnet dataset. On the drug dataset, Hyper-SAGNN achieves higher
AUROC and AUPR score on the network reconstruction task than two variants, but slightly lower
AUROC score for the link prediction task (less than 0.5%).

For models with the encoder based approach, the advantage is not that obvious. All 3 methods
achieve similar performance in terms of all metrics for the GPS and the drug dataset. For the Movie-
Lens and wordnet dataset, Hyper-SAGNN performs similar to variant type I, higher than variant
type II on the network reconstruction and link prediction task. However, our model achieves slightly
higher accuracy on the node classification task than variant type I.

Therefore, these evaluations show that the choice of the structure of Hyper-SAGNN can achieve
higher or at least comparable performance than the two potential variants over multiple tasks on
multiple datasets.

4

Published as a conference paper at ICLR 2020

0.6

0.8

1.0

0.4

0.8

0.70

0.80

0.90

0 20 40

0.3

0.5

0.7

0 20 40

-0.04

0.00

0.04

0 20 40

-0.04

0.00

0.04

Hyper-SAGNN
Variant Type I
Variant Type II

Network
Reconstruction

AUROC

Network
Reconstruction

AUPR

Link Prediction
AUROC

Link Prediction
AUPR

Node Classification
F1-micro

Node Classification
F1-macro

Figure A2: Performance comparison of Hyper-SAGNN – Walk and Variant Type I, II (GPS)

0.94

0.96

0.98

1.00

0.75

0.85

0.95

0.90

0.94

10 20 30

0.74

0.78

0.82

10 20 30

0.46

0.50

10 20 30

0.27

0.29

0.31

Network
Reconstruction

AUROC

Network
Reconstruction

AUPR

Link Prediction
AUROC

Link Prediction
AUPR

Node Classification
F1-micro

Node Classification
F1-macro

Figure A3: Performance comparison of Hyper-SAGNN – Walk and Variant Type I, II (MovieLens)

0.96

1.00

Network
Reconstruction

AUROC

0.86

0.90

0.94

Network
Reconstruction

AUPR

0.94

0.96

0.98

Link Prediction
AUROC

5 10 15

0.86

0.90

Link Prediction
AUPR

5 10 15

-0.04

0.00

0.04

Node Classification
F1-micro

5 10 15

-0.04

0.00

0.04

Node Classification
F1-macro

Figure A4: Performance comparison of Hyper-SAGNN – Walk and Variant Type I, II (drug)

5

Published as a conference paper at ICLR 2020

0.96

1.00

0.90

1.00

0.84

0.88

5 10 15
0.62

0.66

0.70

5 10 15

0.54

0.58

5 10 15
0.30

0.34

0.38

Network
Reconstruction

AUROC

Network
Reconstruction

AUPR

Link Prediction
AUROC

Link Prediction
AUPR

Node Classification
F1-micro

Node Classification
F1-macro

Figure A5: Performance comparison of Hyper-SAGNN – Walk and Variant Type I, II (wordnet)

0.93

0.95

0.97

0.80

0.90

0.92

0.96

20 40

0.70

0.75

0.80

20 40

-0.04

0.00

0.04

20 40

-0.04

0.00

0.04

Network
Reconstruction

AUROC

Network
Reconstruction

AUPR

Link Prediction
AUROC

Link Prediction
AUPR

Node Classification
F1-micro

Node Classification
F1-macro

Hyper-SAGNN
Variant Type I
Variant Type II

Figure A6: Performance comparison of Hyper-SAGNN – Encoder and Variant Type I, II (GPS)

0.96

0.98

1.00

0.92

0.96

0.91

0.93

0.95

20 40

0.77

0.79

20 40

0.42

0.46

20 40

0.26

0.30

Network
Reconstruction

AUROC

Network
Reconstruction

AUPR

Link Prediction
AUROC

Link Prediction
AUPR

Node Classification
F1-micro

Node Classification
F1-macro

Figure A7: Performance comparison of Hyper-SAGNN – Encoder and Variant Type I, II (MovieLens)

6

Published as a conference paper at ICLR 2020

0.96

0.98

1.00

0.90

0.92

0.94

0.94

0.96

0.98

20 40

0.88

0.90

0.92

20 40

-0.04

0.00

0.04

20 40

-0.04

0.00

0.04

Network
Reconstruction

AUROC

Network
Reconstruction

AUPR

Link Prediction
AUROC

Link Prediction
AUPR

Node Classification
F1-micro

Node Classification
F1-macro

Figure A8: Performance comparison of Hyper-SAGNN – Encoder and Variant Type I, II (drug)

0.98

1.00

0.95

0.97

0.88

0.92

20 40

0.68

0.72

20 40

0.42

0.46

20 40

0.20

0.24

Network
Reconstruction

AUROC

Network
Reconstruction

AUPR

Link Prediction
AUROC

Link Prediction
AUPR

Node Classification
F1-micro

Node Classification
F1-macro

Figure A9: Performance comparison of Hyper-SAGNN – Encoder and Variant Type I, II (wordnet)

7

	Introduction
	Related Work
	Method
	Definitions and Notations
	Structure of Hyper-SAGNN
	Approaches for generating features

	Results
	Performance comparison with existing methods
	Performance on non-k-uniform hypergraph
	Outsider Identification
	Application to single-cell Hi-C datasets

	Conclusion
	Appendix
	Details of the strategies for generating feature vectors
	Encoder Based Approach
	Random Walk Based Approach

	Details of the datasets used in this work
	Parameter Setting
	Experiment Setting
	Analysis of the dynamic embeddings
	Comparison of Hyper-SAGNN vs. the Variants

